
 A U S T R I A

Abstract
Starting a new VM each time an
application is executed, forces numerous
classes to be loaded multiple times. This
overhead significantly slows down the

TMdevelopment of Java software.
So don't do it!

We plan to eliminate these bottlenecks
TMwith an open Java environment where

only one VM hosts all applications and
classes are loaded only once.

Faster application start-up

TMMust Java development be so slow?
Albrecht Wöß

Teaching & Research Assistant

Johannes Kepler University Linz
Institute of Practical Computer Science

ystem oft are Group
Altenbergerstrasse 69, 4040 Linz, Austria

Tel (Fax): ++43 / 732 / 2468 - 7134 (7138)

woess@ssw.uni-linz.ac.at
http://www.ssw.uni-linz.ac.at

S S W

Type safety:
Does complete sharing of classes violate type safety?

TMAn "Oberon-inspired" Java environment might be the answer to several problems.

Details of the Approach

Discussion

References:
(1) G.Czajkowski, Application Isolation in the Java™ Virtual Machine, in

OOPSLA '00 Conf.Proc., pp. 354-366, ACM Press, 2000.
(2) A. Fischer, H. Marais, The Oberon Companion - a Guide to Using and

Programming Oberon System 3, vdf Hochschulverlag AG an der ETH
Zürich, 1998, ISBN 3-7281-2493-1.

(3) L. Gorrie, Echidna - a Free Multitask System in Java, 2001,
.

(4) D. Knuth, S. Levy, The CWEB System of Structured Documentation,
Addison-Wesley, 1993, ISBN 0-201-57569-8.

(5) S. Liang, G. Bracha, Dynamic Class Loading in the Java™ Virtual
Machine, in OOPSLA '98 Conf.Proc., pp. 36-44, ACM Press, 1998.

(6) H. Mössenböck, K. Koskimies, Active Text for Structuring and
Understanding Source Code, SOFTWARE - Practice and Experience,
26(7), 1996, pp. 833-850.

(7) ETH Oberon home page, .
(8) M. Reiser, The Oberon System - User Guide and Programmer's

Manual, ACM Press, Addison-Wesley, 1991, ISBN 0-201-54422-9.
(9) N. Wirth, J. Gutknecht, Project Oberon - The Design of an Operating

System and Compiler, ACM Press, Addison-Wesley, 1992, ISBN 0-201-
54428-8.

http://www.javagroup.org/echidna

http://www.oberon.ethz.ch

Applications share classes and state:
Each class is loaded only once, and all applications use
the same class object with all its fields when they use the
same type ().
This implies that there are no separated memory areas.

complete class sharing

Commands:
Not only the main-method can serve as an entry point

TM
into a Java program, but any other method, as well.
These methods are called commands and specified
like method calls (= Classname.Methodsname).

Text Elements:
... are arbitrary objects - like graphics, tables, Folding
Elements, ... - floating in texts. They will be ignored by
the compiler and can be used to highly enhance
program structuring and documentation directly in the
source code.
This will lead to a new form of . literate programming

Classes remain loaded:
After an application terminates or a command execution
ends all loaded classes remain in memory and retain their
state.
Subsequent applications can communicate via shared
state.
Unloading shall only happen when explicitly desired.

Single multi-tasking JVM:
Multiple applications execute on a single JVM.

Point & Click
commands

 in
"tool" texts

Versioning:
Is it important to support the use of different versions of
the same class, or is this just another hallmark of user-
unfriendlyness?

Unloading:
When can a class be unloaded?

Reloading:
Is it possible to reload a new version of a class (whose
interface has not changed) just by replacing the old
one and copying its static field values?

Literate Programming:
Does LP actually prolong software development OR
do we budget too little time for documentation?
Does LP really lower maintainance effort?

Remember & Type
cryptic abbreviations
at
command prompts

Minimal modules
working together

Monolithic
programs in

isolation

TMCommands in Java ?
TMDoes it make sense for Java to add the notion of the

command beside the one of a program as the unit of
executable code?

Compatibility:
TMWill employing these ideas in Java require a whole

new way of programming and invalidate all existing
TMJava programs OR will it just add additional

possibilities and still support execution of previously
produced software?

G O A L S

Better interoperability
between applications

Scripting of applications

How it works
User executes a command by clicking on it in a text:

This results in:
Loading of class A
Loading of all classes used during execution
(B, C, D)
Execution of method foo of class A
All classes remain loaded when foo terminates

A.foo

Ü
Ü

Ü
Ü

User executes another command:

This results in:
Loading of class E (if not already in memory)
Loading of all classes used during execution
 that are not already loaded (-)
Execution of method bar of class E
All classes remain loaded when bar terminates

E.bar

Ü
Ü

Ü
Ü

Ä
Ä

Only E had to be loaded!
A and E share the state of class C!

User :unloads A

Ä
Ä

Only A is unloaded!
All other classes stay in memory,
and can be reused by other applications.

Separation
TM(=Traditional Java Approach)

Complete Sharing

Reduced memory usage Literate programming

ins tead o f

ins tead o f

Further ideas, comments, critique, ...:
Any additional input is more than welcome!

Þ

Þ
Application 1

System Class

Library
Class 2

Library
Class 1

Application 2

Library
Class 2

Library
Class 1

Library
Class 3

Þ

Application 1

System Class

Library
Class 2

Library
Class 1

Application 2

Library
Class 3

A

D

CB

EA

D

CB

E

D

CB

Image Processing
Printing Support

Word Processor

Image Viewer
Internet Support
Drawing Support

DB Access

Text Processing

Screensaver Generator
Slideshow Support

Image Processing

Printing Support

Image Processing

Printing Support

Text Processing

Word Processor

Image Viewer

MyGCD

InputOutput

Basic

Keyboard InputOutput

Basic

Keyboard

?

? ? ?

unload
MyGCD

	Seite1

