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Abstract I

Abstract

Coroutines are non-preemptive light-weight processes. Their advantage over threads

is that they do not have to be synchronized because they pass control to each other

explicitly and deterministically. Coroutines are therefore an elegant and efficient im-

plementation construct for numerous algorithmic problems.

Many mainstream languages and runtime environments, however, do not provide a

coroutine implementation. Even if they do, these implementations often have less-

than-optimal performance characteristics because of the trade-off between run time

and memory efficiency.

As more and more languages are implemented on top of the Java virtual ma-

chine (JVM), many of which provide coroutine-like language features, the need for

a coroutine implementation has emerged. This thesis presents an implementation of

coroutines in the JVM that efficiently handles a large range of workloads. It imposes no

overhead for applications that do not use coroutines and performs well for applications

that do.

The implementation of two advanced concepts, namely thread-to-thread migration and

serialization of coroutines, is also explained along with the API that is used to control

them.

For evaluation purposes, coroutines were used to implement JRuby fibers, which lead

to a significant speedup of certain JRuby programs. This thesis concludes with general

benchmarks that show the performance of the approach and outline its run-time and

memory characteristics.

The work presented in this thesis was performed in a research cooperation with, and

sponsored by, Oracle (formerly Sun Microsystems).



Kurzfassung II

Kurzfassung

Coroutinen sind nicht-präemptive, leichtgewichtige Prozesse. Im Gegensatz zu Threads

müssen sie nicht synchronisiert werden, da die Ausführungsreihenfolge explizit und

deterministisch festgelegt wird. Dadurch ermöglichen sie eine elegante und effiziente

Implementierung vieler Algorithmen.

Allerdings stellen viele verbreitete Laufzeitumgebungen und Programmiersprachen

keine Coroutinen zur Verfügung, und existierende Coroutinen-Implementierungen bie-

ten oft nur unzureichende Kompromisse zwischen Laufzeit- und Speichereffizienz.

Dadurch, dass es mehr und mehr Programmiersprachen-Implementierungen für Java

VMs gibt, von denen viele Coroutinen-ähnliche Funktionen anbieten, ergibt sich eine

vermehrte Nachfrage nach einer Coroutinen-Implementierung. Diese Arbeit präsentiert

eine Implementierung, die für einen weiten Bereich verschiedener Aufgaben performant

ist, wobei Programme, die Coroutinen nicht benutzen, nicht verlangsamt werden.

Auch zwei weitergehende Konzepte, das Migrieren von Coroutinen zwischen Threads

und das Serialisieren von Coroutinen, werden zusammen mit dem benötigten API be-

schrieben.

Zur Evaluierung wurden JRuby fibers mittels Coroutinen implementiert, was zu einer

starken Steigerung des Programmdurchsatzes führte. Die Arbeit schließt mit einer

Evaluierung der Laufzeit- und Speichercharakteristika der Implementierung.

Die hier vorgestellte Forschungsarbeit wurde im Rahmen einer Kooperation mit und

mit Unterstützung von Oracle (vormals Sun Microsystems) erstellt.
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Motivation 1

Chapter 1

Motivation

This chapter shows why a coroutine implementation in a Java Virtual Ma-

chine is useful and who will benefit from it. It also introduces two advanced

concepts, namely thread-to-thread migration and serialization/deserializa-

tion.

Coroutines are a programming language concept that allows for explicit, cooperative

and stateful switching between subroutines. They are a powerful and versatile concept

that provides a natural control abstraction for many problems. For example, produc-

er/consumer problems can often be implemented elegantly with coroutines [7].

Within a thread, coroutines do not need to be synchronized because the points of

control transfer can be chosen such that no race condition can occur.

Coroutines also provide an easy way to inverse recursive algorithms into iterative ones.

For an example of this see Figure 3.6 on page 24.

Coroutines can be simulated by putting the state of a method execution into an object,

similar to how closures [16] are usually implemented. In this scheme local variables are

stored in heap objects while the task is suspended, so that they can be restored later
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on. Only coroutines allow the compiler to fully optimize local variables, e.g., put them

into processor registers or stack slots. They can thus benefit from the fact that their

state is not accessible from the outside, while heap-allocated objects lead to code that

is compiled as if such access was possible.

Because of this versatility many new programming languages, such as Ruby [11], Go [13]

and Lua [15], incorporate coroutines as essential language or runtime environment fea-

tures. Language implementations that rely on an underlying virtual machine (VM),

such as a Java Virtual Machine (JVM), need to emulate coroutines if they are not avail-

able. The most common ways to do so are using synchronized threads and compile-time

transformations, both of which have significant drawbacks.

Thus it can be expected that a native coroutine implementation for a production-quality

JVM, such as the HotSpotTM Virtual Machine, will provide significant value to language

implementation, framework and application developers.

Simple coroutines, which are constrained to one thread, are useful for many use cases,

but sometimes even more functionality is required:

Thread-to-Thread Migration

For server applications that use coroutines to manage user sessions it might be

beneficial to resume a coroutine in a different thread than the one in which it was

created.

Serialization/Deserialization

In other situations it might even be necessary to move a coroutine into permanent

storage, like a database. This is useful for use cases like long-lasting transactions,

checkpointing or agents that move between VMs.

A coroutine system that includes these concepts provides enough functionality for a

large number of use cases.

The rest of this thesis is organized as follows: Chapter 2 provides an overview of the

state of the art concerning Java and coroutines. Then, Chapter 3 puts these two pieces

together and explains how coroutines fit into the Java world, including the necessary

APIs. Chapter 4, which is the main chapter of this thesis, shows the actual implemen-

tation details of the basic coroutine implementation, the thread-to-thread migration and

the serialization and deserialization. In order to illustrate how coroutines work in prac-

tice Chapter 5 presents some common use cases and usage patterns. Chapter 6 contains

the evaluation of the coroutine implementation presented in this thesis, followed by an

outlook to related work in Chapter 7. Chapter 8 provides proposals for further work,

followed by conclusions in Chapter 9.
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Chapter 2

State of the Art

This chapter provides an overview of Java, Java Virtual Machines and

coroutines. A brief introduction to the Java programming language is fol-

lowed by a description of the HotSpotTM Java Virtual Machine. Then this

chapter introduces the basic concepts of coroutines, along with a short his-

tory of coroutines. It ends with an overview of common coroutine imple-

mentation techniques.

2.1 Java

Java[4] is a general-purpose object-oriented programming language developed by Sun

Microsystems1. After its introduction in 1995 it quickly became one of the most suc-

cessful and most widely-used programming languages, consistently ranking at the top

of programming language rankings like the TIOBE programming language index [34].

Figure 2.1 shows a simple “Hello World!” implemented in Java.

1now a subsidiary of Oracle Corporation
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public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

}
}

Figure 2.1: “Hello World!” in Java

While it was originally designed to run on interactive TV appliances, Java’s success

is tightly coupled to the success of the World Wide Web2. The ability to transfer

code over a network and to execute it in a controlled environment, without letting

it compromise the surrounding system (also known as sandboxing), played a crucial

role in the adoption of Java applets as interactive elements in HTML pages. New

technologies such as powerful JavaScript virtual machines diminished the importance

of Java applets, but the large number of Java installations facilitated by the applet

technology jump started the success of Java in many other areas.

Java gained widespread adoption in business applications because of a number of

security-related features. Java pointers (called references) do not support pointer arith-

metics, which is a major source of errors in lower-level languages. Java also does not

allow explicit object deallocation, it instead provides a garbage collector that automat-

ically frees unreachable objects. This avoids a large portion of common memory leaks

and security problems. The memory model is sound enough to allow for exact garbage

collection, which is a requirement for many high-performance garbage collection algo-

rithms. Java is also largely platform independent, although in practice a programmer

still needs to be careful to achieve full platform independence.

For programmers, Java is easier to learn and to maintain than many other languages.

Java’s object model is simple and easy to understand, but powerful enough for most use

cases. For example, multiple inheritance is limited to interfaces, which is much simpler

than multiple inheritance for classes. The Java programming language is accompanied

by a large runtime library, which includes support for many advanced tasks like XML-

parsing, graphical user interfaces, etc. Java also has a concise, C++ - like syntax which

provides familiarity for C and C++ programmers.

2.2 Java Virtual Machines

The Java Compiler (javac) compiles Java source code, contained in .java-files into

platform- and CPU-independent bytecode stored in one or more .class-files.

2Java-enabled TV sets were, at the time, unviable due to the cost of hardware capable of running Java.
Ironically, recently introduced Blue-ray TV appliances use Java for their interactive components.
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A Java Virtual Machine (JVM) then loads, verifies, and executes these bytecodes. It

needs to adhere strictly to the semantics defined by the Java virtual machine specifi-

cation [19]. It is important to note that all executable bytecodes are contained within

methods, and in turn all methods are contained within classes. Although there can

be more than one class within a single .java-file there is always exactly one class per

.class-file. Multiple .class-files can be packaged into a compressed Java Archive (a

so-called .jar-file), along with other resources needed by the application. Figure 2.2

provides an overview of these artifacts and the tools that generate them.

Java Compiler
javac

Java Virtual Machine
java

Sourcecode
.java

Bytecode
.class

Java Archiver
jar

Java Archive
.jar

Figure 2.2: Overview of the artifacts generated by a Java system

After the classes are loaded and verified for soundness the bytecodes are executed.

They can be interpreted or compiled just-in-time; most JVMs employ a sophisticated

combination of both. The JVM is a stack machine that uses an expression stack instead

of registers, but in practice all JVMs compile bytecode into register-based, platform-

specific code.

In order to achieve maximum performance, most JVMs today use the CPU-supported

stack to manage local variables and expression stacks. All the information belonging

to one execution of a method is called an activation frame or stack frame. The stack

containing these activation frames grows and shrinks in defined directions, and obsolete

activation frames are overwritten automatically, without the need for explicit manage-

ment. In addition to the local variables and expression stacks, the stack also holds

the return addresses of method calls in the form of a bytecode index (bci) or program

counter (pc) for each activation frame, which is used to resume the caller at the correct

position upon a return instruction.

In order to conform to the specification, JVMs need to implement automatic memory

management (garbage collection). Garbage collection marks all objects that are reach-

able from a set of root pointers as live and discards all unreachable objects. The JVM

has to consider a number of sources for root pointers, e.g., activation frames, references

to Java objects from native code, and compiled code.
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Frame

Frame

Verifier

Bytecode
.class

Java Archive
.jar

Java Virtual Machine

Linker

Interpreter

Just-In-Time
Compiler

Machine
Code

Frame

Frame

Frame

Frame

Frame

Frame

Frame

Frame

Frame

Frame

Frame

Frame

Frame

Frame

Frame

Stacks

VM Data
Structures

Garbage
Collector

Frame

Frame

Frame

Frame

Figure 2.3: Java Virtual Machine overview

Figure 2.3 provides a simplified overview of the most important subsystems of a Java

Virtual Machine. It is important to note that compiled code, interpreted code and the

garbage collector interact with stack frames.

2.2.1 Java HotSpotTM VM

The Java HotSpotTM VM was introduced along with Java 1.3. It can either interpret

Java bytecodes or use one of its two just-in-time (JIT) compilers, called client com-

piler [18] and server compiler [23], to compile bytecodes into optimized machine code.

The name ”hotspot” refers to the fact that it detects frequently executed methods,

called hot spots, which are then targeted for compilation and further optimization.

The Java HotSpotTM VM also contains a sophisticated memory management system

that performs precise garbage collection, which requires the exact size and layout of

an object and all object pointers within it to be known to the runtime system. Every

object is preceded by a two-word header that contains a pointer to the class of the

object and additional information, such as locking and garbage collection bits.

2.2.2 Thread and Stack Management

Java includes support for creating, starting and managing multiple execution threads

within one application. Modern JVMs use the native threading facilities provided by

the operating system, in order to achieve maximum performance.
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The programmer can create threads by creating instances of the java.lang.Thread

class, which contains all methods for managing threads. As soon as the thread is

started the JVM will create the necessary native data structures, along with the actual

operating system thread, so that the parallel execution can start.

Java threads are scheduled by the operating system, in a nondeterministic way. This

means that there is no guarantee as to when a switch from one thread to the other

occurs. There is also no way to know to which thread the system will switch, other

than that only active, non-suspended threads will be considered.

Synchronization between threads is a feature that is important enough to be supported

by a special keyword, synchronized. Every Java object includes a hidden lock field

that is used for synchronization of threads. Every thread that wants to enter a syn-

chronized code block must first obtain the lock of an object that is associated with that

synchronized code. The lock is granted to only one thread at a time, which guarantees

mutual exclusion of threads competing for critical resources.

Each thread has its own stack, which is managed by the runtime system. Normal Java

code cannot interfere with stack management. The stacks are usually provided by the

operating system for each thread automatically.

Dynamic Link

Local Variables

Return Address

Dynamic Link

Local Variables

Return Address

Local Variables

Stack Pointer

Frame Pointer

CPU Registers

Dynamic Link

Current Frame

Caller's Frame

Caller's Caller's Frame

Figure 2.4: Layout of stack frames

In most systems the stack grows from higher towards lower addresses, Figure 2.4 shows

the typical layout of such a stack: The CPU registers stack pointer and frame pointer

define the lower and upper bounds of the current stack frame, and each stack frame

contains a pointer (dynamic link) to the next one. It is thus possible to determine the

location and size of all stack frames on the stack by following the dynamic links until

the end of the stack is reached.
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2.3 Coroutines

Coroutines [21] are a concept has been used since the early days of electronic data

processing. The term“Coroutine”was coined in 1963 by Conway [7] as“each module . . .

may be coded as an autonomous program that communicates with adjacent modules as

if they were input and output subroutines”. They are present in numerous programming

languages, such as Go, Icon, Lua, Perl, Prolog, Ruby, Tcl, Simula, Python, Modula-2,

and many others. However, none of the top five languages of the TIOBE programming

languages index [34] (Java, C, C++, PHP and Basic) supports coroutines without

additional libraries.

Coroutine BCoroutine A

Figure 2.5: Interlocked execution of coroutines

From a language design perspective, coroutines are a generalization of subroutines.

When they are invoked, they start execution at their first statement. A coroutine can

transfer control to some other coroutine (typically using a yield statement). Coroutines

can transfer control back and forth, as shown in Figure 2.5.

The state of the local variables at the transfer point is preserved. When control is

transferred back, the coroutine resumes the preserved state and continues to run from

the point of the transfer. At its end or at the encounter of a return statement a

coroutine dies, i.e., passes control back to its caller or some other coroutine as defined

by the semantics of the coroutine system.

Coroutines have often been seen as inferior alternatives to full-blown threads, because

of the manual context switching. However, there are situations in which manual context

switching makes sense or is even desired (e.g., producer/consumer problems, discrete

event simulation, and non-blocking server implementations).
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1 // Subroutine
2 class Container {
3 boolean first = false;
4 public String next() {
5 if (first) {
6 first = false;
7 return "Alpher";
8 } else {
9 first = true;

10 return "Bethe";
11 }
12 }
13 }

1 // Coroutine
2 class Container {
3 public String next() {
4 yield "Alpher";
5 return "Bethe";
6 }
7 }

call

call

return "Alpher"

return "Bethe"

call

call

yield "Alpher"

return "Bethe"

time

Figure 2.6: Comparison of subroutine (left) and coroutine execution (right)

Figure 2.6 shows a simple comparison between subroutine and coroutine execution3.

The task that the methods in this example should achieve is to return "Alpher" the first

time the method next() is called and "Bethe" the second time. While the subroutine

needs to explicitly implement an ad hoc state machine, the coroutine can simple yield

a value to the caller without destroying the method’s execution frame. Thus, when the

coroutine is called the second time it will resume immediately after the yield statement

and return the second value. If a third value were to be returned by the coroutine

version, it would simply need to be changed to yield "Bethe" and return "Gamow".

2.3.1 Coroutine Characteristics

The fact that coroutines automatically preserve their execution context is sometimes

called automatic stack management [2]. Any algorithm that uses coroutines can be re-

implemented with state machines, which is considered to be manual stack management.

In contrast to other programming language concepts (e.g., continuations), the semantics

of coroutines have no strict definition. Coroutines may not even be recognizable as such,

and depending on their semantics and expressiveness they are called generators [14,

21], coexpressions [14], fibers [28], iterators [21], green threads [29], greenlets [26], or

cooperative threads.

3Note that this example uses pseudo-code, the actual coroutine API is introduced in Section 3.2.
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This section presents the most common attributes used to describe coroutine variants.

2.3.1.1 Stackful vs. Stackless

Coroutines that can only yield from within their main method are called stackless. They

can be implemented by compile-time transformations, but are only useful for a limited

range of applications. An example of this is C#’s implementation of iterator methods

using the yield keyword, which causes the compiler to perform a transformation that

turns the method into a state machine that implements the IEnumberable interface.

If coroutines can yield from subsequently called methods, they are called stackful.

2.3.1.2 First-class Coroutines

Only coroutines that are not tied to a specific language construct (like for-each loops)

and that are programmer-accessible objects are considered to be first-class coroutines.

Programming languages that limit the usage of coroutines to certain situations usually

do so to allow the compiler to transform the coroutine code into ordinary sequential

code.

2.3.1.3 Symmetric vs. Asymmetric Coroutines

Asymmetric coroutines are bound to a specific caller and can only transfer control back

to this caller. The coroutine in Figure 2.6 is an asymmetric coroutine. The asymmetry

lies in the fact that there are distinct and complementary operations for transferring

control to and from a coroutine (call and yield/return). This also means that an

asymmetric coroutine is bound to return to its original caller.

Symmetric coroutines, on the other hand, are not bound to return to their predeces-

sor coroutine [21]. There is only one operation, typically also called yield, which is

used to transfer control to another coroutine. Depending on the coroutine implementa-

tion the target coroutine can either be specified explicitly (yieldTo) and/or implicitly

(yield). Using yield, without specifying a target coroutine, usually involves some

kind of scheduler that selects a coroutine to run.

2.3.2 History

At the assembly language level coroutine techniques have been employed for a long

time, although the name “Coroutine” was not used.
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The name “Coroutine” was first mentioned in 1963 by Conway [7]. His coroutines were

a tool for efficiently implementing multi-pass processes, like compilers. His usage of

coroutines is similar to UNIX pipes, where the output of one process is used as the

input of another process.

In Simula I and its successor Simula 67 [9], Ole-Johan Dahl and Kristen Nygaard

introduced coroutines as a fundamental operation. They had a specific interest in

using coroutines for simulation purposes, because the semantics of coroutines are more

adequate for simulation than the semantics of subroutines. Thus, Simula I includes a

concept similar to coroutines, called simulation. Simula 67 introduced the keywords

call, detach and resume, which provide a more generic implementation of coroutines.

They realized and exploited the fact that coroutines can be used for implementing other

language features.

Implementations of Smalltalk [12], which first appeared in 1972, implement the execu-

tion stack as a first-class citizen, which allows for a trivial coroutine implementation.

Scheme [1], created in 1975, is one of the first languages that implemented first-class

continuations. They are an even more powerful concept than coroutines and can be

used as an implementation vehicle for coroutines.

Modula-2 [37], designed and developed between 1977 and 1980 by Niklaus Wirth, also

includes coroutines as lightweight, quasi-concurrent processes. They are controlled

by the low-level procedures NEWPROCESS and TRANSFER. The coroutines in Modula-2

are intended primarily for producer/consumer problems, similar to Conway’s original

design.

The standard C library includes functions named setjmp and longjmp, which can

theoretically be used to implement coroutine-like features, but these rarely-used func-

tions are highly platform dependent and awkward to use. The setcontext family of

functions, available in POSIX C libraries, is suited for coroutine implementations. But

implementations containing these functions are rare and the setcontext functions also

have significant shortcomings, for example with stack overflow detection.

With the advent of languages like C# and Java, coroutines went out of fashion. Re-

cently, however, there is again a growing interest, and an increasing number of languages

provide coroutines. Modern languages with coroutines include Icon, Go [13], Lua [15],

Perl, Python and Ruby [11].

2.3.3 Implementation techniques

Coroutines have been incorporated into many different languages. Depending on the

architecture of the underlying runtime system different implementation techniques have
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been chosen. The most common techniques for languages that use the CPU-supported

stack management are:

Separate coroutine stacks A separate stack area is allocated for each coroutine. This

was very simple in older operating systems (like DOS), but the introduction of

exception management, the need for correctly handling stack overflows, and other

stack-specific algorithms have made allocating memory that can function as stack

space more difficult. Because of this, stacks also consume considerable amounts

of memory (see Section 4.2.2 on page 30), which prevents applications from using

large numbers of coroutines.

Copying the stack The stack data of every coroutine is copied to and from the stack

as needed. While this approach is simple to implement, it also has two main

disadvantages: Firstly, the coroutine transfer becomes much more expensive (and

its costs depend on the current number of stack frames). Secondly, in garbage-

collected environments the data that has been copied from the stack can contain

root pointers that need to be visited during garbage collection, which means that

the garbage collector needs to be aware of them.

Continuations Every system that provides continuations can easily provide coroutines,

by simply capturing and resuming continuations. The following example (syntax

taken from [30]) shows how an implementation of symmetric coroutines could

look like:

1 public class Coroutine {
2 private Continuation continuation = new Continuation();
3

4 // returns the next scheduled coroutine
5 private Coroutine next() {
6 return ...;
7 }
8

9 public void yield() {
10 if (continuation.capture() == Continuation.CAPTURED) {
11 next().continuation.resume(null);
12 }
13 }
14 }

In programming languages that represent stack frames as heap objects and a stack as

a linked list of stack frames, it is trivial to implement coroutines by storing the pointer

to the topmost frame of the coroutine. Such systems, however, need special garbage

collection algorithms to free obsolete frames.

Within the constraints of the Java programming language and a JVM it is not possi-

ble to use any of these implementation techniques, because it is not possible to gain

arbitrary access to the structure of the stack. JVMs also do not provide continuation
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support, apart from research projects like [10] and [30]. There are, however, other

techniques that can be used:

Threads as coroutines If multiple threads are synchronized in a way that allows only

one of them to run at a time, and that provides explicit switching between the

threads, they will appear as if they were coroutines running within one thread4.

The drawback of this approach is that threads consume a lot of memory and that

the synchronized switching between threads is an expensive operation.

Compile-time transformations A special compilation step that turns methods into

state machines can be used to make methods appear like coroutines at the source

level. C#’s implementation of iterator methods performs this transformation for

individual methods (stackless), while frameworks like javaflow [3] perform this

transformation in a way that simulates stackful coroutines. This approach leads

to a significantly larger compiled code size, and the more complicated methods

leave the just in time compiler with less opportunities for optimization.

An example of the transformation of a simple C# iterator method is shown in

Figure 2.7.

1 using System;
2 using System.Collections;
3

4 class Test {
5

6 // The returned iterator will
7 // generate 0 as the first
8 // element, 1 as the second, ...,
9 // and 9 as the last element.

10 // Then it will signal that is has
11 // no more elements to offer.
12 static IEnumerator GetCounter() {
13 for (int c = 0; c < 10; c++) {
14 yield return c;
15 }
16 }
17 }

1 private class GetCounter {
2 private int state = −1;
3 private int count = 0;
4 public int current;
5

6 public bool MoveNext() {
7 switch (state) {
8 case 0:
9 while (count < 10) {

10 current = count;
11 state = 1;
12 return true;
13 resume_label1:
14 state = −1;
15 count++;
16 }
17 break;
18 case 1:
19 goto resume_label1;
20 }
21 return false;
22 }
23 }

Figure 2.7: A simple C# iterator method (left) and an equivalent state machine (right).
Note that the simplified state machine shown here is only a pseudocode
approximation. The actual result of the transformation has a length of two
pages and is not representable by valid C# code.

4Only with limitations. Thread local variables, for example, will not work as expected.
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Chapter 3

Coroutines in Java

TM

This chapter explains the basic concepts a programmer needs to know in

order to use the coroutine implementation presented in this thesis. It also

describes the API that is used to implement, create, use and destroy sym-

metric and asymmetric coroutines. Then, this chapter shows the API for

migrating coroutines between threads and closes with a description of the

API used to serialize and deserialize them.

3.1 Concepts

The introduction of a new programming language concept raises a number of questions

that need to be answered before the new feature can be implemented:

Should new language constructs be created?

Coroutines could be implemented more elegantly by introducing new keywords

like yield into the Java language. The implementation presented in this thesis

does not do so, because this would lead to problems with backward-compatibility

and would require changes to the java source compiler (javac), thus making
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the implementation more complex. Not introducing a new keyword follows the

general effort of the Java language to avoid special-purpose syntax where possible.

How does the programmer access the new features’ primitives?

Symmetric and asymmetric coroutines are the basic primitives of a coroutine

implementation. The implementation shown here presents coroutines as instances

of the Coroutine and AsymCoroutine classes. These classes contain all methods

needed to perform the basic operations upon coroutines.

3.1.1 Thread Affinity

Operations on coroutines implicitly always operate on the current thread. In fact, it is

not possible to perform any operations on the coroutines of another thread, other than

thread-to-thread migration and read-only operations like querying a coroutine’s status.

This allows the system to assume that only a minimal amount of synchronization is

necessary, which is important in order to achieve high performance.

3.1.2 Stacks allocated directly from the Operating System

Most garbage collection algorithms used in JVMs perform a compaction step that

moves objects in memory. Stack memory cannot be moved to another address because

of locking and native stack frames, so it is not possible to allocate it from the ordinary

Java heap.

Additionally, stack memory needs to be aligned on page boundaries and guarded by

protected memory pages, in order to detect stack overflows. These guarantees and

properties can only be acquired directly from the operating system.

The fact that the memory needs to be allocated outside of the normal Java heap makes

controlling the resources of an application harder, but on the other hand this is no

different than the allocation of threads - most of the memory used by a thread also lies

outside of the Java memory subsystem.

3.1.3 Scheduling of Symmetric Coroutines

For symmetric coroutines there needs to be a scheduling strategy. In the system pre-

sented in this thesis symmetric coroutines are scheduled on a first come, first served
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basis. Each time a coroutine is executed it is moved to the end of the queue of corou-

tines that will be executed, and it is thus only executed again after all other coroutines

have been scheduled.

While the specification of coroutines should be careful about requiring a particular

behavior, this scheduling strategy seems to be a reasonable choice that can be imple-

mented very efficiently using a doubly-linked ring of coroutines. Advancing to the next

coroutines is achieved by simply moving a pointer to the next coroutine. The current

coroutine will then automatically be at the end of the queue.

3.1.4 Input and Output Values of Asymmetric Coroutines

Asymmetric coroutines do not need to be scheduled, because they will only execute

when they are called explicitly. However, it is very common for asymmetric coroutines

to receive an input value to work with and/or return a result value to the caller each

time they are called.

In fact, this behavior is common enough to warrant an explicit implementation, al-

though it might also be implemented by the user on top of a simpler coroutine system.

In order to make asymmetric coroutines more convenient and type-safe we specify the

types of the input and output values as generic type parameters of the asymmetric

coroutine class.

3.1.5 Thread-to-Thread Migration

Due to the thread affinity of coroutines, it is not possible to resume a coroutine on some

other thread. In fact, trying to do so will lead to an exception. This is the expected

behavior in the normal case and leads to good performance characteristics, but in some

cases it is necessary to transfer a coroutine to some other thread.

In an application that implements user interactions as coroutines, with many user inter-

actions running in one thread, a coroutine might be blocked due to a computationally

expensive operation at one point in the user interaction. It is not acceptable for this

coroutine to block all other coroutines that happen to be on the same thread, thus

there needs to be a way to move coroutines to other threads.

3.1.5.1 Coroutine Stealing

When moving coroutines from one thread to the other there are four possible semantics

depending on who takes the active role in the process:
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Source and Target Thread Both the source and the target thread need to reach a

synchronization point where the coroutine is handed over from one thread to the

other.

Source Thread The source thread “injects” the coroutine into the target thread.

Target Thread The target thread “steals” the coroutine from the source thread.

Third Party Thread A third party thread takes the coroutine from the source thread

and gives it to the target thread.

In the case of a blocked coroutine it is impractical to require the source thread to take

part in the process, because it is busy and will likely not reach a synchronization point

quickly. The target thread, however, is idling anyway (otherwise it would not try to

acquire new coroutines), so it makes sense for it to take the active role in the process.

This is called coroutine stealing, analogous to work stealing, which is an established

concept in concurrent programming.

3.1.5.2 Migration Process

Coroutines that are moved from one thread to the other need of course be aware of the

changes they will see after migration: Thread.current() will return the new thread,

and the value of thread locals might also have changed.

Also, a coroutine cannot be transferred to another thread if there are native method

frames on the stack. The VM does not have sufficient information to relocate native

frames to another stack, which is required during the transfer process.

Stack frames of methods which hold locks (via the synchronized keyword) also cannot

be transferred to another thread, because locks are bound to threads. Additionally, the

implementation would be much more complex if locks needed to be transferred.

3.1.6 Serialization/Deserialization

When a coroutine has been suspended for a long time, but may be needed in the future,

it might be best to move the coroutine into permanent storage (disk, DB, . . . ) in order

to free the memory associated with it. This is especially important in systems that

sustain a large number of concurrent sessions, e.g. web servers that support many

concurrent user interactions.

Java serialization allows a program to serialize all of its data, but it is not possible to

serialize a thread. The coroutine system, on the other hand, provides a way to serialize

a coroutine, which essentially turns a coroutine into an array of Java objects. Each
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of these objects represents one Java activation frame, and contains the frame’s current

method, bytecode index, local variables and expression stack. The application that

uses the coroutine serialization mechanism can then decide how it wants to handle the

actual serialization of these values. In a sense, the coroutine serialization mechanism

does not actually perform the serialization, it only makes the contents of the coroutine’s

stack frames accessible to serialization.

This also means that for coroutine serialization the user has to deal with the same

problems as for other uses of the Java serialization mechanism: Where to make the

cut between the serialized and non-serialized parts of the program state and what to

do with non-serializable objects. This is application-dependent and cannot be decided

by the coroutine implementation. An application can use the object-replacement func-

tionality provided by the ObjectInputStream and ObjectOutputStream classes to

communicate its requirements to the Java serialization mechanism.

The restrictions for coroutine serialization are similar to the restrictions for thread-to-

thread migration: The coroutine cannot contain native frames or frames with locked

methods.

3.2 Coroutine API

TM

java.dyn

A survey of 12 different programming languages with coroutine implementations showed

that there is no common naming scheme for coroutines, neither in the way the corre-

sponding language features are called, nor in the names of the methods that are used

to control them. The Java API presented here tries to be consistent with the majority

of programming languages and to fit smoothly into the Java world. The API always

works on the coroutines of the current thread in order to avoid having to lock data

structures.
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There are two main classes: Coroutine for symmetric coroutines, and AsymCoroutine

for asymmetric coroutines. The size of a new coroutine’s stack can be specified via the

stackSize parameter at construction. Like the stackSize parameter of the Thread

constructors this is only a hint which may or may not be obeyed by the runtime system.

The system also enforces a platform-specific minimum value for this parameter.

By specifying a stack size the user can deal with extreme cases such as coroutines that

call deeply recursive methods and therefore need a large stack, or large numbers of

coroutines that hardly call any other methods and for which a large stack would be a

waste of memory. In most cases, however, the automatically chosen stack size will be

adequate.

The user can also provide the runtime with a hint that two specific coroutines should

share a stack. To do so the constructor of the second coroutine needs to be called with

the sharedStack parameter set to the first coroutine. Again, this is only a hint that

may or may not be obeyed by the runtime system.

Both Coroutine and AsymCoroutine extend the class CoroutineBase, which con-

tains implementation-specific code that is common to both symmetric and asymmetric

coroutines.

3.2.1 Symmetric Coroutines

The interface for symmetric coroutines is shown in Figure 3.1. It is similar to Thread

in that it can either be subclassed (overriding the run() method) or supplied with a

Runnable at construction1.

Each thread maintains the coroutines that are associated with it in a data structure

that provides fair scheduling. The details of the scheduling algorithm are explained

in Section 3.1.3. The coroutine system inserts each newly created Coroutine object

after the current one, which means that it is the next coroutine to be scheduled. This

also means that there is no need to register a coroutine with the runtime system, and

that coroutines can only be added to the current thread. While this might seem to be

an arbitrary restriction it is vital for the performance of the system, as explained in

Section 3.1.1.

There are two ways to switch to another coroutine:

• yield() transfers control to the next coroutine, as determined by the scheduling

algorithm. Under normal circumstances this means that the current coroutine

will only be activated again after all other coroutines.

1Coroutine, however, does not implement Runnable. In hindsight it was a poor decision for Thread

to do so.
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1 package java.dyn;
2

3 public class Coroutine extends CoroutineBase {
4

5 public Coroutine();
6 public Coroutine(Runnable r);
7 public Coroutine(long stackSize);
8 public Coroutine(Runnable r, long stackSize);
9 public Coroutine(Runnable r, CoroutineBase sharedStack);

10

11 public static void yield();
12 public static void yieldTo(Coroutine target);
13

14 public boolean isFinished();
15 protected void run();
16 }

Figure 3.1: Coroutine Java API: Coroutine class

• yieldTo(Coroutine target) transfers control to the specified coroutine. The

target coroutine must be a coroutine created within the current thread, otherwise

an exception is thrown. The user of this method cannot make assumption as

to how it influences scheduling, other than that the future calls to yield() will

again be scheduled in a fair way.

Both these methods are static because they will often be used in a context where the

current coroutine object is not readily available. They also always act on the current

thread’s list of coroutines, following the general paradigm that coroutines are strongly

coupled to the thread they are running on. Note that the main program, i.e., the

thread’s initial execution context, is a coroutine as well.

The instance method isFinished() returns true if the Coroutine in question has

ended by either reaching its end, by executing a return-statement or by throwing or

propagating an exception.

Figure 3.2 shows an example of a simple coroutine that produces the following output:

1 start
2 Coroutine running 1
3 middle
4 Coroutine running 2
5 end

In practice it would be better to specify the program using the Runnable interface,

which leads to the same behavior. This is shown in Figure 3.3.
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1 public class ExampleCoroutine extends Coroutine {
2

3 public void run() {
4 System.out.println("Coroutine running 1");
5 yield();
6 System.out.println("Coroutine running 2");
7 }
8

9 public static void main(String[] args) {
10 new ExampleCoroutine();
11 System.out.println("start");
12 yield();
13 System.out.println("middle");
14 yield();
15 System.out.println("end");
16 }
17 }

Figure 3.2: Example for the usage of Coroutine

1 public class ExampleCoroutine implements Runnable {
2

3 public void run() {
4 System.out.println("Coroutine running 1");
5 Coroutine.yield();
6 System.out.println("Coroutine running 2");
7 }
8

9 public static void main(String[] args) {
10 new Coroutine(new ExampleCoroutine());
11 System.out.println("start");
12 Coroutine.yield();
13 System.out.println("middle");
14 Coroutine.yield();
15 System.out.println("end");
16 }
17 }

Figure 3.3: Example for the usage of Coroutine with the Runnable interface

3.2.2 Asymmetric Coroutines

For reasons of generality, we also provide an implementation of asymmetric coroutines,

called AsymCoroutine, shown in Figure 3.4. Instances of this class can be created

by either subclassing AsymCoroutine (overriding the run method) or providing an

instance of AsymRunnable (shown in Figure 3.5).

AsymCoroutine objects are not part of the ordinary Coroutine-scheduling, they are

thus only executed when they are called explicitly. They also know their caller, which

allows them to return to their caller with a ret call.

AsymCoroutines are prepared to take an input from their caller and to return an

output. The types of these input and output parameters can be specified by generic
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1 package java.dyn;
2

3 public class AsymCoroutine<I, O> extends CoroutineBase
4 implements Iterable<O> {
5

6 public AsymCoroutine();
7 public AsymCoroutine(AsymRunnable<? super I, ? extends O> target);
8 public AsymCoroutine(long stackSize);
9 public AsymCoroutine(AsymRunnable<? super I, ? extends O> target,

10 long stackSize);
11 public AsymCoroutine(AsymRunnable<? super I, ? extends O> target,
12 CoroutineBase sharedStack);
13

14 public O call(I input);
15 public I ret(O output);
16

17 public boolean isFinished();
18 protected O run(I input);
19

20 public Iterator<O> iterator();
21 }

Figure 3.4: Coroutine Java API: AsymCoroutine class

1 package java.dyn;
2

3 public interface AsymRunnable<I, O> {
4

5 public O run(AsymCoroutine<? extends I, ? super O> coroutine,
6 I value);
7 }

Figure 3.5: Coroutine Java API: AsymRunnable interface

type parameters. If the input and/or output parameters are not used, the respective

type parameters should be set to Void. The input parameter given to the first call will

become the input parameter of the run method, and the output parameter returned

by the run method will become the last call’s return value.

AsymCoroutine and AsymRunnable use co- and contravariant generic type parameters

in order to allow for a maximum of compatibility. An AsymCoroutine<I, O> can be

initialized with any AsymRunnable that can work with any input parameter that can

be cast to I and that will return an output parameter that can be cast to O. The run

method of AsymRunnable has an additional parameter coroutine, which provides the

asymmetric coroutine object needed for calls to ret, again with a co- and contravariant

type. For example: An AsymCoroutine<Integer, Object> can be initialized with

an AsymRunnable<Number, String>, because the runnable takes an input that is less

specific and returns an output that is more specific.



Coroutines in Java 23

The fact that AsymCoroutine implements Iterable allows such coroutines to be used

in enhanced for loops (see Figure 3.7). In this case, the input parameter is always null,

as there is no way to supply the iterator with an input.

The AsymCoroutine interface looks as follows:

• O call(I input) transfers control to the coroutine that this method is called

upon. The calling coroutine can either be a Coroutine or an AsymCoroutine

instance, and it is recorded as the caller of the target coroutine. call passes

an input parameter of type I to the called coroutine and returns the coroutine’s

output parameter, which is of type O. A coroutine can only be called if it is not

currently in use. This means that a coroutine cannot directly or indirectly call

itself.

• I ret(O output) suspends the current coroutine and returns to the caller. The

output parameter of type O is passed to the calling coroutine, and the next time

the current coroutine is called ret will return the input parameter of type I.

• boolean isFinished() returns true if the AsymCoroutine in question has

reached its end. Invoking call on a AsymCoroutine that is not alive leads

to an exception.

It is important to note that trying to Coroutine.yield() to another Coroutine

generates an exception if the current coroutine is an AsymCoroutine.

Figure 3.6 shows an example AsymCoroutine that inverts a SAX parser [22] to return

one XML element at a time. Figure 3.7 contains an alternative version of the main

method that uses an enhanced for loop.

3.2.3 Thread-to-Thread Migration

The API for thread-to-thread migration of coroutines is very simple and consists of one

method that is available in both the Coroutine and AsymCoroutine classes:

public boolean steal();

This method will migrate the coroutine it is called upon to the current thread. If the

transfer was successful it will return true, otherwise it will return false or throw an

exception.

The operation can fail for a number of reasons:
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1 public class CoSAXParser
2 extends AsymCoroutine<Void, String> {
3

4 public String run(Void input) {
5 SAXParser parser = ...
6 parser.parse(new File("content.xml"),
7 new DefaultHandler() {
8 public void startElement(String name) {
9 ret(name);

10 }
11 });
12 return null;
13 }
14

15 public static void main(String[] args) {
16 CoSAXParser parser = new CoSAXParser();
17

18 while (!parser.isFinished()) {
19 String element = parser.call(null);
20 System.out.println(element);
21 }
22 }
23 }

Figure 3.6: SAX parser inversion

1 ...
2 public static void main(String[] args) {
3 CoSAXParser parser = new CoSAXParser();
4

5 for (String element: parser) {
6 System.out.println(element);
7 }
8 }
9 }

Figure 3.7: SAX parser inversion using enhanced for loops

• It will return false if the coroutine is busy. This will happen if the coroutine is

currently running or the coroutine’s current thread performs an operation on it,

e.g., serialization. Any use of the migration mechanism needs to be prepared for

this to happen, because the migration is performed without busy waiting and on

a best-effort basis.

• It will throw an IllegalArgumentException if:

– The coroutine already belongs to the current thread.

– The coroutine is the initial coroutine of its thread. The initial coroutine can

never be migrated to some other thread, because this coroutine is needed in

order to correctly terminate the thread.

– The coroutine contains a stack frame of a method that holds a lock.

– The coroutine contains a native stack frame.
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– The coroutine is an asymmetric coroutine that has not yet returned to its

calling coroutine.

The distinction between a false return value and an exception is intended to differen-

tiate between failures that can happen for any use of steal (because of the fact that

migration is performed on a best-effort basis) and failures that will not occur for correct

uses of the migration mechanism.

When a symmetric coroutine is migrated it is removed from its thread’s scheduling

sequence and added to the current thread’s sequence as the next coroutine to be exe-

cuted.

Symmetric coroutines that are migrated need to be aware that Coroutine.yield will

now schedule different coroutines, and that calls to Coroutine.yieldTo that were

valid before will now likely be invalid.

Symmetric and asymmetric coroutines need to be aware that calls to an asymmetric

coroutine (via AsymCoroutine.call) that were valid before will now be invalid, unless

the asymmetric coroutine was migrated as well.

3.2.4 Serialization / Deserialization

1 package java.dyn;
2

3 import java.io.Serializable;
4 import java.lang.reflect.Method;
5

6 public class CoroutineFrame implements Serializable {
7

8 public Method method;
9 public int bci;

10

11 public int localCount;
12 public int expressionCount;
13

14 public long[] scalarValues;
15 public Object[] objectValues;
16

17 public CoroutineFrame(Method method, int bci, int localCount,
18 int expressionCount, long[] scalarValues, Object[] objectValues);
19 }

Figure 3.8: Coroutine Java API: CoroutineFrame class

Serialization and deserialization is also available for both symmetric and asymmetric

coroutines. The main task of these two mechanisms is to transform the stack of a

coroutine into a data structure that is accessible from Java, and vice-versa. The class
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CoroutineFrame, which is used to represent stack frames, is shown in Figure 3.8 and

contains the following fields:

method This field contains the method that this stack frame belongs to. It is important

to note that java.lang.reflect.Method is not serializable. An application that

serializes CoroutineFrame objects needs to be aware of this.

bci The bytecode index of the next instruction to execute in the method.

localCount The number of local variables in this stack frame.

expressionCount The number of stack slots on the expression stack that were used

for evaluating an expression at the time the coroutine was suspended. A stack

frame will only contain temporary expressions if the coroutine was suspended

while calculating an expression, i.e., during a function call.

scalarValues This array of length localCount + expressionCount contains the

scalar values of all local variables and the expression stack. Entries that contain

an object reference have no scalar value, and the scalarValues array contains

a zero value in that case.

objectValues This array is of the same length as scalarValues and contains the object

references of all local variables and the expression stack. Entries that contain a

scalar value have no object reference, and the objectValues array contains a

null value in that case.

The serialization mechanism can of course not only be used for storing coroutines to

disk. In fact, the ability to modify the stack of a running application can be useful

for dynamic languages that compile to bytecode on the fly (Ruby, JavaScript, etc.): If

the language runtime detects that a piece of code that is executed by an interpreter

loop is taking too long, it can suspend the execution, replace the interpreter loop with

compiled (to bytecode) methods and resume the execution. This allows languages that

run on top of a JVM to perform on-stack replacement at the Java level, similar to the

JVM itself, which performs on-stack replacement at the native code level.

Arbitrarily modifying stack frames of course requires an application to have extensive

knowledge about the structure of the compiled methods, which is not provided by the

coroutine implementation.

An example that uses the serialization mechanism to perform session persistence is

shown in Section 5.2.
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3.2.4.1 Serialization

The serialization of coroutines is supported via the following method that is available

in both symmetric and asymmetric coroutines:

public CoroutineFrame[] serialize();

If the coroutine contains stack frames of native methods or stack frames that currently

hold locks, which cannot be transformed into CoroutineFrame objects, it will throw

an IllegalArgumentException. It will also throw an exception if the coroutine is the

initial coroutine of a thread, which cannot be serialized because it will always contain

native frames.

If successful, this method will return an array of CoroutineFrame objects. If the corou-

tine’s stack contained references to Java objects, then the resulting CoroutineFrame

objects will contain references to the same objects, as shown in Figure 3.9.
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Figure 3.9: A coroutine stack (left) and the equivalent CoroutineFrame objects (right).

In the simplest case an application can serialize the array of CoroutineFrame objects

using an ObjectOutputStream. It only needs to take care of non-serializable classes,

as shown in Section 5.2.

In a more complex application it might be necessary to perform additional substitutions,

e.g., replace objects that represent database entities with a serializable form or take

care of other objects that are not serializable. Applications that keep coroutines in

a serialized state for only a limited amount of time might associate IDs with non-

serializable objects, and store these objects in a hash table or a similar data structure.
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3.2.4.2 Deserialization

Similar to serialization the deserialization is also performed by a method that is available

in both symmetric and asymmetric coroutines:

public void deserialize(CoroutineFrame[] frames);

This method is the opposite of serialize: it takes an array of CoroutineFrame

objects and replaces the target coroutine’s stack with the given frames. It will

fail if the coroutine is the thread’s initial coroutine, in which case it will throw an

IllegalArgumentException.

Again, if the CoroutineFrame objects contain references to Java objects, then the

coroutine’s stack frames will also contain references to these objects, as shown in Fig-

ure 3.9.
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Chapter 4

Implementation

This chapter is the main chapter of this thesis. It describes the implemen-

tation details of the presented algorithm, which combines the advantages of

the two most common implementation techniques. It provides a detailed de-

scription of the actual coroutine management implementation. After show-

ing the implementation of the thread-to-thread migration this chapter ends

with an overview of the serialization/deserialization code.

4.1 Introduction

Runtime environments such as the Java virtual machine (JVM) make it hard for library

programmers to implement coroutines on top of them. The high level of abstraction

and the focus on portability prevent access to the underlying machine, which is needed

in order to implement low-level features such as coroutines. A coroutine system for a

JVM also needs to interface with other subsystems, such as garbage collection, which

is only possible from inside the JVM.
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This thesis presents a coroutine system for JVMs that uses a combination of two im-

plementation strategies: Separate stacks are allocated for coroutines up to a certain

number, and a stack copying approach is employed to allow large numbers of corou-

tines to be allocated.

This system incurs only a moderate amount of changes to the JVM. Apart from the

additional stack management code (which ties into the thread management code), it

only requires a small amount of new code in the garbage collection system. Most

importantly, no modifications to the existing just-in-time compilers and the interpreter

are required.

Our implementation of coroutines for the Java HotSpotTM VM on the Windows and

Linux platforms shows that it is feasible for JVMs and managed runtimes in general.

4.2 Coroutine Management

4.2.1 Additional Stacks

In order to provide optimal performance, the coroutine implementation creates separate

stacks for coroutines. On an ideal CPU (ignoring caching effects) the switching between

coroutines that lie on separate stacks is always a cheap constant-time operation, because

only few CPU registers (frame pointer, stack pointer, program counter, callee saved

registers) need to be saved and restored.

The required memory is requested from the operating system’s low-level memory man-

agement system. Then the operating system is instructed to provide (non-executable)

memory for the usable part of this stack area, because the operating system initially

only reserves address space, without actually providing any real memory.

The end of the stack is protected by guard pages to allow the runtime system to handle

stack overflow errors. These guard pages are configured in such a way that any access

to them will lead to an operating system exception. The JVM handles these exceptions

and in turn throws a StackOverflowError at the Java level.

4.2.2 Stored Coroutines

Separate stacks take up significant amounts of memory and address space. A stack

occupies at least 32 kB (Linux), 64 kB (Windows) or 100 kB (Solaris) of memory, due

to guard pages and the operating system’s allocation granularity (see Section 6.1). On
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32-bit systems the address space is exhausted after the allocation of roughly 25,000

stacks. The exact number depends on the operating system’s memory layout and the

JVM configuration.

Even on 64-bit systems, where the address space usage is less of an issue, the memory

overhead still prevents the allocation of a large number of coroutine stacks.

Applications that use coroutines typically have a deeply nested stack while a coroutine

is running, and a shallow stack while it is suspended. Thus, only a small amount of

the stack is actually used by a suspended coroutine, typically 1 to 2 kB. The coroutine

implementation can exploit this by letting multiple coroutines share a single stack, and

storing the active contents of the stacks into temporary objects.

A coroutine is nevertheless permanently associated with a specific stack: while it is

possible to relocate Java frames (albeit expensive), it is not possible to do so for native

frames. For example, native frames might depend on the addresses of stack-allocated

objects. Some library functions, like reflection, are implemented using native code.

Thus, if the system would relocate coroutines to other stacks, it would not be able to

switch to and from coroutines that have methods called via Method.invoke on the

stack.

Allowing coroutines to be restored on another stack would thus lead to performance

degradation and the inability to use native frames within coroutines.

Note that relocation of frames is only a problem if the relocated frames are executed

at their new positions; it is not a problem to temporarily move a frame to some other

location while the corresponding coroutine is suspended.

When a coroutine is created the system automatically selects a stack that the coroutine

will be associated with via a simple hash function. The programmer can also exploit

knowledge about the behavior of the application by selecting a coroutine’s stack explic-

itly, it is possible to do so by specifying some other coroutine that will share its stack

with the newly created one.

4.2.3 Coroutine State

As coroutines are copied to and from their stacks they need to keep track of their state.

Figure 4.1 shows the different states that a coroutine can have and the transitions that

are possible.

stored In this state the stack frames of the coroutine are stored in a data object on

the heap. Every new coroutine is created in this state, with a small stub data
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stored on-stack running

finished

Figure 4.1: Coroutine states and transitions

object containing a fabricated frame that starts coroutine execution. This frame

is copied to the stack the first time the coroutine is called.

on-stack A coroutine whose stack frames are on a stack, but which is not currently

running is in the “on-stack” state. Note that in order to change into the “running”

state the coroutine first has to be “on-stack”.

running The currently running coroutine of a thread is in the “running” state. This

implies that the coroutine’s stack frames are located on its stack.

finished Coroutines that finish execution change into this state. Normally, a coroutine

reaches the “finished” state from the “running” state, but there are circumstances

when coroutines can change to “finished” directly from other states.

4.2.4 Data Structures

CoroutineStack

CoroutineDesc

CoroutineData

Thread

next / prev

next / prev

stackcurrent

data

stacks_list

coroutine_list

Java Object:
(Asym)Coroutine

Figure 4.2: Native coroutine data structures
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The VM uses a set of data structures to keep track of all existing coroutines (see

Figure 4.2):

Thread is the preexisting data structure for threads. It is enhanced with a list of corou-

tines (coroutine_list) and a list of coroutine stacks (stack_list). Both are

implemented as circular doubly-linked lists. Note that the thread’s initial execu-

tion context is considered to be a coroutine itself. Therefore, the first elements of

the two lists are the thread’s original stack and coroutine, which live as long as

the thread is alive. The doubly-linked list, combined with the fact that the initial

elements will never be removed, leads to very simple add and remove operations

with no special cases.

CoroutineDesc holds the stored CPU context while the coroutine is not running. It

contains VM-internal information that is coroutine-local (e.g., for resource alloca-

tion and pointers from native code to Java objects). It also specifies which stack

this coroutine belongs to (stack) and holds a pointer to the coroutine’s off-stack

data storage (data). Additionally it contains a state field which always holds

the coroutine’s current state.

CoroutineStack holds information about a stack area. This includes the memory ad-

dress and size of the reserved space. The current pointer points to the corou-

tine that is currently active on this stack. There is only one CoroutineStack

structure for each stack area, which can be referenced by more than one

CoroutineDesc structure.

CoroutineData is used to store the stack contents of a coroutine while the stack is

occupied by another coroutine.

Like every native thread has a mirror Java object in the form of a java.lang.Thread

instance, there is an instance of java.dyn.Coroutine or java.dyn.AsymCoroutine

for each coroutine (see Section 3.2). It is needed in order to allow Java code to in-

teract with the coroutine system. This mirror class contains a pointer to the native

CoroutineDesc structure.

4.2.5 Creating Coroutines

Creating a new coroutine involves the following steps:

• Determine if a new stack should be created or not. This can either be specified

explicitly (by telling the new coroutine to share the stack with an existing one),

or determined automatically. If the stacks are managed automatically, the system
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creates a new stack for each coroutine up to a specified number and then selects

coroutines that share stacks using a simple hash function.

• If a new stack is needed the system creates and initializes the CoroutineStack

structure and allocates a block of memory from the operating system. It also

secures the end of the stack with guard pages and makes further calls to register

the memory block as belonging to the current thread.

• Next the CoroutineData structure is created and filled with a small dummy

frame whose return address points to a function that initializes and starts the

coroutine. Thus, a newly created coroutine is in the state “stored”.

• Finally the CoroutineDesc structure is created and associated with the

Coroutine or AsymCoroutine Java object.

After all the native structures have been initialized the system connects the Coroutine

or AsymCoroutine Java object with the CoroutineDesc structure. Finally it fills some

auxiliary fields and returns the newly create coroutine.

4.2.6 Context Switch

Switching from one coroutine to another is the most basic operation in every coroutine

system. It heavily influences the overall performance and should therefore be imple-

mented with as few instructions as possible.

An example of how the native structures are modified during a context switch is shown

in Figure 4.3. In this case there are two coroutine stacks, one of which is shared by

two coroutines. The first stack contains the coroutines α and β, while the second stack

only contains γ.

Initially α is running, which implies that the stack frames of β are stored in the

CoroutineData structure. γ is the only coroutine associated with the second stack, so

its stack frames are on the stack even though it is not running.

The second part of the example shows the situation after the switch from α to β: In

order to make way for the stack frames of β the stack frames of α were transferred into

its CoroutineData structure. This switch of course did not affect γ and the second

stack.

The third part shows the situation after the switch from β to γ: There was no need to

transfer any stack frames to or from a stack, the only change is that β is now “on-stack”

and γ changed to “running”.
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Figure 4.3: Data structures before and after context switch
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The core functionality is implemented in a mixture of Java and assembly code. The

assembly code is generated at JVM startup time to fit the current JVM configuration

and can be called from compiled and interpreted Java code with no overhead (apart

from the call/ret assembly instructions). Depending on the operating system, the CPU,

and the VM configuration, our system is comprised of approximately 100-120 assembly

instructions1, of which 35-50 form the fast path that only switches from one stack to

the other without having to copy any stack contents (bold lines in Figure 4.4, which

are explained in the next paragraph).

Figure 4.4 shows the details of the context switch operation of our algorithm. It is

divided into two parts: “prepare switch” and “switch”. If the first one succeeds it

is guaranteed that the second one succeeds as well, without any errors, exceptions,

or garbage collection runs. This separated design, which involves only a negligible

overhead, was chosen in order to be able to cleanly handle out-of-memory errors while

enlarging the CoroutineData structure.

The system first checks whether the target coroutine belongs to the current thread. It

is not possible to switch to some other thread’s coroutine, and an exception is thrown

in this case.

Then it is checked if the target coroutine is in the “on-stack” state, in which case no

additional preparations are necessary. If the target coroutine is not “on-stack” and its

stack is currently occupied by some other coroutine, the system checks if the source

coroutine’s CoroutineData structure is large enough to accommodate the stack con-

tents. The growing of the CoroutineData structure (if needed) is performed by C++

code which throws a Java exception if the system runs out of heap memory.

After the “prepare switch” part is finished it is guaranteed that the context switch will

succeed, so the coroutine system now updates its Java data structures so that the target

coroutine becomes the current coroutine.

Now the actual switch is performed. First, the old CPU context (i.e., program counter,

stack pointer, frame pointer, etc.) is stored into the old coroutine. Then the system

determines if it is necessary to rescue the old stack contents and/or restore the target’s

stack contents. The target coroutine might already be “on-stack”, in which case no

rescuing or restoring is necessary. If the target stack is not currently in use (i.e., newly

created or the coroutine that last occupied it finished), then only the new contents need

to be restored. If the target stack is currently in use both rescuing and restoring are

necessary.

1The amount of assembly instructions created can vary. The code is created at VM startup and is
tailored towards the actual configuration: garbage collection mechanism, heap layout, compiler, etc.
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Figure 4.4: Coroutine context switch operation
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When the rescue and restore operations are finished the target CPU context is restored,

which, from a VM perspective, represents the actual switch operation.

If the old coroutine has reached its end then its data structures are freed.

4.2.7 Coroutines and Garbage Collection

The JVM needs to be able to locate the stack frames of all coroutines at all times

because it needs to visit stack frames for a number of reasons, including:

• When compiling methods, the just-in-time compilers create code that is valid

only for the currently loaded set of classes. For example, if the compilers discover

that there is only one possible target for a polymorphic call site they output a

monomorphic call instead. It is also possible to inline the method in question.

The compilers register the assumptions they took while compiling code with the

system. If during the loading of new classes such assumptions are violated all

activations of the affected methods need to be located and modified in such a

way that they will resume execution in the interpreter. This process is known as

deoptimization [18].

• From time to time the JVM tries to collect unused compiled methods. To do so

it also needs to be able to walk over all method activations in the system.

• During garbage collection the JVM needs to find all root pointers to the set of

live objects. The stack frames’ local variables and expression stack values can

contain root pointers. Also, the return addresses of compiled frames and the

method pointers of interpreted frames serve as pointers to the methods that the

stack frames belong to.

The thread’s coroutine_list is used to iterate over all live coroutines when needed.

The stack of the currently running coroutine is walked automatically, because it is

seen as the thread’s stack by the garbage collection system. If a coroutine is on-stack

then its stack is walked in a way similar to the ordinary thread stack walking. If a

coroutine’s frames are stored in its CoroutineData, a special-purpose stack walking

method is used. This method has to take into account the displacement between the

CoroutineData and the stack that the stack frames lie on when they are executed,

i.e., it modifies each pointer that points to the stack to point to the correct position

within the CoroutineData structure.
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4.2.8 The CoroutineSupport Class

As much as possible of the coroutine logic is implemented in Java code. The main part

of this Java code is contained in the class CoroutineSupport, which is a helper class

that has exactly one instance for each thread that uses coroutines. It is responsible

for managing the Java objects of class Coroutine and AsymCoroutine (as shown in

Figure 4.2) and for forwarding the API calls (as shown in Section 3.2) to the underlying

VM.

The CoroutineSupport class contains the following features:

Initialization Each thread that uses coroutines needs to be accompanied by a number

of data structures, which are set up by initialization code. This also creates the

thread’s initial coroutine, which represents the thread’s initial stack.

Debugging/Tracing Two flags allow for debugging and tracing to be enabled, which

leads to verbose output on the console for each coroutine operation. This is

useful mainly for debugging internals of the system, but can be used to illustrate

coroutine operations.

Stack Management CoroutineSupport contains code to manage the stacks of the

thread it is associated with and to determine the number of stacks per thread

and the hashing parameters. It also keeps a list of all stacks associated with the

thread.

Coroutine Management A doubly-linked list of all the Java objects representing sym-

metric coroutines is kept, which is used for coroutine scheduling. There is also

a pointer to the current symmetric or asymmetric coroutine, i.e., Coroutine or

AsymCoroutine object. If the current coroutine is an asymmetric coroutine, then

the current symmetric coroutine can be determined by following the caller chain

of the asymmetric coroutine.

Symmetric/Asymmetric Distinction The distinction between symmetric and asym-

metric coroutines is only visible on the Java side, and CoroutineSupport con-

tains code for the scheduling of symmetric coroutines and for the call/return

behavior of asymmetric coroutines.

Coroutine Creation A number of data structures need to be set up for each new corou-

tine, along with the actual VM-internal coroutine object (CoroutineDesc, as

shown in Figure 4.2). This setup is slightly different for symmetric and asymmet-

ric coroutines.

Yield The CoroutineSupport class implements the Java parts of Figure 4.4, which

means that it checks if a yield operation is valid and updates the coroutine states.
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Thread End When a thread ends the system needs to make sure that all coroutines

have finished cleanly. Otherwise the system could violate basic JVM invariants,

for example finally blocks could possibly never be executed. In order to avoid

this the system drains all coroutines before the thread is allowed to actually end,

which means that each coroutine is sent a CoroutineExitException until only

the thread’s initial coroutine is left.

4.2.9 Java / C++ Interface

The CoroutineSupport class also contains the definitions for a number of native meth-

ods which provide the interface to the underlying native code. These methods return

pointers to internal data structures as long values. While this might seem like a se-

curity hole it is important to note that these values are never exposed to application

code.

native long getThreadCoroutine();

native long createCoroutineStack(long stack_size);
native void freeCoroutineStack(long stack);

native long createCoroutine(CoroutineBase coro, long stack);
native void freeCoroutine(long coroutine);

native void prepareSwitch(CoroutineBase target);
native void switchTo(CoroutineBase current, CoroutineBase target);
native void switchToAndTerminate(CoroutineBase current,

CoroutineBase target);
native void switchToAndExit(CoroutineBase current,

CoroutineBase target);

CoroutineBase is a common base class of symmetric and asymmetric coroutines.

• The getThreadCoroutine method retrieves the thread’s initial coroutine and, if

necessary, sets up the native thread for coroutine usage.

• The ...CoroutineStack methods are used to create coroutine stacks with a

specified size (-1 to use the system default) and to free coroutine stacks.

• The native data structures for coroutines are created and destroyed by the

...Coroutine methods.

• The coroutine switch operation is performed by the prepareSwitch and

switchTo... methods. switchTo just passes control to the target coroutine,

while switchToAndTerminate terminates the current coroutine after the switch,

which is used in case it has reached its end. switchToAndExit will raise a

CoroutineExitException after the switch is finished, which, if the exception is

not handled, will cause the target coroutine to terminate.
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4.3 Thread-to-Thread Migration

When running compiled or interpreted methods, a JVM can normally assume that

one run of a method will always be executing on the same thread. However, when a

coroutine is migrated to some other thread this assumption is broken, and the JVM

needs to take additional steps to make sure that the code will execute as expected on

its new thread.

When a coroutine migrates to a new thread it cannot simply take its stack with it,

because this stack might be shared with coroutines of the old thread. Thus the migrated

coroutine needs to get a new stack or be associated with a stack of the new thread.

The JVM needs to be careful when moving a coroutine to some other stack, to ensure

that all references to the old stack are replaced with references to the new stack.

Part of the migration is performed by VM-internal code, which is accessed via the

following native method in CoroutineSupport:

native boolean stealCoroutineData(long coroutineData, long stack,
Thread thread, CoroutineSupport coroutineSupport);

This native method performs all the checks and modifications that require an iteration

over the coroutine’s stack frames.

4.3.1 Locking

Coroutine migration is performed by the target thread, which “steals” the coroutine

from its current thread. This means that the source thread is running during the

migration process.

The system needs to ensure that the source and target threads do not access the corou-

tine concurrently, which would lead to undefined and, most likely, faulty behavior (e.g.,

the source thread starts executing the coroutine during migration).

In order to make sure that the coroutine is accessed exclusively, the Java coroutine

classes contain a field that is used for locking. This field is modified via a compare-and-

swap instruction, which is the most efficient locking scheme available on x86 hardware.

Compare-and-swap is not a Java primitive, nor is it available in the public class library.

It is available as a method of the sun.misc.Unsafe class, which, although propri-

etary in nature, is available on all major JVMs. In the case of the HotSpotTM JVM

this method is recognized as a so-called intrinsic method which compiles into a single

assembly instruction.
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4.3.2 Restrictions on Thread-to-Thread Migration

As soon as exclusive access is established the system can check if the migration of this

coroutine is a valid operation.

First it checks that the coroutine does not already belong to the current thread, that

the coroutine is not currently running and that the coroutine is not the initial coroutine

of its thread. In case of an asymmetric coroutine it also makes sure that the coroutine

is not currently calling some other asymmetric coroutine.

Then the system iterates over all the stack frames of the coroutine, to determine if

there are stack frames of native methods or stack frames of methods with locks. This

stack walking is implemented very efficiently for both compiled and interpreted frames

in most JVMs, because it is needed for performance-critical operations, e.g., during

garbage collection or when expanding locks in a biased locking scheme [27].

4.3.3 Migration Process

As soon as the validity is established the actual migration will start.

If the coroutine is currently on-stack, the stack contents will be moved into the

CoroutineData structure (similar to the“rescue old stack contents”step in Figure 4.4).

Then the coroutine is assigned a new stack that belongs to the target thread. The

difference (delta) between the address of the old stack and the address of the newly

chosen stack is calculated. During another stack walk this delta is used to correct all

pointers in stack frames that point to locations on the old stack, while also replacing

all references to internal data structures of the old thread with references to the new

thread.

The location of thread references is not normally needed, thus the data structure that

stores debugging information was extended to include these locations.

After the stack walk the coroutine is ready to be executed in the new thread, and it is

added to the new thread as if it were a new coroutine (see Section 4.2.5). Finally, the

system releases the lock on the coroutine object, after which the migration is finished.
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4.4 Serialization / Deserialization

Coroutine serialization undoes all the optimizations the JVM performs while compiling

and linking methods, thus extracting the state of the hypothetical stack-based Java

machine. This extraction is also needed when debugging Java applications.

The HotSpotTM JVM is prepared to start debugging an application at any time, even

if parts of it have been compiled to optimized machine code (this is called full speed

debugging). The VM-internal code that supports this debugging mechanism can ex-

tract the Java state of stack frames at any time, and can thus be used for coroutine

serialization.

Part of the serialization and deserialization is performed by VM-internal code, which

is accessed via the following native methods in CoroutineSupport:

native CoroutineFrame[] serializeCoroutineData(long data);
native void replaceCoroutineData(long data, CoroutineFrame[] frames);

The first method is used for serialization, and the second method is used for deserial-

ization.

4.4.1 Restrictions on Serialization

In order to make sure that the serialization operation is valid, the system checks that

the coroutine belongs to the current thread, that the coroutine is not currently running

and that the coroutine is not the initial coroutine of the current thread. In case of

an asymmetric coroutine it makes sure that the coroutine is not currently calling some

other asymmetric coroutine.

Then the system needs to iterate over all the stack frames of the coroutine, to determine

if there are stack frames of native methods or stack frames of methods with locks. This

check is performed during the serialization itself and does not require a separate stack

walk.

4.4.2 Serialization

The serialization itself is performed by iterating over all stack frames of the coroutine

and using the debug information to extract the Java state of the method activations.

Note that while one interpreted frame always contains one method activation, compiled

frames might contain more that one method activation due to inlining.
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During the stack walk the system creates a CoroutineFrame object for each method

activation. The CoroutineFrame objects contain an activation’s method, bytecode

index, local variables and used stack slots. The frame objects are collected into an

array of CoroutineFrame objects and returned to the caller.

4.4.3 Deserialization

Deserialization replaces a new coroutine’s stack contents with stack frames stored in an

array of CoroutineFrame objects. The system does not check whether the new stack

frames are valid, e.g., if the types of local variables correspond to the expected types

at the given bytecode index.

A new CoroutineData structure is created for the new stack contents, and this struc-

ture is filled with one interpreter stack frame for each element of the CoroutineFrame

array. Interpreter frames have a fixed layout that can be created efficiently.

It is important to note that it is not possible to directly create compiled stack frames.

The JIT compiler does not provide enough information to do so. For some compilations

it will even be theoretically impossible, since the compiled stack frames might contain

intermediate calculation results that cannot be recreated.

An interpreted frame that was created by coroutine deserialization and that is executing

a long-running loop will be detected and replaced with a compiled method by the JVM’s

on-stack replacement (OSR) facility.

The new CoroutineData structure is associated with the coroutine, and the next time

a switch to the coroutine occurs the deserialized stack frames will be copied to the

coroutine’s stack and executed.
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Chapter 5

Case Studies and Examples

This chapter presents a number of examples that both motivate and explain

the usage of coroutines for real world applications. Although the examples

are only small in size, they are sufficient to show the advantages of corou-

tines for numerous tasks. They also motivate the more advanced concepts

of thread-to-thread migration and serialization.

5.1 Machine Control

Machine control programs typically have a fixed cycle time, for example 1 ms. In each

cycle all control programs for the different components are executed exactly once. Some

of them are simple and perform almost the same actions in every cycle, while others

are more complex and need to perform a series of actions over a longer period of time.

In general every component only executes a few instructions before switching to the

next one, so that the total execution time is influenced heavily by the time it takes to

perform a switch.

The following example is influenced by the author’s experience with the Monaco pro-

gramming language [25], which is a domain-specific language for machine control ap-

plications.
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The example program controls an injection molding machine, which is used to produce

parts from thermoplastic materials by injecting molten plastic into a mold cavity, letting

it cool and ejecting the finished part.

Figure 5.1: Schematic of an injection molding machine
Created by Brendan Rockey, University of Alberta Industrial Design. License: CC BY 3.0

The control program in this simplified example needs to control the following compo-

nents of the molding machine (see Figure 5.1):

Heater The heater controls the temperature of the molten material. In order to pro-

duce faultless parts the temperature needs to be within a specified range.

Mold and Injection Unit The injection unit starts and stops the injection of material.

It also controls the position of the mold and the ejection actuator.

5.1.1 Implementation

The components are accessed via the following two interfaces Heater and Injection:

(the actual implementation, which is machine-specific, is not presented here)

Heater.java - Interface for the heater component

1 public interface Heater {
2

3 public double getTemperature();
4

5 public void enable();
6 public void disable();
7 }

This interface can be used to determine the current temperature of the heater, and to

enable and disable the heating component.
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HeaterControl.java - Control program for the heater component

1 public class HeaterControl extends Coroutine {
2 private final Heater heater;
3

4 public HeaterControl(Heater heater) {
5 this.heater = heater;
6 }
7

8 protected void run() {
9 while (true) {

10 // wait until temperature falls below lower threshold
11 while (heater.getTemperature() >= 75)
12 yield();
13

14 // enable heater
15 heater.enable();
16

17 // wait until temperature is at upper threshold
18 while (heater.getTemperature() < 80)
19 yield();
20

21 // disable heater
22 heater.disable();
23 }
24 }
25 }

The coroutine HeaterControl is responsible for keeping the heater at the correct

temperature. It is implemented as a simple loop that waits for the temperature to drop

below 75◦C. The heater is then enabled until the temperature reaches 80◦C.

Injection.java - Interface for the injection component

1 public interface Injection {
2

3 public double getVolume();
4

5 public double getPosition();
6

7 public void setTargetPosition(double pos);
8

9 public void startInjection();
10 public void stopInjection();
11

12 public void ejectPart();
13 }

The Injection interface is used to determine the total amount (volume) of material

that was injected, to determine the position of the movable part of the mold (0 = closed,

100 = open), to set the target position for the mold (the mold will immediately start

to move towards the given position), to start and stop the injection of material and to

eject the finished part from the machine.
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InjectionControl.java - Control program for the injection component

1 public class InjectionControl extends Coroutine {
2 private final Injection injection;
3 private final Heater heater;
4

5 public InjectionControl(Injection injection, Heater heater) {
6 this.injection = injection;
7 this.heater = heater;
8 }
9

10 protected void run() {
11 double initialVolume = injection.getVolume();
12

13 // close the mold
14 injection.setTargetPosition(0);
15 while (injection.getPosition() > 0)
16 Coroutine.yield();
17

18 // wait until the heater has reached the minimum temperature
19 while (heater.getTemperature() < 70)
20 Coroutine.yield();
21

22 // start injecting
23 injection.startInjection();
24

25 // wait until 100 units have been injected, then stop
26 while (injection.getVolume() < initialVolume + 100)
27 Coroutine.yield();
28 injection.stopInjection();
29

30 // wait 10 cycles, i.e., 10 ms
31 for (int i = 0; i < 10; i++)
32 Coroutine.yield();
33

34 // open the mold
35 injection.setTargetPosition(100);
36 while(injection.getPosition() < 100)
37 Coroutine.yield();
38

39 // finally: eject the new part
40 injection.ejectPart();
41 }
42 }

The coroutine InjectionControl performs a more complex series of actions. It first

closes the mold, waiting for the movement to be finished. Then it waits for the heater

to reach a temperature of at least 70◦C, after which it can start the injection process.

As soon as 100 units of material have been injected the injection is stopped. After a

cooling time of 10 cycles, i.e., 10 ms, the mold is opened again, and when this is done

the finished part is ejected.
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5.1.2 Conclusion

This example shows that coroutines can be a very natural and convenient way to write

code that performs a complex series of actions. The coroutines in this example also

perform non-blocking busy waiting.

Using threads in this context would not be ideal: Real-world systems can have hundreds

of components, each of which would need a separate thread. These threads would have

to be synchronized in order to pass control from one to the other. This synchronized

thread switch is a very expensive operation. Machine control programs normally run

at a CPU load of 10-20%, and with hundreds of switches within one 1 ms cycle the

switching time will dominate the system performance.

In contrast to threads, the existence of hundreds of coroutines is not a performance

problem, because coroutines use less resources than threads and perform switches by

an order of magnitude faster than threads. Also, synchronization is unnecessary with

coroutines.

As with any coroutine this example could also have been implemented using explicit

state machines, but this would have made it much more complex and harder to under-

stand.

This example could also have been implemented even more elegantly if Java had an

implementation of lambda expressions [16], which is currently planned for JDK 8 [17].

Instead of:

while (heater.getTemperature() >= 75)
Coroutine.yield();

one could simply write:

waitUntil(#{heater.getTemperature() < 75});

5.2 Session Persistence

Servers that implement user sessions often have to solve the problem of how to deal

with a large number of concurrent sessions. For some types of systems there will likely

by a large amount of time between subsequent interactions with the user. It may be

impractical to keep all sessions in memory until they expire, so there needs to be a way

to store these sessions, e.g. to disk or to a database.

The following example shows a simple user interaction that is implemented using corou-

tines, which can be suspended to disk. Although it is a simplified example, it still

demonstrates how the serialization of sessions can be achieved.
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A typical interaction with the main program, called Questions, looks like this:

1 > java Questions
2 Please enter your name:
3

4 > java Questions "John Doe"
5 Please enter your country:
6

7 > java Questions Genovia
8 Please enter your age:
9

10 > java Questions twenty−eight
11 Please enter your age:
12 Please enter a valid number!
13

14 > java Questions 28
15 Please enter your email address:
16

17 > java Questions nospam@nospam.at
18 Name: John Doe, Country: Genovia, Age: 28, Email: nospam@nospam.at

While the interaction in this example takes place via command-line parameters, the

solution can also be applied to other types of interaction, like web servers.

5.2.1 Implementation

The implementation is divided into three parts: The class that models the user inter-

action, the main program that drives the serialization and deserialization and helper

classes that are needed to serialize the coroutine.

Interaction.java - Implementation of the user interaction

1 public class Interaction implements AsymRunnable<String, String>,
2 Serializable {
3

4 private AsymCoroutine<? extends String, ? super String> coroutine;
5

6 //helper method used to acquire user input
7 private String readString(String message) {
8 return coroutine.ret(message);
9 }

10

11 //helper method used to acquire numerical user input
12 private int readNumber(String message) {
13 int tries = 0;
14 while (true) {
15 try {
16 return Integer.valueOf(readString(message));
17 } catch (NumberFormatException e) {
18 if (tries++ == 0)
19 message += "\nPlease enter a valid number!";
20 }
21 }
22 }
23

24 @Override
25 public String run(
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26 AsymCoroutine<? extends String, ? super String> coroutine,
27 String value) {
28

29 this.coroutine = coroutine;
30

31 String name = readString("Please enter your name: ");
32 String country = readString("Please enter your country:");
33 int age = readNumber("Please enter your age:");
34

35 if (age < 70) {
36 String email;
37 email = readString("Please enter your email address:");
38 return "Name: " + name + ", Country: " + country + ", Age: " +
39 age + ", Email: " + email;
40 } else {
41 String telephone = readString("Please enter your telephone number:");
42 return "Name: " + name + ", Country: " + country + ", Age: " +
43 age + ", Telephone: " + telephone;
44 }
45 }
46 }

This is the only class a programmer would have to implement within a framework that

supports the implementation of sessions via coroutines. It is programmed as if the user

input was available immediately any time the user is presented with a question.

The user input is forwarded to the asymmetric coroutine via its input value, and the

console output is passed to the main program via the coroutine’s output value.

The readString method would, in a more sophisticated version, employ some form

of non-blocking i/o. The coroutine would then be restored whenever user input is

available.

It is important to note that local variables are available again when the coroutine is

restored and that coroutines can be suspended from within subsequently called methods

(like readNumber and readString).

Questions.java - Main program containing the serialization / deserialization logic

1 public class Questions {
2

3 public static void main(String[] args) {
4

5 AsymCoroutine<String, String> coro;
6

7 // check if there is a suspended coroutine on disk
8 if (new File("data.bin").exists()) {
9 FileInputStream fis = new FileInputStream("data.bin");

10 CoroutineInputStream<String, String> cis;
11 cis = new CoroutineInputStream<String, String>(fis);
12 coro = cis.readAsymCoroutine();
13 cis.close();
14 } else {
15 coro = new AsymCoroutine<String, String>(new Interaction());
16 }
17
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18 // transfer control, this will execute the next step
19 String message = coro.call(args.length > 0 ? args[0] : null);
20 System.out.println(message);
21

22 // if the coroutine isn’t finished: store to disk
23 if (coro.isFinished()) {
24 new File("data.bin").delete();
25 } else {
26 FileOutputStream fos = new FileOutputStream("data.bin");
27 CoroutineOutputStream<String, String> cos;
28 cos = new CoroutineOutputStream<String, String>(fos);
29 cos.writeAsymCoroutine(coro);
30 cos.close();
31 }
32 }
33 }

This main program contains the main serialization / deserialization logic.

It checks whether there is a suspended coroutine on disk (stored in a file called

data.bin), and if there is one it restores it using the coroutine deserialization mecha-

nism. If there is no suspended coroutine then a new one will be created.

The main program then transfers control to the asymmetric coroutine, which will per-

form one step in the user interaction.

Finally, if the coroutine (and thus, the user interaction) is not finished yet it is serialized

to disk. Otherwise, the data file is deleted.

CoroutineOutputStream.java - Object output stream with special handling of coroutines

1 public class CoroutineOutputStream<I, O> extends ObjectOutputStream {
2

3 private AsymCoroutine<I, O> coro;
4

5 public CoroutineOutputStream(OutputStream out) {
6 super(out);
7 enableReplaceObject(true);
8 }
9

10 @Override
11 protected Object replaceObject(Object obj) {
12 if (obj instanceof Method) {
13 return new SerializableMethod((Method) obj);
14 } else if (obj == coro) {
15 return new CoroutineDummy();
16 }
17 return super.replaceObject(obj);
18 }
19

20 public void writeAsymCoroutine(AsymCoroutine<I, O> coro) {
21 this.coro = coro;
22 writeObject(coro.serialize());
23 }
24 }
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The special object output stream CoroutineOutputStream is needed for two reasons:

It needs to replace instances of java.lang.reflect.Method, which are not serial-

izable, with instances of the SerializableMethod class, and it needs to replace all

instances of the coroutine in question with an instance of the CoroutineDummy class

(because coroutine objects themselves are also not serializable).

CoroutineDummy.java - Helper class used to represent serialized coroutine objects

1 public class CoroutineDummy implements Serializable {
2 }

The helper class CoroutineDummy is needed because only the CoroutineFrame objects

are serializable, and not the Coroutine and AsymCoroutine objects themselves.

SerializableMethod.java - Helper class to replace instances of java.lang.reflect.Method

1 public class SerializableMethod implements Serializable {
2

3 private final Class<?> clazz;
4 private final String name;
5 private final Class<?>[] parameters;
6

7 public SerializableMethod(Method method) {
8 this.clazz = method.getDeclaringClass();
9 this.name = method.getName();

10 this.parameters = method.getParameterTypes();
11 }
12

13 public Method getMethod() {
14 return clazz.getDeclaredMethod(name, parameters);
15 }
16 }

The serializable class SerializableMethod is used by the coroutine object output

stream to store references to instances of java.lang.reflect.Method. This imple-

mentation might not be enough for complex use cases, but it is a simple workaround

for the fact that the reflective method class is not serializable.

CoroutineInputStream.java - Object input stream with special handling of coroutines

1 public class CoroutineInputStream<I, O> extends ObjectInputStream {
2

3 private AsymCoroutine<I, O> coro;
4

5 public CoroutineInputStream(InputStream in) {
6 super(in);
7 enableResolveObject(true);
8 }
9

10 @Override
11 protected Object resolveObject(Object obj) {
12 if (obj instanceof SerializableMethod) {
13 return ((SerializableMethod) obj).getMethod();
14 } else if (obj instanceof CoroutineDummy) {
15 return coro;
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16 }
17 return super.resolveObject(obj);
18 }
19

20 public AsymCoroutine<I, O> readAsymCoroutine() {
21 coro = new AsymCoroutine<I, O>();
22 CoroutineFrame[] frames = (CoroutineFrame[]) readObject();
23 coro.deserialize(frames);
24 return coro;
25 }
26 }

The special object input stream CoroutineInputStream undoes the replace-

ments performed by the coroutine object output stream: It transforms in-

stances of SerializableMethod back into reflective method objects and replaces

CoroutineDummy instances with a new coroutine object.

5.2.2 Conclusion

Being able to serialize coroutines is a vital feature for numerous applications such as web

frameworks or other systems with long-lasting user sessions. At the same time it will

present the implementors of frameworks that are built on top of a coroutine system with

a number of challenges: How should non-serializable classes (like java.lang.Method)

be dealt with, and how deep should the object graph be serialized? The replacement

feature of Java object serialization streams is vital in solving these problems.
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Chapter 6

Evaluation

TM

This chapter contains a number of evaluations, benchmarks and cost es-

timations of the different coroutine features, with respect to run time and

memory usage. All tests and benchmarks presented in this section were

performed on a personal computer with a quad-core Intel i5 750 CPU at

2.67 GHz and 8 GB main memory running Windows 7.

6.1 Memory Consumption

Coroutines that are stored on the heap consume different amounts of memory depending

on their number of active stack frames. Unless a coroutine has a deeply nested chain of

method activations at the time it yields control, it typically uses no more than 2 kB of

memory (roughly 1 kB used by the VM plus at least 32 bytes per Java frame). The size

of the various control structures is negligible compared to the size of the stored stack

frames. We managed to run 1,000,000 concurrent coroutines on a 32-bit machine, at

which time the address space was exhausted.

The size of the coroutine stack depends on the reservation and allocation granularity of

the operating system and the requested stack size. The stack size also has to account for
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a number of so-called guard and shadow pages that are used to detect stack overflows.

These additional pages take up between 24 and 92 kB, depending on the operating

system. This leads to a minimum stack size of 32 kB on Linux, 64 kB on Windows

and 100 kB on Solaris, which allows the allocation of roughly 60,000, 30,000, or 20,000

stacks on a 32-bit machine.

6.2 Execution Time

The execution time of the various coroutine operations depends on factors such as the

cache layout of the CPU, the operating system and others. Nevertheless an approxi-

mation can be given.

On our system, creating a new coroutine takes 1.5 µs if a new stack needs to be created,

and 0.3 µs if not. Creating a new thread takes roughly 2.5 µs. The first call to the

coroutine has to set up a number of data structures and takes 3 µs, whereas starting a

thread takes 60 µs.

Switching between coroutines is the most important operation and takes 20 ns in the

best case. This is less than twice the time it takes to make a polymorphic method call.

The time it takes to do a context switch between threads is hard to measure, but this

operation is much more expensive and takes at least 1,000 ns [35].

Figure 6.1 shows the average time for one “switch” operation in relation to the total

amount of active coroutines. The benchmark we used to create these graphs creates

the given number of coroutines, switches to all coroutines and computes the average

time per switch. The top graph is a magnification of the bottom one and shows the

behavior for small numbers of coroutines. The coroutine system was configured to allow

a maximum of 100 distinct coroutine stacks per thread.

The graphs illustrate the factors that influence the performance of the switch operation:

• From 2 to 25 coroutines the switch time is dominated by the raw execution time

of the assembly and Java code.

• From 25 to 75 coroutines the size of the working set outgrows the first-level CPU

cache.

• Between the number of stacks (100) and two times the number of stacks (200) the

execution time degrades towards the time for copying the stack frames between

the stacks and the save areas on the heap.
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Figure 6.1: Average time for one “switch” operation, relative to the active coroutine
count. The top graph is a magnification of the leftmost part of the bottom
graph.
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• At around 4,000 coroutines the size of the working set starts to outgrow the

second-level CPU cache.

The time per switch stays at 480 ns even for very large numbers of coroutines

(1,000,000). These times depend heavily on the machine the benchmarks are executed

on, but they nevertheless show that there are no abrupt performance degradations

6.3 JRuby Fibers Performance

In order to determine the effect of JVM-level coroutine support on language implemen-

tations that run on top of the JVM, we evaluated the performance of different Ruby [11]

environments. Ruby is a general-purpose object-oriented programming language that

draws concepts from a number of programming languages including Perl, Smalltalk,

Eiffel, Ada and Lisp. The high flexibility of Ruby as well as programming frameworks

such as Ruby on Rails [33] have made the language very popular, consistently rank-

ing in the top 15 of the TIOBE Programming Community Index [34] in recent years.

The latest version of the Ruby language (1.9) implements a feature called fibers, which

provides a simple interface to symmetric and asymmetric coroutines.

The Ruby community [32] maintains a C implementation that is called Matz’s Ruby

Interpreter (MRI) after the creator of the Ruby language (Yukihiro Matsumoto). It

is the most widely-used Ruby implementation and as such serves as a baseline for our

benchmarks. MRI implements fibers with a simple copying approach, where the stack

contents are copied to and from the stack at each context switch.

JRuby [31] implements the Ruby language on top of a JVM and is the second-most

widely-used Ruby implementation. It implements fibers by creating a thread for each

fiber and synchronizing the threads in such a way that the threads behave as if they were

fibers. We modified JRuby to use our JVM coroutines instead of threads to implement

fibers.

In order to assess the performance of these implementations we used a simple benchmark

that passes messages through a chain of fibers. Tests with different numbers of fibers

and messages showed that for all test sizes a large speedup is attained by the use of

coroutines.

Figures 6.2 and 6.3 show a comparison of the performance of MRI, JRuby without

modifications, and JRuby with coroutine support. Figure 6.2 shows the runtime of a

benchmark that passes different numbers of messages through a chain of 5 fibers, and

Figure 6.3 shows the same benchmark for a chain of 5000 fibers.
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Figure 6.2: Ruby benchmark: 5 fiber chain

250 500 750 1000 1250 1500 1750 2000 2250 2500

0

20

40

60

80

100

120

140

160

180

200

Ruby MRI JRuby JRuby coroutines

messages

tim
e
(s
)

Figure 6.3: Ruby benchmark: 5000 fiber chain
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The graphs show that our combined approach works especially well when each coroutine

has its own stack (which is the case with 5 fibers) and still works reasonably well when

it needs to resort to copying (which happens with 5000 fibers).

JRuby with coroutines is roughly 2 times faster than MRI, which in turn is about 3.5

times faster than JRuby without coroutines. On average, JRuby with coroutines is 7

times faster than JRuby without coroutines.

6.4 Thread-to-Thread migration Performance

Thread-to-thread migration is an expensive operation because it requires the system

to walk over all the stack frames of a coroutine. This is done in order to make sure

that there are no locks and native frames, and also to adjust stack and thread pointers

within the stack frames.
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Figure 6.4: Time per migration operation, depending on the number of stack frames.

The time one migration to another thread requires is shown in Figure 6.4. The graph

shows the timing depending on the number of stack frames of the coroutine. One

migration operation takes approximately 6 + (number of stack frames) · 0.05 µs.

These numbers were acquired by migrating a coroutine back and forth between two

threads one hundred times and measuring the total time, which means that they also

include a small synchronization overhead (roughly 1%). The two threads are running

on different CPU cores, and synchronization is achieved via simple blocking spin locks.
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6.5 Serialiation / Deserialization Performance

The run time of serialization and deserialization is less of an issue, since the target

where the serialized coroutine is ultimately stored is likely a slow storage medium like

a disk or a database.
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Figure 6.5: Time per serialization and deserialization operation, depending on the num-
ber of stack frames.

Figure 6.5 shows the timings of the serialization and deserialization operations. Se-

rialization uses the stack walking code that is normally only used for debugging and

deoptimization. This code is not optimized towards fast execution, and thus serializa-

tion is very expensive compared to other coroutine operations.

Serialization takes approximately 17 + (number of stack frames) · 1.3 µs, and deseri-

alization takes approximately 3.5 + (number of stack frames) · 0.25 µs.
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Chapter 7

Related Work

Most of the publications on coroutines deal with the operational semantics and the

connection to other research areas, while the actual implementation details are often

omitted.

Weatherly et al. [36] implemented coroutines in Java for simulation tasks. Their imple-

mentation copies data to and from the stack for each context switch. The focus of their

work lies on the connection to the simulation infrastructure, and they hardly touch the

intricacies of the coroutine semantics and implementation in the Java environment.

Ierusalimschy et al. [15] describe how the Lua virtual machine handles coroutines. Their

implementation uses a separate stack for each coroutine. The Lua virtual machine is

interpreter-only, and the interpreter works in a stackless way. This means that the

actual stack data can be stored at an arbitrary memory position, completely circum-

venting the problem of dealing with native stacks.

Bobrow and Wegbreit [5] show an implementation of coroutines that uses a “spaghetti

stack” containing stack frames of multiple coroutines combined into a single stack.

Every time a subroutine is called the system has to check if there is enough space for a

new stack frame, because some other coroutine might occupy the area where the stack

frame would normally be placed. While this approach can be efficient, it suffers from

a number of drawbacks: It requires extensive modifications within the compiler and

the runtime system, performs costly range checks for each method call and violates the

assumption made by modern operating systems that there is always a certain amount

of available stack space beneath the current stack frame.

Pauli and Soffa [24] improve upon Bobrow and Wegbreit. They introduce a dynamic

and moving reentry point for coroutines, instead of the static one used by the original

algorithm. They also show how to apply the algorithm to statically scoped languages

and conclude with a detailed analysis of different variations of the algorithm. However,
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all models described by Pauli and Soffa still incur a significant overhead for each method

call.

Mateu [20] makes the case that a limited version of continuations can be implemented

via coroutines. He presents an implementation that heap-allocates frames and uses a

generational garbage collector to free obsolete frames. The performance measurements

show that it is difficult to find the optimal size of this frame heap because the perfor-

mance is dominated by the trade-off between CPU cache efficiency (small heap) and

fewer collections (large heap).

Carroll [6] shows an example of a real-world problem that would benefit from a coroutine

implementation in Java. Two consecutive parsers are used to parse RDF (which is based

on XML). Using two ordinary parsers is only possible if they are executed in different

threads. Carroll shows that a significant performance increase is possible if the two

parsers are combined into a single thread. In this case this is achieved via inverting

the RDF parser, which is undesirable from a design perspective. The need for manual

inversion could be avoided if real coroutines were available.

Second Life, developed by Linden Lab, makes heavy use of the concept of portable

agents. These portable agent scripts [8], which implement the behavior of virtual

objects, are essentially coroutines that can be transfered to other VMs whenever the

virtual object passes the boundary of a simulation server (called sim). Since August

2009 Second Life executes these agent scripts on Mono, an open source implementation

of the Microsoft .NET platform. In order to be able to suspend coroutines and move

running scripts from server to server, the scripts are instrumented in such a way that

they can store and restore their current state, similar to the javaflow library [3]. These

transformation-based coroutines are at least an order of magnitude slower than a native

coroutine or continuation implementation [30].
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Future Work

This thesis presented a basic design and implementation of symmetric and asymmetric

coroutines. It is powerful enough to be used in a large number of application domains

such as simulation, web servers, or XML parsing. However, our implementation could

be enhanced with additional features that would make coroutines even more powerful,

efficient and safe. Suggestions for future work are:

Lazy Copying

When copying to and from the stack it might be beneficial to copy only parts

of the stack and use an approach similar to [30] to copy the rest on demand.

However, it remains to be seen if this leads to noticeable performance gains as it

only applies to systems with very large numbers of coroutines.

Scheduling Interface

The implemented scheduling of coroutines is suitable for a large number of use

cases, but an interface that allows the customization of the scheduling behavior

might be necessary for advanced uses.

Input/Output Value in Registers

Right now, the input and output values of asymmetric coroutines are stored in

fields of the AsymCoroutine class. A possible optimization would be to pass

these values in processor registers during the coroutine context switch, which

would make the switch operation faster. This is possible on 64 bit platforms,

but seems impractical on 32 bit platforms due to the smaller number of available

registers.

Allow Locks in Migration and Serialization / Deserialization

Although it would likely make the implementation much more difficult, it might

be possible to derive semantics for the transfer and serialization of locks.

Specialized Stack Walking Code for Serialization

Serialization at the moment relies heavily on the stack walking code that is pri-
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marily intended for debugging and deoptimization. A special version of the stack

walking code for coroutine serialization would likely make this operation much

faster.
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Chapter 9

Conclusions

Coroutines are an elegant solution for many problems and as such have reappeared in

a number of modern programming languages.

This thesis presented a coroutine implementation approach that allocates stacks up to

a certain limit and then starts copying data to and from these stacks. It showed the

implementation of this approach for the widely used Java HotSpotTM VM.

The main contribution of our approach is to show that the two most widely-used corou-

tine implementation strategies can be combined, resulting in an implementation that

performs well over a wide range of different workloads. We also introduced a Java API

for coroutines.

The additional thread-to-thread migration and serialization mechanisms make the im-

plementation even more powerful. These features are required for a number of advanced

use cases.

We gave estimates for the memory usage of our coroutines and the run time of the most

important operations on them. We also analyzed the performance of our approach in

the context of language implementations, which showed that for languages that provide

coroutine-like features JVM-based implementations can benefit significantly from our

coroutines.
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