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Abstract
Starting a new VM each time an 
application is executed, forces numerous 
classes to be loaded multiple times. This 
overhead significantly slows down the 

TMdevelopment of Java  software. 
So don't do it! 

We plan to eliminate these bottlenecks 
TMwith an open Java  environment where 

only one VM hosts all applications and 
classes are loaded only once.

Faster application start-up

TMMust Java  development be so slow?
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Type safety:
Does complete sharing of classes violate type safety?

TMAn "Oberon-inspired" Java  environment might be the answer to several problems.

Details of the Approach

Discussion
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Applications share classes and state:
Each class is loaded only once, and all applications use 
the same class object with all its fields when they use the 
same type  ( ).
This implies that there are no separated memory areas.

complete class sharing

Commands:
Not only the main-method can serve as an entry point 

TM
into a Java  program, but any other method, as well.
These methods are called commands and specified 
like method calls (= Classname.Methodsname).

Text Elements: 
... are arbitrary objects - like graphics, tables, Folding 
Elements, ... - floating in texts. They will be ignored by 
the compiler and can be used to highly enhance 
program structuring and documentation directly in the 
source code.
This will lead to a new form of . literate programming

Classes remain loaded:
After an application terminates or a command execution 
ends all loaded classes remain in memory and retain their 
state. 
Subsequent applications can communicate via shared 
state. 
Unloading shall only happen when explicitly desired.

Single multi-tasking JVM:
Multiple applications  execute on a single JVM.

Point & Click
commands

 in
"tool" texts

Versioning:
Is it important to support the use of different versions of 
the same class, or is this just another hallmark of user-
unfriendlyness?

Unloading:
When can a class be unloaded?

Reloading:
Is it possible to reload a new version of a class (whose 
interface has not changed) just by replacing the old 
one and copying its static field values?

Literate Programming:
Does LP actually prolong software development OR 
do we budget too little time for documentation?
Does LP really lower maintainance effort?

Remember & Type
cryptic abbreviations
at
command prompts

Minimal modules 
working together

Monolithic 
programs in 

isolation

TMCommands in Java ?
TMDoes it make sense for Java  to add the notion of the 

command beside the one of a program as the unit of 
executable code?

Compatibility:
TMWill employing these ideas in Java  require a whole 

new way of programming and invalidate all existing 
TMJava  programs OR will it just add additional 

possibilities and still support execution of previously 
produced software?

G O A L S

Better interoperability 
between applications

Scripting of applications

How it works
User executes a command by clicking on it in a text:

This results in:
Loading of class A
Loading of all classes used during execution 
(B, C, D)
Execution of method foo of class A
All classes remain loaded when foo terminates

A.foo
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Ü
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User executes another command:

This results in:
Loading of class E (if not already in memory)
Loading of all classes used during execution
 that are not already loaded (-)
Execution of method bar of class E
All classes remain loaded when bar terminates

E.bar

Ü
Ü

Ü
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Only E had to be loaded!
A and E share the state of class C!

User :unloads A

Ä
Ä

Only A is unloaded!
All other classes stay in memory,
and can be reused by other applications. 

Separation
TM(=Traditional Java  Approach)

Complete Sharing

Reduced memory usage Literate programming

ins tead  o f

ins tead  o f

Further ideas, comments, critique, ...:
Any additional input is more than welcome!
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