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ABSTRACT 
Intense research on virtual machines has highlighted the need for 
flexible software architectures that allow quick evaluation of new 
design and implementation techniques. The interface between the 
compiler and runtime system is a principal factor in the flexibility 
of both components and is critical to enabling rapid pursuit of new 
optimizations and features. Although many virtual machines have 
demonstrated modularity for many components, significant 
dependencies often remain between the compiler and the runtime 
system components such as the object model and memory 
management system. This paper addresses this challenge with a 
carefully designed strict compiler-runtime interface and the XIR 
language. Instead of the compiler backend lowering object 
operations to machine operations using hard-wired runtime-
specific logic, XIR allows the runtime system to implement this 
logic, simultaneously simplifying and separating the backend 
from runtime-system details. In this paper we describe the design 
and implementation of this compiler-runtime interface and the 
XIR language in the C1X dynamic compiler, a port of the 
HotSpotTM Client compiler. Our results show a significant 
reduction in backend complexity with XIR and an overall 
reduction in the compiler-runtime interface complexity while still 
generating comparable quality code with only minor impact on 
compilation time.  

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors—Code 
Generation; Compilers; Optimization; Runtime Environments 

General Terms 
Design, Experimentation, Languages, Performance 

Keywords 
Compilers, JIT, Java, virtual machines, lowering, software 
architecture, object model, virtual machine interface, intermediate 
representations, register allocation, runtime system 

1. INTRODUCTION 
The amount and importance of software running on managed 
runtime virtual machines continues to grow. New language 
features and the demand for ever-greater performance continue to 
drive research and development of virtual machines. Flexible 
software architecture is needed to support rapid exploration of 
new design approaches and implementation techniques. One of 
the key factors in achieving the necessary flexibility in virtual 
machines is the interface between the dynamic compiler and the 
rest of the runtime system, including the garbage collector, object 
model, synchronization mechanisms, etc. Achieving this 
separation without sacrificing high performance still remains 
elusive. Even today, industrial strength virtual machines usually 
require compiler changes when significant changes are made to 
the runtime system. 

Dependencies between the compiler and runtime arise from a 
number of sources. 

i. Platform configuration. The virtual machine must 
configure the compiler with information about the target 
architecture such as the instruction set, word width, 
reference size (which may differ from the word width 
when using compressed references), cache alignment, 
stack alignment, supported ISA extensions, allocatable 
registers, calling convention, etc. 

ii. Runtime data structure access. The compiler must 
access a number of the runtime system’s internal data 
structures, including some representation of methods 
and their code, classes, constant pools, etc. The 
compiler may also query the runtime about the 
resolution status of types, fields, and methods 
referenced from the bytecode.  

iii. Optimization selection and tuning. The runtime may 
want to selectively enable or influence different 
optimizations on a per-method or per-compilation basis. 
In particular the runtime system may wish to influence 
inlining decisions by making use of dynamic profiling 
information [1][4][15][19]. 

iv. Speculative dependencies. The compiler may 
optimistically assume a non-final class to be a leaf class 
in order to perform devirtualization and inlining, which 
requires communicating a dependency back to the 
runtime system for later deoptimization of the compiled 
code [18][19]. 
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v. Installation of compiled code. The compiler produces 
machine code and metadata such as reference maps and 
deoptimization information that the runtime system 
must install into its code region(s) and internal data 
structures for execution. 

vi. Implementation of object model. Lowering an object 
operation such as a field access, virtual invocation, 
synchronization operation, or memory allocation to 
machine-level operations such as pointer arithmetic and 
memory accesses is heavily runtime-dependent and 
comprises a large part of the compiler backend logic. 

Although many virtual machines already have adequate interfaces 
for platform configuration, access to runtime data structures [18], 
and the registration of speculative dependencies [19], we believe 
that none of them adequately address every category. In 
particular, the dependencies in the compiler on the 
implementation of the object model present the most difficult 
category. This paper addresses all of these categories (except iii, 
control of optimizations). Our bi-directional compiler-runtime 
interface abstracts compiler and runtime data structures and our 
XIR language allows the runtime system to provide the logic for 
lowering all object operations. This leads to the following design 
(edges indicate data flow annotated with each category of 
dependency): 

In this paper we present our techniques to separate the C1X 
dynamic optimizing compiler from the runtime system of the VM 
in which it is installed. We present the highlights of our compiler-
runtime interface that separates these components from each 
other’s internal implementation details, allowing the compiler to 
query runtime data structures during compilation and produce a 
runtime-independent representation of compiled code. The major 
contribution of this paper is the design and implementation of a 
domain-specific language called XIR which allows the runtime 
system to specify the implementation of object operations, 
completely separating the compiler from any details of the object 
model, garbage collector, etc.  

This paper is organized as follows: Section 2 provides an 
overview of the C1X compiler design, which remains very close 
to the HotSpot Client Compiler for Java from which it was ported, 
providing a background for discussion of XIR’s contribution. 
Section 3 describes the separation between the compiler and 
runtime through interfaces representing runtime data structures 
and compiler data structures. Section 4 describes XIR and how it 
further separates the compiler from VM implementation details. 
Section 5 discusses results and gives metrics, both in terms of 
software complexity, compile time, and runtime performance on a 
suite of standard benchmarks. Section 6 discusses related work, 
and Section 7 provides a conclusion and acknowledgments.  

2. COMPILER DESIGN 
This section describes the origin and design of the C1X compiler 
to provide context for the compiler-runtime interface discussion 
and the presentation of XIR. 

2.1 C1X Genesis 
Achieving industrial-strength performance for any Java VM 
requires a good optimizing dynamic compiler that balances 
compilation time versus code quality. When building a new 
optimizing dynamic compiler for the Maxine VM, we began 
examining the compilers in the HotSpot VM. The HotSpot VM in 
fact includes two compilers, the client [18] and the server [19], 
also known as C1 and C2, respectively. Both are written in C++ 
and produce optimized machine code from bytecodes in response 
to profiling performed by the interpreter. C1 is typically the 
default compiler in client settings due to its fast compile speed 
and smaller memory footprint, while C2 is used in server settings 
because it performs much more thorough optimization and thus 
achieves maximum peak performance. C1’s straightforward 
design makes it attractive for porting to the Maxine VM. In 
particular it achieves high compilation speed by focusing on “big-
win” optimizations and ignores complex optimizations such as 
code motion. C1 performs deep inlining, eager local 
optimizations, some global optimizations, speculative leaf class 
and leaf method assumption with support for deoptimization, and 
a fast, well-tuned linear scan register allocator. We started with 
the approximately 58000 lines of C++ code in C1 from OpenJDK 

7 and began rewriting it in Java to create C1X.  

2.2 FRONT END 
C1X parses Java bytecodes into its main high-level IR (HIR), 
which consists of both a control flow graph and a value 
dependence graph. See Figure 1 for an example and [18] for more 
detail. Unlike a value dependency graph or sea of nodes 
representation, C1X’s HIR represents control flow with basic 
blocks, each with an ordered list of HIR instructions. Each HIR 

int f(int z, boolean b, C o) { 
    int x = z + 1; 
    if (b) y = x + 1;  
    else y = o.m(); 
    return y; 
} 

 

Figure 1. Example code and its resulting HIR graph. Solid lines 
represent control flow edges while dotted lines represent data flow 
edges. Diamonds represent input parameters to the method. 

 



instruction directly references the instructions that produce its 
input values. Phi nodes are attached to the beginning of basic 
blocks that are join points and merge data flow when necessary. 
The SSA nature of this representation is carefully constructed at 
bytecode parsing time by processing basic blocks in CFG reverse 
post-order and using a conservative estimate for phi creation in 
loops. The direct references from uses to definitions that are 
characteristic of value dependence graphs allows C1X to perform 
numerous optimizations while parsing, including strength 
reduction, constant propagation, constant folding, local value 
numbering, load elimination, and dead code elimination. All 
inlining occurs while parsing bytecodes, and values passed as 
arguments to inlined methods are propagated forward, allowing 
all of these optimizations to be applied to the inlined method 
when it is parsed into the HIR graph. Speculative optimizations 
based on class hierarchy analysis [10] allow many call sites to be 
devirtualized and inlined because deoptimization can later 
invalidate compiled code. Subsequent compiler passes remove 
unnecessary phis, merge blocks, remove null checks, replace 
some control flow with conditional moves, perform global value 
numbering, and remove dead code. There are minor differences in 
how these optimizations are implemented in C1X versus C1, but 
for a more detailed description, see [18]. 

2.3 BACK END 
After optimization, C1X translates HIR into a lower level IR 
(LIR) before performing register allocation and then code 
generation. LIR consists of an ordered list of basic blocks, each 
with an ordered list of LIR instructions. LIR is a similar to a quad 
representation where each instruction has an opcode, an output 
operand, and multiple input operands. Operands to instructions 
can be physical registers, virtual registers, or constants. LIR 
instructions are typically machine-level operations such as pointer 
loads and stores, arithmetic, and moves, but some complex 
operations may generate multiple machine instructions and may 
use internal temporaries. Unlike quads, however, each LIR 
instruction may have an unbounded number of input operands, an 
unbounded number of temporaries, but at most one output 
operand. LIR is not in SSA form and requires phi nodes to be 
eliminated by inserting move instructions. 

The LIR representation is machine-independent, and most object 
operations in HIR can be translated (lowered) to loads, stores, 
compares and branches in a machine-independent but runtime-
dependent way. However, some operations that have architectural 
constraints are lowered in a machine-dependent manner (e.g. shift 
and divide operations on x86) and may have physical registers 
pre-assigned. This translation logic is written manually in C1 
because it only generates code for HotSpot. However, the 
implementation is separated into machine-independent and 
machine-dependent parts. We originally ported this logic when 
creating C1X and modified it to generate code for the Maxine 
VM. 

This hard-wired translation process illustrates the major problem 
this paper addresses: the lowering phase is the classic place in any 
compiler where runtime dependence and machine dependence 
converge. Though C1X is separated from the runtime data 
structures that need to be queried during compilation (as discussed 
in the next section), it must however generate code for object 
operations that use object metadata at runtime. Modifying the 
runtime system, e.g. to change the implementation of 
invokeinterface, requires modifying the compiler backend. In our 

port of C1 we were forced to make numerous changes to the C1X 
lowering phase due to the implementation differences of object 
operations. Although Java’s primitive operations and control flow 
constructs can be compiled independently of the object model, we 
found that almost no object operations were identical (with some 
exceptions such as reading a resolved instance field). Further, a 
large amount of complexity arises from handling uncommon cases 
such as accesses to unresolved fields or methods and the slow 
paths of operations such as monitorenter. Such operations are so 
radically different between Maxine and HotSpot that our first 
solution was to implement only the slow path on Maxine by 
emitting a call to the runtime system (as done in [14]). Eventually 
a growing list of Maxine-specific backend changes led to the need 
for a more elegant solution: XIR, which we discuss in Section 4. 

3. COMPILER RUNTIME INTERFACE 
The complex interaction between the compiler and runtime 
system during a compilation requires a bi-directional interface, 
where each component provides an interface to the other. Our 
design explicitly separates interface elements that must be 
provided by the runtime from those that must be provided by the 
compiler and uses a naming convention where the prefix Ci 
denotes a compiler-provided interface object and the prefix Ri 
denotes a runtime-provided interface object. 

First, the runtime is responsible for creating and configuring the 
compiler, including selecting the target architecture and 
configuring runtime-specific settings such as the allocatable 
registers and stack frame alignment. For this purpose, the 
compiler provides a number of concrete Ci classes that can be 
constructed by the runtime and passed to the compiler for its 
internal configuration. We considered a more sophisticated 
configuration interface that avoided exposing concrete compiler 
classes but in the end its complexity was not warranted. 
Secondly, when the runtime system requests a compilation, it 
must provide a representation of the method to be compiled and 
related runtime data structures that the compiler will use. For this 
purpose the runtime must provide implementations of the RiType, 
RiField, RiMethod and RiConstantPool interfaces, each of 
which support a number of query operations used by the compiler 
during compilation. Java interfaces offer maximum flexibility to 
the runtime system; it can either expose its already-defined data 
structures by implementing the interfaces, or wrap them with 
adapters. 
Thirdly, during a compilation the compiler may request additional 
information from the runtime system such as the calling 
convention for a particular call or advice on inlining decisions. 
For this purpose the runtime system must provide an RiRuntime 
interface to answer a number of other queries by the compiler.  

Lastly, and most importantly, the compiler will produce compiled 
code with attached metadata. For this purpose it provides a 
concrete data structure, the CiTargetMethod, which the runtime 
system can reprocess into its own internal data structures for 
installation and execution. Similar to most other Ci classes, we 
chose to have the compiler interface provide concrete classes for 
this purpose, since in each case no compiler implementation 
details are revealed and it is not necessary to control their 
construction. 
 
 



 
Selected Runtime interface classes: 

• RiConstantPool: A constant pool associated with 
bytecode that the compiler uses to lookup and resolve 
fields, types, and methods. 

• RiExceptionHandler: An exception handler entry, 
including the range of bytecode indices covered, the 
handler index, and the type of exception caught. 

• RiField: A resolved or unresolved field referred to in 
the bytecode, including a name, a type, and the 
enclosing class. Resolved fields also allow queries of 
attribute flags such as final, private, volatile, etc. 

• RiMethod: A resolved or unresolved method referred to 
in the bytecode, including a name, a signature, and the 
enclosing class. Resolved methods may refer to a 
method selector or a concrete method implementation 
with code and allow queries of attribute flags such as 
final, private, static, synchronized, etc. 

• RiRuntime: An interface of assorted runtime services 
needed by the compiler, including converting a Java 
class object into an RiType, looking up a system 
RiType, getting the calling convention for a particular 
method signature, advice on required or disallowed 
inlining for certain methods, and various other queries. 

• RiSignature: A method signature, including parameter 
types and return types. 

• RiType: A resolved or unresolved Java class, interface, 
or array type referred to in the bytecode or from another 
runtime interface object. Resolved types may refer to 
any valid Java type and respond to queries for attribute 
flags, the super type, whether the type is an array or 
interface, etc. Resolved, instantiable types can also 
lookup a method implementation for an RiMethod 
selector. 

• RiXirGenerator: The runtime class that generates 
XIR. It is called by the compiler during lowering of 
each object operation to machine-level operations 
(Section 4). 

 
Selected Compiler interface classes: 

• CiArchitecture: An object representing the machine 
architecture including the instruction set. Chosen by the 
runtime when creating and configuring a compiler. 

• CiBailout: Exception that represents an aborted 
compile, either due to compiler limitations on input 
bytecode or unexpected internal compiler errors. 

• CiCodePos: A code location and inlined call chain. 
Created by the compiler and used throughout metadata 
to refer to source locations in the compiled code. 

• CiCompiler: An object capable of producing 
CiTargetMethod instances from RiMethod instances. 
Created, configured, and used by the runtime to compile 
methods. 

• CiConstant: A representation of either primitive or 
object constants. Created and used by both the runtime 
and the compiler to represent and exchange constant 
program values. 

• CiDebugInfo: Debug information for precise stack 
traces and deoptimization. Generated by the compiler 
and included as part of the compilation result. 

• CiKind: An Enumeration of Java’s primitive types, the 
object type, and a special word type. Used by both the 
compiler and runtime to refer to JVM-level types. 

• CiLocation: A union of either a physical register or a 
stack location. Created and used by both the compiler 
and runtime to describe locations of parameters and 
temporaries within a method. 

• CiRegister: A physical register. Created by the 
compiler and used by both the compiler and runtime to 
refer to specific machine registers. 

• CiResult: The result of compilation, consisting of 
either a bailout, or a target method plus statistics. 
Created by the compiler as the result of compilation. 

• CiStatistics: General statistics about the 
compilation, including compiled bytes, number of 
inlines, etc. Created by the compiler as part of the 
compilation result. 

• CiTarget: A collection of settings such as the size of 
references, cache geometry, allocatable registers, etc. 
Created by the VM and used to configure a compiler. 

• CiTargetMethod: A compiled method, including 
machine code and metadata such as relocation, 
patching, and debug information. Created by the 
compiler as part of the compilation result. 

• CiXirAssembler:  An assembler-oriented interface 
provided by the compiler to the runtime to build XIR 
code. Explained in more detail in Section 4. 

 
In total, the Ri interface classes comprise about 1300 lines of Java 
source code, including documentation, while the Ci classes are 
about 2300 lines. The implementation of the requisite Ri 
interfaces in the Maxine VM totals about 3500 lines of Java 
source, which includes implementations of RiType, RiField, 
RiConstantPool and RiMethod that wrap existing data 
structures in the runtime system rather than modifying them to fit 
the Ri interfaces. 

4. XIR 
Although data structures in the compiler-runtime interface 
separate these components from each other’s implementation 
details, the compiler must nevertheless generate efficient machine 
code to implement object operations consistent with the runtime 
system’s design. As discussed previously in Section 2, this 
lowering phase from object operations to machine operations is 
highly runtime-dependent. Our experience porting C1X from 
HotSpot led us to a design where the compiler makes no 
assumptions about how the runtime system implements object 
operations and all lowering logic is in the runtime system. 

C1X provides an interface to the runtime system to generate code 
in a small, domain-specific language called XIR that is designed 
explicitly for the purpose of reducing object operations. XIR is 
very similar to an assembly language for a RISC instruction set. 
Unlike RISC instruction sets however, XIR has neither a binary 
format nor a textual format and therefore it is more appropriately 
considered an intermediate representation. It is a low-level, three-
address intermediate representation that has an unbounded 
number of virtual registers, a set of machine-level but machine-
independent instructions such as 32 and 64-bit integer arithmetic, 
pointer load and store, and conditional branches, but no computed 
jumps. Local branches and jumps may divide the XIR code into 
basic blocks. XIR also has support for defining a fast path and a 
slow path (see Figure 2), which is useful for implementing 



bytecodes that require safety checks that fail infrequently and 
therefore must include rarely-executed failure-handling code. The 
compiler will always emit the fast path inline while the slow path 
will be generated at the end of the method for better instruction 
cache utilization. Further, the runtime can also define a stub: a 
global piece of XIR that can be called from the instruction-
specific XIR (also in Figure 2). Stubs are useful for complex 
shared logic that is too large to be profitably inlined. XIR has two 
call instruction variants: CALL_STUB, for calling previously 
defined stubs, and CALL_RUNTIME, for calling any method in 
the runtime system that it chooses to expose to XIR.  

4.1 Two Phases 
In addition to separating the compiler from runtime 
implementation details, XIR also separates the runtime system 
from the specifics of the compiler’s intermediate 
representation(s). XIR is like an assembly language that is 
specifically designed for the runtime implementer. One only 
needs to understand this language in order to describe object 
operations, and it is not necessary to maintain SSA form or 
explicitly specify data flow edges. This design choice gives rise to 
a mismatch between XIR and the actual intermediate 
representation(s) of the compiler, in particular the HIR and LIR 
representations of C1X. 

To reduce this problem, we separated the creation of XIR by the 
runtime system and its use by the compiler into two distinct 
phases. During the first phase, when the runtime system 
instantiates and configures the compiler, it also creates a 
collection of pre-built XIR templates for later use. An XIR 
template is simply a finished piece of XIR code that has unbound 
input parameters known as XirParameters. A template can be as 
small as a single XIR instruction or as large as an arbitrary control 
flow graph of XIR instructions. In the second phase, during 
compilation, the compiler requests XIR from the runtime system; 
the runtime system responds by passing back an XIR template and 
its inputs, together known as an XIR snippet. 

This phase separation has two important benefits. First, it allows 
the compiler to pre-process the XIR that will be used by the 
runtime system, before any compilations occur. During this 
preprocessing it may translate the XIR to an internal SSA or 
dataflow representation for use later (e.g. to integrate it into an 
HIR graph), or it may gather register allocation constraints (e.g. to 
generate LIR that requires certain registers on a particular 
architecture). Secondly, allowing the runtime system to reuse a 
pre-built template when lowering each object operation improves 
compile speed.  

4.2 CiXirAssembler interface 
The runtime system creates XIR templates in the first phase, but 
XIR has no textual format or binary format; it exists only inside 
the compiler as a graph of data structures representing XIR 
instructions, variables, etc. Instead, the runtime system constructs 
XIR using an assembler object provided by the compiler. Figure 3 
shows a list of methods available in the CiXirAssembler 
interface. The assembler object has methods for creating XIR 
variables and labels as well as adding XIR instructions one by one 
to an internal ordered list of instructions. 
When written sequentially in the runtime implementation, calls on 
the assembler object look much like an embedded domain-specific 
language with Java syntax. Figure 4 shows an example with two 
different implementations of the putfield operation: one with 
standard uncompressed references and one with compressed 
references.  This assembler object interface also obviates the need 
for an XIR syntax and XIR parser, reducing the implementation 
burden on the compiler, unlike LIL [14], for example, which 
required a LIL parser built into the compiler. The implementation 
of CirXirAssembler, its internal data structures, and the 
interface elements XirTemplate, XirSnippet and XirArgument 
comprise a total of about 900 lines of Java source code. 

 

Figure 2. Different fast and slow code paths can be defined with XIR. 
The fastpath is generated inline and may branch to the slow path that is 
generated at the end of the method. Global stubs can contain common 
code and be called from compiled methods, and both can call the 
runtime system. 

public class CiXirAssembler { 
    XV createInputParameter(CK type) 
    XV createConstantInputParameter(CK type) 
    XV createTemporary(CK type) 
    XV createFixedTemporary(CK type, CL location) 
    XV createConstant(CC constant) 
    XL createLabel(boolean fastpath) 
    void add(XV dest, XV a, XV b) 
    void sub(XV dest, XV a, XV b) 
    . . . 
    void mov(XV dest, XV a) 
    void pload(XV dest, XV pointer) 
    void pstore(XV pointer, XV value) 
    void bind(XL label) 
    void jump(XL label) 
    void jeq(XL label) 
    . . . 
    void callJava(XV dest) 
    void callStub(XT template, XV dest, XV[] args) 
    void callRuntime(Object rtcall, XV dest, XV[] args) 
    XT finishStub() 
    XT finishTemplate() 
} 

 
Figure 3. CiXirAssembler interface methods for creating input 
parameters, temporaries, constants, labels, adding instructions, 
branches, calls, and finishing the template. For brevity, XV = 
XirVariable, XT = XirTemplate, XL = XirLabel, CK = 
CiKind, CL = CiLocation. 



4.3 RiXirGenerator interface 
The second phase happens when the compiler is lowering object 
operations to machine operations. Note that XIR was not designed 
to be an extensibility mechanism for all of Java’s operations. We 
divided Java operations into runtime-independent operations, such 
as primitive arithmetic and control flow, which the compiler must 
handle fully, and runtime-dependent operations where the runtime 
system must supply XIR. This reduces the burden on the runtime 

system and reduces the set of XIR extension points to those listed 
in Figure 5. 

The compiler requires the runtime system to supply an 
implementation of the RiXirGenerator interface that has 
methods to generate XIR for each HIR operation. Each method on 
the RiXirGenerator interface corresponds to a Java language 
operation and takes two types of parameters: arguments and 
operands. Arguments are opaque XirArgument instances passed 
by the compiler that represent compiler variables or nodes, such 
as the receiver object in a field access or the value written in an 
array store. Operands represent the “fixed” part of an operation 
such as the field in a getfield operation or the type in a checkcast 
operation. From a bytecode perspective, arguments represent 
values that would be on the Java stack, and operands represent 
quantities in the instruction stream such as a field reference. 
Notice again in Figure 5 that most operands are Ri classes, which 
naturally allows the runtime to use its own data structures to 
decide which XIR to return to the compiler for each instruction. 

Each gen() method in the RiXirGenerator interface returns an 
XirSnippet, which is simply an XirTemplate  with each of its 
parameters bound to either an input XirArgument which was 
passed to the gen() method or an XirArgument representing a 
constant (e.g. a constant field offset). Recall that the 
XirTemplate was constructed in the previous phase, when the 
runtime system configures the compiler. The two-phase approach 
saves compilation time by reusing work from the configuration 
phase. Figure 6 shows an example from the Maxine 
RiXirGenerator that implements the generation of an 
XirSnippet for the putfield operation. 

The implementation of the RiXirGenerator for the Maxine VM 
is 1350 lines of Java source code, including comments, blank 
lines, the code to build XIR templates, the data structures to store 
and lookup templates for different situations, the implementation 
of the interface methods, and the implementation of runtime calls 
that are called from XIR templates and stubs. It contains 
approximately 240 calls to the CiXirAssembler interface. 

XirTemplate buildPutFieldTemplate(CiKind kind, boolean genWriteBarrier) { 
    asm.start(CiKind.Void); // putfield does not produce a value 
    XirParameter object = asm.createInputParameter("object", CiKind.Object);  // object input 
    XirParameter value = asm.createInputParameter("value", kind);    // value input 
    XirParameter fieldOffset = asm.createConstantInputParameter("fieldOffset", CiKind.Int); // field offset 
    asm.pstore(kind, object, fieldOffset, value, true);     // store field 
    if (genWriteBarrier) addWriteBarrier(asm, object, value);    // add write barrier 
    return asm.finishTemplate("putfield<" + kind + ", " + genWriteBarrier + ">"); 
} 
XirTemplate buildCompressedPutFieldTemplate(CiKind kind, boolean genWriteBarrier) { 
    asm.start(CiKind.Void); // putfield does not produce a value 
    XirParameter object = asm.createInputParameter("object", CiKind.Object);  // object input 
    XirParameter value = asm.createInputParameter("value", kind);    // value input 
    XirParameter fieldOffset = asm.createConstantInputParameter("fieldOffset", CiKind.Int); // field offset 
    XirVariable addr = asm.createTemporary(CiKind.Unsafe);    // temp for address 
    XirVariable r13 = asm.createFixedTemporary(CiKind.Unsafe, AMD64Register.R13);  // R13 contains heap base 
    asm.add(addr, r13, object);       // add compressed oop to base  
    asm.shl(addr, addr, asm.i(3));       // shift left 
    asm.pstore(kind, addr, fieldOffset, value, true);     // store field 
    if (genWriteBarrier) addWriteBarrier(asm, object, value);    // add write barrier 
    return asm.finishTemplate("putfield<" + kind + ", " + genWriteBarrier + ">"); 
} 

Figure 4 shows an example usage of the CiXirAssembler. It builds two versions of the putfield operation: one for normal object references and one 
for compressed object references. Both templates take the object and the field value as inputs and have a constant input which will be the field offset. 
The compressed version demonstrates the usage of fixed registers; it assumes the base of the heap is always stored the AMD64 register R13. A helper 
method genWriteBarrier() adds XIR code to the template that implements the write barrier (not shown). 

public interface RiXirGenerator { 
    XS genSafepoint() 
    XS genResolveClassObject(RiType type) 
    XS genIntrinsic(XA[] args,  RiMethod method) 
    XS genGetField(XA object, RiField field) 
    XS genPutField(XA object, XA value, RiField field) 
    XS genGetStatic(RiField field) 
    XS genPutStatic(XA value, RiField field) 
    XS genMonitorEnter(XA object) 
    XS genMonitorExit(XA object) 
    XS genNewInstance(RiType type) 
    XS genNewArray(XA length, CiKind elementKind, 
            RiType arrayType) 
    XS genNewMultiArray(XA[] dims,  RiType arrayType) 
    XS genCheckCast(XA object, RiType type) 
    XS genInstanceOf(XA object, RiType type) 
    XS genInvokeInterface(XA receiver, RiMethod method) 
    XS genInvokeVirtual(XA receiver, RiMethod method) 
    XS genInvokeSpecial(XA receiver, RiMethod method) 
    XS genInvokeStatic(XA receiver, RiMethod method) 
    XS genArrayLoad(XA array, XA index, 
            CiKind elementKind, RiType arrayType) 
    XS genArrayStore(XA array, XA index, XA value,  
            CiKind elementKind, RiType arrayType) 
    XS genArrayLength(XA array)  
} 

Figure 5. RiXirGenerator interface methods. Each method accepts 
a number of XirArgument objects that represent opaque compiler IR 
variables or nodes, and the operands, such as the field being accessed 
in a getfield or the type of a checkcast. The runtime must supply an 
RiXirGenerator implementation to the C1X compiler backend. 
Each method returns an XirSnippet which contains both an 
XirTemplate and bindings for the XirTemplate’s inputs. For 
brevity, XA = XirArgument, XS = XirSnippet. 



4.4 Compiling XIR 
We wanted to preserve as much design freedom for the compiler 
implementation as possible. This is done not by what is in the 
interface, but what is not. For example, the RiXirGenerator 
does not allow the runtime system to make any assumptions about 
when lowering occurs during compilation. Secondly, the 
XirArgument handles passed by the compiler hide all 
implementation details of the IR of the compiler. Further, the 
runtime cannot assume that the operations are lowered in any 
particular order (either according to the order in which they 
appear in the method or inlined methods being compiled, or any 
other order) and must consider each operation in isolation. It also 
cannot assume that all operations are lowered at the same time; 
the compiler might lower some operations, perform optimizations, 
issue other queries to the runtime interface, lower more 
operations, perform more optimizations, etc. In a sense, the 
compiler expects the RiXirGenerator to be stateless. 

This allows the compiler implementation maximum freedom in 
ordering lowering with its other phases. Although C1 performs all 
lowering in its translation from HIR to LIR, other compilers might 
perform lowering by replacing object-operation nodes with 
machine-level nodes but keeping the same overall IR structure, 
allowing the same optimizations to be performed before or after 
lowering. Optimizing after lowering is especially important if the 
object operations become several machine operations that could 
be candidates for common sub-expression elimination (CSE) 
and/or code motion. For example, repeated accesses to an object’s 
meta-object, such as in an invokevirtual, checkcast or 
instanceof operation, may reuse the load of the meta-object after 
the load has been generated by the runtime system through XIR. 
Additionally, write barriers and synchronization may produce 
arithmetic expressions and accesses to thread-local values that are 
good candidates for CSE and code motion. However, a different 
compiler or the same compiler on a lower optimization level may 
not perform many optimizations after lowering and may (like C1 
and C1X) translate from a high-level IR to a low-level IR while 
lowering. All choices are permitted by our design. 

We chose to start implementing XIR in the C1X backend only 
after C1X passed our regression suite with hand-written lowering 
logic specific to the Maxine VM. In addition to having a stable 
platform to work from, this allowed us to assess the 
implementation effort and compare the XIR results against the 
traditional hand-written logic.  
As mentioned in Section 2, the design of C1X’s LIR allows each 
LIR instruction to have an arbitrary number of inputs, an arbitrary 

number of temporaries, but at most one output. The linear scan 
register allocator [23] already handles such instructions, so it was 
straightforward to simply add a special XIR instruction that 
represents a complete XIR snippet including its inputs, 
temporaries, and output. We then modified the translation from 
HIR to LIR to either request XIR from the RiXirGenerator or 
perform the previous logic depending on an option; that means 
that both mechanisms are fully functional in the same compiler. If 
the XIR option is enabled, the backend will generate a single LIR 
instruction representing the XirSnippet returned from the 
runtime system’s RiXirGenerator.  

The two-phase approach to XIR production proved useful to our 
implementation. In the first phase, when the runtime system 
constructs XirTemplates, C1X preprocesses each template to 
gather any architectural register constraints (e.g. if it performs a 
division, which requires certain registers on x86) and determine 
whether the template has a slow path or any calls. The information 
computed during preprocessing is attached to the XirTemplate 
for later use. It is then transferred to the LIR instruction during 
lowering and used by the register allocator to allocate registers to 
inputs, temporaries, and output of the LIR instruction. Note that 
because the entire XirSnippet is represented as a single LIR 
instruction, even if it contains internal control flow, the register 
allocator assumes that all of a snippet’s temporaries and inputs 
may be simultaneously live within the XirSnippet. 
Alternatively, one could generate LIR instructions from the 
XIRSnippet as soon as it is returned from the runtime system, 
before performing register allocation. This would allow the 
register allocator to compute liveness of the temporaries of a 
snippet just as it would for other variables and likely make better 
overall decisions, but at the expense of dealing with more 
variables and more instructions. 

After register allocation is performed, C1X performs some simple 
optimizations such as removing useless moves and jumps and 
may reorder the basic blocks for short loops. C1X then visits the 
basic blocks of LIR instructions and generates machine code LIR 
instruction by LIR instruction. To support XIR, we simply added 
support for compiling the special LIR instructions that represent 
XirSnippets. This is done by opening up the XirTemplate and 
visiting the XIR instructions from the fast path, generating 
machine code for them one by one. If the XirTemplate has a 
slow path, then the slow path code will be added at the end of the 
method. 

The implementation of XIR in the backend of C1X required a 
total of 600 additional lines of code. 

public class MaxXirGenerator extends RiXirGenerator { 
    . . . 
    @Override 
    public XirSnippet genPutField(XirArgument receiver, RiField field, XirArgument value) { 
        XirPair pair = putFieldTemplates[field.kind().ordinal()]; 
        if (field.isResolved()) { 
            XirArgument offset = XirArgument.forInt(field.offset()); 
            return new XirSnippet(pair.resolved, receiver, value, offset); 
        } 
        XirArgument guard = XirArgument.forObject(guardFor(field)); 
        return new XirSnippet(pair.unresolved, receiver, value, guard); 
    } 
} 

 
Figure 6 shows an example implementation of the RiXirGenerator for the putfield operation. The genPutField() method is passed the receiver 
object and the value XirArgument as handles and the RiField. This method simply looks up the correct template using the type of the field, checks 
whether the field is resolved, and returns either the resolved or unresolved snippet. (The guardFor() method creates a resolution object needed in the 
unresolved template, which is not shown). 



5. RESULTS 
In this section we report experimental results that compare the 
XIR implementation in C1X to C1X without XIR. We report 
several static compilation metrics over several code bases, 
including the number of compiled methods, bytecode size and 
number of HIR instructions. We then compare static compilation 
metrics of the XIR implementation with the non-XIR 
implementation, including compile speed, number of LIR 
instructions, number of XIR-implemented instructions, and 
compiled code size. We then compare the code quality of the XIR 
implementation with the non-XIR implementation by measuring 
the execution time of a number of benchmarks with C1X installed 
into the Maxine VM as a dynamic compiler. 

5.1 Static Measurements 
Figure 7 gives our experimental results in gathering a number of 
C1X compilation metrics with and without XIR. These 
experiments were run on a quad-core Intel Nehalem CPU @ 
2.66ghz with 8GB RAM and 64-bit OpenSolaris. We chose to run 
C1X as a user application on an industrial-strength VM because it 
allowed faster development time and allowed us to obtain more 
extensive measurements. For these experiments we ran C1X as a 
user application on the HotSpot Server VM 1.6.0_13 with a 2GB 
heap. To support this static compilation scenario, the Maxine class 
loader, class file parser, verifier and internal runtime data 
structures are running in user mode as well. The timing 
measurements were collected after allowing the host VM to 
“warm up” running C1X and represent an average over 10 
iterations following 5 warm up iterations. 

Figures 7a and 7b illustrate the effects on compilation on a 
number of method suites. First, notice a sizeable increase in 
machine code size for several benchmarks. This is due to more of 
the fast path operations being implemented in XIR and inlined 
than in our hand-written logic, which leaves many cases to slower 
but much smaller runtime calls. Secondly, notice that compilation 
time is increased by 2-7% for three benchmarks; this is because 
the backend must do more work to consult the runtime for 
lowering each operation rather than simply execute handwritten 
logic. However, two benchmarks actually show a reduction in 
compilation time; this is because for these benchmarks, XIR 

results in far fewer LIR instructions, which requires less work for 
the register allocator and subsequent optimizations on LIR. 

5.2 Dynamic Measurements 
Figure 8 gives our execution time comparison with and without 
XIR. For this experiment, C1X is used to compile itself into the 
Maxine VM’s boot image and is configured as the optimizing 
compiler. C1X is then triggered at runtime for hot methods by 
method invocation counters inserted by Maxine’s non-optimizing 
compiler. We chose to run the SpecJVM98 benchmark suite and 
the DaCapo [7] suite. Unfortunately due to recent Maxine 
regressions, we cannot report results for the bloat, lusearch and 
xalan benchmarks. 

We performed 5 runs of each benchmark, where each run was a 
new VM instance. For each run, the time recorded was the time 
from the start of the VM process until the end of the VM process; 
any internal timing numbers reported by the benchmarks were 
ignored. We ran all benchmarks in their default configurations. 

Benchmark methods bytecode code w/XIR time w/XIR 

JDK 1.6 -O1 47252 2264265 11413306 17.8% 7.633 6.3% 

JDK 1.6 -O3 47252 2264265 12858443 18.2% 10.247 5.0% 

Maxine -O1 640 9050 43150 -0.1% 6.939 7.2% 

Maxine -O3 640 9050 138844 23.9% 12.687 3.9% 

C1X -O1 3694 255160 1069099 11.8% 0.670 5.5% 

C1X -O3 3694 255160 1363815 10.5% 1.061 2.6% 

SpecJVM98 -O1 3197 285489 1585293 4.5% 0.959 -5.7% 

SpecJVM98 -O3 3197 285489 1749927 4.6% 1.237 -5.6% 

SciMark2 -O1 157 13094 65672 3.1% 0.054 -1.2% 

SciMark2 -O3 157 13094 72717 3.3% 0.065 -1.9% 

 
Figure 7a gives static compilation metrics for each benchmark at two optimization levels. Level 
-O1 includes local optimizations and simple control flow optimizations while -O3 enables all 
optimizations. The columns indicate: number of methods, bytecode size, machine code size 
without XIR, percentage change in machine code size with XIR, compilation time in seconds 
without XIR, percentage change in compilation time with XIR. 

 

Figure 8 gives execution time results for the XIR and non-XIR 
implementation with C1X installed as the optimizing compiler in the 
Maxine VM on the SpecJVM98 benchmark suite and DaCapo 
benchmarks. Numbers above bars show relative change with XIR. 

HIR LIR w/XIR XIR % 

962807 3171828 -4.6% 8.4% 

597182 3584689 -6.4% 10.8% 

853290 2804920 -0.1% 5.2% 

818524 4131852 -1.2% 7.1% 

86507 293495 -4.9% 7.9% 

71174 369615 -9.4% 13.7% 

104216 378096 -17.0% 11.1% 

73494 423460 -18.4% 14.9% 

4996 16671 -12.1% 10.4% 

3337 18874 -14.8% 12.3% 

 
Figure 7b (rows continue from 7a) includes 
compiler IR statistics, including the number of HIR 
instructions, number of LIR instructions, 
percentage change in LIR with XIR, and 
proportion of XIR instructions. 



Figure 8 shows that most benchmarks are affected by less than 
5%, with three outliers: jess and db which are slowed down by 
10% and 24% respectively, and pmd, which is sped up by 12%. 
Most of the DaCapo benchmarks run faster with XIR yet all of 
SpecJVM98 runs faster without it. Speedups from XIR are mostly 
because our Maxine XIR implementation provides special 
implementations for leaf class type tests, interface dispatch, and 
other operations that we did not replicate in the hand-written 
logic. On the other hand, the static benchmarks in Figure 7a show 
that XIR usually increases compilation time, which of course 
contributes to runtime in this scenario. Also, we notice that XIR 
can sometimes result in worse code because register allocation 
does not happen within XIR templates, but only between them. It 
is likely that the slowdowns experienced by some benchmarks 
programs are due to this effect appearing in hot loops and also due 
to worse instruction cache behavior with the typically larger 
machine code size of XIR.  

5.3 A Simpler Backend 
While the primary goal of XIR is to separate the compiler from 
the logic of lowering operations, moving this complexity to the 
runtime system has the side effect of simplifying the compiler. To 
measure the reduction in complexity, we forked the source code 
of C1X and created an experimental branch where we removed all 
hand-written lowering logic. (Note that this branch was not used 
to obtain any numbers in the previous section). We first removed 
the logic to translate HIR object operations to lower-level LIR 
operations and the complex LIR instructions that were only 
necessary to support that logic; this removed 2000 lines of Java 
source code from C1X, from 53000 to 51000, nearly all in the 
backend. We then removed 10 or so methods from the interface 
which were solely used by this logic; for example, the offset of a 
field, the index of a method in a virtual table, the size of an object 
header, etc. This reduced the size of the compiler-runtime 
interface classes from 4700 lines to 4600 lines, with a similar 
reduction in the Maxine implementation size (from about 5500 
lines to 5400 lines). But more importantly than the number of 
lines of code removed from this interface, concepts such as the 
size and offset of object headers, the offset of fields from the start 
of an object, the ID of an interface, and the index of a virtual 
method no longer appear in the interface, providing more freedom 
to the runtime system and less hard-wired logic in the compiler. 
Our code deletion exercise was very preliminary (just a few 
hours); we expect that more extensive redesign and refactoring of 
the backend around XIR will reduce the complexity even further. 

6. RELATED WORK 
High-level language operations must be translated to machine-
level operations at some point during compilation or 
interpretation. In the context of virtual machines, this translation 
is implemented in any or all of the JIT compiler, dynamic 
compilers, and the interpreter. 

Jikes RVM includes two compilers: a baseline compiler that 
quickly translates bytecodes to machine code one-by-one, 
emulating the Java operand stack, and an optimizing compiler. 
The baseline compiler is basically a single-pass code generator 
and contains hard-coded semantics in its code generation pass. 
The Jikes RVM optimizing compiler has three representations: 
HIR, a high-level representation with Java-level operators and 
some explicit check operators; LIR, a lower-level but machine-
independent representation; and MIR, a machine-specific 

representation. Most lowering occurs in translation from HIR to 
LIR where HIR instructions are expanded into LIR operations that 
are specific to the Jikes RVM runtime system, such as the object 
layout and calling conventions. Here again the specifics of the 
Jikes RVM runtime system are hard-coded in the translation. For 
example, to expand a HIR instruction that represents a call to a 
virtual method, an additional LIR instruction is generated to load 
the address of a virtual method via the object's TIB reference and 
the loaded address is used by a LIR call instruction. Write barriers 
are injected in the translation from LIR to MIR. An interface 
between the compilers and the GC exists for barrier injection, but 
it does not encompass the actual lowering of object operations.  

The mostly closely related work is LIL language [9][14] for the 
Open Runtime Platform (ORP). LIL is a language much like XIR 
for describing the implementation of object operations and other 
runtime services. Unlike XIR, LIL is a textual language that is 
generated as C strings within the runtime system and fed to a 
parser implemented in the compiler during compilation. Though 
neither paper reports on the performance implications of this 
strategy, our assembler object interface avoids the overhead of 
parsing strings and (we believe) is clearer. Also, the two-phase 
approach to generating XIR eliminates the need to construct and 
verify XIR during compilation time. A second difference is that 
LIL stubs execute with their own activation frame, even though 
[9] states that they are “inlined” by the compiler. It unclear what 
the actual inlining mechanism is; in particular it is unclear if they 
treat temporaries and inputs to LIL stubs equivalently in the 
register allocator or whether they are required to be in particular 
registers or stack locations by a calling convention. In contrast, 
XIR inputs, temporaries, and outputs are treated equally to other 
variables in the register allocator. XIR is always “inlined” in this 
sense, and as described in Section 4, it has support for fast paths, 
slow paths, global stubs, and runtime calls. LIL also has some 
runtime-specific constructs such as access to thread locals. As 
shown in the putfield example, it is not necessary for XIR to have 
any such constructs because C1X allows the runtime to reserve 
some physical registers that cannot be used by the register 
allocator but can be used in XIR instructions. In [9] the authors 
describe support for other language features such as multiple 
inheritance and mix-ins using LIL. Exploring such ideas for XIR 
is future work. 

The problem of translating high-level operations to machine-level 
operations is closely related to the problem of implementing a 
meta-circular virtual machine, i.e. a virtual machine implemented 
in the same language that it implements. There have been a 
number of meta-circular virtual machines [1][2][16][20][21], and 
inevitably the problem of expressing lower-level operations in the 
higher-level language [13] arises. All of these virtual machines 
provide low-level primitives as language extensions of one form 
or another, either as magic types or classes or special library 
routines. The ability to use low-level primitives in the source 
provides the opportunity to express the lowering of higher-level 
operations by writing an interpreter in source code with low-level 
primitives. The compiler or translator can use the interpreter’s 
code as the specification of how to perform lowering for each 
object operation, e.g. by partial evaluation. This “fully 
metacircular” approach is taken by Maxine’s previous compiler 
[2], the PyPy VM [20] and the Klein VM [21], which inspired 
Maxine. Unfortunately Maxine’s meta-circular compiler produced 
poor quality code and had poor compilation time, thus we could 
not assess the effectiveness of this approach in an industrial 



strength, optimizing compiler. Our experience with Maxine’s 
previous compiler was the main impetus for building C1X. The 
PyPy VM also has poor performance. It requires 40 minutes to 
translate itself to C code and the resulting interpreter-only VM has 
performance between 3.5 and 11 times slower than the standard 
CPython implementation, which is also interpreter only. 

7. CONCLUSION AND FUTURE WORK 
We have presented a compiler-runtime interface that separates the 
C1X compiler from the runtime system of the virtual machine. 
This includes Ri and Ci classes with well-defined roles as well as 
a new XIR extension mechanism that allows the runtime system 
to express the machine-level implementation of object operations. 
We implemented and evaluated XIR in C1X and have shown that 
XIR has a small impact on compilation time without reducing 
performance. In fact, we found it so much easier to express the 
fast path operations in XIR (as opposed to the backend of the 
compiler) that we implemented more fastpath variants than in the 
hand-written logic and achieved a significant speedup on nearly 
all test programs. 

Porting C1X to another VM would validate the separation 
mechanisms discussed in this paper. One obvious choice given the 
origin is to back-port C1X to HotSpot. As with any port, this 
would require implementing the runtime interface (Ri) classes 
that expose and adapt the runtime’s data structures. A significant 
amount of JNI would be required to access data structures and 
functionality in HotSpot’s runtime. A previous project in 2001 by 
Thomas Kotzmann at Johannes Kepler University Linz took 
HotSpot, removed the compilers, and rewrote a simpler version of 
C1 in Java. He modified HotSpot to dynamically load the 
compiler as normal Java code, with a special JNI interface to VM 
internals to install compiled code. While elegant and functional, 
this system suffered from poor startup time due to the compiler’s 
code initially being interpreted by the VM, requiring the compiler 
to also warm up and begin compiling itself to approach peak 
performance. To achieve competitive startup performance, we 
believe that C1X would have to be pre-compiled into a form 
suitable for linking with the HotSpot executable. Unfortunately, 
many issues beyond the scope of this paper arise when pre-
compiling arbitrary Java code, particularly for HotSpot. 

Jikes RVM [1] also represents an attractive target for porting 
C1X, since it is also written in Java and provides all of the 
necessary runtime infrastructure that is demanded by our runtime 
interface. We have discussed this possibility with a number of 
Jikes RVM core developers and identified a number of issues, 
most of which relate to magic [13] types and operations. For 
example, both Jikes and Maxine provide unboxed types, which are 
Java classes at the source language and bytecode level but are 
compiled into value types with special knowledge by the Jikes and 
Maxine compilers, respectively. C1X would have to recognize 
such magic types and produce appropriate machine operations, 
reference maps, etc. Another issue arises when compiling 
memory-model sensitive operations and restricting code motion in 
certain situations. We believe that the addition of an unsafe 
CiKind for XIR may be key to solving this issue. This unsafe type 
would be used by the runtime for XIR values that must not cross a 
safepoint (e.g. because the value represents a temporary pointer to 
the middle of an object) and certain compiler optimizations would 
be restricted for unsafe types. 

The backend support in C1 for instructions with an arbitrary 
number of inputs and temporaries proved useful in implementing 

XIR by translation to LIR. However, as mentioned in Section 4, 
the ability to perform more optimization after lowering could 
significantly improve code quality. We plan to explore a lowering 
implementation that uses XIR to translate from object-level HIR 
operations to machine-level HIR operations and preserve the SSA 
value-dependence graph nature of HIR. This could be made 
efficient by preprocessing the XirTemplates into a small HIR 
graphs that can be weaved into the method’s HIR at code 
generation time. 

One lacking area of the current compiler-runtime interface is 
support for specifying and driving optimizations. For example, the 
runtime system may have information to drive inlining heuristics 
in the form of the class hierarchy, receiver method and type 
profiles, and call tree profiling.  The Jikes RVM has an interface 
for the runtime system to make inlining decisions for the 
optimizing compiler, including monomorphic, n-morphic, and 
guarded inlining suggestions. Other optimizations that can benefit 
from profiling information in the runtime system include trace 
scheduling, block layout, and register allocation. We intend to 
explore interface designs for these optimizations in future work. 

Our source code is freely available under the GPL version 2 
license as a sub-project of the Maxine VM [2] and is separated 
into the compiler-runtime interface module (CRI) and the C1X 
module (C1X), neither of which have dependencies on any 
Maxine VM classes. Further, the Maxine VM does not have any 
source code dependencies on C1X; instead, an adapter module 
(MaxineC1X) that depends on both Maxine and C1X implements 
both the runtime interface (Ri interfaces) and the functionality 
required to use C1X as a compiler in the Maxine VM. 
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