Automatic Array Inlining in Java Virtual Machines”

Christian Wimmer

ABSTRACT

Array inlining expands the concepts of object inlining to ar-
rays. Groups of objects and arrays that reference each other
are placed consecutively in memory so that their relative
offsets are fixed, i.e. they are colocated. This allows memory
loads to be replaced by address arithmetic, which reduces
the costs of field and array accesses. We implemented this
optimization for Sun Microsystems’ Java HotSpot™ VM.
The optimization is performed automatically and requires
no actions on the part of the programmer.

Arrays are frequently used for the implementation of dy-
namic data structures. Therefore, the length of arrays often
varies, and fields referencing such arrays have to be changed
whenever the array is reallocated. We present an efficient
code pattern that detects these changes and allows the op-
timized access of such array fields. It is integrated into the
array bounds check. We also claim that inlining array ele-
ment objects into an array is not possible without a global
data flow analysis.

The evaluation shows that our dynamic approach can op-
timize frequently accessed fields with a reasonable low com-
pilation and analysis overhead. The peak performance of
SPECjvm98 is improved by 10% on average, with a maxi-
mum of 25%.

Categories and Subject Descriptors

D.3.4 [Programming Languages|: Processors—Compil-
ers, Memory management, Optimization

General Terms

Algorithms, Languages, Performance

Keywords

Java, object inlining, array inlining, just-in-time compila-
tion, garbage collection, optimization, performance

*This work was supported by Sun Microsystems, Inc.

(© ACM, 2008. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in the Proceedings of the 6th IEEE/ACM
International Symposium on Code Generation and Optimization, pp. 14-23.
CGO' 08, April 5-10, 2008, Boston, Massachusetts, USA.
http://doi.acm.org/10.1145/1356058.1356061

Hanspeter Mossenbdck
Institute for System Software
Christian Doppler Laboratory for Automated Software Engineering
Johannes Kepler University Linz
] Linz, Austria .
{wimmer, moessenboeck}@ssw.jku.at

14

1. INTRODUCTION

Arrays play an important role in many object-oriented ap-
plications. While objects are used to decompose the func-
tionality into well-understandable small parts, arrays are
ideal for the implementation of dynamic data structures.
Objects of business logic classes use arrays to reference a
variable list of related objects. This dynamic list of children
is encapsulated in collection classes that are part of almost
every class library. Because of the additional layer between
the business object and the array, many memory accesses
are necessary to load an array element. Object and array
inlining reduce this overhead by placing such objects and
their child arrays consecutively in the heap and by replacing
the memory accesses with address arithmetic. Our solution
addresses the time overhead of field accesses, but not the
space overhead. We keep all object and array headers and
require additional fields for dynamic arrays, which increases
the memory footprint.

Figure 1 illustrates the idea of object and array inlining.
A Polygon object uses the collection class ArrayList of the
package java.util to maintain a dynamic list of points. The
ArrayList stores its data in an Object[] array. When new
elements are added and the size of the array does not suffice,
the array is replaced by a larger copy. The array elements
reference the points that store the actual coordinates.

To access a point, at least two field loads of the fields
points and elementData and one array access are necessary.
Object and array inlining combine the objects to a larger
group so that a point can be accessed with a single array
access, without loading the fields points and elementData.

Polygon
8|points 0—3 Polygon
- 8|points [e
. ArrayList 16 ArrayList 4—1
1 g;:Count 241 8|modCount
16|elementData @+ ®) 12|size
3 32 16|elementData @ -,
Object]] 4| 4 Object] [«’
8|length 48| 32) 8flength
12 [0] L 52| 36 12 [0] o>
18] [1] PR 56| 40| 16|[1] o>

(a) unoptimized objects (b) object and array inlining

Figure 1: Motivating example for array inlining.

The field points is initialized only once, e.g. in the con-
structor of the Polygon class, and never changed. This sim-
plifies inlining the ArrayList object into the Polygon ob-
ject. In contrast, the field elementData of the ArrayList is
changed whenever the list is resized. The array inlining al-
gorithm described in this paper is capable of handling such
changing array fields. This optimization goes beyond the
possibilities of value objects in languages like C++ and C#
where the size of value objects must be fixed at compile time.

We distinguish between parent classes whose objects refer-
ence arrays with the same fixed length, parent classes whose
objects reference arrays with different but fixed lengths, and
parents that reference arrays with varying lengths, i.e. par-
ents whose array fields are reassigned multiple times such
as the elementData field in the example. Furthermore, we
look at the inlining of array elements, e.g. at inlining the
points referenced by the example’s Object[] array into the
array. We show that such an optimization is not possible in
general without a global data flow analysis because the Java
bytecodes for accessing array elements have no static type
information.

The paper presents results for an implementation that
is integrated into Sun Microsystems’ Java HotSpot™ VM.
The analysis, however, can be generally applied to all stack-
based bytecode languages, such as the common intermediate
language (CIL) [12] that is part of the standardized common
language infrastructure and used for example by the Mi-
crosoft .NET framework. The bytecodes for accessing object
fields and array elements have roughly the same structure
in all such languages.

To the best of our knowledge, we describe the first ap-
proach that allows inlining of arrays at run time without
requiring actions on the part of the programmer. Addi-
tionally, we are not aware of any system that allows array
inlining for fields that are changed several times. This paper
contributes the following:

e We propose to integrate automatic array inlining into
a Java virtual machine. We show that the inlining of
array fields is possible and reason about the difficulties
when trying to inline array elements at run time.

e We present a code pattern for the optimized access of
array fields that are changed at run time.

e We evaluate our implementation using standard bench-
marks and report results for different configurations.

2. SYSTEM OVERVIEW

Our implementation is based on the Java HotSpot™ VM
of Sun Microsystems [21]. The default configuration for in-
teractive desktop applications uses a fast just-in-time com-
piler, called the client compiler [8, 14], and a generational
garbage collector with two generations. This structure is
similar for most modern Java VM implementations, even
though the just-in-time compilers and the garbage collec-
tion algorithms vary greatly. Our implementation and all
machine code examples in this paper are based on Intel’s
TA-32 architecture.

The just-in-time compiler operates in the background and
compiles methods whose invocation counters reach a certain
threshold. The compiler performs aggressive optimizations
such as inlining of dynamically bound methods. The dy-
namic features of Java like dynamic class loading can in-

15

validate such optimizations. Therefore, the VM can deop-
timize [10] the machine code of certain methods and re-
vert their execution back to the interpreter. The heap is
divided into two generations. New objects are allocated in
the young generation, which is collected by a stop-and-copy
algorithm. Long-living objects are promoted to the old gen-
eration, which is usually larger than the young generation. A
mark-and-compact algorithm collects the entire heap when
the old generation fills up [13].

2.1 Definitions

Object and array inlining operate on groups of objects and
arrays in the heap that are in a parent-child relationship. An
inlining parent contains a reference to the inlining child. A
child has exactly one parent, but a parent can have multiple
children. Additionally, there can be inlining hierarchies, i.e.
an inlining child can again be an inlining parent itself. In the
example shown in Figure 1, the ArrayList object is both the
child of the Polygon object and the parent of the Object[]
array.

If the inlining parent is an object, an inlining child is ref-
erenced by a field of the object. Such a field is called an
inlined field. The declared type of the field can be either
an object type or an array type. We therefore differentiate
between object fields and array fields. From the point of
view of the bytecodes, there is no technical difference be-
tween object and array fields because the superclass of all
arrays is Object. However, objects and arrays have different
characteristics that are relevant for inlining. For example,
the size of an object is constant, while the size of an array
is unknown until the allocation.

If the inlining parent is an array, the inlining child is ref-
erenced by an array element. Section 3.2 shows that this
case cannot be handled efficiently.

2.2 Dynamic Object Inlining

Array inlining is based on a modified version of our ob-
ject inlining algorithm [23, 24]. To allow automatic inlining
at run time without any programmer interaction, it is nec-
essary to detect hot fields that are worth to be optimized.
For this, the just-in-time compiler inserts read barriers that
increment field access counters per field and class. When
the garbage collector moves objects that are linked by hot
fields, it groups these objects so that the parent object and
its children are consecutive (object colocation).

Two preconditions must be fulfilled for an object field to
be inlined. First, the parent and the child object must be
allocated together and the field store that installs a refer-
ence from the parent to the child must happen immediately
after the allocation (co-allocation of objects). Secondly, sub-
sequent field stores must not overwrite the field with a new
value. All analysis steps are embedded into the compiler and
operate on a per-method basis. No global data flow analysis
is necessary. When the two preconditions are satisfied for a
field, it is possible to optimize field loads, i.e. to replace field
loads by address arithmetic.

The optimization phases are partly overlapping because
method execution, compilation, and garbage collection are
asynchronous. The object layout is not changed during the
optimization to limit the number of VM subsystems affected
by object inlining and to allow a sliding transition to opti-
mized machine code. Both the object headers and the fields
that connect parents and children are preserved.

Allocation: Parent
p = new Parent(); 8[¢c ol -
p.c = new Child(); 16 Child <’
Field access: 24 8if

.. = p.c.f;

Unoptimized machine code: Optimized machine code:

// eax: p // eax: p

mov ebx, [eax+8] mov ecx, [eax+24]
mov ecx, [ebx+8] // ecx: p.c.f

// ecx: p.c.f

Figure 2: Object inlining.

Figure 2 shows an example for object inlining. The field
c of the class Parent contains a reference to an object of
the class Child. The right-hand side of the figure shows the
layout of the resulting group of objects when the field c is
inlined. The field offsets are printed left to the field names.
All objects have 8-byte headers and are aligned at 8-byte
boundaries. The two field loads that are necessary for the
normal access of p.c.f are optimized to a single load with
a larger offset.

3. POSSIBILITIESFORARRAY INLINING

Java integrates array types smoothly into the object class
hierarchy. However, there are certain differences between
objects and arrays that affect inlining. When arrays are
used as inlining children, it must be considered that the size
of arrays is not necessarily a compile-time constant. Using
arrays as inlining parents is complicated because the Java
bytecodes for accessing array elements have no static type
information.

The analysis to detect candidates for array inlining and to
guarantee the preconditions is similar to the algorithm for
object inlining. The just-in-time compiler combines three
instructions of the intermediate representation to a single
instruction for co-allocation: the object allocation of the
parent, the array allocation of the child, and the field store
of the array field. The length of the allocated array is a pa-
rameter of the array allocation instruction. This parameter
can refer either to an integer constant, in which case the
length is known at compile time, or any other instruction
that computes the actual length, in which case the length is
variable. More details on the compiler analysis are presented
in [24].

3.1 Arraysaslinlining Children

The preconditions for object inlining ensure that an object
field references the same inlining child from allocation to
deallocation of the object. The class of the inlining child
and therefore also its size is known at compile time. The
field is not allowed to change because detecting a changed
object field would be equally expensive to accessing the field.

The basic algorithm for object inlining can also be applied
for the inlining of array fields. The detection of hot fields
and the colocation in the garbage collector need no changes.
However, the actual inlining algorithm must take the differ-
ences between objects and arrays into account. On the one
hand, the size of an array is not a compile-time constant
in many cases, which hinders array inlining. On the other
hand, it is possible to detect whether an array field has been

16

Allocation: Parent

p = new Parent(); 8lc ol
p.c = new Child[2]; 16 Child] <’
Field and array access: 24| 8|length: 2

int n = .. 28| 12{[0]

.. = p.c[n]; 2| 18|[1]

Unoptimized machine code: Optimized machine code:

// eax: p esi: n // eax: p esi: n

mov ebx, [eax+8] cmp esi, 2

cmp esi, [ebx+8] jae Exception

jae Exception mov ecx, [eax+esi*4+28]
mov ecx, [ebx+esi*4+12] // ecx: p.c[n]

// ecx: p.c[n]

Figure 3: Fixed array inlining.

Allocation: Parent
int k = .. 8(c o
p = new Parent(); 16 -)
p.c = new Child[k]; Chid] 1«
24| 8]length: k
Field and array access: 28| 12/[0]
int n = . 32(16|[1]
.. = p.c[n];

Unoptimized machine code: Optimized machine code:

// eax: p esi: n // eax: p esi: n
mov ebx, [eax+8] cmp esi, [eax+24]
cmp esi, [ebx+8] jae Exception

jae Exception
mov ecx, [ebx+esi*4+12]
// ecx: p.c[n]

mov ecx, [eax+esi*4+28]
// ecx: p.c[n]

Figure 4: Variable array inlining.

changed at run time with no additional costs by embedding
this check into the array bounds check. This increases the
number of array fields that can be inlined. We distinguish
the three cases of array inlining: fized array inlining, vari-
able array inlining, and dynamic array inlining.

Fixed Array Inlining. If all objects of a parent class
reference arrays with the same fixed length, the inlining of
array fields can be handled in the same way as the inlining of
object fields. Because the length is constant, all referenced
arrays have the same size, which is already known at compile
time. In addition to eliminating the field access for the array
field, subsequent accesses of the array can be optimized. The
constant length is used to simplify the array bounds check,
which does not need to load the array length from memory
anymore.

The example in Figure 3 shows an array field that always
references an array of length 2. Compared to a field access,
an array access requires two additional machine instructions
for the bounds check. The first instruction compares the in-
dex with the length of the array. The second one branches
to an out-of-line code block that throws an exception. In
addition to eliminating the memory access that loads the
field c, the memory access of the array bounds check is re-
placed with the constant 2. Instead of three memory loads
in the unoptimized machine code, only one load is necessary
in the optimized code.

Variable Array Inlining. If the objects of a parent class
reference arrays with different but fixed lengths, the field

Allocation: Datal]

p = new Data[2]; 8length: 2

p[@] = new Data(); 12|[0] Py

p[1] = new Data(); !
161[1] o

Array access: % Data <«

int n = .. 32 8|f :

w = p[n].f; 40 Data «-’
4| 8lf

Figure 5: Array as the inlining parent.

accesses can be eliminated in the same way as with object
inlining. However, a parent object can only have one such
inlining child. Because the size of the array is not known at
compile time, an array with variable length must always be
the last child of a parent. The inlining offset of a subsequent
child would not be fixed otherwise.

Figure 4 is a modification of Figure 3. The length of the
allocated array is not known at compile time. The memory
access for the array bounds check cannot be eliminated, so
two memory loads are necessary in the optimized code. The
array must be the last inlining child of the Parent class.

Dynamic Array Inlining. When an array field is as-
signed multiple times, it is no longer safe to eliminate the
field access without further checks. In contrast to object in-
lining, however, it is possible to detect if an array field has
been changed at run time without additional overhead for
the common case. Section 4 discusses different optimization
possibilities.

3.2 Arraysaslnlining Parents

Reference arrays contain pointers to other objects and ar-
rays. Therefore, it would be beneficial to combine an ar-
ray with the objects that are referenced by the array el-
ements, i.e. to allow also arrays as inlining parents. Fig-
ure 5 shows the resulting object structure when the two
Data objects referenced by a Datal[] array are inlined. The
access p[n].f can be performed by the address arithmetic
p*tn*16+32. However, we claim that this optimization is im-
possible without a global data flow analysis because of the
structure of the array access bytecodes.

Java bytecodes [17] are executed using an operand stack.
Most bytecodes pop their arguments from the stack, per-
form an operation, and then push the results back on the
stack. Only arguments that are constant for the Java source
language compiler, such as numbers of local variables or nu-
meric constants, are part of the bytecodes. Another kind of
such constants are field names. The bytecodes for loading
and storing fields, getfield and putfield, include a sym-
bolic reference to the accessed field denoting the name of the
field and the class in which the field is to be found. The VM
linker converts the symbolic reference to a field offset. With
this static information, it is possible to differentiate which
fields of which classes are changed at run time.

In contrast, the bytecodes that load and store elements
of reference arrays, aaload and aastore, have no static
operands. Both the accessed array and the index of the ac-
cessed element are taken from the operand stack. The lack
of static type information hinders inlining of array elements.
It is not possible to find out which array is modified by an
aastore bytecode, i.e. it is not possible to find out whether

17

void ml(Parent p, Child c) { 0: aload_©
p.c = C; 1: aload_1
} 2: putfield Parent.c
void m2(Other p, Child c) { 0: aload_o
p.c = ¢C; 1: aload_1
} 2: putfield Other.c

Figure 6: Example for field stores.

void ml(Data[] p, Data c) { 0: aload_o
p[@] = c; 1: iconst_o
2: aload_1

3: aastore

void m2(Object[] p, Data c) { 0: aload_o
p[e] = c; 1: iconst_o
2: aload_1

3: aastore

Figure 7: Example for array stores.

the elements of the modified array have been inlined or not.
Every aastore bytecode can possibly modify any reference
array in the heap.

Figure 6 and Figure 7 illustrate the differences between the
putfield and the aastore bytecodes. Figure 6 corresponds
to the object structure presented in Figure 2. Assume that
the object field c of the class Parent should be inlined. The
bytecode putfield Parent.c in Method m1 tells the object
inlining system that the field c of class Parent is modified
here. When the method is called for a Parent object that
already references a Child object, the object inlining system
knows that the field is not inlinable because it is modified
after the initialization. Similarly, the bytecode putfield
Other.c in method m2 affects the inlining of Other.c, but
not the inlining of Parent.c. In other words, the type in
the putfield bytecode tells us which objects are modified.

Figure 7 corresponds to the example presented in Figure 5.
Because the aastore bytecode is not typed, the same byte-
codes are emitted for the methods m1 and m2. The method m2
might modify a Data[] array because Datal[] is assignment
compatible with Object[]. The method m2 therefore pro-
hibits array element inlining of Data[] and all other array
types. Methods like m2 are common in nearly all applica-
tions, therefore our implementation of array inlining cannot
handle arrays as inlining parents.

Only a global data flow analysis can solve this problem.
It is necessary to know all contexts where the method m2 is
called. It must then be checked whether a Data[] array can
flow into this method. Although such an analysis would be
possible, global reasoning about Java classes is complicated
by the dynamic features of Java like lazy class loading and
reflection.

Special cases of arrays as inlining parents could be han-
dled without a global analysis, for example the flattening of
rectangular arrays to one dimension. However, we did not
implement such optimizations.

4. DYNAMIC ARRAY INLINING

Arrays are often used to model dynamic data structures in
object-oriented applications. Because the number of fields
in an object is fixed, one has to allocate and link multi-
ple objects to model e.g. a list with a variable number of

Allocation: After allocation:

p = new Parent();

p.c = new Child[2]; Parent

Resize and field ch e gy
esize and field change: 16 Child[] <’
.c = Arrays.copyOf(p.c, 4);

P y pyof(p) 24| 8[lengh: 2

Field and array access: 28| 12][0]

int n = .. 2| 16|[1]

.. = p.c[n];

16
24
28
32

After resize and field change:

Parent
° » Child]]
Child[] 8length: 4
8|length: 0 12110]
12{[0] 16([1]
18] [1] 20([2]
2%|[3]

Figure 8: Principle of dynamic array inlining.

elements. In contrast, all elements can be stored in a sin-
gle array with the appropriate length. When elements are
added and the length of the array does not suffice, the com-
mon solution is to allocate a larger array, copy all existing
elements from the old to the new array, and then discard
the old one. This strategy is used for example in the Java
collection class ArrayList.

4.1 BasicPrinciple

We use the following approach to allow inlining of array
fields that can change:

e At allocation, the child array with the initial size is
co-allocated with the parent object, so an optimized
access is possible.

e After the field has been overwritten with the refer-
ence to a new array, an optimized access using address
arithmetic is no longer possible because it would still
access the old array.

e The next garbage collection restores the optimized field
order, i.e. the garbage collector colocates the new array
to the parent object. Therefore, an optimized access
is again possible.

Figure 8 illustrates this strategy. The array field c of the
class Parent that references a Child[] array is inlined. In
contrast to the examples in Section 3.1, the field can now
be changed. Here, the array lengths are the constants 2
and 4 to simplify the example, but they could also be any
non-constant value. Because the optimized access is not
possible between the resize operation and the next garbage
collection, an additional check is necessary before an element
of the inlined array is accessed.

Array inlining saves one machine instruction, i.e. the load
of the inlined field c, therefore it is only beneficial if the ad-
ditional check does not add new instructions. It is therefore
necessary to combine the additional check with the array
bounds check that precedes every array access according to
the Java specification. We set the length of the old inlined
array to 0, which forces the array bounds check to fail. In-
stead of throwing an exception immediately, we check if the
field has been changed and points to a new array. In this
case, we access the new array and continue normally. Only
if the bounds check for the new array also fails, an exception
is thrown.

Figure 9 shows the normal and the optimized machine
code for the array access. The optimized machine code is
separated into a fast path and a slow path. The fast path

18

Unoptimized machine code:

// eax: p esi: n

mov ebx, [eax+8]

cmp esi, [ebx+8]

jae Exception

mov ecx, [ebx+esi*4+12]

After GC:
Parent
8lc o
16 Child[] <’
241 8llength: 4
28| 12|[0]
32| 16|[1]
3| 20([2]
40| 4[]

Optimized machine code:

// eax: p esi: n

cmp esi, [eax+24]

jae Slowpath

mov ecx, [eax+esi*4+28]
Continue:

// ecx: p.c[n] // ecx: p.c[n]

Slowpath:

mov ebx, [eax+8]

cmp esi, [ebx+8]

jae Exception

mov ecx, [ebx+esi*4+12]
jmp Continue

Figure 9: Optimized access of a dynamic array.

code performs the optimized array access. One memory load
is saved compared to the unoptimized code. When the field
is overwritten with the reference to a new array, the length
of the old inlined array is set to 0, i.e. the memory location
[eax+24] is set to 0, causing the bounds check to always fail.
This case is regarded as uncommon and therefore placed
out-of-line at the end of the method. It contains the same
code as the unoptimized machine code, i.e. it first loads the
field and then accesses the array using the normal offsets.
Another bounds check throws the exception if necessary.

Dynamic array inlining is only beneficial if the majority
of the array accesses use the fast path. The number of slow
path accesses is high if the field is changed frequently or if
the timeframe between the field change and the next garbage
collection is long. In such cases, the array access should be
reverted to the unoptimized machine code. Furthermore,
dynamic array inlining does not allow to optimize direct ac-
cesses to the array length, e.g. when generating code for the
arraylength bytecode. The additional check whether the
result of the optimized access is 0 would require a compare
and a branch instruction, which is more expensive than the
normal field access.

4.2 Non-Destructive Approach

The basic principle described above has one important
drawback: overwriting the array length destroys the array,
i.e. it is no longer accessible because the bounds checks for
all following accesses fail. This is no problem if the only
reference to the array was the inlined array field, because
this field has already been changed. However, the array
could also be referenced by other fields or by root pointers.
In this case, overwriting the array length is not allowed. An

Allocation: After allocation:
p = new Parent();
p.c = new Child[2]; Parent
other.f = p.c; 8|c o
16 i J
Resize and field change: ul s Child] 9
p.c = Arrays.copyOf(p.c, 4); length: 2
28| 12]inlineLen: 2
Field and array access: 2| 18([0]
int n = ..
36| 20
.. = p.c[n]; [1]
int m = ..
. = other.f[m]; Other
8|f o—

24
28
32
36

After resize and field change: After GC:
Parent Parent
c . » Child[] 8lc | A
Child[] €~ 8|length: 4 16 Child[] <’
8|length: 2 12]inlineLen: 4 241 8llength: 4
12]inlineLen: 0 161[0] 28| 12|inlineLen: 4
16([0] 20([1] 32| 16{[0]
20|[1] 2%|[2] 3| 20([]
28|[3] 4| 24(12]
Other “LEE
8[f el — Other Child[]
8|f Q—J—: length: 2
12{inlineLen: 0
16][0]
20{[1]

Figure 10: Non-destructive dynamic array inlining.

additional analysis must check if such accesses are possible
before dynamic array inlining is initiated.

This can be done using a global data flow analysis. How-
ever, an analysis of frequently used classes like ArrayList
shows that also a method-local bytecode analysis suffices for
most cases. This analysis checks that a child array loaded
from the inlined field is used only for an array access and not
assigned to other fields or returned by the method. Never-
theless, additional analysis steps are necessary and the num-
ber of inlinable array fields is reduced.

A non-destructive approach avoids this problem by cloning
the array length. Instead of overwriting the regular array
length that is also accessed by normal bounds checks, a copy
of the array length accessed only by the optimized machine
code is overwritten. Figure 10 shows this approach. Each
array has two length fields: length and inlineLen. In con-
trast to the previous example, the Child[] array is now also
accessible from the field £ of an Other object. When the
field Parent.c is changed, the inlineLen of the inlined ar-
ray is set to 0, but the length is unchanged. Therefore, the
array access other.f[m] is still possible. The next run of
the garbage collector restores the colocation of the Parent
object and the new Child[] array. The old Child[] array
is preserved and moved to another location.

To allow a uniform array access, all arrays in the heap
must have the second length field, which increases the re-
quired heap space. It would also be possible to place the
copy of the length field not into the array, but at the end of
the parent object. This reduces the required memory, but
leads to a more complicated inlining process because the size
of parent objects is changed during inlining. Our implemen-
tation uses the simple non-destructive approach where all
arrays have two length fields.

4.3 Garbage Collection

To be beneficial, dynamic array inlining requires that the
timeframe between the modification of an array field and the
next garbage collection is short. The Java HotSpot™ VM
divides the heap into two generations. A small young genera-
tion is collected frequently because most objects die young.
The stop-and-copy collector copies young objects between
two alternating spaces and increments an age field in each

19

object. When the age exceeds a threshold, the object is
promoted to the old generation. The old generation con-
tains only long-living objects. It is larger than the young
generation and collected rarely.

Therefore, it makes a difference whether the parent object
is in the young or in the old generation. The new array
is always in the young generation because it was recently
allocated. However, the colocated object order can only be
restored by a collection of the young generation when the
parent is also still in the young generation. Heuristics in
the age calculation can keep the parent object in the young
generation as long as the inlined array field is changing. For
example, we use the age of the child array instead of the
age of the parent object for deciding whether the parent
object should be promoted. When the array field is changed
frequently, the age of the array is always low and the parent
object is not promoted.

4.4 Array Bounds Check Elimination

Array bounds check elimination removes checks of array
indices that are proven to be in the valid range (see for ex-
ample [2] and [18] for Java implementations and [26] for an
algorithm integrated into the Java HotSpot™ client com-
piler). When the index variable is guaranteed to be below
the array length, the check can be completely omitted (fully
redundant checks). When the check is in a loop, the array
length is loop invariant, and the maximum value of the in-
dex variable is known, the check can be moved out of the
loop (partially redundant checks).

We use the bounds check also to detect changes of the
array field. If the bounds check is eliminated, the opti-
mized array access is no longer possible. Therefore, there
is an optimization conflict between bounds check elimina-
tion and dynamic array inlining. In practice, such conflict
situations are however unlikely. Bounds check elimination
requires static information about the length of an array. If
the array was just loaded from a field, which is the pattern
optimized by array inlining, such information is usually not
available and bounds check elimination therefore not pos-
sible. When bounds checks are moved out of a loop, the
check whether the array field has been changed can still be
performed outside the loop.

150%

T Tk
\°§‘_‘_ 2 R R R \oo\°§§ \o‘_v‘_ \°o\°§§ 2 22y 2 R R R \°°\°§§
g2 SEEE g&-— & E§58S EEZES8 BEEE | B2~
100% 1 pm e p— = o, A
50% ::f [baseline \ \
Dlslowest run [E object inlining N
B fastest run - [A fixed array inIin'ingl A
=4 Kldynamic array inlining |
0% t:':': ”M IV/{/)\
_227_mtrt _202_jess _201_compress _209_db _222_mpegaudio _228_jack _213_javac mean
Figure 11: Speedup compared to baseline for SPECjvm98 (taller bars are better).
0,
100% < Il
80% {2 = . % o o ||
3 3 % 2 . 3
60% - B
] e Oarray elements
40% 1—1s=) ke Oarray fields
3 = B I | Darray fields elim.
— < < M object fields
20% - W 3 Elobject fields elim.
0% A - - h
b o fada b o fada b o fada b o fada b o fada b o fada b o fada
_227_mtrt _202_jess _201_compress _209_db _222_mpegaudio _228_jack _213_javac

Figure 12: Total and eliminated field and array loads at run time.

5. EVALUATION

We integrated our object and array inlining algorithm
into Sun Microsystems’ Java HotSpot™ VM, using an early
snapshot version of the upcoming JDK 7 [21]. In addition to
the optimizations of the snapshot version, our version of the
client compiler also performs array bounds check elimination
based on the algorithm of Wiirthinger et al. [26], which elim-
inates fully redundant checks and moves partially redundant
checks out of loops.

All measurements were done on an Intel Core™2 Quad
processor Q6600 with four cores at 2.4 GHz, running Mi-
crosoft Windows XP. Each core has a separate L1 data cache
of 32 KByte. Two cores together share a 4 MByte L2 cache,
so there are 8 MByte L2 cache in total. All caches have a
cache line size of 64 bytes. The main memory of 2 GByte is
uniformly accessed by all cores. The results were obtained
using a 32-bit operating system and a 32-bit VM.

We evaluate our work using the SPECjvm98 [20] and Da-
Capo [1] benchmark suites. Each benchmark is executed
five times in the same VM instance, and the slowest and the
fastest runs are reported. The slowest runs, which are al-
ways the first in our case, represent the startup speed of the
VM and include the time necessary for compilation, while
the fastest runs show the peak performance after all opti-
mizations have been applied.

5.1 Impact on Run Time

Figure 11 shows how object and array inlining affect the
performance of SPECjvm98. We present results for the in-
dividual benchmarks, as well as the geometric mean of all

20

benchmarks. The slowest and fastest runs are shown in the
same figure on top of each other: the gray bars refer to the
fastest runs, the white bars to the slowest. Both runs are
shown relative to the same baseline. We compare four dif-
ferent configurations that can be selected using command
line flags.

For the first column, baseline, read barriers are used to
detect hot fields and then object colocation for these fields
is performed, as described in [23]. The numbers include the
overhead for the read barriers as well as the benefit of object
colocation. In comparison to a version without these analy-
ses, the slowest runs of our baseline are about 2% slower and
the fastest runs about 5% faster in average. Read barriers
and object colocation are a prerequisite for object inlining,
so they are enabled in all subsequent configurations.

The second column, object inlining, shows the results when
the analysis described in Section 2.2 is performed. The
benchmarks _227_mtrt and _209_db show a speedup for the
fastest runs. The slowest runs of these benchmarks are af-
fected differently. For 227 mtrt, the analysis steps for ob-
ject inlining and the compilation of the necessary methods
run in the background during the whole first run, which
causes a slowdown of about 15%. In contrast, the analysis
succeeds early enough for the _209_db benchmark, so the
optimized field loads outweigh the overhead.

For the column fized array inlining, the same analysis
is performed for array fields where the array length is a
compile-time constant. In addition to the elimination of
field loads, array bounds checks are simplified. The bench-
marks 227 mtrt, 201 _compress, and 222 mpegaudio are

significantly improved. A detailed analysis shows that the
simplified bounds checks contribute as much to the speedup
as the eliminated field loads.

The last column, dynamic array inlining, contains the
results for the non-destructive array inlining approach de-
scribed in Section 4. It uses the extended bounds checks to
detect changes of the array field. The benchmarks 209_db,
_228 jack, and _222 mpegaudio show a small speedup. Be-
cause array bounds checks of dynamic arrays cannot be op-
timized, the impact is lower than the impact of fixed array
inlining.

The same optimizations can be applied for variable arrays
and for dynamic arrays. Therefore, our implementation does
not differentiate between the two cases and treats variable
arrays as if they were dynamic. The extended array bounds
checks are also emitted for variable arrays, although they
would not be necessary. Array fields that are initialized
only once with arrays of a non-constant length are therefore
included also in the last column of Figure 11.

5.2 Access Countsfor Fieldsand Arrays

The speedup of object and array inlining is directly related
to the number of eliminated field loads. Figure 12 shows
the distribution of field and array loads and the impact of
object and array inlining. The same four configurations as
in the previous section are used. They are abbreviated as
b (baseline), o (object inlining), fa (fixed array inlining),
and da (dynamic array inlining).

We differentiate between three kinds of heap references.
References to other objects and arrays on the heap can be
loaded from object fields, array fields, or array elements. We
only count loads of references, so the figure does not contain
loads of scalar values like int fields or elements of int[]
arrays. The first column shows the distribution of the three
kinds. This distribution is identical in all configurations.

The subsequent columns highlight the percentage of loads
that are eliminated by the different object and array inlining
configurations. The higher the striped bars are, the more
field loads are eliminated. As described in Section 3.2, array
elements cannot be optimized without a global data flow
analysis. Therefore, the topmost bar shows no eliminated
loads in any configuration.

Object inlining optimizes only object fields, i.e. the bot-
tommost of the three kinds. For the benchmarks _227_mtrt,
~201_compress, 209_db, 222 mpegaudio, and _228 jack, a
significant part of the object field loads is eliminated. For
_227_mtrt, the number of accessed array fields is reduced
slightly though no array fields are optimized. This is a ben-
eficial side effect of object inlining on other optimizations
like global value numbering. When it is known that a field
is never changed, some subsequent array loads are identified
as redundant and therefore eliminated.

Fixed array inlining eliminates loads of array fields when
the lengths of the arrays are compile-time constants. Such
arrays are frequently accessed in the benchmarks 227 mtrt,
_201_compress, and _222_mpegaudio. Together with object
inlining, 75% of all reference field loads of _227_mtrt and 63%
of 201 _compress are eliminated. This is also reflected by the
high speedups for these benchmarks.

Dynamic array inlining is effective for the benchmarks
_202_jess, _209_db, and _228_jack where mostly the array-
based collection class Vector is optimized. For 228 jack,
dynamic array inlining reduces the number of eliminated

21

total object fixed array | dyn. array

obj arr | obj ar | obj ar | obj arr

_227_mtrt 380 77 3 0 3 4 3 4
_202_jess 410 77 5 0 5 0 5 3
_201_compress | 352 76 5 0 5 4 5 4
_209_db 350 74 2 0 2 0 2 2
_222_mpegaudio | 412 93 7 0 7 9 7N
228 _jack 395 80 4 0 4 1 2 3
_213_javac 492 92 2 0 2 1 2 2

Table 1: Number of fields that are optimized.

object field loads. The benchmark contains a parent class
with three object fields that can be inlined using object in-
lining. Each of these fields references a collection. With
dynamic array inlining, the data arrays of the collections
are also inlined. Therefore, the offsets of the second and the
third child object are no longer fixed, so inlining of them
fails and only one object field is inlined.

5.3 Statisticsof Inlinable Fields

Object and array inlining is performed field-by-field at run
time. To limit the analysis overhead, the algorithm processes
only important fields for which the time invested in the op-
timization is outweighed by the later speedup. Therefore,
only fields whose access counters exceed a certain thresh-
old are considered as candidates for inlining. Table 1 shows
the number of fields that are inlined in the configurations
mentioned above.

The first column, total, shows the overall number of fields
in all loaded classes. The majority of the several hundred
fields are unimportant for the performance of the bench-
marks. The number of inlined fields shown in the sub-
sequent columns is therefore below 10 for all benchmarks
except _222 mpegaudio. For example, the high percentage
of eliminated reference field loads for 227 mtrt is achieved
with only 7 inlined fields. These fields are the most fre-
quently accessed ones, so optimizing all of the remaining
fields can only lead to a small additional speedup.

For some benchmarks like _213_javac, our analysis is not
yet capable of inlining the most important fields. Although
some fields are inlined, there is nearly no impact on the
eliminated field loads and the speedup. To keep the analysis
overhead low, the algorithm is conservative in several places.
An improved algorithm can possibly inline more important
fields for these benchmarks.

5.4 DaCapo Benchmarks

Figure 13 shows the benchmark results for 7 of the 11
DaCapo benchmarks as well as the geometric mean of all
11 benchmarks. The 4 excluded benchmarks do not show a
speedup in any of the object and array inlining configura-
tions. The DaCapo benchmarks are more complex than the
SPECjvm98 benchmarks regarding code complexity, class
structures, and class hierarchies. Therefore, the speedups
are lower compared to SPECjvm98. Nevertheless, some
benchmarks like luindex, antlr, or eclipse show a consid-
erable speedup.

150%

2Ry 2R ® 2 e E = = =285 2R R R 2R R R 2R
$888 3558 83%8 Sz 882= 38383zs 8885 | ssss
100w] 2 e e e €23 e e e eee e e
i N
50% : Elbalselmlel _
Dslowest run [E2 object inlining N
2 ! S N
Mfastest run - [Afixed array inlining N
t_ ¢ Kldynamic array inlining
0% SRS | JRR e
antlr chart eclipse hsqldb luindex lusearch xalan mean

Figure 13: Speedup compared to baseline for DaCapo (taller bars are better).

6. RELATED WORK

Dolby et al. extended a static compiler for a dialect of
C++ with an algorithm for automatic object inlining [6].
Their algorithm clones the code of methods that access op-
timized objects. Therefore, there can be both optimized and
unoptimized objects of the same class, while we require that
all objects of a class are optimized. Additionally, they re-
move object headers and pointers to inlined objects, which
reduces the object size. As they use an advanced global data
flow analysis, they are able to convert arrays of references to
arrays of object values [4]. As described in Section 3.2, our
analysis is not capable of such transformations. However,
we can handle dynamic arrays where an array field can be
changed to reference arrays of different sizes. This is not pos-
sible in their approach, as mentioned in [5]. The optimiza-
tion of such dynamic data structures is the main advantage
of a run-time analysis over a static compilation approach.
The high compilation time reported for their global data
flow analysis would prohibit the integration of their analy-
sis into a virtual machine. The C++ benchmarks show an
average speedup of 10%, with a maximum of 50% for some
benchmarks.

Laud implemented object inlining in the CoSy compiler
construction framework, a static compiler for Java [15]. This
algorithm can detect when child objects are replaced with
new ones, which could be used for the inlining of dynamic
arrays. However, no details regarding arrays are published.
In contrast to our algorithm, it is not allowed that a child
object is referenced by anything else than the parent ob-
ject. To the best of our knowledge, no benchmark results
are available.

Lhoték et al. provide a good introduction to object inlin-
ing [16]. Depending on the access pattern, they differentiate
between four classes of inlinable fields, and use this classifi-
cation to compare the number of fields that can be optimized
by the algorithms of Dolby and Laud for several Java bench-
marks. Array fields are not evaluated thoroughly in their
study. Wile they present the access counts of array fields
and compare them with the number of object fields, their
subsequent analysis and listing of inlinable fields does not
cover array fields. Additionally, they do not distinguish be-
tween arrays with constant and arrays with variable length.
Inlining of array elements is not evaluated. The study does
not describe an implementation for object inlining, so no
benchmark results are published, except from three hand-
optimized benchmarks.

22

The algorithm for object combining by Veldema et al.
groups objects that have the same lifetime [22]. It is more
aggressive than object inlining because it also optimizes un-
related objects if they have the same lifetime. This allows
the garbage collector to free multiple objects simultaneously.
Elimination of pointer accesses is performed separately. In-
lining of one array with a variable length per object group
is possible. The focus of their optimization is on reducing
the overhead of memory allocation and deallocation. This
is beneficial for their system because it uses a mark-and-
sweep garbage collector where the costs of allocation and
deallocation are higher.

Ghemawat et al. use a cheap interprocedural analysis for
object inlining and for other global optimizations [7]. Arrays
are only inlined when the length is a compile-time constant.
Arrays with variable size are not optimized. The analysis
was implemented in Swift, an optimizing static Java com-
piler for the Alpha architecture. There are no timing results
with only object inlining enabled.

Several approaches modify the object copying order of the
garbage collector to improve the cache performance, but do
not optimize field loads. The online object reordering of
Huang et al. optimizes all fields accessed by frequently exe-
cuted methods [11]. The cache-conscious data placement of
Chilimbi et al. uses run-time counters, but does not distin-
guish between different fields of the same object [3]. Shuf et
al. co-allocate objects of frequently instantiated types, called
prolific types, and then preserve this order during garbage
collection [19].

Algorithms for pointer analysis make assumptions about
possible run-time values of pointers [9]. Most of these static
analyses are however unsuitable for object and array inlining
because they detect only to which locations a variable may
point. Wu et al. collect instance-wise points-to information
which is precise also in the presence of loops [25]. This anal-
ysis could be used to flatten multi-dimensional arrays and to
inline array elements into arrays because their element-wise
points-to mapping connects arrays with the objects refer-
enced by the array elements.

7. CONCLUSIONS

We presented an algorithm for automatic array inlining
in a Java virtual machine. Arrays play an important role
in most Java applications and are frequently used to model
dynamic data structures such as collections. They can be
referenced by array fields, and their elements can contain

references to objects. Array inlining without a global data
flow analysis can only optimize array fields. The optimiza-
tion of array elements is complicated because the array ac-
cess bytecodes do not have any static type information.

We distinguish between array fields that are assigned only
once, referencing arrays of fixed or variable size, and ar-
ray fields that can be reassigned over time. The access of
such dynamic arrays is optimized by integrating the check
whether the field has been changed into the array bounds
check. The evaluation shows that array inlining can achieve
a significant speedup by only optimizing a handful of fields.

8. ACKNOWLEDGEMENTS

We would like to thank the Java HotSpot™ compiler
team at Sun Microsystems, especially Thomas Rodriguez,
Kenneth Russell, and David Cox, for their persistent sup-
port, for contributing many ideas, and for helpful comments
on all parts of the Java HotSpot™ VM. We also thank
Thomas Kotzmann and Thomas Wiirthinger for their valu-
able comments on the work and this paper.

9. REFERENCES

[1] S. M. Blackburn et al. The DaCapo benchmarks: Java
benchmarking development and analysis. In
Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 169-190. ACM Press, 2006.
R. Bodik, R. Gupta, and V. Sarkar. ABCD:
Eliminating array bounds checks on demand. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 321-333. ACM Press, 2000.

T. M. Chilimbi and J. R. Larus. Using generational
garbage collection to implement cache-conscious data
placement. In Proceedings of the International
Symposium on Memory Management, pages 37—48.
ACM Press, 1998.

J. Dolby. Automatic inline allocation of objects. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 7-17. ACM Press, 1997.

J. Dolby and A. Chien. An evaluation of automatic
object inline allocation techniques. In Proceedings of
the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 1-20. ACM Press, 1998.

J. Dolby and A. Chien. An automatic object inlining
optimization and its evaluation. In Proceedings of the
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 345-357.
ACM Press, 2000.

S. Ghemawat, K. H. Randall, and D. J. Scales. Field
analysis: Getting useful and low-cost interprocedural
information. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 334—344. ACM Press, 2000.
R. Griesemer and S. Mitrovic. A compiler for the Java

HotSpot™ virtual machine. In L. Boszorményi,

J. Gutknecht, and G. Pomberger, editors, The School
of Niklaus Wirth: The Art of Simplicity, pages
133-152. dpunkt.verlag, 2000.

M. Hind. Pointer analysis: Haven’t we solved this
problem yet? In Proceedings of the ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, pages 54—61.
ACM Press, 2001.

U. Holzle, C. Chambers, and D. Ungar. Debugging
optimized code with dynamic deoptimization. In

2]

8]

[4]

[5]

(6]

(7]

8]

[9]

(10]

23

(11]

(12]

(13]

(14]

20]

(21]

(22]

23]

(24]

Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 32-43. ACM Press, 1992.

X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B.
Moss, Z. Wang, and P. Cheng. The garbage collection
advantage: Improving program locality. In Proceedings
of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 69-80. ACM Press, 2004.

ISO/TIEC. Common Language Infrastructure (CLI).
International Standard ISO/IEC 23271, 2nd

edition, 2006.

R. Jones and R. Lins. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. John
Wiley & Sons, 1996.

T. Kotzmann, C. Wimmer, H. M6ssenbock,

T. Rodriguez, K. Russell, and D. Cox. Design of the
Java HotSpot ™ client compiler for Java 6. ACM
Transactions on Architecture and Code
Optimization, 2008.

P. Laud. Analysis for object inlining in Java. In
Proceedings of the Joses Workshop, 2001.

O. Lhotak and L. Hendren. Run-time evaluation of
opportunities for object inlining in Java. Concurrency
and Computation: Practice and Experience,
17(5-6):515-537, 2005.

T. Lindholm and F. Yellin. The Java™ Virtual
Machine Specification. Addison-Wesley, 2nd

edition, 1999.

F. Qian, L. J. Hendren, and C. Verbrugge. A
comprehensive approach to array bounds check
elimination for Java. In Proceedings of the
International Conference on Compiler Construction,
pages 325-342. LNCS 2304, Springer-Verlag, 2002.
Y. Shuf, M. Gupta, H. Franke, A. Appel, and J. P.
Singh. Creating and preserving locality of Java
applications at allocation and garbage collection times.
In Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, pages 13-25. ACM Press, 2002.
Standard Performance Evaluation Corporation. The
SPECjvm98 Benchmarks, 1998.
http://www.spec.org/jvm98/.

Sun Microsystems, Inc. JDK 7 Project, 2007.
https://jdk7.dev.java.net/.

R. Veldema, C. J. H. Jacobs, R. F. H. Hofman, and
H. E. Bal. Object combining: A new aggressive
optimization for object intensive programs.
Concurrency and Computation: Practice and
Ezperience, 17(5-6):439-464, 2005.

C. Wimmer and H. Mdssenbock. Automatic object
colocation based on read barriers. In Proceedings of
the Joint Modular Languages Conference, pages
326-345. LNCS 4228, Springer-Verlag, 2006.

C. Wimmer and H. Méssenbock. Automatic
feedback-directed object inlining in the Java
HotSpot™ virtual machine. In Proceedings of the
ACM/USENIX International Conference on Virtual
Ezecution Environments, pages 12-21. ACM

Press, 2007.

P. Wu, P. Feautrier, D. Padua, and Z. Sura.
Instance-wise points-to analysis for loop-based
dependence testing. In Proceedings of the
International Conference on Supercomputing, pages
262-273. ACM Press, 2002.

T. Wiirthinger, C. Wimmer, and H. M&ssenbock.
Array bounds check elimination for the Java
HotSpot™ client compiler. In Proceedings of the
International Conference on Principles and Practice of
Programming in Java, pages 125-133. ACM

Press, 2007.

