Christian Wimmer

Automatic Object Inlining
in a Java Virtual Machine

A thesis submitted in partial satisfaction of
the requirements for the degree of

Doctor of Technical Sciences

Institute for System Software
Johannes Kepler University Linz

Accepted on the recommendation of

Univ.-Prof. Dipl.-Ing. Dr. Dr.h.c. Hanspeter Mossenbock
Johannes Kepler University Linz

Univ.-Prof. Dipl.-Ing. Dr. Michael Franz
University of California, Irvine

Linz, February 2008

Johannes Kepler University Linz, Altenberger StralRe 69, 4040 Linz, Austria, www.jku.at, DVR 0093696

Sun, Sun Microsystems, Java, HotSpot, JDK, and all Java-based trademarks
are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. All other product names mentioned
herein are trademarks or registered trademarks of their respective owners.

Abstract

Object-oriented Java applications allocate many small objects linked together by field
references. Such fields are frequently loaded and thus impose a run-time overhead.
Object inlining reduces these costs by eliminating unnecessary field loads. It embeds
referenced objects into their referencing object. The order of objects on the heap is
changed in such a way that objects accessed together are placed next to each other.
Then their offset is fixed, i.e. the objects are colocated. This allows field loads to be
replaced by address arithmetic.

Array inlining expands the concepts of object inlining to arrays, which are frequently
used for the implementation of dynamic data structures. Therefore, the length of arrays
often varies, and fields referencing such arrays have to be changed. An efficient code
pattern detects these changes and allows the optimized access of such array fields.

These optimizations are integrated into Sun Microsystems” Java HotSpot™ virtual
machine. The analysis is performed automatically at run time, requires no actions on
the part of the programmer, and supports dynamic class loading. It is embedded into
the just-in-time compiler and garbage collector and does not need a global data flow
analysis. The evaluation shows that the dynamic approach successfully identifies and
optimizes frequently accessed fields for several benchmark suites with a reasonable
low compilation and analysis overhead.

Kurzfassung

Objektorientierte Java-Anwendungen verwenden viele kleine Objekte, die {iber Felder
miteinander verbunden sind. Solche Felder werden haufig geladen und erhohen die
Ausfiihrungszeit. Objekt-Inlining reduziert die Kosten, indem unnétige Feldzugriffe
entfernt werden. Die Reihenfolge von einander referenzierenden Objekten wird so
gedandert, dass verbundene Objekte im Speicher hintereinander liegen. Dadurch ist der
Abstand zwischen den Objekten konstant und Feldzugriffe konnen durch
Adressberechnungen ersetzt werden.

Array-Inlining erweitert die Optimierung von Objekten auf Arrays. Diese werden oft
fiir dynamische Datenstrukturen verwendet. Dadurch ist ihre Lange nicht bekannt,
und Felder, die auf Arrays zeigen, werden haufig geindert. Da diese Anderungen
effizient erkannt werden konnen, ist die Optimierung solcher Felder moglich.

Diese Optimierungen sind in die Java HotSpot™ VM von Sun Microsystems integriert.
Die Analyse wird automatisch zur Laufzeit ausgefiihrt, bendtigt keine speziellen
Zusatzinformationen und unterstiitzt das dynamische Laden von Klassen. Sie ist in
den Just-in-Time-Compiler und den Garbage Collector integriert und verwendet keine
globale Datenfluss-Analyse. Die Evaluierung zeigt, dass dieser dynamische Ansatz mit
geringem Laufzeit-Aufwand wichtige Felder erkennt und optimiert.

Table of Contents

INtrOAUCHON. ...t 1
8 S - A - R TSP UR 1
1.2 Feedback-Directed Optimizations...........ccocoeueueieueieicccciiicee s 2
1.3 Problem Statementccooeiiriiiiiiiniiiiiinicieceee e 3
1.4 State Of the ATt ..ot 6
1.5 Project HiStOIY......ccoiiiiiiiiiiiiiiiiiicc s 6
1.6 Structure of the TReSISccccevieiriiiriiicccce e 8
The Java HOtSpot VIM ..o 9
2.1 SyStem SHIUCHUTEvveeecce e 9
2.1.1 Client and Server Configurationc.ccccceevvivueeinniniinnieicreecene 11
2.2 Object Layout ..o 12
221 Mark WOrd ..o 12
2.2.2 Class Hierarchy ..o 13
2.3 Garbage ColleCtionccoeuiuiiiiiiiiiiiiiiiiiiiccircc e 14
2.3.1 Stop-and-Copy Alorithmccccoeiiiiiiiininiiiiiic 15
2.3.2 Mark-and-Compact Algorithmccccooeiiiiiiiiiis 16
2.4 Client COMPILET......ccouiiiiiiiiiiiece e 17
241 BYteCOdes.....cccoiiviiiiiiiiiiiiiiicicci e 17
242 Front ENd ... 19
243 Back End ... 20
2.5 DeoptimMizZation ... 23
Architecture of Object and Array ININing.........ccccooveveieieiiieiiccccce 25
3.1 Source Code of Example........ccccoeiiiiiiiiiiiniiiiiiniiiiiiccicccceeeeenes 25
3.2 Definition of TeIrmS........cccccoiuiiiiiiiiiiiiiic e 27
321 EXampPle ..o 28
3.2.2 Method ININING.....c.cociviiiiiiiiiiiicc e 28

Table of Contents

3.3 Design Principles ... 29
3.3.1 Memory Layout ... 30
3.3.2 Preconditions for a Field........cccccooooniiinii 32
3.4 Components for Object INIININGccceiiviiiiiiiniiiiiiiiccccee 33
3.41 Method Trackingcccceeiiiiiininic s 35
3.4.2 Hot-Field Detectioncccoeivieivieiniiinicinicieicinceccceceeee e 36
3.4.3 Object ColoCatioN........ccueueueuiuciiiiiiieeee s 36
3.44 Co-allocation of ObJECts.......ccccoovuiiiriiiiiiiniriicicereeee e 37
3.4.5 Guards for Field Storescccccoviiiiviniiiiiiiiiiiiccccccccce 38
3.4.6 Transition to Object INiININGccccoevviiiiiiiiiiiiiiiiirccces 39
3.4.7 Optimized Field Loadscccccoviiiiiiiiiniiiiiiiincccccne 39
3.4.8 Run-Time MOnitOringccccoveiviiiiiiiiniiiiicinccc 40
Hot-Field Detectioncccoiiiviiiiiiiiiiiiiiciciiicice e 41
4.1 Read Barriers ... 42
4.1.1 Machine Code Pattern.........ccccccceeuiiiiiiiiiiiiiiiinices 43
4.1.2 Processing of Field Counters..........ccccoeueiviniiininiicinnccinecceneennes 43
4.2 Hot-Field Tables......cccoiiiiiiiirieeeeneeceeetete ettt 45
421 Graph Representation ... 46
Object COlOCAtIONcoviiiiiiiiiciiic e 47
51 Colocation Tables..........ccoviiiiiiiiiiiiiiiic 48
5.1.1 Creation of Colocation Tables before Garbage Collection................... 49
5.1.2 Filling the Colocation Tables with Objects..........ccccccoevviiiiininiincnnnes 50
5.2 Stop-and-Copy Algorithm.........cccocviiiiiiiiiiie 52
5.3 Mark-and-Compact Algorithm ... 54
ODbject INTININEooveiiiiciic e 57
6.1 Method Tracking ..o 57
6.1.1 Bytecode ANalysis........cccocoviriririniiiiiiieieieiciciccccc e 58
6.1.2 Class Hierarchiescccoviiiiiiiiiiiiiiiiccccccs 59
6.2 Inline ReQUESLSc.ccocvviiiiiiiiiiiiccc 60
6.3 Co-allocation of ODJECtSccueuiiiiiiii s 61
6.3.1 Modification of the Just-in-Time Compiler.........cccccccevniiinnnccnnnnes 61
6.3.2 EXampPle....cccooiiiiiiiiiiii 63
6.3.3 Control Flow and Memory FIOWcccccccoiiviniiiinniiiniiiiiiiccns 66
6.4 Guards for Field Stores...........ccccoiiiiiniiiiiiie 67
6.5 Transition to Object INININEcccceiviviiiiniiiiiiiiie 69
6.6 Optimized Field Loads..........ccccoeiiiiiii 70
6.6.1 Load FOIAINGcccovviiiiiiiiiiiiiiccieccee e 70

ii

Table of Contents

6.6.2 Address Computationccoeeiiviiiiiiiiiiiiii 72
6.6.3 Additional Optimizationscccceeiiiiiiiiiiiiniiiiiics 72
6.6.4 Handling Null Checks..........ccoeiiiiiiiiiiiic, 73
6.7 Run-Time MONItOringcccocoviviiiiiiiiiiiiiiicc s 75
6.8 Support for Class Hierarchies...........cccooeeiiiiiiiiniceeie 76
6.8.1 Reverse Object Order.........cccoviiiiiicinninciinccreeeee e 76
6.8.2 Modifications for Reverse Object Orderccccccvviicivncinnncinnnns 78
ATray INININE oo 79
7.1 Arrays as Inlining Children..........ccocoociiiiiiiniiiiiice 79
7.1.1 Fixed Array INlining.........cccccceviiiiiiiiniiiiiiiiiicccces 80
7.1.2 Variable Array INliningcccccovviviniiiininiiiiiiciccccccs 81
7.1.3 Dynamic Array INliningccooovoiviiniiiniiicce, 83
7.2 Arrays as Inlining Parents............cccoocioininiiininiiinice 83
7.3 Implementation of Dynamic Array Inlining..........ccccceovvvvivinnnnnnnniiceenns 85
7.3.1 Basic Principle.......ccooiiiiiiiiiniiiiiii 85
7.3.2 Non-Destructive Approach...........ccccceeiiiiiniiniiiiiiiiiccccne, 88
74 Support for Class Hierarchies...........ccccooeiiiiniiiinniiiiniiccces 90
7.4.1 Reverse Order for AITays ..o 90
7.4.2 Object ALIGNMENLc.ouiuiiiiiiiiiiiiiirce e 92
7.5 LAMItationS.....cociieiiiiiiic 93
7.5.1 Access of the Array Length..........ccoovviiiiiiiie, 93
7.5.2 Interdependencies with Garbage Collectioncccccoeerrcrrnnnnen. 94
7.5.3 Interdependencies with Array Bounds Check Elimination 94
7.6 Java Class LIDTary ...t 95
7.6.1 ArrayList ExXample ... 95
7.6.2 Other Collection Classes............ccccouviriiiiiiniiiiininiiciccceces 96
7.6.3 SINGS oo 97
EValUQtION ...ttt e 99
8.1 Benchmark Results for SPEGVIMOS...........ccoviimiiiiiiiiiiciccceeeeenee 100
8.1.1 Impact on Run Time........ccccoiiiiiiiiiiiiii 101
8.1.2 Field Access COUNLSccoueuiiiiiiiiiiiiiiiiiccc e 102
8.1.3 Number of Optimized Fields.........cccccccoevniniiininiiiiiiiie, 103
8.1.4 Compile-Time Impact ..., 104
8.2 Analysis of SPEGIVINOS.........cciviiiiiiiiiiiiiicic e 105
821 Mt 105
8.2.2 D e 108
8.2.3 COMPTESS ...ouiuiietiiiniietetet ettt 109
824 JESS.uiiiiiiii e 111

iii

Table of Contents

8.3 The DaCapo Benchmarks ... 112
8.3.1 Impacton Run Time.......ccccooiiiiiiiniiiiicc 112

8.3.2 Field Access COUNLScccevvviiiiuiiiiiiiiiiicccc s 113

8.3.3 Number of Optimized Fields........c.cccccvveiiinniiiniiinncccceens 114

8.3.4 Compile-Time Impact........ccccccoviiviiiiiiiiiiiiiiices 114

8.4 SPEGIDD2005oviiiiiiiiiiiiciiiinie s 115

8.5 SCIMATK.....ciiiiiiii s 115

8.6 Java Grande Benchmarks.........cccceceeieiereniesieneeeeeeeee et 116

9 Related WOTK ... 117
9.1 Object INHNING ...cvoveieieieicicicc s 117
9.1.1 Classification of Inlinable Fields.........c.ccccocoviiiiiiiiiiiiine 119

9.1.2 Inlining Algorithm of DOIbycccoiiiiiiiiiiiiiccccces 121

9.2 Improvement of Cache Behavior...........ccccooiiiiniiiniiiiiniiiiiiccn, 123
9.2.1 Object Colocation in the Garbage Collector............ccccvreriiincnnne. 124

9.2.2 Field Reordering and Object Splittingcccccceecvviininiincincnnne 126

9.3 Dynamic Profiling Techniques...........cccccouruiiininiiiniiiiiniiccinncccieene 127

10 SUMMATY ..ot 129
10.1 CONtribDULIONS.cviiiiiiiiicicec e 129
10.2 The Big Pictureccccoviiiiiiiiiiiiiiiicic s 130
10.3 FUture WOTK.....ooucoiiiicicieccccee et 133
10.4 CONCIUSIONS.....cooviiiiciiiiicc e 134

List Of FIGUT@S.....veeeeiicie e 137
List Of TabIESocuiiiiiiiiiiiciiicc s 141
List Of AIGOTItRIMS.cuouiiiiiiiiciccc e 143
Bibliographycucuceeeeeieie s 145

iv

Acknowledgements

I want to thank all of the many people that supported this work. First and foremost, I
thank my advisor Hanspeter Mdssenbdck for his constant support and encouragement
and his diligent comments on algorithms, papers, and this thesis. Likewise, I thank
Michael Franz from the University of California in Irvine to take the responsibility of
the second thesis advisor and dissertation committee member.

The Java HotSpot compiler team at Sun Microsystems continuously supported and
funded the project. I thank Kenneth Russell, Thomas Rodriguez, and David Cox for the
numerous discussions and helpful comments on all parts of the Java HotSpot virtual
machine.

Special thanks go to my former colleague Thomas Kotzmann, who also worked on the
Java HotSpot VM. Our discussions in the early phases constituted the project and
influenced the overall architecture of the implementation. Additionally, his comments
on the thesis improved the quality. Likewise, I thank all my current colleagues,
especially Thomas Wiirthinger and Markus Loberbauer for the numerous discussions.
Both provided valuable feedback on the thesis.

Finally, I am most grateful to my parents, my brother, and my sister for their love as
well as their encouragement and support during my whole studies.

Chapter 1

Introduction

This chapter starts with an introduction to the object-oriented programming
language Java. Java applications are executed using a virtual machine. This
imposes a run-time overhead but also allows novel feedback-directed
optimizations that cannot be implemented in a static compiler. Object inlining
is such an optimization, which utilizes the just-in-time compiler and the
garbage collector of the VM. The chapter closes with a history of the research
collaboration that facilitated this project.

Object-oriented programming encourages developers to decompose applications into a
large number of small classes with a well-understandable and well-testable
functionality. Encapsulation hides the implementation details of a class from a client,
inheritance allows subclasses to specialize the behavior of a superclass, polymorphism
allows objects of subclasses to be treated like objects of the superclass, and dynamic
binding ensures that a method call is dispatched to the overridden method of the
receiver’s dynamic type. These concepts improve modularity, extensibility, and
reusability of software components.

However, a proper decomposition of an application into classes can have a negative
impact on performance. It leads to a large number of small objects on the heap that are
linked together by object fields. This increases the number of loads for referencing
tields, i.e. the number of memory accesses of the application. This thesis presents an
optimization that places certain objects next to each other on the heap and replaces
field loads by address arithmetic.

1.1 Java

The Java programming language [Gosling05] was developed by Sun Microsystems as a
general-purpose object-oriented language. The syntax is similar to C++, however the
complex and unsafe features of C++ were omitted. Instead, concepts such as garbage
collection and thread synchronization were introduced to simplify software
development. Java was designed as a portable language, so applications compiled once
run on various host architectures. Additionally, Java allows a secure delivery of
software components.

Introduction

The emerging World Wide Web contributed much to the success of Java. While the
interactivity of plain HTML pages is limited, the integration of small Java programs,
so-called applets, into web pages allows the development of interactive applications
that are integrated into the web browser. Transferring executable code over an
untrusted network such as the Internet requires checks before execution, in order to
guarantee that no malicious code is executed on the client.

Today, Java is used on a wide variety of platforms. Small embedded systems such as
mobile phones and PDAs can be programmed easily without special knowledge about
the target architecture using the Java Platform Micro Edition (Java ME). Midway in the
spectrum, the Java Platform Standard Edition (Java SE) provides an environment for
desktop applications, supporting the developer with a library for graphical user
interfaces, network programming, XML processing, and multimedia applications.

The development of component-based multi-tier enterprise applications is facilitated
by the Java Platform Enterprise Edition (Java EE), providing a large framework that
significantly simplifies the development of secure and transaction-oriented server
applications. Using one programming language for all types and sizes of systems is an
advantage over specialized languages and can reduce the time and costs of software
development.

To enforce the portability and platform independence, Java applications are not
distributed as machine code for a specific hardware platform. Instead, the concept of a
virtual machine (VM) is used for abstraction. Java source code is compiled to a compact
binary representation called Java bytecodes. The application is stored in a well-defined
binary format, the class file format, containing the bytecodes together with a symbol
table and other supplemental information. The Java virtual machine [Lindholm99] is
defined independently from the Java programming language. The Java HotSpot VM is
Sun Microsystems’ implementation of this specification [SunHotSpot]. High
performance is achieved by using just-in-time compilation [Cramer97].

1.2 Feedback-Directed Optimizations

Compared to statically compiled binaries, the execution of applications in a virtual
machine has several advantages, such as portability, safety, automatic memory
management, and dynamic loading of code. However, it requires new optimization
algorithms to achieve high performance. Instead of optimizing the code at compile
time using a long-running and highly optimizing static compiler, optimizations are
performed at run time in parallel with the execution of the application. This requires
fast optimization algorithms that focus on the relevant parts of an application.

Optimizing at run time has several benefits: It allows one to collect live profiling data
from the currently running workload to guide optimizations specifically to the hot
spots, i.e. the most frequently executed parts of an application. The hot spots can be
optimized in a better way than in a static compiler, which leads to a higher overall

Problem Statement

performance. Optimizations based on profiling data are called feedback-directed
optimizations [Arnold05]. While the actual algorithms vary, most of them use the
following pattern:

e Profiling: It is necessary to collect accurate profiling data with a low overhead.
The two most commonly used techniques are sampling and program
instrumentation. Sampling collects a new data set periodically using a timer
(see e.g. [Anderson97]). Program instrumentation modifies the application so
that relevant events trigger, for example, a counter increment (see e.g.
[Yasue03]). Usually, sampling has less overhead, but program instrumentation
is more accurate. Combined approaches (see e.g. [Arnold01]) can achieve both
goals.

e Optimization: It is necessary to check whether the optimization is allowed in the
context of the currently loaded code. If all preconditions are satisfied, the
optimization is applied and the optimized code is executed.

e Run-time checks: With dynamic loading of code, it is possible that an
optimization that has already been applied becomes unsafe, e.g. when a new
class is loaded. In this case, the optimization must be undone.

Examples for such optimizations are method inlining based on call profiles [Holzle96],
optimizations of the machine code layout [Pettis90], multiversioning of code based on
type profiles [Chambers91], and optimizations to improve the memory locality and
cache behavior [Chilimbi98]. The algorithms described in this thesis follow the
feedback-directed optimization pattern to perform object inlining for important fields
selected by a counter-based profiler.

1.3 Problem Statement

Figure 1.1 shows a snapshot of the object graph that could be part of an object-oriented
drawing application. A Polyline object uses the Java collection class ArraylList to
maintain a dynamic list of points. Internally, the ArraylList stores its data in an
Object[] array. When new points are added and the size of the array does not suffice,
the array is replaced by a larger copy. The array elements reference the points that
store the actual coordinates. The line color of the Polyline is maintained by a separate
Color object. This follows the encapsulation principle: the methods that manipulate a
color are separated from the Polyline class because they are generally usable in other
parts of the application or in other applications.

The object-oriented structure requires three objects and one array to model the figure.
Several memory accesses are necessary to load a single data element. For example, the
field 1ineColor must be loaded before the actual data field rgb is accessible. When the
objects are scattered on the heap, the cache performance is also affected negatively.

Introduction

Polyline
8 .
: ; points - ——
Polyline ArrayList 12| I
1 1 —
8 points o——f_: modCount 16 ineColor Rl
. . Color <« |
121 JineColor e 121 size 24| 8[rap [
r
16{ elementData @ 3 Agrra Tt < :
yLis -
Color 40| 8| modCount
8| rgb Object(] 441 12| size
8| length 48| 16| elementData @-|—~
12| [0] -—> s6| 24| [Objectll |«
161 1] > 641 32| 8|length
. 68| 36| 12 [0] >
72| 40| 16 [1] o>
a) Unoptimized object graph b) After object inlining

Figure 1.1: Motivating example for object inlining

Object inlining combines the objects to a larger group so that the field rgb can be
loaded or stored with a single memory access relative to the beginning of the Polyline
object. All objects are aligned at 8-byte boundaries. The numbers on the left hand side
show the field offsets in bytes. For example, the field rgb can be accessed with the
offset 24 relative to the Polyline object. Without object inlining, it would be necessary
to access the field lineColor with the offset 12 of the Polyline object and then the
field rgb with the offset 8 of the Color object.

Using the standard collection class ArrayList for the management of the point list has
several advantages over using a simple array. The collection provides a generally
usable, well-known, and thoroughly tested implementation for a dynamic list of
elements. It is also easy to change the array-based data structure to a linked list by just
replacing the ArrayList with a LinkedList.

The additional field loads for accessing the ArrayList object and the Object[] array
are removed by object inlining. In the optimized object structure, the address of a point
can be loaded with a single array access, using a larger offset relative to the Polyline
object. Arrays like the Object[] array of the example play an important role in many
object-oriented applications. While objects are used to statically decompose a program
into small parts, arrays are ideal for the implementation of dynamic data structures. It
is likely that the object fields points and lineColor are assigned only once in the
constructor of the Polyline, while the array field elementData is changed whenever
the list is resized. Object inlining must take this dynamic behavior into account.

Implementing object inlining as a feedback-directed optimization at run time has
several advantages over a static compile-time optimization. First, the optimization is
fully transparent for both the programmer and the user of the application. It is neither

Problem Statement

necessary to specify at the source code level which fields should be optimized nor to
invoke a special bytecode optimizer after compilation. All existing Java applications
are automatically optimized when they are executed with the improved Java VM.
Secondly, modular applications that are compiled, deployed, and installed in several
parts are globally optimized. At run time, all classes are treated equally, regardless of
their actual source. Thirdly, code that exists in libraries but is never actually executed
does not affect the optimization because unused classes are not loaded into the VM. If
such classes contain code that invalidates object inlining, a static approach must be
conservative, while the run-time approach can perform the optimization optimistically.
Finally, inlining of array fields that can be changed at run time is not possible at all in
statically compiled languages such as C++, because it requires support from the
garbage collector.

The drawback of the run-time approach is that the optimization algorithms must be
fast. Otherwise, the time spent for applying the optimization outweighs its benefits.
Additionally, the analysis is based on the set of currently loaded classes and must
always expect that newly loaded classes will invalidate the optimization. A global data
flow analysis would be complex and slow, so our implementation uses mainly local
information collected during just-in-time compilation.

Several programming languages such as C++ or C# allow the developer to influence the
mode how objects are allocated. Reference objects are allocated on the heap, while value
objects are handled like scalar values and are either placed on the stack or inlined into a
reference object. Java does not offer value objects at the language level in favor of a
simple object model.

In C++ [ISO14882], the programmer can decide freely between reference objects and
value objects, i.e. the same class can be used to define both kinds of objects. This is
error-prone because of the different semantics, e.g. when variables are assigned.
Regarding our example, it is possible to inline the Color object and a collection object
into the Polyline manually using value objects. However, it is not possible to inline
the data array of the collection class because its maximum size is not known when the
Polyline is allocated. Only a run-time optimization is capable of inlining such
dynamic data structures.

C# [ISO23270] avoids the confusing semantics of C++. The programmer must explicitly
distinguish between classes for reference objects and structures for value objects by
using either the keyword class or struct. This prohibits a flexible re-use of classes.
The programmer must decide early in the development cycle whether Color should be
a structure or a class, i.e. whether it should be inlined into another object or not. The
collections of the class library are only available as classes, so it would not be possible
in our example to inline the point list manually. Because C#, like Java, is compiled to
bytecodes executed by a virtual machine [ISO23271], automatic object inlining similar
to our approach is possible.

Introduction

1.4 State of the Art

Our feedback-directed object inlining combines two different areas of previous
research: object inlining for static compilers and feedback-directed object colocation. To
the best of our knowledge, we present the first implementation and evaluation of the
combined approach. This section gives a brief overview of some existing algorithms,
while Chapter 9 on page 117 contains a detailed comparison.

Dolby et al. integrated object inlining into a static compiler for a dialect of C++
[Dolby97, Dolby98, Dolby00]. When objects are inlined, all methods that might access
these objects are cloned so that different methods for optimized and unoptimized
objects are available. They use an expensive data flow analysis to detect and optimize
all possible inlining candidates. The resulting high compilation time is acceptable for a
static compiler. As a precondition for inlining a group of objects, their algorithm
requires that this group can be allocated together and that it is not separated
afterwards.

Laud implemented object inlining for Java in the CoSy compiler construction
framework, a static compiler for Java [Laud01]. This algorithm can detect when a field
is changed, i.e. when an object of a group is replaced after allocation. It is, however, not
allowed that an object inlined into an object A is also referenced by some other object B.
Lhoték et al. compared the approaches of Dolby and Laud and evaluated the number
of fields that are inlinable for several Java benchmarks [Lhotak05].

Huang et al. developed a system for feedback-directed object colocation called online
object reordering, implemented for the Jikes RVM [Huang04]. They use the adaptive
compilation system of Jikes, which periodically records the currently executed
methods. Hot fields accessed in these methods are traversed first in their copying
garbage collector. This changes the object order on the heap. The decision which fields
are hot is based on a static analysis of the methods. By using the existing interrupts of
Jikes, their analysis has a low run-time overhead.

Chilimbi et al. use generational garbage collection for cache-conscious data placement
in the object-oriented programming language Cecil [Chilimbi98]. They use a counter-
based profiling technique to construct an object affinity graph that guides a copying
garbage collector. However, they do not distinguish between different fields of the
same object.

1.5 Project History

Our project is part of a long-standing and successful collaboration between Sun
Microsystems and the Institute for System Software (named Institute for Practical
Computer Science before 2004) at the Johannes Kepler University Linz. The project
targets several parts of the Java HotSpot VM. It started in 2000 when Hanspeter
Mossenbock extended the original client compiler [Griesemer00] with an intermediate

Project History

representation in static single assignment (SSA) form [Mdssenbdck00]. Michael Pfeiffer
started the implementation of a linear scan register allocator [Mossenbodck02].

This work was continued in the context of the author’s master’s thesis [Wimmer(04].
Several optimizations of the algorithm improved the quality of the generated machine
code [Wimmer(05] and therefore the peak performance of the Java VM. Nevertheless,
they were fast enough to have no negative impact on the startup speed. Finally, the
algorithm was integrated into the product version of the Java HotSpot VM and is part
of the product since Java 6 [SunJava6]. The source code is available as part of the
Open]DK project [SunOpen]DK].

Thomas Kotzmann experimented with porting the Java HotSpot client compiler from
C++ to Java [Kotzmann02]. For his PhD thesis, he extended the client compiler with a
fast algorithm for escape analysis [Kotzmann05a]. It detects allocation sites of objects
that do not escape a single method or a single thread. The first allows the objects to be
replaced by scalar variables, while the latter allows the objects to be allocated on the
method stack and synchronization on them to be removed [Kotzmann05b]. Support for
garbage collection and the deoptimization framework of the Java HotSpot VM required
also changes of the run-time system [Kotzmann07].

To simplify debugging of the client compiler and to show the compilation phases, the
Java HotSpot Client Compiler Visualizer displays the intermediate representation of the
compiler both in textual and in graphical form [C1Visualizer]. The project was started
by the author as a tool to visualize the data structures of the linear scan register
allocator. Then it was extended in the context of several student projects. Bernhard
Stiftner ported the application to the NetBeans Platform [Stiftner06], Thomas
Wiirthinger added a graphical view for control flow graphs [Wiirthinger06], Stefan
Loidl a graphical view of the data flow [Loidl07], and Alexander Reder a textual view
of the bytecodes [Reder(7] and machine code [Reder08]. The tool is now available as an
open source project and generally useful for the client compiler community.

Thomas Wiirthinger joined the project to implement array bounds check elimination
for the client compiler [Wiirthinger07b, WiirthingerO8b]. The algorithm detects fully
redundant checks that are proven to never fail, and also moves partially redundant checks
out of loops. For his master’s thesis, he implemented a visualization tool for the
intermediate representation of the Java HotSpot server compiler [Wiirthinger(7a,
Wiirthinger(O8a].

Several papers document the development of the thesis at hand. The project started
with an implementation of automatic object colocation that improves the cache
behavior [Wimmer06]. It uses the garbage collector to place related objects next to each
other on the heap. Object inlining guarantees that objects connected by a certain field
are colocated and then replaces loads of this field by address arithmetic [Wimmer07].
Special support for arrays allows the inlining of array fields even when arrays are
dynamically resized [Wimmer08].

Introduction

1.6 Structure of the Thesis

This thesis is organized as follows: Chapter 2 presents the structure of the Java HotSpot
virtual machine without object inlining. It describes the main subsystems that are
relevant for this thesis: the object layout, garbage collector, just-in-time compiler, and
the deoptimization framework. Chapter 3 introduces the overall system structure of
our feedback-directed object inlining system. It presents the design principles and
architectural decisions and closes with a walk-through of the optimization process.

The subsequent chapters contain the detailed algorithms of the optimization. Chapter 4
describes the detection of hot fields using read barriers, Chapter 5 the object colocation
algorithms that are embedded into generational garbage collection, and Chapter 6 the
object inlining algorithms that are embedded into the just-in-time compiler. Chapter 7
generalizes object inlining to array inlining and illustrates the differences between
objects and arrays.

Chapter 8 evaluates our implementation using several benchmark suites and discusses
the results. Chapter 9 presents related projects for object inlining as well as run-time
optimizations for the improvement of the cache behavior. Additionally, some dynamic
profiling techniques are described. Finally, Chapter 10 concludes the thesis with a
recapitulation of the essential parts and a summary of our contributions.

Chapter 2

The Java HotSpot VM

This chapter introduces the Java HotSpot VM, which forms the basis for the
object inlining algorithm of this thesis. The garbage collector of the VM uses a
stop-and-copy algorithm for the young generation and a mark-and-compact
algorithm for collections of the entire heap. The just-in-time compiler uses two
different intermediate representations for global optimizations and register
allocation. Additionally, the basic object layout with two header words as well
as the deoptimization framework are presented. These subsystems of the VM are
prerequisites for the following chapters.

The Java HotSpot Virtual Machine [SunHotSpot] is developed by Sun Microsystems and
provides the foundation of their Java Development Kit. The VM is available on a wide
variety of platforms and operating systems. Sun supports the Sparc architecture, the
Intel IA-32 architecture, and the 64-bit extensions of AMD and Intel, running with
different operating systems such as Sun Solaris, Microsoft Windows, and Linux.
Versions for other platforms and operating systems, such as Apple’s Mac OS X, are
also available through Java technology licensees. This guarantees the platform-
independent execution of Java applications on all major architectures.

The entire virtual machine is written in C++. This is necessary for the low-level
functionality of the runtime environment. However, many of the complex features of
C++ are used with caution, e.g. multiple inheritance and templates. Most of the source
code is independent from the target architecture and the operating system. Only small
parts must be changed to port the VM to a new platform.

2.1 System Structure

Figure 2.1 shows the VM configuration for the execution of interactive desktop
applications, which is the basis for our implementation. The bytecodes of all methods
are loaded by the class loader and initially executed by the interpreter. Because
interpreting bytecodes is comparatively slow, frequently executed methods are
compiled by the client compiler [Kotzmann08] to optimized machine code when their
invocation counters reach a certain threshold. This is called mixed-mode bytecode
execution [Agesen00].

The Java HotSpot VM

| | Class Loader | | | | Interpreter | | /{ | Client Compiler | |
K executes Compiles generates

M Bytecodes /4/ / Machine Code
7

l
[
[
| loads ¢
I
[
[

I
I(—collectsl—{ | Mark-and-Compact | |
: Permanent Gen.: / Permanent Space / |

MHeap ~ T T i [Garbage Collector |
I I I
| Young Generation: / Eden / From / To ﬁ—:—couects—|—H Stop-and-Copy || |
: Old Generation: / Old Space / : :
I
I

Figure 2.1: System structure of the Java HotSpot VM

Compiling all methods before their first execution would not be beneficial, because
typical applications spend most of their time executing only a small fraction of the
methods. For the majority of the methods, the time necessary for their compilation
would be higher than the time spent interpreting them. The overall performance
would be worse because the compile time adds to the run time. Therefore, only
methods whose invocation counters exceed a certain threshold are compiled. If a
method contains a long-running loop, switching from interpreted to compiled code is
also possible in the middle of the method using on-stack-replacement [Ho6lzle94, Fink03].

Compilation is done in the background by a separate thread. The client compiler uses a
graph-based high-level intermediate representation (HIR) with an explicit control flow
graph for global optimizations, and a low-level intermediate representation (LIR) for
linear scan register allocation. It performs aggressive optimizations such as inlining of
dynamically bound methods. If an optimization is invalidated later, e.g. due to
dynamic class loading, the VM can deoptimize [HOlzle92] the machine code and
continue the execution of the current method in the interpreter.

The Java programming language is highly object-oriented and encourages the creation
of objects even for small intermediate data structures, so the VM must support fast
access to objects. To minimize costs of subtype checks and calls to virtual methods,
they are highly optimized: subtype checks are implemented with caches covering
nearly all checks [Click02], and virtual calls are optimized using polymorphic inline
caches [Holz1e91].

10

System Structure

The client VM uses a generational garbage collector [Ungar84, Jones96] with two
generations, called young and old generation. Newly created objects are allocated in the
eden space of the young generation. Since each thread has a separate thread-local
allocation buffer (TLAB), object allocations require only few machine instructions in
the common case and are multithread-safe without any synchronization (see
Section 2.4.3).

When the eden space fills up, the young generation is collected using a stop-and-copy
algorithm, which copies all live objects of the eden space and the from-space into the
to-space. Because most objects die young, only few objects survive several copying
cycles. Such objects are then promoted to the old generation. When the old generation
fills up, the entire heap is collected using a mark-and-compact algorithm.

The permanent generation contains internal metadata of the VM such as class
descriptors, method descriptors together with the bytecodes, and string constants.
Some of these objects are not accessible by Java code, but are nevertheless processed by
the mark-and-compact garbage collector. This is important for the unloading of classes.

2.1.1 Client and Server Configuration

The Java HotSpot VM is available for multiple platforms and operating systems. It
scales from interactive applications on desktop hardware up to highly parallel
applications on multi-processor servers. To achieve this scalability, two different
just-in-time compilers, the client compiler and the server compiler, as well as multiple
garbage collection algorithms are available.

The server compiler [Paleczny01] is a highly optimizing compiler tuned for peak
performance. It uses a graph-based intermediate representation where control flow,
data flow, and memory flow are uniformly modeled by edges between instruction
nodes [Click95]. Machine code is generated by a bottom-up rewrite system (BURS,
[Pelegri88]) that is based on an abstract architecture description. The sophisticated
optimizations based on data flow analyses require much compilation time, which leads
to a high overhead during startup when many methods are compiled. This is
acceptable for long-running server applications because it impairs performance only
during the warm-up phase. If multiple cores are available, several methods can be
compiled in parallel.

In contrast to server applications, interactive desktop applications with a graphical
user interface demand a low response time, so long delays caused by just-in-time
compilation are unacceptable. The client compiler meets this objective by applying
only a selected subset of fast and high-impact optimizations. Additionally, the internal
structure of the client compiler is easier to understand because the control flow graph
and the data flow graph are separated.

The small heap used for client applications requires other garbage collection
algorithms than a multi-gigabyte heap used for large server applications. Therefore,

11

The Java HotSpot VM

the Java HotSpot VM contains various garbage collection algorithms [SunMemory]. All
use exact garbage collection techniques, i.e. all objects and all pointers to objects are
known and can be traversed by the garbage collector. This permits copying and
compacting algorithms that move objects.

The default algorithm for desktop applications is neither parallel nor concurrent, which
is sufficient for small heaps. For servers, the parallel algorithms distribute the work
among multiple threads to utilize all processors, and the concurrent algorithms allow
the user program to continue its execution while dead objects are reclaimed. The
selection of the best algorithm is always a tradeoff between the maximum pause time,
i.e. the time where no user threads are running, and the throughput, i.e. the overall
percentage of time spent in the garbage collector.

2.2 Object Layout

The Java HotSpot VM uses a uniform and handleless memory model for all sorts of
objects, including arrays and internal data structures. Implementing object references
as direct pointers without using handles provides fast access to instance variables, but
requires additional effort during garbage collection. Each object has a header of two
machine-words, i.e. 2 * 4 bytes on 32-bit architectures: the mark word for internal status
information and the class pointer as a reference to the type of the object.

2.2.1 Mark Word

The mark word is used as a bit field for multiple purposes such as synchronization and
garbage collection. Figure 2.2 shows the usage of the bits in different situations. The
two least significant bits are used to implement a thin locking scheme [Agesen99,
Bacon98]. The most significant bits contain the identity hash code of the object. These bits
are unused until System.identityHashCode() is called on an object.

31 7 6543 2 10
Normal unlocked object: ‘ Hash Code ‘ Age ‘ 0 ‘ 01 ‘
31 9 8 7 6543 2 10
Biased locking: ‘ Thread ID ‘ Epoch‘ Age ‘ 1 ‘ 01 ‘
31 2 10
Thin locking: Pointer to Lock Record ‘ 00 ‘
31 2 10
Heavyweight locking;: ‘ Pointer to Monitor ‘ 10 ‘
31 2 10
Marked during GC: ‘ Forward Pointer ‘ 11 ‘

Figure 2.2: Bit usage of the object mark word

12

Object Layout

Four bits are used to store the age of an object, i.e. the number of times it has been
copied by the stop-and-copy garbage collection algorithm. When this age reaches a
certain threshold, the object is promoted to the old generation. The mark-and-compact
algorithm does not use the age bits, but marks objects that are reachable by setting the
two least significant bits to 11. When an object is moved by the garbage collector, the
new object address, called the forward pointer, is also stored in the mark word. If the
hash code bits are used, they are rescued before they are overwritten.

In Java, any object can be locked in order to synchronize its access. In the normal
unlocked state, the two least significant bits have the value 01, and the remaining bits
are free for other purposes. If the object is locked by a single thread only, a pointer to a
lightweight data structure located on the stack of the locking thread is stored in the
mark word, and the two bits are cleared. If multiple threads lock the object
concurrently, a heavyweight monitor that manages the queue of waiting threads is
created and a pointer to the monitor is stored in the mark word. In this case, the two
least significant bits have the value 10. While an object is locked, the age and hash code
are displaced into the locking data structures.

Thin locking is based on the assumption that most objects are not locked concurrently
by multiple threads. It saves the VM from creating an expensive monitor data
structure, but still requires atomic machine instructions because two threads could try
to lock an object simultaneously. Biased locking [Russell06], which uses concepts similar
to [Kawachiya02], avoids atomic instructions in case the object is always locked by the
same thread. The object is biased once towards a thread by installing the thread id into
the object header. This thread can now lock and unlock the object without atomic
instructions. If another thread locks the object, the bias is revoked and the normal
locking code is executed. The epoch bits are used to make the bias revocation efficient. If
the identity hash code is requested for the object, the bias is also revoked because the
hash code and the thread id use the same bits of the mark word.

2.2.2 Class Hierarchy

All objects in the garbage collected heap reference a class. The class hierarchy contains
not only all currently loaded Java classes, but also the classes for internal metadata
objects. Classes are also stored as objects on the heap, therefore they have an 8-byte
header and a class pointer themselves.

Figure 2.3 shows the object structure for the classes of a Java instance object, which is
shown on the left hand side. The Java object has one instance field that points to
another Java object. All objects are aligned at 8-byte boundaries. The object size is
padded to be a multiple of eight. In the source code of the virtual machine, class is
always written as klass to avoid the naming conflict with the reserved C++ keyword.

13

The Java HotSpot VM

Instance of Java Class : Class Descriptor Class Descriptor

mark word J_=_> mark word _J » mark word
4| klass - I 4| Klass (= 4| klass r.
instanceField e C++ vtable h nstanceKlassKlass 8
super ® >

methods e >
j instanceKlass

0o
00

C++ vtable
1

N

(padding)

Class Descriptor

staticField e
j mark word 4_—]
4{ Klass .

oo) 8| C++ vtable
Java objects : Metadata objects klassKlass
| (in permanent generation)

Figure 2.3: Class hierarchy for a Java object

The metadata objects are located in the permanent generation of the heap. All classes
are represented by class descriptors that encapsulate different C++ objects, e.g. the class
descriptor for a Java object encapsulates an instanceKlass object. The C++ object header
points to the virtual method table. This allows calling virtual methods on the C++ level,
e.g. the virtual method that computes the size of a given object. The size computation
for a Java object is implemented in the instanceKlass. The class structure is recursive, i.e.
the class descriptor has a class pointer itself. For example, the instanceKlassKlass
computes the size of the instance class descriptor. The end of the recursion is a class
descriptor that references itself. The possibility to compute the size for each object on
the heap is used e.g. during garbage collection to iterate over all heap objects.

An instanceKlass references all data loaded by the class loader, e.g. the super- and
subclasses as well as the interfaces implemented by the class. Several other kinds of
metadata objects maintain additional information, for example about methods
(including the bytecodes of the methods), the constant pool of a class, or symbolic
names. The static fields of a class are stored at the end of its class descriptor.

2.3 Garbage Collection

Generational garbage collection is based on the hypothesis that most objects die young
[Jones96]. In this case, it is beneficial to separate young objects from long-living objects
and collect the area for young objects more frequently. Objects that have survived
several collection cycles of a generation are considered long-living and promoted to the
next generation. To allow an efficient collection of a young generation, pointers from
an older generation to a younger generation must be treated like root pointers. Such
pointers are collected in remembered sets.

The garbage collection framework of the Java HotSpot VM supports generations
collected by different garbage collection algorithms. The default configuration of the
client VM uses two generations: the young generation, which is collected by a

14

Garbage Collection

stop-and-copy algorithm, and the old generation, which is collected by a
mark-and-compact algorithm. The remembered set for the young generation is
maintained using a card-marking scheme [Hosking93]. Whenever a pointer on the
heap is changed, the memory block (card) that contains the pointer is marked as dirty.
The stop-and-copy algorithm scans all dirty blocks of the old generation for pointers to
the new generation and adds them to the remembered set.

2.3.1 Stop-and-Copy Algorithm

The young generation is separated into three spaces: eden space, from-space, and to-space.
The stop-and-copy algorithm copies all live objects of the eden space and the
from-space into the to-space. Then, the roles of the from-space and the to-space are
exchanged. The size of the from-space and the to-space is equal, the eden space is
usually larger. Because most objects die young, only few objects are copied and a small
to-space is sufficient for all live objects of both the eden space and the from-space.

Algorithm 2.1 shows the basic STOPANDCOPY algorithm, which follows the principle
described in [Cheney70]. First, all objects referenced by root pointers are copied to the
to-space using CopYOBJECT. Allocating memory in the to-space requires only an
increment of the end pointer. Each object that has been copied stores a forward pointer
to its new location, which is encoded in the mark word (see Figure 2.2). All objects
referenced by copied objects are also alive and must be copied as well. The algorithm
uses the to-space as a queue and scans all copied objects in sequential order. The
forward pointer is used to prevent copying an object twice.

STOPANDCOPY CoPYOBJECT(0bj)
toSpace.end = toSpace.begin if obj.forwardPtr is set then
for each root pointer r do return obj.forwardPtr

r = CoPYOBJECT(r) end if
end for

newObj = ALLOCATE(obj, obj.size)
obj = toSpace.begin
while obj < toSpace.end do
for each reference rin obj do
r = CoPYOBJECT(r)

memmove(obj, newObj, obj.size)
obj.forwardPtr = newObj
return newQObj

enq+f_or . ALLOCATE(0bj, size)
obj += obj.size if obj.age < threshold then
end while

newObj = toSpace.end
toSpace.end += size
obj.age++
else
newObj = oldGeneration.end
oldGeneration.end += size
end if

return newObj

Algorithm 2.1: Stop-and-copy algorithm for collection of the young generation

15

The Java HotSpot VM

This breadth-first copying scheme is simple and efficient, but it leads to a random
order of objects in the to-space. An object is copied when the first reference to it is
scanned. A depth-first copying scheme, where all referenced objects are copied
immediately after the object itself, would require an explicit stack of objects.

When the object has survived several copying cycles, it is promoted to the old
generation. The threshold for the age is based on heuristics that use the age
distribution of the young generation. Allocation in the old generation is also a simple
pointer increment because there are no gaps between objects in the old generation due
to the mark-and-compact algorithm.

2.3.2 Mark-and-Compact Algorithm

The mark-and-compact algorithm processes the entire heap of the VM. Java objects of
the young and the old generation are compacted into the old generation, and the
metadata objects of the permanent generation are compacted within the permanent
generation, i.e. they are not mixed with Java language objects. After the compaction, all
live objects are concentrated at the beginning of the old and the permanent generation.

In contrast to the stop-and-copy algorithm, the order of objects is preserved.

MARKANDCOMPACT
MARKLIVEOBJECTS
CoMPUTENEWADDRESSES
ADJUSTPOINTERS
MoVEOBJECTS

MARKLIVEOBJECTS
for each root pointer r do
MARKANDPUSH(r)
FOLLOWMARKSTACK
end for

FOLLOWMARKSTACK
while not markStack.empty do
obj = markStack.pop
for each reference rin obj do
MARKANDPUSH(r)
end for
end while

MARKANDPUSH(obj)
if not obj.marked then
obj.marked = true
markStack.push(obj)
end if

CoMPUTENEWADDRESSES
newObj = space.begin
for each marked object obj do
obj.forwardPtr = newObj
newQObj += obj.size
end for

ADJUSTPOINTERS
for each root pointer r do
r = r.forwardPtr
end for

for each marked object obj do
for each reference rin obj do
r = r.forwardPtr
end for
end for

MOVEOBJECTS
for each marked object obj do
newQbj = obj.forwardPtr
memmove(obj, newObj, obj.size)
end for

Algorithm 2.2: Mark-and-compact algorithm for full collection

16

Client Compiler

Algorithm 2.2 shows the four phases of the mark-and-compact algorithm. In the first
phase MARKLIVEOBJECTS, the heap is traversed starting with the root pointers to mark all
live objects. A stack of objects is used to avoid recursive calls. The mark word of an
object contains the marking state and the forward pointer (see Figure 2.2), therefore it
is saved to an auxiliary data structure in case a hash code or information for biased
locking is present.

In the next phase COMPUTENEWADDRESSES, the new addresses for the marked objects are
computed. All marked objects of the heap are iterated. New addresses are assigned
increasingly so that the gaps between live objects are removed. Therefore, objects can
only move towards the beginning of the heap, i.e. newObj is always less than or equal to
obj. The new address is encoded as the forward pointer in the mark word. The third
phase ADJUSTPOINTERS updates all root pointers and pointers inside objects to the new
addresses, which are temporarily stored in the forward pointers of the referenced
objects. Finally, MOVEOBJECTS copies the contents of the objects to the new location. The
memory of the new location can be overwritten without precautions because objects
move only towards the beginning of the heap.

2.4 Client Compiler

The client compiler [Kotzmann08] aims at a low compilation time and a small memory
footprint. Therefore, global optimizations that would require complex data flow
analyses or that could bloat the size of the generated machine code are omitted. The
compiler performs only cheap and high-impact global optimizations, such as global
value numbering or register allocation [Muchnick97]. Figure 2.4 shows the structure of
the client compiler. The front end builds the high-level intermediate representation (HIR)
and performs global optimizations. The back end uses the low-level intermediate
representation (LIR) for register allocation and finally emits the machine code.

2.4.1 Bytecodes

Java source code [Gosling05] is first compiled to platform-independent bytecodes. This
frees the VM from the time-consuming task of parsing and analyzing plain-text source
code. The bytecodes provide a binary representation of the class that can be directly
executed by an interpreter. It also simplifies validity checks, as defined in the bytecode
specification [Lindholm99].

The example in Figure 2.5 shows the Java source code fragment of a class Polyline
with a method addPoint(), and the Java bytecodes created for this method. The
bytecodes are stored in a compact binary form. The number to the left of each bytecode
refers to its index relative to the beginning of the method. It is called the bytecode
index (bci).

17

The Java HotSpot VM

r —/ Bytecodes e

i Front End |

Bytecode Parsing

Method Inlining

Constant Folding

Local Value Numbering

v

Null Check Elimination

Conditional Expr. Elim.

Global Value Numbering

|
|
|
|
|
|
|
/ HIR(SSAForm) / I
|
|
|
|
|
|
|

v

L —/ Optimized HR /= —— —

(

v

= ;E—d7/ Optimized HIR ~ / —
ac n

| | LIR Generation | |

v

/ LIR (virtual registers) /

v

/ LIR (physical registers) /

| | Code Generation | |

v

—_——_——— / Machine Code /— -

[|
| I
| I
| I
| I
| I
| I
: | | Register Allocation | | :
| I
| I
| I
| I
| I
| I

Figure 2.4: Structure of the client compiler

class Polyline {

}

L

ist<Point> points;

void addPoint(int x, int y) {

}

Point p = new Point(x, y);
points.add(p);

10:
11:
14:
15:
20:
21:

OLCoOuUhwWwo

new at.ssw.Point

dup

iload_1

iload_2

invokespecial at.ssw.Point.<init>
astore_3

aload_©

getfield at.ssw.Polyline.points
aload_3

invokeinterface java.util.List.add
pop

return

Figure 2.5: Compilation example—Java source code and Java bytecodes

The operation to be performed is encoded in the first byte of an instruction. Symbolic
references to names of classes and fields are stored in the constant pool of the class. The
operands of the allocation and method invocation bytecodes in the example are
two-byte indices into the constant pool. Bytecodes are executed using an operand

stack, therefore most operands are implicitly passed on this stack. The bytecodes can

be divided into the following categories:

Loads and stores for local variables, fields, array elements, and constants.

Arithmetic and logical instructions.

Instructions for type conversions of scalar and reference types.

Conditional and unconditional jumps.

18

Client Compiler

e (all and return instructions.
e Instructions that directly manipulate the operand stack.
e Instructions for synchronization of threads, exception handling, and allocation.

2.4.2 Front End

The high-level intermediate representation (HIR) is a graph-based representation of the
method. Instructions refer to their operands using pointers to the instructions that
compute these operands. Instructions are grouped into basic blocks, i.e. longest
possible sequences without jumps or jump targets in between. An explicit control flow
graph connects the basic blocks. The HIR is in static single assignment (SSA) form
[Cytron91, Bilardi03], which means that the value of a variable is not changed after its
first assignment, i.e. every assignment creates a new variable. When control flow joins,
phi functions merge values coming from different predecessor blocks.

The HIR is constructed by abstract interpretation of the bytecodes. Several local
optimizations are applied during parsing: method inlining replaces the call to a short
method by a copy of the method’s instructions, constant folding simplifies arithmetic
instructions with constant operands, and local value numbering eliminates common
subexpressions within a block.

Figure 2.6 shows the HIR for the method addPoint () in Figure 2.5. The method has no
jumps, so all instructions are contained in a single block. Each instruction has a unique
id number, preceded by the type t of the instruction (i for integer, a for object, and v for
void). The instructions a1, i2, and i3 represent the method parameters this, x, and y.
The instructions a4, al3, il4, and v15 directly originate from the bytecodes. The
instructions 110 and i1l are the result of method inlining of the constructor
Point.<init>(). The constructor assigns the two parameters to the fields x and y of
the newly allocated Point object. The symbolic field names of the instructions i1, i11,
and al3 are already resolved to byte-offsets of the fields: 8, 12, and 8.

bci_ tid__instruction
0 a4 new at.ssw.Point

6.6 110 a4. 8 := i2 at.ssw.Point.x

6.11 i1l a4. 12 := i3 at.ssw.Point.y

11 al3 al. 8 at.ssw.Polyline.points

15 i14 ail3.invokeinterface(a4) java.util.Llist.add
21 vl5 return

Figure 2.6: Compilation example—high-level intermediate representation (HIR)

The HIR does not need instructions for loading and storing local variables or for the
manipulation of the operand stack. When a local variable is stored, the pointer to the
instruction creating the value is put into the state array for the variables. A later load of
the variable pushes this instruction onto the operand stack, so that the instruction that
pops the stack can use the pointer. Figure 2.7 shows the generation of the HIR. The left

19

The Java HotSpot VM

hand side shows the bytecodes, the right hand side the HIR instructions. In between,
the simulated state of the local variables and the operand stack is illustrated. The gray
boxes refer to inlined methods, which have their own state.

Interpreted Local Operand Appended
Bytecode Variables Stack HIR Instruction
al,i2,i3,--
9: new at.ssw.Point —— — — ——1 [——’_—’—,—’—]——[—] —————— 9 a4: new gt.ssw.Point
3: dup [a1,i2,i3,--] | [a4]
4: iload 1 [a1,i2,i3,--] | [a4,a4]

5: iload_Z [al,i2,i3,--] | [a4,a4,i2]

’ ~ al1,i2,i3,-- a4,a4,i2,i3
6: invokespecial Point.<init> [a1,12,13,--] | [a4,34,12,13]

0: aload_o [a4,12,13] []

S N . . . [a4,i2,13] [a4]

1: invokespecial Object.<init>

a4
0: return [34] (]
4: aload_@ [a4,12,13] []
C - [a4,i2,i3] [a4]

>: iload 1 [a4,12,13] [a4,i2]

6: putfield Point.x ——————f — 2=~ - — L 2 _ - i10: a4. 8 := i2

9: aload o [a4,12,13] L]

o - [a4,i2,i3] [a4]

10: iload_2 [a4,12,13] [a4,i3]

11: putfield Point.y - — ——— —f == == = — L > i1l: a4._12 := i3

14: return [34,12,13] []

9: astore 3 [a1,i2,i3,--] | [a4]
10: aload o [al1,i2,i3,a4] | []

: o X . [a1,i2,i3,a4] | [al]

11: getfield Polyline.points ——t+————————— = — — — — — —» al3: al._8
14: aload 3 [a1,i2,i3,a4] | [a13]

L . [a1,i2,i3,a4] | [al3,a4])))
15: invokeinterface List.gdd — -+ ————=———| — = — = — — — —» i14: al3.invokeinterface(a4d)
20: pop [a1,i2,i3,a4] | [114]

’ [al,i2,i3,a4] | []

21: return ———————————F -~ ——— " ————— = = v15: return

Figure 2.7: Compilation example—construction of the HIR

After the generation of the HIR, global optimizations are performed. Null check
elimination (see e.g. [KawahitoO0]) removes null checks if the compiler can prove that
an accessed object is non-null. For example, all field accesses in the example method
are guaranteed to throw no exception. Conditional expression elimination replaces the
common code pattern of a branch that loads one of two values by a conditional move
Global wvalue numbering (see e.g. [Briggs97]) eliminates common
subexpressions across basic block boundaries.

instruction.

2.4.3 Back End

The back end transforms the optimized HIR to the low-level intermediate
representation (LIR). It allows platform-independent optimizations that would be
difficult to implement directly on machine code. The LIR operations are shared
between all target platforms, but the LIR generation already contains platform-
dependent code. Each basic block stores a list of LIR operations.

20

Client Compiler

Figure 2.8 shows the LIR for the HIR instructions of Figure 2.6. LIR operations use
explicit operands that can be virtual registers, physical registers, memory addresses,
stack slots, or constants. The LIR is conceptually similar to machine code, augmented
with some higher level operations, e.g. the alloc_obj operation for object allocation.
This operation requires several temporary registers that are also specified as operands.
When a machine instruction requires a dedicated register such as eax, the generated
LIR operation already references this physical register. The other operands are virtual
registers, printed as R followed by the virtual register number. In the example, the
virtual registers R41, R42, and R43 represent the three method parameters this, x,
and y.

nr__operation
14 move obj:at.ssw.Point -> edx

16 alloc_obj edx, ecx, esi, size:16 -> eax
18 move eax -> R44

20 move R42 -> [R44 + 8]

22 move R43 -> [R44 + 12]

24 move [R41 + 8] -> R45

26 move R44 -> edx

28 move R45 -> ecx

30 virtual_call ecx, edx -> eax

32 return

Figure 2.8: Compilation example—low-level intermediate representation (LIR)

Register allocation replaces the virtual registers of the LIR with physical ones. The
most commonly used approach, which is based on graph-coloring (see e.g. [Chaitin81,
Briggs94, Muchnick97]), would be too slow for the client compiler, therefore the linear
scan algorithm [Poletto99, Traub98] is used. First, all blocks are sorted topologically.
For each virtual register of the LIR, a lifetime interval is constructed. Fixed intervals are
built for the physical register operands to model register constraints of the target
architecture and method calls. Use positions of an interval refer to the operations that
read or write a certain register.

The allocation algorithm processes the lifetime intervals in the order of increasing start
positions. Each interval is assigned a register that is not used by another
simultaneously live interval. When more intervals are live than physical registers are
available, intervals are split and spilled, i.e. get a stack slot assigned. Heuristics for the
split positions, register hints, and spill store elimination reduce the number of
necessary move instructions for spilling [Wimmer05].

Figure 2.9 shows the lifetime intervals for the example. Gray rectangles represent live
ranges and black bars indicate use positions. The intervals for the seven physical
registers are sketched in the first line. The lines for the five virtual registers contain the
assigned physical registers. No spilling is necessary because three registers are free at
the allocation operation 16, and no intervals are live at the method call 30.

21

The Java HotSpot VM

fixed == S==
[R41] {edi —

[R42] ebi(A—

[R43] {ebp

[R44] ea‘1x

[R45] I ecx |

12 14 16 18 20 22 24 26 28 30 32 34

Figure 2.9: Compilation example—lifetime intervals

After register allocation, each LIR operation is mapped to one or more machine
instructions by the code generator. The register constraints of the target architecture
are already satisfied. Many LIR operations can be divided into a common and an
uncommon case. Examples for uncommon cases are throwing bounds check exceptions
for array accesses or invoking the garbage collector for memory allocations. The
machine instructions for the common case are emitted in-line, while the instructions for
the uncommon case (called slow path) are emitted out-of-line at the end of the method.

The generated machine code is augmented with metadata for the garbage collector and
the deoptimization framework. The exact garbage collection algorithms require
information about the locations of all object pointers. The so-called object maps specify
the registers and spill slots that contain object pointers. Object maps are stored for
certain code locations (called safepoints) where garbage collection can happen.
Examples for safepoints are backward branches, method calls, return instructions, and
allocation instructions. The machine code and the metadata are stored together in a
native method object, often called nmethod.

Figure 2.10 shows the machine code for object allocation when the example method is
compiled for the Intel IA-32 platform [Intel07]. Each thread has a thread-local allocation
buffer (TLAB), a fragment of the eden space committed to the thread. This allows a
thread-safe allocation without atomic operations in the fast path. The address of the
current thread is loaded from a data structure also used for exception handling. This
requires only two mov instructions.

@0B919A@ mov ecx, ptr fs:[0] // load exception handler
©@OB919A7 mov ecx, ptr [ecx-OCh] // load current thread
@OB919AA mov eax, ptr [ecx+44h] // load TLAB top (=object address)

P0B919AD lea esi, [eax+10h] // add size of object (16 bytes)
00B919BO cmp esi, ptr [ecx+4Ch] // check TLAB overflow
00B919B3 ja ©OB919FF // slow path: possible GC

©0B919B9 mov ptr [ecx+44h], esi // save new TLAB top
// initialization of the object (class and mark word)

@OB919FF // slow path: call run-time stub to refill TLAB or invoke GC

Figure 2.10: Compilation example —fragment of the machine code

22

Deoptimization

The current top pointer of the TLAB is loaded, incremented by the size of the object,
and compared with the end pointer of the TLAB. If the new top is below the end, object
allocation was successful. Otherwise, the out-of-line slow path is executed. It tries to
refill the TLAB, i.e. to allocate one large chunk of memory from the eden space that is
then used for multiple subsequent allocations of this thread. This allocation requires an
atomic operation. If no more memory is available in the eden space, the slow path
invokes the garbage collector. Figure 2.11 shows the TLABs for two threads.

Exception Descriptor Descriptor
handler of thread 1 of thread 2
o/ | TLABtop e— TLAB top e+—
A
Eden'space | Obj1 | Obj2 | Obja | Reervedfor | oy | opjs | Reservedfor mg;‘fsry
TLAB of thread 1 TLAB of thread 2

Figure 2.11: Object allocation using a thread-local allocation buffer (TLAB)

2.5 Deoptimization

Optimizations in the just-in-time compiler of a Java VM are complicated by the
dynamic class loading of Java. Because additional classes can be loaded at any time,
global information about the class hierarchy can change. For example, the just-in-time
compiler can inline a dynamically bound method if class hierarchy analysis [Dean95]
finds out that only one suitable method exists. This optimization can be invalidated by
loading a class that provides another suitable method. To avoid constraints for method
inlining such as preexistence [Detlefs99], compiler optimizations can be reverted using
deoptimization [HOlzle92]. The optimized machine code is discarded and the execution
of the method is continued in the interpreter.

Figure 2.12 shows an example for method inlining that requires deoptimization.
Assume that the method create() normally returns instances of the class A. The
subclass B is still unloaded when the method foo() is compiled. The method A.bar()
is inlined by the compiler although it is a virtual method because it is the only possible
method that can be called at this time. If the class B is loaded later and the method
create() returns an instance of B, the inlining decision turns out to be wrong.

void foo() { class A { class B extends A {
A a = create(); void bar() { ... } void bar() { ... }
a.bar(); } }

}

Figure 2.12: Example that requires deoptimization

23

The Java HotSpot VM

The machine code of the method foo() is discarded. Later, the method is recompiled
without inlining A.bar() so that new invocations of the method are correctly executed.
However, it is also necessary to stop all activations of foo() that are further up the
method call stack. This is done by inserting a call to a runtime function at the point
where foo() will be continued in every activation. The runtime function removes the
stack frame of the compiled method and builds the correct interpreter stack frames that
continue the execution.

To fill the local variables and the operand stack of the interpreter, the location of the
variables must be known. A variable can be either in a register or spilled in the stack
frame of the compiled method. The exact location is tracked by the just-in-time
compiler and stored in the metadata together with the machine code of the method.
This information is called debugging information.

The locations of all variables are recorded at all possible deoptimization points, e.g. all
method calls. The front end of the client compiler saves a copy of the state array
containing the HIR instructions of the local variables and the operand stack. The back
end replaces this information with the results of register allocation, i.e. the assigned
physical registers and stack slots. If the deoptimization point is inside an inlined
method, the state of both the enclosing method and the inlined method is maintained
so that two interpreter stack frames can be reconstructed.

Converting a compiled frame to interpreted frames is an expensive operation.
However, it occurs rarely because most classes are already loaded before a method is
compiled, so the run-time costs of deoptimization are irrelevant in practice.
Deoptimization is generally useful for all kinds of optimistic optimizations. It
simplifies and accelerates the generated machine code because no code for uncommon
situations must be emitted. For example, an optimistic array bounds check elimination
based on deoptimization can assume that no bounds check fails and deoptimize if this
assumption does not hold [Wiirthinger07b].

24

Chapter 3

Architecture of Object and Array Inlining

This chapter presents the overall system structure of our feedback-directed
object inlining system. It starts with the definition of some important terms.
Then, it presents the design principles that influence the architecture and
explains the reasons for these principles. The chapter closes with an overview of
all subsystems necessary for object inlining. The subsequent chapters present
the details and algorithms of these subsystems.

The overall system architecture for a feedback-directed optimization must balance the
costs for collecting profiling data and applying the algorithms at run time with the
speedup of the improved machine code. Instead of optimizing everything that is
possible, it is often necessary to be conservative in order to reduce the costs.

The algorithms of our object inlining system are mostly integrated into existing
subsystems of the Java HotSpot VM, coordinated by a small optimization core. The
phases are performed asynchronously by the just-in-time compiler and the garbage
collector. There is no central component that performs a global data flow analysis. This
results in a system with a low run-time overhead.

Our system can be divided into four parts: We use read barriers to detect frequently
accessed fields at run time. The modified garbage collector uses this information for
object colocation, i.e. to place related objects next to each other in memory. Object inlining
then removes the field loads by address arithmetic. Array inlining considers the
differences between objects and arrays, e.g. the variable size of arrays.

3.1 Source Code of Example

The example used throughout this thesis is a fragment of an object-oriented drawing
application. The class Polyline uses several helper classes to manage the line color and
the list of points. Figure 3.1 shows the relevant fragments of the Java source code. The
class Color has a field rgb that stores the actual red, green, and blue color components
encoded as an integer value. Encapsulating the single value in its own class is
reasonable, because this way several reusable methods operating on the color value
can be defined. The class Point contains two fields that store the x and y coordinates.

25

Architecture of Object and Array Inlining

class Color { interface List<E> {

int rgb; E get(int index);
} boolean add(E e);

}

class Point {

int x, y; class ArraylList<E> implements List<E> {
} int modCount;

int size;

class Polyline { Object[] elementData;

List<Point> points;
Color lineColor;

Polyline() { }
points = new ArrayList<Point>();
lineColor = new Color();

ArrayList() {
elementData = new Object[10];

E get(int index) {
if (index >= size) throw new ...

} return (E) elementData[index];

int getLineColor() { }
return lineColor.rgb; boolean add(E e) {

¥ modCount++;

Point getPoint(int index) { if (size+l > elementData.length) {
return points.get(index); int newCapacity = ...

} elementData = Arrays.copyOf(

void addPoint(Point newPoint) { elementData, newCapacity);

points.add(newPoint);

}

elementData[size++] = e;
return true;

}

}
}

}

class Test {
void allocate() {
Polyline poly = new Polyline();
// Do something with poly
}
}

Figure 3.1: Java source code of the example classes

The dynamic list of points is managed by a collection of the Java class library. The
source code of the interface List and the class ArrayList is simplified and reduced to
the methods relevant for the example. The class ArrayList uses an Object[] array for
the data, referenced by the field elementData. The field size contains the number of
array elements currently in use. When a new element is added using the method add ()
and the capacity of the array does not suffice, the array is replaced by a larger copy, i.e.
the field elementData is changed. The field modCount is used to detect concurrent
modifications while the list is iterated. It is not relevant for this thesis, but the size of
ArrayList objects and the field offsets reported in the thesis would differ with the
actual values if the field were omitted.

26

Definition of Terms

Figure 3.2 shows an object graph for these classes, consisting of one Polyline object
with its Color and its ArrayList, which references the Point objects via the Object[]
array. The numbers on the left hand side of each field show the field offsets in bytes.

Polyline ArrayList Object(] Point
8| points O——I_: modCount 8| length 8| x
12| lineColor e+ 12| size 121 0] o 12y
16| elementData @+ 16 1] o
1 Point
Color 8| x
8| rgb 12|y

Figure 3.2: Object graph for example classes

The field points of the class Polyline is declared using the interface type List instead
of the implementation class ArrayList. This allows the list implementation to be
exchanged by modifying only one line of the source code. For our object inlining
algorithm, the declared type is irrelevant and only the implementation class is
considered. The generic parameter <Point> improves the type safety of the Java code,
but does not have any impact on the bytecodes, i.e. the ArrayList still uses an
Object[] array and not a Point[] array.

The class Polyline has three methods to access and modify the color and the points.
Additionally, constructors are treated like methods with the special name <init> in the
bytecodes and the virtual machine. They are invoked using the bytecode
invokespecial, which binds the constructors statically.

3.2 Definition of Terms

Object inlining operates on groups of heap objects that are in a parent-child
relationship. An inlining parent contains a reference to the inlining child. A child has
exactly one parent, but a parent can have references to multiple children. Additionally,
inlining hierarchies can exist, i.e. an inlining child can in turn be another inlining
parent. Consequently, an inlining parent, its direct children, and all its indirect children
form a single group of objects.

The inlining parent always stores a reference that points to the inlining child. If the
inlining parent is an object, the reference to the inlining child is a field declared in the
class of the inlining parent. Such a field is called an inlined field. The declared type of
the field can be either an object type or an array type. We therefore distinguish
between object fields and array fields. From the point of view of the bytecodes, there is no
difference between object and array fields because the superclass of all arrays is
Object. However, objects and arrays have different characteristics that are relevant for

27

Architecture of Object and Array Inlining

inlining. For example, the size of an object is constant, while the size of an array is
unknown until the allocation.

If the inlining parent is an array, the inlining child is referenced by an array element. In
our approach, array elements cannot be inlined because the Java bytecodes for array
accesses do not have enough static type information. A global data flow analysis
would be necessary for the efficient handling of arrays as inlining parents. Section 7.2
on page 83 explains the details of this constraint.

3.2.1 Example

Figure 3.3 illustrates the defined terms on a graph of objects and arrays that form an
inlining hierarchy. The Polyline object is the inlining parent. Its inlined object field
points references the ArrayList object, which is the inlining child of the Polyline. It
is also an inlining parent itself because of its inlined array field elementData. The
Object[] array referenced by this field is an inlining child. The references to the Point
objects are not inlined because inlining of array elements is not possible with our

approach.
Inlining parent Inlining child and parent Inlining child
/ Inlined object field / Inlined array field / Array element
Polyline / |~ > ArrayList ~—»{ Object]] Point
8| points o|-—7 8 modCount 8 length 8| x
12| lineColor e|-» 12|size : 121 10] | 12y
16| elementData e-——- 16| [1] —I >

Figure 3.3: Definition of terms

A parent object can have multiple inlined fields. In our example, the field 1ineColor of
the Polyline object is also inlined, so the Polyline object has two inlining children. In
the graphical representation of object graphs, we highlight inlined fields by dashed
lines, while non-inlined fields and array elements are drawn as solid lines.

3.2.2 Method Inlining

Object inlining must not be confused with method inlining. Method inlining is a
compiler optimization that replaces a call to a method by a copy of the method body.
This eliminates the overhead of method dispatching. It is beneficial if a small method
like an accessor method for a field is called. The high overhead of the call compared to
the execution time of the method is eliminated, and the total size of the machine code
increases only slightly.

Additionally, method inlining supports other compiler optimizations. When
processing a call instruction, the compiler must either conservatively assume that the

28

Design Principles

called method has side effects, e.g. that it modifies a certain field, or use

interprocedural information to ensure that the method has no side effects. As a result,
method inlining can be used to avoid the expensive computation of interprocedural
information. Aggressive inlining of some larger methods can simplify optimization
algorithms because it avoids the complicated handling of possible side effects. We use
this e.g. for the inlining of constructors.

3.3 Design Principles

Our object inlining system is based on the design principles listed in the following
enumeration. We believe that many of these principles are important not only for
object inlining, but generally applicable for optimizations inside a Java virtual machine.

Automatic: The optimization does neither require any actions on the part of the
programmer nor any special tools at compile time or deployment time. All
analysis and optimization steps are performed automatically at run time.
Without this principle, it would be difficult to execute existing applications
whose source code is not available.

Dynamic: We fully support dynamic class loading because it is a key feature of
modular Java applications. State-of-the-art application frameworks such as the
Eclipse Rich Client Platform [Eclipse08] or the NetBeans Platform [NetBeans08]
have a small application kernel that performs lazy loading of most application
classes. This improves the startup speed of large applications. In contrast, we
handle other dynamic features of Java conservatively, e.g. fields that are
modified using reflection are not considered for object inlining because the
handling would be too expensive.

Feedback-directed: We use profiling data collected at run time to decide which
tields should be optimized. This saves the programmer from annotating fields
that he considers to be important and allows optimizations across modules and
libraries. Field access statistics are collected using lightweight read barriers that
increment access counters.

No global data flow analysis: A global analysis, e.g. building a global call graph, is
complicated in Java because most methods are dynamically bound and new
classes can be loaded at a later time. Instead of a complex and expensive
algorithm that can handle the dynamic features, we use only local information
collected e.g. by the class loader and the just-in-time compiler.

Optimization on per-class basis: All analysis and optimization steps operate on a
per-class basis, i.e. either all or no objects of a certain class are optimized. This
reduces the overhead as it is not necessary to distinguish between optimized
and unoptimized objects of the same class.

29

Architecture of Object and Array Inlining

e Limit changes to few subsystems of the VM: Most of our modifications concentrate
on two parts of the Java HotSpot VM: the just-in-time compiler and the garbage
collector. Some subsystems, for example the class loader, the interpreter, and
the internal representation of classes, contain small changes such as
notifications when new classes are loaded. Many other subsystems remain
unchanged, including the locking scheme for synchronization on objects as well
as the handling of threads and safepoints.

3.3.1 Memory Layout

In the Java HotSpot VM, every object has an 8-byte header for internal status
information and for the reference to the class of the object (see Section 2.2 on page 12).
When objects are grouped together by object inlining, the header for child objects can
be either eliminated or preserved. Similarly, the 8-byte alignment of child objects is
optional. Figure3.4a) and b) illustrate the differences between these two cases.
Eliminating the object headers of the three child objects saves 24 bytes. Eliminating the
padding of the Color and the ArrayList objects saves another 8 bytes, so the
optimized group of objects is 32 bytes smaller than the original objects.

Polyline
8| points -——1
12{ JineColor |-~ !
I .
A L —
24| 8| rgb I P 1 Polyline
-8l 12 . | 12| lineColor -~ N
(padding) | 16| o[rgb PR rgb
32 ArrayList <«—~ 2| o[modCount P 121 8| modCount
48 8| modCount 24| 4| sige 16] 4| gize
441 12| gize 1z 26| 8/ ©llength
28| 8| elementData o|—~
48| 16| elementData |-~ 32| 12| o[lonath < I
n _
52| 20| (padding) : &
56| 24 Object[] |«’
641 32| 8|length
a) Unmodified layout b) Inlining without headers c) Inlining without fields

Figure 3.4: Possible memory layouts for inlined objects

When the children do not conform to the standard object layout, there is no reason to
keep the internal pointers to them. Removing the fields points, lineColor, and
elementData reduces the size of the object group by additional 12 bytes. In total, object
inlining can save 44 bytes of memory for each Polyline object group. Figure 3.4 c)
shows the resulting memory layout.

30

Design Principles

Reducing the object size improves the cache behavior and reduces the pressure on the
garbage collector. Nevertheless, we use the unmodified layout for object inlining as
shown in Figure 3.4 a) because this has several advantages:

Object locking: The mark word of the object header is used for synchronization.
It must be guaranteed that the child object is never locked before the header can
be removed.

Side pointers to children: External references to the child object, e.g. from another
object, expect the header to be present. Removing the object header would
change the field offsets and thus disallow such references. Additionally, it
would not be possible to pass a child object as a method parameter.

No change of class metadata: With the unmodified layout, the parent and its
children are distinct objects from the garbage collector’'s point of view.
Therefore, the class metadata remains unchanged. The elimination of object
headers and fields would lead to a new kind of heap elements that are a
mixture of objects and arrays. For example, the Polyline object would consist
of an object part with three fields and an array part whose array length is stored
at the unusual offset 20.

No change of the interpreter: When the object layout remains unchanged, the
interpreter can access child objects by following the field pointers and using the
normal field offsets. Therefore, it is not necessary to compile all methods that
load inlined fields.

Smooth transition to optimized code: Our system performs the optimization steps
asynchronously. The garbage collector builds the optimized object order before
all preconditions are satisfied, and methods with optimized field loads are
compiled gradually after the preconditions are satisfied. Changing the object
layout would require a distinct point where all affected objects are rewritten
and the accessing methods are compiled.

Smooth deoptimization: A newly loaded class can invalidate preconditions of
already optimized fields. In addition to the deoptimization of the machine code
with optimized field loads, it would be necessary to restore the removed object
headers and field pointers. When the memory layout is not changed, it is not
necessary to modify the heap.

Support for reverse object inlining: When a parent object’s class has subclasses, we
place inlining children in front of the parent (see Section 6.8 on page 76).
Removing the header of child objects would lead to objects that do not start
with a header, or would require a complicated change of the class metadata.

Support for dynamic array inlining: Our algorithm for inlining array fields that are
changed at run time requires a pointer to the newly allocated (resized) array.
The array is accessed via this pointer until the next run of the garbage collector
inlines it again (see Section 7.2 on page 83).

31

Architecture of Object and Array Inlining

In conclusion, changing the object layout does not fit in the structure of the Java
HotSpot VM and would require changes in nearly all subsystems. We claim that such
radical changes of the object layout cannot be added to the VM, but would require a
different VM design.

3.3.2 Preconditions for a Field

Before loads of a certain field can be replaced by address arithmetic, it must be
guaranteed that all inlining parents are correctly colocated with their children, i.e. the
inlined field must always point to the location that is also computed by the address
arithmetic. We define the following preconditions that a field must satisfy for a safe
application of object inlining;:

1. The parent and all of its inlining children must be allocated together, and the
field store that installs a reference to the children into the parent must occur
immediately after the allocation.

2. The field referencing the child must not be modified after the allocation. If the
field were overwritten later with a new value, the new object would not be
colocated to the parent and an optimized field load would access the old child.

In the Java HotSpot VM, it is not possible to influence the heap address of newly
allocated objects. They are placed next to each other in the eden space. It is not possible
to allocate an inlining child after or before its parent. Instead, the memory for both
objects must be allocated at once. If a combined allocation is not possible, the field is
not inlinable. Likewise, inlining is not possible if the child object is not always allocated
together with its parent, i.e. if the field stays at its initial null value in some code paths.

Figure 3.5 illustrates the consequences when the inlining preconditions are not
satisfied. Assume that the machine code for the optimized field load accesses the field
rgb of the class Color with the field offset 24 relative to the Polyline object without
further checks. If the field 1ineColor is not initialized as shown in Figure 3.5 a), the
null Pointer is not detected. No NullPointerException is thrown, and an undefined
value is loaded from memory.

Polyline Polyline Polyline
8| points *~|-> 8| points *-|->» 8| points *-|-»
12| lineColor @1—— 12| lineColor @~ 12| lineColor @~
16 <! 16 <« 16 Color |«
24 24 24| 8[rgh

Color Color
8| rgb 8| rgb

a) Child not allocated b) Child allocated later ¢) Child modified later

Figure 3.5: Consequences when inlining preconditions are not satisfied

32

Components for Object Inlining

In Figure 3.5 b), the field rgb was initialized later with a Color object. The new object is
not placed correctly next to the Polyline object. Again, an undefined value is loaded
by an optimized field load. Figure3.5c) shows an example where the second
precondition is violated and the field 1ineColor is changed later. The optimized field
load still accesses the old rgb value because it is not possible to allocate the new Color
object at the same address as the old Color object.

The second precondition is necessary because detecting at run time that an object field
has been changed is equally or even more expensive than the normal unoptimized
field access. Therefore, object inlining is only beneficial in our example if the field with
the offset 24 relative to the Polyline object can be accessed without further checks. For
array fields, this constraint can be relaxed. It is possible to integrate the check for a
changed array field into the array bounds check, which is required by the Java
language specification (see Section 7.2 on page 83). The modified bounds check does
not need an additional machine instruction in the common case.

3.4 Components for Object Inlining

Figure 3.6 shows the components required for object inlining and their interactions.
While this section contains a short description of the components, the subsequent
chapters present the detailed algorithms.

e Method tracking: The class loader builds the method table. It contains information
about all methods that allocate objects as well as all methods that modify
reference fields.

e Hot-field detection: When a method is compiled, read barriers, i.e. increments of
per-class counters, are inserted for all field loads. If a counter for a field f
exceeds a certain threshold, f is considered to be hot and is entered into a hot-
field table.

e Object colocation: When the garbage collector moves objects, it processes groups
of objects that are linked by hot fields so that the parent object and its children
are consecutive.

e Co-allocation: For every hot field f that links a parent object of class P to a child
object of class C, the methods that allocate P objects are compiled. If possible, the
compiler combines the allocations of P and C objects to a co-allocation. This
ensures that the newly allocated objects are placed next to each other in the
correct order. If co-allocation is not possible, then object inlining of f fails. This
includes situations where C is not allocated in all cases, i.e. where f can be null
for some code paths. Co-allocation guarantees the first precondition for object
inlining.

33

Architecture of Object and Array Inlining

| Hot-Field Detection | Object Colocation
\]
read barriers inserted colocation in
by jit compiler garbage collector
| Method Tracking | Co-allocation
Field Store Guards

collect method information
during class loading

; . check preconditions
Ob]eCt Inhnmg < in jit compiler

_

successful
. - failed.
| Optimized Field Loads |
Y .
| Run-Time Monitor precondition Normal Field Load

invalidated

Figure 3.6: Components for object inlining

Guards for field stores: For every hot field f, the methods that modify f are
compiled. The compiler inserts guards in front of the field stores. When a guard
is executed later, object inlining of f fails and methods with optimized field
loads are deoptimized. This guarantees the second precondition for object
inlining. For array fields that are allowed to change, the field store guard marks
the old array as invalid so that it is no longer accessed.

Optimized field loads: When the two preconditions for a field are satisfied, loads
of the field are optimized, i.e. the memory access is removed. In some cases,
also array bounds checks and dynamic type checks can be optimized.

Run-time monitor: It is possible that object inlining fails after optimized field
loads were emitted, e.g. when a class is loaded later that invalidates a
precondition. The run-time monitor detects these cases. All methods with
optimized field loads are deoptimized, and execution continues with normal
tield loads.

If a precondition for a hot field cannot be guaranteed, object inlining is not possible
and the field loads must be preserved. However, it is still possible to colocate the
objects during garbage collection to improve the cache behavior. Therefore, object
colocation in the garbage collector processes all hot fields regardless of their object
inlining state.

The subsequent sections explain these components in more detail. We use the example
classes defined in Section 3.1. The object fields lineColor and points of the class
Polyline and the array field elementData of the class ArrayList are first detected as
hot and then inlined. Each field runs through the optimization phases shown in
Figure 3.7.

34

Components for Object Inlining

(Initial)
|

insert read barriers

v

(Counting)— field not hol\
field considered hot (Not Optimized)
4 Colocated I
(Compile with Co-allocation)\co-allocation
i not possible
CCompile with Field Store Guards)
(Inlining Failed)
(Full Garbage Collection)
i precondition field store guard
invalidated executed at run time
(Inlined)
- J

Figure 3.7: Optimization phases for a field

3.4.1 Method Tracking

The class loader maintains a so-called method table. It maps class names to methods
that allocate objects of this class, as well as field names to methods that modify this
field. Table 3.1 shows the method table for the classes of our example. Classes that do
not have reference fields, such as Color and Point, are not inserted into the table
because information about them is not needed for our algorithms.

Key (class name or field name)

Value (list of methods)

class at.ssw.Polyline

field at.ssw.Polyline lineColor
field at.ssw.Polyline points
class java.util.ArraylList

field java.util.ArraylList elementData

at.ssw.Test.allocate()
at.ssw.Polyline.<init>()
at.ssw.Polyline.<init>()
at.ssw.Polyline.<init>(),
java.io.DeleteOnExitHook.run(),

java.util.ArraylList.<init>(),
java.util.ArraylList.add()

Table 3.1: Mapping of classes and fields to method lists

Information from the table is used in subsequent steps to identify affected methods.
Methods that allocate objects must be compiled with co-allocation, and methods that
store a field must be compiled with field store guards to guarantee the preconditions
for object inlining. Methods contained in both entry kinds like the constructor

35

Architecture of Object and Array Inlining

Polyline.<init>() contain both co-allocations and field store guards. The collection
class Arraylist is instantiated by several methods of the Java class library during
system startup. When the field elementData of the ArraylList is inlined, all of these
methods must be compiled with co-allocation.

3.4.2 Hot-Field Detection

At first, methods are executed by the interpreter. If the invocation counter of a method
reaches a certain threshold, the method is scheduled for compilation. Upon
compilation of the method Polyline.getLineColor(), the compiler emits a read
barrier that increments a counter for the field 1ineColor, and the state of this field goes
from initial to counting.

Figure 3.8 shows the HIR for the method. When code is generated for the field load
instruction a2, the counter increment is emitted. No read barrier is needed for the field
load i3 because it loads a field of a scalar type, which is not of interest for object
inlining.

bci_ tid__instruction
1 a2 al._12 at.ssw.Polyline.lineColor
4 i3 a2._8 at.ssw.Color.rgb

7 i4 ireturn i3

Figure 3.8: HIR of method Polyline.getLineColor()

When a field counter reaches a certain threshold, the field is recorded in the hot-field
tables, and the state of the field changes from counting to colocated. If the threshold is
not reached in a certain time frame, the field is considered unimportant and the state
transitions to not optimized. In both cases, the read barriers are removed by recompiling
all methods that contain read barriers for the field.

3.4.3 Object Colocation

The garbage collector uses the hot-field tables for object colocation. If a field is accessed
frequently, the parent and child objects that are connected by the field are likely to be
accessed in quick succession. To improve the cache behavior, it is beneficial to colocate
these objects even if object inlining is not possible. When the objects are colocated, they
are probably in the same cache line so that accessing the parent also brings the child
into the cache.

We modified the stop-and-copy algorithm for the young generation to copy groups of
objects instead of individual objects. This ensures that a parent object is copied together
with all its child objects. If the parent and the children are not consecutive, they are
moved together and the grouping is established. The object groups are also promoted
as a whole to the old generation if they survive a certain number of copying cycles.

36

Components for Object Inlining

The mark-and-compact algorithm for the old generation preserves the object order
during collection. During compaction, objects are moved towards the beginning of the
heap, but their order remains unchanged. Therefore, the optimized order of the
promoted objects is retained.

3.4.4 Co-allocation of Objects

Object colocation during garbage collection ensures that a parent object and its child
objects are consecutive after the first garbage collection run following their allocation.
For object inlining, however, it is a precondition that the objects are already
consecutive immediately after their allocation. Therefore, co-allocation combines the
allocations for a group of objects, and object colocation ensures that the groups are not
separated during garbage collection. Our co-allocation is integrated into the client
compiler. Therefore, all methods that allocate parent objects must be compiled. The list
of methods is retrieved from the method table. In our example, the method
Test.allocate() must be compiled for the inlining of the fields lineColor and
points, and the method Polyline.<init>() must be compiled for the inlining of the
field elementData.

Figure 3.9 shows the HIR for the method Test.allocate(). The instructions refer to
the state after method inlining. All constructors were inlined, so there are no more
method calls. All instructions except a2 represent bytecodes of inlined methods.

bci tid__instruction

0 a2 new at.ssw.Polyline

4.5 a8 new java.util.Arraylist

4.9.5 il1 1@

4.9.7 a30 new java.lang.Object[ill]

4.9.10 a31 a8._16 := a30 java.util.ArraylList.elementData
4.12 a34 a2. 8 := a8 at.ssw.Polyline.points

4.16 a35 new at.ssw.Color

4,23 a42 a2._ 12 := a35 at.ssw.Polyline.lineColor

// Do something with a2

Figure 3.9: HIR fragment of method Test.allocate()

The allocations of Polyline, Color, ArrayList, and Object[] end up in the same
method, as well as the field stores that install the inlining children into the parent
objects. A single co-allocation instruction replaces all these instructions. It allocates
only one chunk of memory large enough for all objects and then installs the object
headers and field pointers appropriately.

Object inlining for a field requires that all methods that allocate objects of the parent
class are compiled with co-allocation. If the co-allocation in one method fails, the field
is not optimized and the analysis stops. The compiler reports this information as
feedback data to the object inlining system. This avoids a data flow analysis during
object inlining.

37

Architecture of Object and Array Inlining

3.4.5 Guards for Field Stores

The second precondition for object inlining specifies that an object field must not be
modified after co-allocation. Therefore, we compile all methods that modify the inlined
field and instrument the field store to revoke object inlining before the field value is
changed at run time. Field stores that are already part of a co-allocation are ignored.

A static check at compile time would not be sufficient because field stores for inlined
fields are allowed as long as they are not executed. The static check would inhibit
object inlining e.g. for all fields that are assigned inside a constructor. Even though
constructors are mostly inlined into the allocating method, they also remain as distinct
methods and are separately compiled. Because initializing fields in the constructor is a
recommended and frequently used code pattern in Java, the static check would lead to
nearly no inlinable fields.

In our example, field store guards are necessary for the fields 1ineColor and points
when the constructor Polyline.<init>() is compiled. Figure 3.10 shows the HIR of
the constructor. In contrast to Figure 3.9 of the previous section, the ArrayList and the
Color object cannot be co-allocated with the Polyline object because the Polyline is
already passed in as the first method parameter al. Co-allocation is only performed for
the ArrayList object and its child Object[] array, connected by the field store a29.

bci_ tid__instruction
5 a6 new java.util.Arraylist

9.5 1i9 1e

9.7 a28 new java.lang.Object[i9]

9.10 a29 a6._16 := a28 java.util.ArraylList.elementData
12 a32 al. 8 := a6 at.ssw.Polyline.points

16 a33 new at.ssw.Color

23 240 al. 12 := a33 at.ssw.Polyline.lineColor

26 v4l return

Figure 3.10: HIR of constructor Polyline.<init>()

Therefore, the two field store instructions a32 and a4 have to be guarded. A call into
the VM is emitted in front of the machine code that performs the field stores. The VM
method revokes object inlining for the fields points and lineColor. It is, however,
unlikely that this ever happens. The constructor Polyline.<init>() was inlined in the
method Test.allocate(), which is the only method that allocates Polyline objects in
the bytecodes. Therefore, the constructor itself is only executed if the application
allocates a Polyline object using reflection or the Java Native Interface.

The field elementData of the class ArrayList is modified by two methods:
ArraylList.<init>() and ArrayList.add(). Both methods are compiled with field
store guards. Because the field elementData is an array field and thus allowed to
change, the guards have different semantics. They do not revoke object inlining, but
mark the old array as inaccessible before the field is overwritten with the pointer to the

38

Components for Object Inlining

new array. The optimized array load checks this mark so that the old array is no longer
accessed. The guard inserted into ArrayList.add() is likely to be executed several
times because this method increases the capacity of the ArrayList.

3.4.6 Transition to Object Inlining

After all methods that allocate parent objects or store the inlined field are successfully
compiled, the two preconditions are satisfied for all objects that will be allocated in the
future. However, the heap can still contain objects that were allocated before and that
are not colocated yet. Such objects are colocated by the garbage collector.

Therefore, it is necessary to wait for a full garbage collection that processes all
generations. In this run of the mark-and-compact algorithm, parent objects are treated
specially: when it is necessary to colocate objects, the order of objects is changed in the
old generation. Before this, optimized field loads are not possible. The optimizations
described in the next section are delayed until the full collection has completed.

3.4.7 Optimized Field Loads

The optimization of field loads is again performed by the just-in-time compiler.
Previously compiled methods that load an inlined field are recompiled to apply the
optimization. There are two possibilities to optimize field loads:

e Load folding: If a field of the child object is accessed, i.e. if the loaded object is
used only for another field access, the two field accesses can be merged into a
single access with a larger offset. This eliminates one field load.

e Address computation: If the address of the child object is required, the inline
offset is added to the address of the parent object. This replaces a field load
with an arithmetic instruction.

Figure 3.11 b) shows the optimized HIR of the method Polyline.getLineColor()
where load folding is applied. In contrast to unoptimized HIR, the field load i3
accesses the field rgb relative to the Polyline object, which is passed as the method
parameter al. The size of the Polyline object (16 bytes) is added to the field offset 8 of
the field rgb, so the overall offset is 24. This offset is visualized in Figure 3.4 a). The
field load a2 of the field 1ineColor is no longer necessary and thus eliminated.

tid__instruction tid__instruction
a2 al._12 at.ssw.Polyline.lineColor i3 (al+16)._8 at.ssw.Color.rgb
i3 a2._8 at.ssw.Color.rgb i4 ireturn i3

i4 ireturn i3
a) Unoptimized HIR b) Optimized HIR

Figure 3.11: HIR of method Polyline.getLineColor()

39

Architecture of Object and Array Inlining

3.4.8 Run-Time Monitoring

The preconditions for object inlining can only be guaranteed for the currently loaded
classes. Dynamic class loading can introduce new methods that allocate parent objects
in such a way that co-allocation is not possible. In this case, object inlining was too
optimistic and must be undone by deoptimizing all methods that contain an optimized
load of the affected field. Fortunately, this happens rarely. Because the hot-field
detection and the necessary compilations that guarantee the preconditions take some
time, most applications have already reached a stable execution state when a field is
inlined and it is not likely that new classes are loaded afterwards.

When examining the preconditions, we only consider methods that allocate objects or
store fields using normal bytecodes. However, Java offers several other and more
dynamic ways for this purpose. Objects can be allocated and fields can be modified
using reflection or the Java Native Interface (JNI). New objects are also allocated when an
object is cloned using Object.clone().

Because these cases are difficult to handle and rather rare, we are conservative. We
disable object inlining for fields that are stored using reflection or the JNI. Similarly, we
disable it for all fields of classes that are instantiated dynamically. The subsystems for
reflection, JNI, and object cloning are instrumented so that additional code is invoked.

This code checks our preconditions and triggers deoptimization if an access affects an
inlined field.

40

Chapter 4

Hot-Field Detection

This chapter presents the data structures and code patterns used to detect hot
fields at run time. Read barriers increment per-field and per-class counters,
which are checked regularly. Fields whose counters exceed a certain threshold
are considered hot and are added to the hot-field tables. Read barriers that are no
longer necessary are removed by recompiling methods so that they do not
contain counter increments anymore.

Feedback-directed optimizations in virtual machines require live profiling data
collected at run time. For our object inlining, we need information about frequently
accessed fields. Only these hot fields are optimized. We use read barriers inserted by the
just-in-time compiler to increment field access counters on a per-field and per-class
basis.

The just-in-time compiler has full information about fields. The instruction for a field
access in the HIR does not only contain the offset of the accessed field, but also the
class that declares the field (the class of the parent object) and the declared type of the
field (the class of the child object). Using this information, a unique counter can be
created for each field.

Adding read barriers to the interpreter would be far more expensive. The interpreter
cannot attach additional information to a specific bytecode, so the address of the field
counter would have to be computed anew for each field access. Therefore, we do not
count the field accesses executed by the interpreter. This does not have a significant
impact on the precision of the measurements as the number of such accesses is
comparatively low. The most active methods are compiled so that fields that are only
accessed in interpreted code are unimportant for the overall performance. It is a
positive side effect of our approach that no counters are allocated for such fields.

The compiler eliminates a field load if the value of the field is a compile-time constant
or if the load is redundant. Our analysis takes such compiler optimizations into
account and does not emit read barriers for these loads. Therefore, the resulting
counter values can be lower than a naive counting using an instrumented interpreter,
but they better reflect the actual behavior of the application.

41

Hot-Field Detection

We count only field loads but no field stores for several reasons. At first, object
colocation and object inlining optimize only field loads, so there is no benefit for a field
that is frequently stored but rarely loaded. Secondly, a large number of stores can be
considered as an argument both in favor and against optimizing a field: If the large
number of field stores originates from a large number of objects in which this field is
stored once (but then never changed), the field should be optimized. In contrast, if
there is a small number of objects in which the field is stored again and again, this
indicates a frequently changing data structure for which object inlining is difficult or
even impossible.

4.1 Read Barriers

Read barriers allow dynamic measurements of an application’s memory access
behavior. A read barrier is a piece of machine code that is emitted together with the
code that performs the actual load of a field. In our case, the read barrier is a single
machine instruction that increments a counter after the field load. The counter is
located in a read barrier entry that also stores additional information such as the parent
class, the child class, and the field offset. It is registered in the class descriptor (see
Section 2.2.2 on page 13) of the class that declares the field. When the same field is
accessed multiple times, the same entry and therefore the same counter is used.

Figure 4.1 shows the read barrier entry for the field 1ineColor of the example, which is
defined in the class Polyline and has the declared type Color. While the class
descriptors are located in the garbage collected heap and can be moved by the garbage
collector, the read barrier entries are normal C++ objects with a fixed address.
Therefore, the address of the field counter is statically known and can be used directly
in the machine code. Assume that the field counter in our example is located at the
address 5016h.

Class Descriptor Class Descriptor

Polyline ° (| Color Movable metadata objects
(in permanent generation)
Non-movable objects

Read Barrier Entry (in C++ heap)

parentClass o

fieldOffset: 12

hildCl o
e as,s nmethod with Machine Code
state: active
5016h| counter ees // eax: base address of object
totalCounter mov ebx, ptr [eax+12] // daccess field
nmethods 900 inc ptr [5016h] // increment counter
¢¢ ce // ebx: result of field load

Figure 4.1: Data structures and machine code for a read barrier

42

Read Barriers

41.1 Machine Code Pattern

The right hand side of Figure 4.1 shows the machine code pattern for a read barrier.
This machine code is created e.g. for the HIR instruction a2 of the method
Polyline.getLineColor() that was presented in Figure 3.8 on page 36. The first
machine instruction loads the field of the object whose address is already in the register
eax and stores the result into the register ebx. Then, the increment instruction modifies
the counter located at the fixed address 5016h. The IA-32 instruction set allows
instructions to operate on memory operands [Intel07], so it is not necessary to load the
counter value into a register. Only a single instruction is necessary for the increment.

The counter increment is not executed atomically by the processor. If two threads load,
increment, and store the same counter at the same time, one increment is lost. An
atomic machine instruction would ensure that threads do not access the memory
concurrently. However, the execution of atomic instructions is an order of magnitude
slower and would increase the overhead disproportionally. The small imprecision of
the non-atomic counters can be neglected in practice.

Accesses of array elements are counted similarly to fields. The increment instruction is
emitted after the array bounds check and the move instruction for the array load. The
only difference between object fields and array elements is that array elements lack a
field offset. Therefore, we use the marker value -1 in the read barrier entries. A single
counter is used for all elements of an array. The parent class of such an entry is the
array class (e.g. Object[]), the child class is the element type of the array (e.g. Object).
Information about frequently accessed array elements is used only for object colocation
because array elements cannot be inlined by our approach. For both object fields and
array elements, we only count loads of references and ignore loads of scalar values
such as int fields.

4.1.2 Processing of Field Counters

The field counters of all read barrier entries are checked in regular intervals. If a
counter exceeds a certain threshold, the field is considered hot and recorded in the hot-
field table of the parent class. If the counter does not cross the threshold in several
successive measurement intervals, the field is considered unimportant and ignored in
all further optimization steps. In most cases, we use the time between two garbage
collections as the measurement interval, i.e. the counters are checked at a safepoint
before garbage collection. This eliminates the need for explicit locking because all
threads are stopped at this time. Newly detected hot fields are immediately optimized
by the subsequent garbage collection. Only if the timeframe between two garbage
collections is too long, we check the counters using timer interrupts.

Algorithm 4.1 outlines the processing of the field counters. We want to detect fields
that are accessed frequently during the current measurement interval, and to filter out
the large number of fields that are accessed infrequently. As a heuristic, a field is

43

Hot-Field Detection

considered hot if it accounts for more than 5% of all field loads within one interval, i.e.
if the counter field of a read barrier entry divided by the sum of all counter fields is
above 0.05. This value was determined empirically.

PROCESSCOUNTERS
sumActive = sum of rb.counter for all active read barrier entries rb

for each read barrier entry rb do
if rb.state == active and rb.counter / sumActive > 0.05 then
add entry(rb.fieldOffset, rb.childClass) to hot-field table of rb.parentClass
rb.state = added
end if

if rb.state != deoptimized and rb.totalCounter / rb.counter > 8 then
for each nmethod nm in rb.nmethods do
deoptimize nm /I discard machine code with counter increments
end for
rb.state = deoptimized
end if

rb.totalCounter += rb.counter
rb.counter =0
end for

Algorithm 4.1: Detection of hot fields based on access counters

The heuristic fills the tables iteratively. When processing the counters for the first time,
fields with an exceptionally high access frequency are added to the hot-field tables.
Their read barrier counters are then deactivated and ignored when computing the
percentages in succeeding runs of the algorithm, so the next fields with still a high
access frequency are added. This is repeated until a stable state is reached where most
tields have similar access frequencies, i.e. no single one is above 5%.

Reaching the stable state usually requires only a few measurement intervals. We use a
heuristic to detect unimportant fields by estimating how many intervals passed since
the counting has started. We divide the total access count of the field, i.e. the sum of all
previous intervals, by the access count of the current interval. If this value is above 8,
the field is unimportant. Using this quotient is better than counting intervals. If the
access count is decreasing over time, e.g. because the field is accessed only in
initialization code, the count of the current interval is low and the field is unimportant.
If the access count is increasing over time, the count of the current interval is high and
the quotient low, so the field remains counted and can cross the hot-threshold in the
next interval. If the access count remains approximately the same over a sequence of
intervals without the field becoming hot, it is considered unimportant after 8 intervals.

Incrementing a counter for each field load involves run-time overhead. Therefore, it is
necessary to remove read barriers as soon as they are no longer needed, i.e. when it is
known that a field is either hot or unimportant. This is done by recompiling all
methods that increment the counter of the read barrier entry. The list of these methods

44

Hot-Field Tables

is maintained in the read barrier entry. The state of a read barrier entry is used to
decide whether a counter increment is necessary for a field. We distinguish three states:

1. Active: Field accesses are actively counted because there is no decision for the
field yet. When new methods are compiled, read barriers are emitted.

2. Added: The field was identified as hot and added to the hot-field table. It is no
longer necessary to count field accesses, so no read barriers are emitted for
newly compiled methods. However, old methods still increment the counter.

3. Deoptimized: Methods that increment the field counter have been scheduled for
recompilation and no new read barriers are emitted. The counter will stop
being incremented soon. The read barrier entry only serves as a marker that a
final decision for this field is available.

Distinguishing between the states added and deoptimized delays the recompilation of
methods that access hot fields. Even if a field is detected as hot in the first
measurement interval, the methods with the read barriers are deoptimized
approximately after 8 intervals. This reduces the number of methods that need to be
recompiled. When object inlining is possible for a hot field, the methods are recompiled
anyway to perform the optimized field load. Because it takes some time until inlining
succeeds, we delay the recompilation for the read barriers so that both transformations
can be applied in one recompilation.

4.2 Hot-Field Tables

The hot-field tables are a VM-global data structure with a separate table for every class
with hot fields. This table is registered in the class descriptor and contains a pointer
back to the descriptor. Figure 4.2 shows the tables for the example classes. The table of
a class stores a list of entries for its hot fields. Each entry holds the offset (off) of the
tield as well as the field’s declared type (class), which points to another class descriptor.

The table entries are processed by the garbage collector and the object inlining system
according to their order in the hot-field tables, so the entries should be sorted by
decreasing importance. This is automatically accomplished by the iterative processing
algorithm for the field counters that detects hot fields in the order of their importance.
In Figure 4.2, it is assumed that the field 1ineColor of the class Polyline with the
offset 12 is accessed more often than the field points with the offset 8.

Classes without frequently accessed reference fields do not have a hot-field table. This
includes all classes that have only scalar fields, e.g. the class Color in our example. For
array classes such as Object[], the marker value -1 is stored as the field offset. A hot-
field table does not contain entries for fields declared in a superclass or a subclass.
Instead, these classes have their own hot-field tables. In our example, the table entry of
the Object[] array class points to the Object class. Object does not have a hot-field
table because only some subclasses like Polyline have children, not Object itself.

45

Hot-Field Detection

Class Descriptors

Polyline Color —» ArrayList Object(] Object
A A A
Hot-Field Tables y v
off | class off | class off | class
12 o 16 (2 -1 (s
8 °

Figure 4.2: Hot-field tables for example classes

Indirect children are only implicitly visible: the class of a child entry also has its own
hot-field table. In our example, the ArrayList is a direct child of a Polyline, while the
Object[] array is an indirect child. The information about indirect children and
children of sub- and superclasses is important for object colocation and object inlining,
but including this information in the hot-field tables would complicate building and
maintaining the tables.

4.2.1 Graph Representation

The hot-field tables can be visualized as a directed graph. The nodes represent the class
descriptors, and the edges represent the hot fields. Figure 4.3 shows the hot-field graph
for our example. In addition to the hot-field edges, the class inheritance is modeled.
Even this simple example contains a cycle in the graph: the Object[] array, which is an
indirect child of a Polyline object, could contain a Polyline object as an array
element. For the detection of cycles, an edge that reaches a superclass like Object must
be treated as multiple edges to each subclass. Cycles are not allowed for object inlining
because they would lead to object groups with an unbound number of elements.

Polyline

ArrayList |—>| Object[]
Figure 4.3: Hot-field graph for example classes

For the example, it is guaranteed that concrete object graphs are acyclic because the
ArrayList of a Polyline contains just Point objects. However, this information is not
available in our implementation because it would require a global data flow analysis.
Instead, our algorithms correctly handle and break such cycles. The class Point does
not show up in the graph. It is neither a parent because it does not have reference
fields, nor a child because no field has the declared type Point.

46

Chapter 5

Object Colocation

This chapter presents the algorithms for object colocation, which are integrated
into the garbage collection algorithms of the young and the old generation.
Before garbage collection, the hot-field graph is converted to colocation tables in
order to allow a fast access of colocation information. After assigning a new
location to a parent object, all children immediately get consecutive addresses. If
a child would be processed before its parent, the processing is delayed.

Object colocation is an optimization that groups heap objects together and sorts them
so that their order in memory matches their access order in the program. Our
implementation uses the information in the hot-field tables to adapt the copying order
of objects in the garbage collector. Object colocation has two goals:

1. Improve the cache behavior: If objects that are accessed together are placed next to
each other on the heap, the spatial locality is improved. It is more likely that
objects either end up in the same cache line or can be optimized by automatic
hardware memory prefetching [Hegde07]. This is a statistical optimization. A
small ratio of unoptimized objects for a certain class does not impact the
performance significantly.

2. Guarantee preconditions for object inlining: Memory loads can be replaced by
address arithmetic only if the colocation of a parent with its children is
guaranteed for all instances of the parent class. If a single parent object cannot
be colocated with its children, the optimized access for all objects of this class
must be reverted.

To achieve both goals, we distinguish between fields that should be colocated to
improve the cache behavior and fields that must be colocated for object inlining. Such
inlined fields are preferred if not all hot fields can be optimized.

The time spent in the garbage collector is critical for the overall performance of a Java
application. Object colocation must check for each live object whether another object
should be colocated to it. This additional time during garbage collection must be
outweighed by the improved cache performance. Therefore, our object colocation
algorithm uses an efficient data structure with low per-object costs. Before garbage
collection, the hot-field tables are converted to colocation tables.

47

Object Colocation

5.1 Colocation Tables

The hot-field tables introduced in Section 4.2 on page 45 are easy to maintain because
they store only direct children of a class. However, it is expensive to detect all direct
and indirect children that should be colocated to a particular parent object. To limit the
overhead during garbage collection, an additional colocation table is created from the
hot-field table for each class. Figure 5.1 shows the colocation tables for our example
classes. They are created from the hot-field tables presented in Figure 4.2 on page 46.

Class Descriptors

Polyline . ArrayList . Objectl]
Colocation Tables v

off | par| st | obj
0 o> Polyline object v
11'12) 0] i | et Color object off |par| st | obj v
)| 3T T oI5 Amayist object” 0 o [offTparl st Tob
3/16| 2| i | et Object[] array 1116 0] i | o] O °
4 -1] 3/ d | ef» Objectobject 2| -1| 1|/ d | e 1 -1/ 0/d]| e

Figure 5.1: Example of colocation tables used during garbage collection

Each table contains a flat list of all fields that should be colocated for a given class. It is
created once before garbage collection, and the obj column is filled multiple times
during garbage collection. The first entry stores the parent object. All other entries are
direct or indirect children of this object. The columns contain the following
information:

e Field offset (off): The offset of the field whose value is stored in this entry, or -1
as a marker for array elements.

e Parent entry (par): The index of this object’s immediate parent in the same table.
It is O for direct children and greater than 0 for indirect children of the parent
object for which the table is filled.

e State (st): The inlining state of this field, i.e. the information whether colocation
should or must be performed. The possible states are listed in Section 5.1.1.

e Object (0bj): The actual object that is referenced by this field. It is filled anew for
each parent object processed by the garbage collector.

In our example, all information required for the colocation of direct and indirect
children of a Polyline object is contained in the colocation table for Polyline. The
entries with the indices 1 and 2 denote fields that reference direct children of the
Polyline object with the index 0. The entries 3 and 4, i.e. the Object[] array and

48

Colocation Tables

another Object, denote indirect children. They are direct children of the entries 2
and 3, respectively.

When an ArrayList object is not colocated to a Polyline object, the colocation table of
ArrayList is needed. This table is smaller because it contains only the objects that are
colocatable to an ArrayList object. Similarly, there is a colocation table for the array
class Object[]. The smaller tables contain parts of the information of the bigger tables,
indicated by the dashed lines in Figure 5.1.

Arrays can reference an arbitrary number of child objects. All array elements are
usually accessed with similar frequencies. As a pragmatic solution, we colocate only
the object referenced by the first non-null array element. This removes the necessity
for a special support of array elements in the colocation tables. The single colocated
array element can be stored in the field obj of the table entry.

5.1.1 Creation of Colocation Tables before Garbage Collection

The colocation tables are created before garbage collection using information from the
hot-field tables and are discarded afterwards. This simplifies the maintenance because
the colocation tables need not be updated when the hot-field tables are changed.
Conceptually, the algorithm processes the class nodes of the hot-field graph. For each
class, all reachable nodes are added to its colocation table. The graph is modified in a
preprocessing step before the tables are created. One of the following edge states is
assigned to each edge of the graph:

e Inlining (marked with “i”): The colocation must be guaranteed because the field
is inlined and field loads are replaced by address arithmetic. This is the initial
state of all hot fields that are inlinable according to the analyses presented in
Chapter 6 on page 57.

e Colocation (marked with “c”): Colocation should be performed to improve the
cache behavior. This is the initial state of all non-inlinable fields listed in the
hot-field table.

e Dynamic (marked with “d”): Colocation should be performed. However, the
class of the object referenced by this field can have its own inlining children. In
such a case, these children have a higher priority for colocation, so the edge is
dynamically disabled for such an object. If the class of the referenced object has
no children, colocation is performed. This state is used e.g. for fields of the
declared type Object.

e Disabled (marked with “x”): The edge was removed from the graph e.g. to break
a cycle. The field is not added to the colocation table, so this state is used only
while processing the graph and never occurs in an entry of a colocation table.

Figure 5.2 shows some situations where the original hot-field graph must be modified
before the colocation tables can be created. Edges are disabled if the graph is cyclic like

49

Object Colocation

in Figure 5.2 a) because cycles in the flat colocation tables would lead to infinitely large
tables. Additionally, edges are disabled if the nesting level of indirect children is too
high like in Figure 5.2 b), i.e. when a sequence of colocated objects would involve more
than three levels. This limits the maximum size of a colocation table.

R i
. —d-»{ Object_|

/\
a) Cycle
|AP» B> C|»D|—>x>E| | Point | [Polyline |—>
b) Too deep nesting c) Class hierarchy

Figure 5.2: Assigning edge states to the hot-field graph

Dynamic edges are required for the optimization of generic data structures that use for
example fields of the declared type Object or Object[] arrays. It is beneficial to
colocate an object referenced by such a field or array if it is small and stores only few
scalar values. However, it would not be wise to colocate the referenced object if it has
colocated reference fields itself, because in this case it would not be possible to
optimize these fields as well.

Figure 5.2 c) shows an extract of the graph for the example classes. Initially, the Object
class is reached by a colocation edge from the Object[] class (see Figure 4.3 on
page 46). In our example, the Object[] array references a Point object that should be
colocated. This information is however not statically known. Some other Object[]
arrays on the heap might reference a Polyline object instead. If a Polyline object were
colocated to an Object[] array, it would not be possible to colocate also the fields of
the Polyline object at the same time because the colocation table of Object[] contains
only an entry for Object but no entries for the children of Polyline.

Marking the edge to Object as dynamic solves the problem. The child object is only
colocated if its class does not have its own colocation table. For example, Point objects
are colocated to Object[] arrays, while Polyline objects are not. This makes it possible
to colocate children of a Polyline when such objects are processed by the garbage
collector.

5.1.2 Filling the Colocation Tables with Objects

The colocation tables of all classes are created once before garbage collection. All
columns but obj are initialized during construction. Algorithm 5.1 shows how the obj
column of a table is filled with the children of a parent object during garbage collection.
If no colocation table is registered for the class of parent, an empty table is returned.
Otherwise, parent is stored in the first entry and then the algorithm iterates over its

50

Colocation Tables

children. Because the entry c for a child object is always located after its immediate
parent, c.par has already been processed before ¢ and its obj column is initialized.

GETCHILDREN(parent)
tab = colocation table for class of parent
if tab not found then
return empty table

end if
tab[0].obj = parent /[initialize first entry, which holds the parent
for i=1to tab.length - 1 do /I iterate over all entries except the first
c = tabli] /I get the entry of the current child
if c.par.obj == null then
c.obj = null /I correct handling of fields that are null
else
if c.off == -1 then /I -1 is marker value for array elements
childObj = c.par.obj.firstElement // access first non-null array element
else
childObj = c.par.obj.fieldAt(c.off) // access field at the specified offset
end if
if c.state == dynamic and class of childObj has colocation table then
c.obj = null /l support for dynamic edges
else if childObj occurs in tab[0..i-1].0bj then
c.obj = null /l same object is not allowed in table twice
else
c.obj = childObj /I common case: store childObj in table
end if
end if
end for
return fab

Algorithm 5.1: Filling a colocation table during garbage collection

If the parent object c.par.obj is null, then the object of the current entry c.obj is also set
to null. This is necessary for the correct handling of fields that are null. Such entries
are ignored later when the table is used. However, a large number of null values slows
down the garbage collector. To avoid this, we count null values for every hot field and
disable a field if it has too many null values.

The value of an object field is loaded by accessing the memory at offset c.off relative to
the parent object c.par.obj. For array elements, which are identified by the marker
value -1 in the colocation table, the first non-null array element is searched and used
as the child object. This is better than using always the first element because data
structures like hash tables populate arrays randomly and not starting with the first
element.

Two additional checks are performed before the child object is stored in the colocation
entry. If a check fails, the entry is invalidated by setting the object to null:

51

Object Colocation

1. Dynamic edges are handled as described in the previous section. If the class of
the child object has a colocation table itself, this entry is invalidated. The child’s
colocation table is filled later when GETCHILDREN is called for this child.

2. One colocation table must not contain the same object twice. The later steps of
the garbage collection algorithm would also copy the object twice. Therefore,
the entry is invalidated if the field obj of a previous entry already contains the
current child object. The duplication check is implemented efficiently using a
lightweight hash table.

The colocation tables are used by the stop-and-copy and the mark-and-compact
collection algorithm. All objects listed in the table after a call to GETCHILDREN are placed
next to each other on the heap. The following sections describe how this is done.

5.2 Stop-and-Copy Algorithm

The young generation of the heap is collected using a stop-and-copy algorithm (see
Section 2.3.1 and Algorithm 2.1 on page 15). We extended this algorithm to process
groups of objects instead of individual objects. Algorithm 5.2 shows the modified
algorithm for CopYOBJECT. The parts added for object colocation are marked gray.
Before a parent object is copied, the colocation table is filled using the algorithm
GETCHILDREN. All child objects in the table are then copied together with their parent
object. The memory for the object group is allocated at once, so the size of the whole
object group must be computed before the actual memory allocation. The handling of
child objects that are null or that are already in the old generation is omitted from the
algorithm; such children are ignored.

The root pointers are processed in arbitrary order. If both the parent object and a child
object are referenced by a root pointer, it can happen that the child object is copied
before the parent. An object must not be copied twice, so the two objects cannot be
colocated in this garbage collection run.

To avoid that children are copied before their parents, objects that were once detected
to be colocation children are tagged with a dedicated bit in the mark word of the object
header (see Section 2.2.1 on page 12), referred to as isColocationChild in the algorithm.
The copying of tagged objects is delayed until the parent object is processed to ensure
that colocation succeeds. All children keep the tag for their entire lifetime, i.e. the tag is
persistent between two garbage collections because it is stored in the object header.
Therefore, objects are guaranteed to stay colocated even when new root pointers to
children are introduced.

52

Stop-and-Copy Algorithm

CoPYOBJECT(0bj)

if obj.forwardPtr is set then

return obj.forwardPtr /l prevent copying an object twice
else if obj.isColocationChild then

return fixupMarker /I delay copying; a fixup is done later
end if
tab = GETCHILDREN(0byj) /I get children of obj (or empty table)
allocSize = obj.size /I computation of total allocation size

for j= 1 to fab.length - 1 do
tab[i].obj.isColocationChild = true // tag object as colocation child
if tab[i].obj.forwardPtr not set then // must not have forward pointer to colocate
allocSize += tab[i].obj.size
end if
end for

newObj = ALLOCATE(obj, allocSize) /I allocate memory for parent and children

memmove(obj, newObj, obj.size) /I copy and forward parent object
obj.forwardPtr = newObj
offset = obj.size
for i = 1 to tab.length - 1 do /I copy and forward children
if tab[i].obj.forwardPtr not set then
memmove(tab[i].obj, newObj + offset, tabl[i].obj.size)
tab[i].obj.forwardPtr = newQObj + offset
offset += tabli].obj.size
end if
end for

return newObj

Algorithm 5.2: Modified stop-and-copy algorithm for object colocation

If the copying of a child object is delayed, the references to the child require a later
fixup. COPYOBJECT returns a fixup marker so that the reference is added to a list. When
the scan of the to-space is completed, these references are updated to the forward
pointer of the child object that was set during the colocated copying. In rare cases, it
can happen that the parent object has died, but the child object is still alive because
another object holds a reference to it. Similarly, a field update of the parent object can
install a new child object and leave the old one without a parent. Such objects are still
uncopied at the start of the fixup phase, so they are copied before the fixup and their
colocation bit is cleared.

Figure 5.3 shows an example for object colocation in the stop-and-copy algorithm. An
object group consists of a parent object P and a child object C. The arrows above the
objects are root pointers, the arrows below the objects are field references. Assume that
the root pointers are processed from left to right. Objects that are tagged as colocation
children in the mark word are shown with a c in the upper left corner. After garbage
collection, all child objects are tagged.

53

Object Colocation

Before garbage collection

v S 2 TR 2 T T
(Pllc] f[eflr] [rljc] [cf|r] [cf|P]

-4+ J 2 .] 4+]

After garbage collection

[plc] [rlc] [rlc] Jcffr] |P]c]

Figure 5.3: Example for object colocation in the stop-and-copy algorithm

As long as the child object is not accessible via a root pointer, the optimized order can
be established regardless of the object order before garbage collection. If a root pointer
to the child object is processed before the root pointer to the parent object and the child
object is not yet tagged, the objects are still unoptimized after garbage collection, but
now the child is tagged. The next garbage collection cycle establishes the optimized
order. The copying of the tagged child is delayed until the parent object is processed.

5.3 Mark-and-Compact Algorithm

The mark-and-compact algorithm is used to collect the entire heap. This is necessary
when the old generation is full and therefore no space would be available for the
promotion of objects during a collection of the young generation. Object colocation in
the stop-and-copy algorithm also affects the old generation because colocated objects
are promoted together, i.e. they end up colocated in the old generation. The basic
mark-and-compact algorithm does not change the order of objects and therefore
preserves this optimized order.

A collection of the young generation can only colocate a group of objects if all members
are still in the young generation. If a child has already been promoted, it cannot be
colocated. However, measurements in an early phase of the project showed that this is
a rare case. Object colocation for the mark-and-compact algorithm did not improve the
cache behavior [Wimmer06].

Therefore, modifications of the mark-and-compact algorithm are only necessary for the
second goal of our object colocation algorithm: guaranteeing the preconditions for
object inlining. Only inlining edges of the hot-field graph are processed, all other edges
are disabled to improve performance.

Algorithm 5.3 shows the modifications for the basic mark-and-compact algorithm,
which was presented in Section 2.3.2 and Algorithm 2.2 on page 16. The parts added
for object colocation are marked gray. Because the entire heap is traversed several
times, all children can be detected and colocated without consulting the
isColocationChild bit in the object header.

54

Mark-and-Compact Algorithm

MARKANDPUSH(obj) /I modifications for phase 1
if not obj.marked then
obj.marked = true
markStack.push(oby)

tab = GETCHILDREN(0bj) /I get children of obj (or empty table)
for i =1 to fab.length - 1 do
tab[i].obj.forwardPir = CHILD // use forward pointer to mark children
end for
end if

COMPUTENEWADDRESSES /I modifications for phase 2
newQObj = space.begin
for each marked object obj do
if obj.forwardPtr = CHILD then // children are processed with their parents
obj.forwadPtr = newObj
newQbj += obj.size

tab = GETCHILDREN(0bj) /I get children of obj (or empty table)
for i= 1 to fab.length - 1 do // forward all children
tab[i].obj.forwardPtr = newObj
newObj += tabli].obj.size
end for
end if
end for

MoVEOBJECTS /I modifications for phase 4
for each marked object obj do
newQbj = obj.forwardPtr

if newObj > obj then /I object moves towards end of heap
newObj = new scratch buffer // copy object to temporary buffer
end if
memmove(obj, newObj, obj.size)
end for
for each scratch buffer obj do /I copy temporary buffers to their destination

newQbj = obj.forwardPtr
memmove(obj, newObj, obj.size)
end for

Algorithm 5.3: Modified mark-and-compact algorithm for object colocation

Object colocation is integrated into the four phases of the mark-and-compact
algorithm:

1. Mark live objects: Children are detected using the colocation table for the class of
the marked object. We use the forward pointer, which is normally unused in
this phase of the algorithm, to tag child objects. After the marking phase, it is
guaranteed that all children are tagged and that a parent object exists for each
tagged child.

55

Object Colocation

2. Compute new addresses: In this phase, the algorithm GETCHILDREN must be called

again for each parent object because there is only one colocation table per class.
All children of a parent get assigned consecutive addresses. This may change
the order of objects on the heap. With the help of the tags that are set in the first
phase, the processing of a child is delayed if it is reached before its parent. Such
a child object never gets a new address before its parent. As a result, child
objects can move towards the end of the heap. However, this only happens if
the child was promoted to the old generation before its parent was promoted.

Adjust pointers: No changes are necessary in this phase because the forward
pointers of all parent and child objects are set correctly.

Move objects: Since objects can also move towards the end of the heap now, this
phase must take precautions to avoid overwriting yet uncopied objects. Objects
that move towards the end are first copied into a scratch area and then copied
back to their final location after all other objects have been processed. However,
this is only necessary for a small number of objects. Each object is rescued at
most once. At the next collection, the object order is already correct and no
reordering and rescuing is necessary.

56

Chapter 6

Object Inlining

This chapter presents the main algorithms for performing feedback-directed
object inlining. To guarantee the preconditions, object allocations must be
modified such that a parent object and all its children are allocated together.
Additionally, field stores of inlined fields must be guarded by a runtime call to
detect field modifications. These algorithms are integrated into the just-in-time
compiler, i.e. all relevant methods need to be compiled before memory loads can
be replaced by address arithmetic. To handle the case where the parent object’s
class has subclasses, it is necessary to reverse the order of objects in the object
group and place the parent object, whose size is not fixed if there are subclasses,
at the end of the group.

Object inlining is an optimization that replaces memory loads by address arithmetic
when a field of an object is known to point to another object that is colocated with the
first one. In Section 3.3.2 on page 32, we define two preconditions for optimizing a
field. We use the just-in-time compiler as well as run-time monitoring to guarantee
these preconditions. Methods that are relevant for a field, i.e. methods that allocate
parent objects and methods that store the field, are compiled with additional compiler
phases that transform the methods. The compiler reports feedback data to the object
inlining system. If the transformation fails for one method, the field is considered not
inlinable.

The compiler combines the analyses whether inlining is possible with the necessary
transformations of methods to guarantee the preconditions. This way, we avoid a data
flow analysis. The compiler operates on a per-method basis, so only intraprocedural
information can be collected and method calls must be handled conservatively. This
constraint is lowered by method inlining that replaces a method call by a copy of the
called method. Normally, only small methods are inlined. However, larger methods
are inlined if object inlining can profit from the enlarged analysis scope.

6.1 Method Tracking

Two kinds of methods are relevant to guarantee the preconditions for inlining a field:
methods that allocate objects of the class that contains the field, and methods that

57

Object Inlining

modify the field. To ensure that the child object that is referenced by a field is always
colocated with the parent object that contains the field, methods of the first kind are
compiled with co-allocation (see Section 6.3), and methods of the second kind are
compiled with guards for field stores (see Section 6.4). To decide which methods must
be compiled, the bytecodes of all methods are analyzed. Methods that allocate objects
or modify fields are inserted into the method table during class loading and linking.

The method table is a mapping of class names and field names to method lists. It is
organized as a hash table. The key of an entry consists of three parts: the kind of the
entry, i.e. class or field, the class name, and the field name. The field name is unused for
class entries. The value of an entry is a list of methods, i.e. references to the internal
metadata objects maintained for methods. Table 3.1 on page 35 shows the method table
for our example classes.

Class names are fully qualified, i.e. they contain the package names. Unfortunately, it is
not possible to use the internal class metadata objects of the VM as keys instead of the
names. Linking is not done during class loading but only at the first execution of the
referencing bytecodes, so the metadata is not available yet when the method table is
filled. This introduces a small imprecision because we cannot distinguish two classes
with the same package name and the same class name. This is allowed in Java when
the two classes are loaded by different class loaders. We handle this case
conservatively: either both or none of the two classes are optimized. However, such
name conflicts are unlikely in practice because the package name usually contains the
vendor of a class.

Only classes and fields that could be relevant for object inlining are tracked. It is not
necessary to track a class if this class and its superclasses do not have reference fields,
i.e. if it cannot be an inlining parent. When such a class is loaded, a marker is inserted
into the table. It prevents the tracking of methods that allocate objects of this class.
Additionally, fields of scalar types can be ignored. The type of a field can be checked
during the bytecode analysis because it is stored as static information in the constant
pool of a class.

6.1.1 Bytecode Analysis

Algorithm 6.1 shows the bytecode analysis that fills the method table. The new and
putfield bytecodes [Lindholm99] of a method are relevant for object inlining. These
bytecodes have one static operand, which is an index into the constant pool of the
method’s class. For new bytecodes, the constant pool entry is the name of the allocated
class. For putfield bytecodes, the entry is a symbolic reference to a field, which
consists of the name and type of the field as well as the name of the class declaring the
field. For both bytecodes, a new entry is added to the method table.

58

Method Tracking

ANALYZEMETHOD(method)
for each bytecode bc of method do
if bc.opcode == new then
klassName = method klass.constantPool.klassNameAt(bc.index)
if methodTable.isTracked(klass, klassName) then
methodTable.add(klass, klassName, method)
end if

else if bc.opcode == putfield then
fieldType = method.klass.constantPool.fieldTypeAt(bc.index)
if fieldType == object or fieldType == array then
klassName = method klass.constantPool.klassNameAt(bc.index)
fieldName = method.klass.constantPool.fieldNameAt(bc.index)
methodTable.add(field, klassName, fieldName, method)
end if
end if
end for

Algorithm 6.1: Bytecode analysis to fill method table

A method must be processed by ANALYZEMETHOD before it is executed for the first time,
so the time span starts when the method’s class is loaded and ends at the first
invocation. In general, it is best to analyze a method as late as possible. Many methods,
especially those from library classes, are loaded but never executed. Analyzing such
methods would hinder object inlining: the transformations for object inlining can fail
when they are compiled to guarantee a precondition. Additionally, compiling such
methods increases the run-time overhead.

Usually, the first invocation of a method starts in the interpreter. Only if the method
affects an inlined field, it is necessary to compile it before its first invocation. Therefore,
we initiate the analysis at link time shortly before the method is invoked for the first
time and compilation is still possible before execution starts.

6.1.2 Class Hierarchies

The class information of a putfield bytecode contains the static type of the variable
used for the field access. This type can be a subclass of the class in which the field is
declared. Therefore, the class hierarchy must be checked when accessing information
from the method table. For example, Figure 6.1 introduces a subclass Polygon that
extends the class Polyline. Both classes have a method that stores the field 1ineColor
defined in the class Polyline. The information of the putfield bytecode in the method
Polyline.foo() contains the class name Polyline, whereas the putfield bytecode in
the method Polygon.bar() contains the class name Polygon because the static type of
this is Polygon. The information that both stores access the same field is not available
until linking, i.e. when the putfield bytecodes are executed for the first time.

59

Object Inlining

class Polyline { class Polygon extends Polyline {
Color 1lineColor; void bar() {
void foo() {) lineColor = ...
lineColor = ...
}
}
}

Figure 6.1: Field access across class hierarchy

Table 6.1 shows the resulting method table. The field 1ineColor appears twice: with
the class name Polyline as well as with the class name Polygon. It would be
complicated to coalesce these entries and merge the method lists. Instead, we access the
entries of a class and all its subclasses when searching for methods that store a field. In
our example, both entries and therefore both methods are returned when searching for
methods that store the field 1ineColor of the class Polyline.

Key (class name or field name) | Value (list of methods)
field at.ssw.Polyline lineColor at.ssw.Polyline.foo()
field at.ssw.Polygon lineColor at.ssw.Polygon.bar()

Table 6.1: Method table for class hierarchy

This introduces another minor imprecision of the method table. The class Polygon
could define a field with the name lineColor itself. The two methods would access
different fields, but the method table would still return both methods. The method
Polygon.bar() would be unnecessarily compiled when the field Polyline.lineColor
is to be inlined. This is correct because it is safe to compile any method, but it
introduces an additional overhead. In practice, such cases are rare and considered bad
programming style.

Static fields are not tracked in the method table. They can be distinguished from
instance fields because they are accessed using the bytecode putstatic instead of
putfield. Static fields are stored at the end of the class descriptor, i.e. the metadata
object of a class (see Figure 2.3 on page 14). It is not possible to colocate an object
referenced by a static field with the class descriptor because the class descriptor is
located in the permanent generation, while the referenced object is located in the
young or old generation. Therefore, we cannot optimize static fields and do not need to
track them.

6.2 Inline Requests

Guaranteeing the preconditions for a field requires the compilation of several methods
and a full garbage collection. Therefore, the analysis must be asynchronous to the
execution of the application. To track the state of the inlining process, an inline request

60

Co-allocation of Objects

object is maintained for each field that is a candidate for inlining. It is registered in the
hot-field tables and stores the following information:

e Unique ID: To allow references to an inline request from compiled code and to
simplify tracing, a unique number identifies each request.

e State: The inline request can be in the state compiling (methods must be
compiled), garbage collection (only the full garbage collection is pending), and
successful (optimized field loads are allowed). The state failed marks fields for
which the compilation of a method could not guarantee a precondition and
optimized field loads are impossible.

e Methods to compile: A list of methods that must be compiled to guarantee the
preconditions. When such a method is compiled, it is removed from the list.

e Methods to recompile: Methods that were compiled due to an invocation counter
overflow before the inlining process of a field was initiated must be recompiled
to insert co-allocations and guarded field stores. The old machine code is
discarded when the new one is available.

6.3 Co-allocation of Objects

Object colocation in the garbage collector (see Chapter 5 on page 47) ensures that a
group of objects, i.e. a parent object, its children, and further indirect children, are next
to each other in memory after garbage collection. However, to safely eliminate field
loads of pointers connecting these objects, it is necessary that the objects are colocated
before they are processed by the garbage collector the first time. This is guaranteed by
co-allocation of objects, which combines the allocation of a parent and all its children.

6.3.1 Modification of the Just-in-Time Compiler

The interpreter processes one bytecode at a time. Only information about this bytecode
is available. However, co-allocation combines several bytecodes: the allocation of the
parent object, the allocations of the child objects, and the field stores that install
pointers to the children into the parent. The interpreter is not designed for such
sophisticated analyses, therefore we limit our implementation to the just-in-time
compiler. All methods that allocate parent objects are compiled and checked for the
above pattern. These methods are listed in the method table described in Section 6.1.

Algorithm 6.2 shows the insertion of co-allocation instructions into the HIR of a
method. The algorithm is split into two phases. First, we search for field store
instructions that are suitable for co-allocation and build trees of allocation instructions.
Then, we create one co-allocation instruction for each tree and add all allocation and
field store instructions of the tree to the co-allocation instruction.

61

Object Inlining

COALLOCATION
parents = {}
children = {}

for each field store fs do
if fs.obj is allocation and fs.val is allocation and // allocated in same method

fs.obj not reachable from sf.val and /I no cycle
fs.val not in children and /[only one parent
checkMemoryFlow(fs, fs.obj, fs.val) then // field is never null
fs.obj.addChild(fs) /[add to allocation tree
parents.add(fs.obj)
children.add(fs.val)
end if

end for

for each allocation instruction alloc in parents do
if alloc not in children then /I alloc is root of an allocation tree
create and insert new co-allocation instruction coalloc
FiLL(alloc, null, coalloc)
end if
end for

FiLL(alloc, fs, coalloc)
coalloc.add(alloc, fs, coalloc.totalSize) // add allocation, field store and offset
coalloc.totalSize += alloc.size

sort children of alloc according to hot-field table

for each child c of alloc do /I children are field store instructions
FiLL(c.val, c, coalloc) /Il recursive call
end for

Algorithm 6.2: Co-allocation in just-in-time compiler

To detect all allocation instructions that are applicable for co-allocation, we iterate over
the field store instructions of a method because field stores connect the allocations. A
field store instruction has a reference to two other instructions as its parameters: the
object that is modified (obj) and the new value of the field (val). Co-allocation is
possible if all of the following criteria are satisfied:

1. The object and the value are both allocation instructions, i.e. both refer to
objects created within the same compiled method. It is not possible to co-
allocate a new object with a pre-existing object that is e.g. passed to the method
as an argument.

2. Co-allocation of a parent and its indirect children is possible, but the resulting
structure must be acyclic. Field stores that install a pointer to a parent object
into one of its children are ignored.

3. A child object can only have one parent. If an allocation is the value operand of
two field stores, one of the stores must be ignored. In other words, the resulting
structure of parents, children, and indirect children must be a tree.

62

Co-allocation of Objects

4. The allocations and the field store may be in different basic blocks, but they
must be executed together in all possible code paths. For example, it is not
allowed that a child object is only allocated in an if-branch and the field remains
null or gets another value assigned in the else-branch. Additionally, it must be
guaranteed that the field is not loaded before the field store because we cannot
handle cases when an inlined field is still null.

If a field store and its connected allocations satisfy all criteria, they are added to the
tree-based data structure for co-allocation. After all field stores have been processed,
the allocations are clustered into one or more trees. For each tree, one co-allocation
instruction is created and inserted into the HIR. The allocations of the parent and all its
children are added recursively to a flat list. Each entry of the list contains the allocation
instruction, the field store instruction, and the offset of the object relative to the start of
the object group. Additionally, the total size of the object group is computed.

The back end of the compiler uses this information to generate LIR operations for the
co-allocation. The operation that allocates a single chunk of memory for all objects at
once is followed by several operations that install the appropriate object headers. The
field stores are also performed at this time because the child objects must not remain
unreferenced. Otherwise, they could be reclaimed by the garbage collector because
there is no reference to them before the field store is executed.

Object colocation for the garbage collection of the young generation uses the
isColocationChild bit in the mark word of the object header to tag child objects (see
Section 5.2 on page 52). Otherwise, a child could be copied before its parent and
colocation would fail. This bit is also set by the co-allocation instruction for child
objects. As a result, the group of objects established by the co-allocation is never
separated by the garbage collector.

The algorithm for co-allocation is only loosely coupled with the rest of the object
inlining system. Co-allocation can be performed for all objects independently of the
hot-field tables. Information from the hot-field tables is used only for the correct
sorting of the children. The order of the children for co-allocation must match the order
in the hot-field tables, otherwise the objects would be reordered during garbage
collection and optimized field loads for newly allocated objects would be incorrect.

6.3.2 Example

This section illustrates the co-allocation performed by Algorithm 6.2 for the method
Test.allocate() from the example. Figure 6.2 replicates Figure 3.9 on page 37 and
shows the HIR of this method. The method contains four allocation instructions a2, a8,
a39, and a35, as well as three field store instructions a31, a34, and a42.

63

Object Inlining

bci tid__instruction

0 a2 new at.ssw.Polyline

4.5 a8 new java.util.Arraylist

4.9.5 ill1 1o

4.9.7 a30 new java.lang.Object[il1]

4.9.10 a3l a8._16 := a30 java.util.ArraylList.elementData
4,12 a34 a2. 8 := a8 at.ssw.Polyline.points

4.16 a35 new at.ssw.Color

4.23 a42 a2. 12 := a35 at.ssw.Polyline.lineColor

// Do something with a2

Figure 6.2: HIR fragment of method Test.allocate()

The algorithm iterates over the field store instructions. The first field store is a31,
which stores the value a30 into a field of the object a8 at offset 16. Both the object and
the value are allocation instructions in the same method. All other criteria for
co-allocation are also satisfied, so a30 is added as a child of a8. We also store the field
store instruction a31 as an edge linking a8 and a30 because we need information about
the field store later on.

The second field store a34 adds the previously detected parent a8 as a child of a2. This
is allowed because the resulting structure is still acyclic. The third field store a42 adds
a second child to a2. The resulting structure can be visualized as a tree, as shown in
Figure 6.3. The nodes are allocation instructions, the edges are field store instructions.

elementData (a31) > Ob]eCt[] (33@)

points (a34)

ArraylList (a8)

Polyline (a2)

Color (a35)

Figure 6.3: Co-allocation tree built for method Test.allocate()

lineColor (a42)

In this example, all allocation instructions of the method are in a single tree, so only
one co-allocation is constructed in the second step of the algorithm. The root of the tree
is instruction a2. It is added to the co-allocation instruction during the first invocation
of FiLL. No field store is recorded for the root, and the offset is 0. Then, the children of
a2 are sorted according to the hot-field table (see Figure 4.2 on page 46). This ensures
that the allocation a35 for the Color object is added before the allocation a8 for the
ArrayList. These two allocations are added in recursive calls of FiLL, together with the
field store instructions and the offsets 16 and 32, respectively.

Finally, the allocation a30 of the Object[] array is added with the offset 56. The offset
is equal to the sum of the sizes of all previously added objects. Table 6.2 shows the
resulting table of the co-allocation instruction. The first three columns are directly
stored in the table, the other columns show indirect information available through the
allocation instructions (size and allocation class) or the field store instructions (field
name).

64

Co-allocation of Objects

Allocation | Field Store | Offset Size Allocation Class Field Name

a2 - 0 16 at.ssw.Polyline -

a35 a42 16 16 at.ssw.Color lineColor

a8 a34 32 24 java.util.ArraylList | points

a3e a3l 56 56 Object][] elementData
total size: 112

Table 6.2: Details of the co-allocation instruction in method Test.allocate()

The original allocation and field store instructions are no longer necessary. No LIR
operations are created for them. They are subsumed by the co-allocation instruction.
Figure 6.4 contains the LIR operations that are emitted for the co-allocation instruction

of the example. The right hand side shows the resulting group of objects.

// Allocate memory for whole object group
alloc_raw ecx, esi, size:112 -> eax

// Initialize object headers Polyline
move obj:at.ssw.Polyline -> esi 8| points *-——
move int:1 -> [eax + 9] // mark word 12| 1ineColor *|—~ :
move esi -> [eax + 4] // class pointer 16 Color 4_,' I
move obj:at.ssw.Color -> esi 2| 8[1gb :
move int:129 -> [eax + 16] // mark word 28l 1) |
move esi -> [eax + 20] // class pointer (padding) |
move obj:java.util.Arraylist -> esi 32 ArrayList «-!
move int:129 -> [eax + 32] // mark word 46| 8| modCount
move esi -> [eax + 36] // class pointer 44 12| gize
move <.)bj:0bject[] -> esi 48| 16| elementData ®-|— -
move int:129 -> [eax + 56] // mark word 5| 20 . I
move esi -> [eax + 60] // class pointer (padding) :
move int:10 -> [eax + 64] // array length i Objectl] <«

)) 64| 32| 8[length
// Compute object addresses and set fields esl 36| 12
lea [eax + @] -> R51 (0]
lea [eax + 16] -> R52
move R52 -> [eax + 12] // Polyline.lineColor leal 72| 48| [9]
lea [eax + 32] -> R53 1e8| 76| 52| (padding)
move R53 -> [eax + 8] // Polyline.points
lea [eax + 56] -> R54
move R54 -> [eax + 48] // Arraylist.elementData

Figure 6.4: LIR for co-allocation in method Test.allocate()

First, one chunk of memory with 112 bytes is allocated on the heap for all four objects.

Then, the object headers, i.e. the mark words and the class pointers as well as the array
length of the Object[] array, are installed. The offsets of the objects relative to the start
of the memory chunk are available from the co-allocation instruction. Finally, the

addresses of the individual objects are computed using the address arithmetic
operation lea (load effective address). These addresses are installed in the fields and are

available in virtual registers for later LIR operations.

65

Object Inlining

The mark word is initialized differently for the parent object and the child objects. The
mark value 1 is the default for newly created unlocked objects (see Figure 2.2 on
page 12). If the bit 7 is set as well, i.e. if the value 128 is added to the default mark
value, the object is tagged as a child object. We use this bit for the tagging in the
garbage collection of the young generation. The bit is taken from the hash code bits and
thus reduces the range of hash codes.

6.3.3 Control Flow and Memory Flow

The call of checkMemoryFlow in Algorithm 6.2 ensures that the allocations of the parent
and the child object as well as the field store that connects them are executed in all
possible code paths. Restricting co-allocation to allocations performed in the same
block would be overly conservative. A single conditional instruction or if-block
between two allocations would prohibit co-allocation and therefore also object inlining
for the field that connects the objects.

Figure 6.5 illustrates some cases of legal and illegal control flow for co-allocation. In the
simplest case, all instructions are in the same block. The co-allocation instruction a1@ is
inserted after the first allocation because there could be other instructions between a1
and a2 that reference a1, so the object must be available.

al new Parent al new Child

ald co-allocation al, a2 alo co-allocation a2, al

a2 new Child

a3 al._8 := a2 }

— | |
| | \ 4

,—J a2 new Parent

A a3 a2. 8 :=al

a) Legal control flow

|a1 new Parent | al new Parent

a2 new Child
a2 new Child }

a3 al. 8 := a2 |a3 al. 8 := a2 |
y v

| | | |
b) Illegal control flow

Figure 6.5: Control flow for co-allocation

66

Guards for Field Stores

It is also allowed that the instructions are in different blocks as long as they are
executed in all code paths. The if-block in the second example does not inhibit
co-allocation. Also, the reversed order of the allocation instructions does not affect the
algorithm. The co-allocation instruction a10 is again inserted after the first allocation,
which is the allocation of the child object in this case.

Figure 6.5 b) shows examples where co-allocation is not possible. In both cases, the
field is null when the if-branch is not taken. In the second example, it is irrelevant that
the parent and the child object are allocated in the same block. An optimized field
access is not possible when the field could be null because the null check would be as
expensive as the field access and would make the optimization useless.

Figure 6.6 shows an example for a legal and an illegal memory flow. After the field
store instruction, the parent object can be used without restrictions as shown in
Figure 6.6 a). However, between the allocation and the field store, the field is still null.
If the parent object is passed as a method parameter like in Figure 6.6 b), the called
method could perform an optimized field load, which is not allowed before the field
store has been executed.

al new Parent al new Parent
ald co-allocation al, a2 a2 new Child

a2 new Child v3 invoke foo(al)
a3 al._8 := a2 a4 al. 8 := a2
v4 invoke foo(al)

a) Legal memory flow b) Illegal memory flow

Figure 6.6: Memory flow for co-allocation

Because we do not use an interprocedural analysis, we handle such cases
conservatively. We do not perform co-allocation if the parent object could be accessed
between the allocation and the field store. In contrast, there are no restrictions for child
objects. They can be accessed freely and also passed to other methods immediately
after allocation.

6.4 Guards for Field Stores

The second precondition for object inlining specifies that an inlined field must not be
modified after it was assigned for the first time. This is ensured by guarding field
stores. All methods that contain a store of the field must be compiled. The list of these
methods is available from the method table described in Section 6.1. If the value of a
field is changed, the inlining of the field must be revoked because the new child that is
installed is not colocated to the parent. The revocation is done by a runtime function
that is called before the actual field store. It causes methods that contain an optimized
field load of this field to be deoptimized.

67

Object Inlining

It is not possible to replace the run-time check by a compile-time check. In many cases,
methods with guarded field stores are compiled even though the compiled code is
never executed. Following the usual code pattern in Java, fields are initialized with
child objects in the constructor of the parent object. The constructor is invoked
immediately after the allocation and usually inlined into the allocating method.
Nevertheless, the constructor continues to exist also as a separate method that could be
invoked, e.g. via reflection. We compile the constructor with field store guards so that
object inlining can be revoked in such a case.

In our example, the fields 1ineColor and points of the class Polyline are stored once
per object in the constructor of the class Polyline. The constructor is small and
therefore inlined into methods that allocate Polyline objects, e.g. into the method
Test.allocate(). Section 6.3.2 showed that co-allocation is performed for the
Polyline object and its children when this method is compiled. When the constructor
itself is compiled, co-allocation is not possible because the Polyline object is passed to
the constructor as a method parameter.

Figure 6.7 replicates Figure 3.10 on page 38 and shows the HIR for the constructor
Polyline.<init>(). The field stores a4@ and a32 assign non-colocated objects to the
fields lineColor and points. Object inlining of the fields needs to be reverted before
the field stores are performed. However, a28 can be co-allocated with a6 because both
allocations and the field store between them are in the same method.

bci__ tid__instruction
5 a6 new java.util.Arraylist

9.5 i9 10

9.7 a28 new java.lang.Object[i9]

9.10 a29 a6._16 := a28 java.util.Arraylist.elementData
12 a32 al. 8 := a6 at.ssw.Polyline.points

16 a33 new at.ssw.Color

23 a40 al. 12 := a33 agt.ssw.Polyline.lineColor

26 v4l return

Figure 6.7: HIR of constructor Polyline.<init>()

Figure 6.8 shows a fragment of the LIR for this method. The method parameter, i.e. the
Polyline object, is stored in the virtual register R41. Operation 50 allocates the Color
object, and operation 58 stores this object into the field 1lineColor using the offset 12
relative to the Polyline object. Immediately before this store, operation 56 calls the
runtime function putfieldGuard to revoke object inlining. The identification number
of the inline request (see Section 6.2) for the field 1ineColor is passed as an argument.
Operation 54 stores this number (which is 0 in our case) on the method stack according
to the calling conventions.

68

Transition to Object Inlining

nr__operation
// R41 contains first method parameter (the Polyline object)
48 move obj:at.ssw.Color -> edx

50 alloc_obj edx, ecx, esi, size:16 -> eax

52 move eax -> R50

54 move int:0 -> [esp + 9]

56 call putfieldGuard

58 move R50 -> [R41 + 12]

Figure 6.8: LIR fragment for constructor Polyline.<init>()

The method putfieldGuard revokes object inlining for the specified field. It
deoptimizes all methods that contain an optimized load of this field because this is no
longer safe after the field store. The machine code of these methods is discarded. If
such methods are currently running, the execution is continued in the interpreter (see
Section 2.5 on page 23). It is not necessary to modify the heap in putfieldGuard
because our object inlining preserves field pointers and object headers. Unoptimized
field loads work correctly without changing the objects. Furthermore, object colocation
is still performed in the garbage collector to improve the cache behavior.

Deoptimization is an expensive operation. Therefore, we use heuristics to limit the
number of fields for which object inlining is initiated. For example, if the number of
methods that contain stores of a field is high, it is likely that the field is changing at run
time, so the optimization process is never started.

6.5 Transition to Object Inlining

Co-allocation and guarded field stores ensure that the parent-child relationship of
newly allocated objects is established and retained. Object colocation in the garbage
collector preserves the groups of colocated objects. However, the heap can still contain
non-colocated objects, for example in the infrequently collected old generation. Such
objects are colocated by the next full garbage collection, so it is necessary to delay the
subsequent optimization steps.

Normally, the mark-and-compact algorithm used for a full garbage collection does not
change the order of objects. It only removes gaps between objects by moving them
towards the beginning of the heap. However, the garbage collection that completes the
object inlining process for a field must re-order objects to establish the colocation (see
Section 5.3 on page 54 for the special handling of object colocation in this algorithm).

Once the inlining process for a field is completed, methods that allocate parent objects
or store the field must not be executed in the interpreter. Only the compiled machine
code with co-allocation and field store guards guarantees the preconditions. If code
without these transformations is still running, e.g. further up in the method call chain,
it is necessary to wait until the execution has finished.

69

Object Inlining

For example, a method m that allocates a parent object could invoke a long-running
operation before the actual allocation is performed. Assume that object inlining is
initiated after execution of m started in the interpreter. All relevant methods are
compiled with co-allocation and field store guards (including m), but m is still running
in the interpreter. Object inlining cannot succeed while m is interpreted because m will
allocate new non-colocated objects.

Therefore, we scan the method stacks of all threads and search for methods that
contain relevant allocations or field stores but whose execution started before they
were compiled with co-allocation and field store guards. The first full garbage
collection where no such methods are running anymore is used to complete the
inlining process.

6.6 Optimized Field Loads

When the preconditions for a field are satisfied, loads of the field can be replaced by
address arithmetic. This is performed by the just-in-time compiler. It does not pay off
to optimize field loads in the interpreter because the overhead of interpreting is much
higher than the possible gain of optimized field loads. In contrast to the previous
sections, it is also not necessary to compile all methods that load an inlined field. Only
frequently executed methods that load the field are optimized. These are methods that
were previously compiled because of an invocation counter overflow. Such methods
are recompiled to apply object inlining.

There are two possibilities to optimize field loads: load folding and address computation.
Additionally, other compiler optimizations benefit from the information collected
during object inlining. It is guaranteed that an inlined field is non-null and that it is
never changed. Also, the exact type of the object referenced by the field is known,
which can be used to eliminate type checks and to convert dynamic binding of method
calls to static binding.

6.6.1 Load Folding

In many cases, a field load that yields a child object is immediately followed by another
field access that uses the result. Load folding merges the two memory accesses. The
resulting access uses a larger offset, which is the memory distance between the parent
and the child plus the offset of the second field access. Figure 6.9 shows load folding
for the example method Polyline.getLineColor(). This method contains two
successive field loads. First, the field Polyline.lineColor is used to load a Color
object. Then, the field Color.rgb of the loaded object is accessed. The resulting integer
value is returned.

70

Optimized Field Loads

tid__instruction tid__instruction
a2 al._ 12 at.ssw.Polyline.lineColor i3 (al+16)._8 at.ssw.Color.rgb
i3 a2._8 at.ssw.Color.rgb i4 ireturn i3

i4 ireturn i3

a) Unoptimized HIR c) Optimized HIR
nr__operation nr__operation
10 move [ecx + 12] -> eax 10 move [ecx + 24] -> eax
12 move [eax + 8] -> eax 14 return eax

16 return eax
b) Unoptimized LIR d) Optimized LIR

Figure 6.9: Load folding in Polyline.getLineColor()

The unoptimized HIR contains the two field load instructions. They are converted to
two move operations in the LIR with the field offsets 12 and 8. Load folding eliminates
the first field load. The address of the Color object is never explicitly present. Instead,
the field Color.rgb is accessed with a larger offset relative to the Polyline object. The
Color object is located immediately after the Polyline object, which has a size of 16
bytes. The combined field offset is 16 + 8 = 24. Figure 6.10 visualizes these offsets.

Polyline
8| points ~|——>
12! lineColor -~ |
16 Color < !
24| 8[1gh |
28| 12| (padding) |
32 ArrayList <« -
40| 8| modCount
44| 12| gize
48| 16| elementData ®-|—~
52| 20| (padding) v

Figure 6.10: Field offsets of inlined objects

Load folding benefits from method inlining. Following the encapsulation principle,
many field loads occur in small accessor methods. When these accessor methods are
inlined, the field loads get exposed in the HIR of the calling method and load folding is
possible. The second field access can be a load or store of any type. Load folding can
merge a load of an inlined field and a store into the child object to a single store with a
larger offset. Similarly, more than two field accesses can be folded to a single one when
inlining children are nested, i.e. when an indirect child of a parent object is accessed.

71

Object Inlining

6.6.2 Address Computation

Load folding can only be applied if the address of the child object is not needed as an
explicit value. However, some operations require the address of the child object, e.g.
when the child object is passed as a method parameter or when a synchronization
operation is performed on it. In this case, the load of the inlined field cannot be
eliminated, but the memory access can be replaced by address arithmetic. The distance
between the parent and the child in memory is added to the address of the parent.

Figure 6.11 shows the address computation in the HIR and LIR for the example
method Polyline.getPoint(). The load of the inlined field Polyline.points yields
an ArraylList object. The method ArrayList.get() is called on this object, i.e. the
ArrayList object is used as a parameter in a method call. Assume that the called
method is too large to be inlined.

tid__instruction tid__instruction
a3 al. 8 at.ssw.Polyline.points a3 (a1432) at.ssw.Polyline.points
a4 a3.invokeinterface(i2) a4 a3.invokestatic(i2)
java.util.List.get java.util.ArraylList.get

a6 areturn a4 a6 areturn a4

a) Unoptimized HIR c) Optimized HIR
nr__operation nr__operation
12 move [ecx + 8] -> ecx 12 lea [ecx + 32] -> ecx
18 virtual_call ecx -> eax 18 static_call ecx -> eax
26 return eax 26 return eax

b) Unoptimized LIR d) Optimized LIR

Figure 6.11: Address computation in Polyline.getPoint()

The unoptimized HIR contains a load of the field Polyline.points, which is converted
to a LIR move operation with a memory access on the left hand side. In the optimized
HIR, the field load is replaced by address arithmetic. The offset of the ArrayList object
relative to the Polyline object, which is 32 according to Figure 6.10, is added to the
address of the Polyline object. In the LIR, the lea (load effective address) operation
provided by the Intel IA-32 architecture is used. It is similar to an addition, but can
place the result in a different register than the source operands. In summary, the total
number of executed instructions is not reduced, but nevertheless one memory load is
eliminated.

6.6.3 Additional Optimizations

The analysis for object inlining increases the amount of static type information for
inlined fields. The co-allocations guarantee that an inlined field is initialized with a
child of the same type in all parent objects, and the guarded field stores ensure that this

72

Optimized Field Loads

field is not changed later on. Therefore, the dynamic type of the field is known, which
is more precise than the declared type defined at compile time in the Java bytecodes.
The additional information can be used by the just-in-time compiler to apply
optimizations.

In our example, the field points of the class Polyline has the declared type List,
which is a generic interface of the Java collections library. There are several
implementations of the interface, e.g. ArrayList or LinkedList. When the field is
declared using the List interface, the implementation class can be changed later on by
modifying only one line, i.e. the allocation in the constructor of Polyline. However,
the interface type List complicates compiler optimizations because the just-in-time
compiler does not know the actually used implementation class. Therefore, a virtual
call of the interface method List.get() is necessary in the example of Figure 6.11 a)
when a method is invoked on the field Polyline.points.

Co-allocation discovers that this field is always initialized with an ArrayList object.
The compiler can use this information and replace the dynamic binding to the method
List.get() with a static binding to the method ArrayList.get(). This eliminates the
overhead of dynamic binding and allows the compiler to inline the method. In the
optimized HIR of Figure 6.11 c) the virtual call was replaced by a static call.

The client compiler inlines only statically bound methods. Heavily optimizing
compilers like the server compiler can also inline the most frequently invoked virtual
method. However, a run-time type check is necessary in the machine code to ensure
that the inlined method is executed only for objects of the correct class. The additional
type information from object inlining can eliminate such type checks. Explicit type
checks in the Java bytecodes like instanceof and checkcast are eliminated in a similar
way.

In addition to having more precise type information, the just-in-time compiler also
knows that an inlined field is never null. Comparisons of an inlined field with null
can be eliminated and replaced with unconditional jumps. Other optimizations such as
global value numbering and loop invariant code motion benefit from the fact that an
inlined field is invariant. Normally, such optimizations must conservatively assume
that a field is changed by a method call. In contrast to that, loads of inlined fields can
be eliminated or moved without precautions. However, the impact is limited because
load folding eliminates the field load anyway, so other optimizations only take effect if
address computation is necessary.

6.6.4 Handling Null Checks

Java is a safe language, so the specification demands that all illegal memory accesses
are intercepted. For example, a NullPointerException must be thrown if a field is
accessed via a null pointer. Even optimized machine code must adhere to the strict
exception semantics and throw the same exceptions in the same order as the interpreter
would throw them.

73

Object Inlining

A NullPointerException usually indicates an erroneous program, so the compiler
optimizes for the case that no exception is thrown. The null check is implicitly
integrated into a memory access and uses the exception mechanism of the processor. If
the memory access dereferences null, a hardware exception is thrown. The virtual
machine catches the hardware exception and converts it to a NullPointerException at
the Java level. Therefore, no explicit comparison with null is necessary before a field
access.

When a memory access is eliminated by object inlining, the implicit null check is
removed as well, i.e. the case when the variable that holds the parent object is null is
no longer detected. Inserting an explicit null check would not be beneficial because it
is as expensive as a memory access.

Address computation is only allowed if no null check is necessary. Sophisticated null
check elimination can remove most checks. Nevertheless, some loads of inlined fields
cannot be optimized. Figure 6.12 illustrates the influence of null values. The left hand
side shows the unmodified example method Polyline.getPoint(). The load of the
inlined field points operates on the this pointer, which can never be null. Therefore,
the memory access can be replaced by address computation.

Point getPoint(int i) { static Point getPoint(Polyline p, int i) {
return this.points.get(i); return p.points.get(i);
} }
a) No null check necessary b) No optimization because null check necessary

Figure 6.12: Influence of null checks on address computation

In contrast to that, the field load of Figure 6.12 b) operates on the method parameter p,
which can be null. The address computation would interpret null as the address 0
and add 32 to it, which would lead to an address that is neither null nor valid.
Therefore, the load of the field points cannot be optimized, although the same HIR
instructions are created for the methods in Figure 6.12 a) and b). The fact that the field
points is never null is irrelevant in this case.

Load folding can handle null values correctly in many cases because it is possible to
let the folded memory access perform the implicit null check. Figure 6.13 shows the
same situation as above for the method Polyline.getLineColor(). The this pointer is
never null and load folding is possible on the left hand side. On the right hand side, a
null check is necessary for the method parameter p. The check can be done by the
memory access that loads the field rgb with the offset 24 relative to the Polyline
object, as shown in Figure 6.9. We ensure that the exception thrown by the implicit
null check contains the information that the variable p was null and not the field
lineColor, which can never be null as it is an inlined field.

74

Run-Time Monitoring

int getLineColor() { static int getLineColor(Polyline p) {
return this.lineColor.rgb; return p.lineColor.rgb;
} }
a) No null check necessary b) Folding of null check possible

Figure 6.13: Influence of null checks on load folding

6.7 Run-Time Monitoring

Java applications can load new classes at run time. This complicates dynamic
optimizations because new bytecodes can invalidate preconditions of previous
optimizations. Analyzing all classes that are in the classpath and could possibly be
loaded is neither reasonable (because it bloats the internal tables with unused classes)
nor sufficient (because new classes can be loaded e.g. via a network connection).
Therefore, the run-time system must track the preconditions of optimizations and
trigger deoptimization if a newly loaded class does not satisfy a precondition.

Our object inlining uses the method table to support dynamic class loading. Before a
method is executed for the first time, it is analyzed and inserted into the method table
if it allocates new objects or performs field stores. The object inlining system tracks
changes of the method table. If a method is added to an entry of an inlined field or of a
class containing an inlined field, the method must be compiled with co-allocation or
guarded field stores. We compile this method immediately to check whether it satisfies
the preconditions. If the transformation fails, e.g. because co-allocation is not possible,
the inlining of the affected field must be revoked using deoptimization.

This case is handled in the same way as a failing field store guard (see Section 6.4).
Fortunately, it happens rarely. The detection of hot fields using read barriers, the
compilation of methods with co-allocation and field store guards, and the full garbage
collection require some time, so the application has usually reached a stable state
before the first methods are compiled with optimized field loads. It is unlikely that
later loaded classes affect already optimized data structures.

Beyond bytecodes, Java offers several ways to allocate objects or to modify fields.
Objects can be allocated and fields can be stored using reflection or the Java Native
Interface (JNI). New objects are also allocated when an object is cloned using
Object.clone(). These techniques are more dynamic than bytecodes, i.e. they can
allocate objects of arbitrary classes and modify arbitrary fields. No static information
about the affected classes is available.

We handle these dynamic features conservatively because they are rarely used. If a
class is instantiated or a field is modified by anything else than bytecodes, we disable
object inlining for this class or field. Code that uses the JNI is usually developed in C or
C++, and the reflection system as well as Object.clone() are part of the Java class
library. It is not feasible to analyze them directly. However, all three possibilities use

75

Object Inlining

callbacks into the VM to resolve class names and field names to class objects and field
offsets. We instrument these VM callbacks so that special code is executed before the
callback returns. In this code, we invalidate the class or field in the method table, which
excludes it from optimization. If an already inlined field is affected, we revoke inlining
by using deoptimization.

6.8 Support for Class Hierarchies

Class hierarchies are a central concept of object-oriented programming. Subclass
objects can be used as if they were superclass objects. Figure 6.14 adds two subclasses
to our example: Pattern is a subclass of Color, and Polygon is a subclass of Polyline.
When taking object headers and 8-byte alignment into account, both subclasses are
8 bytes larger than their superclasses, i.e. their size is 24 bytes instead of 16 bytes.

class Color { class Pattern extends Color {
int rgb; int style;
} int size;
}
class Polyline {
List<Point> points; class Polygon extends Polyline {
Color lineColor; Pattern fillPattern;
Polyline() { Polygon() {
points = new ArraylList<Point>(); super();
lineColor = new Color(); fillPattern = new Pattern();
} }
} }

Figure 6.14: Java source code for class hierarchy

The class Pattern is a subclass of Color, which is the type of the inlined field
lineColor. Subclasses of inlining children do not need special handling during object
inlining, and the class hierarchy can safely be ignored. The constructor
Polyline.<init>() explicitly allocates a Color object and not a Pattern object. If the
field 1ineColor were initialized with a Pattern object in some cases, e.g. using an if-
statement in the constructor, the field would not be inlinable because co-allocation
would be impossible.

6.8.1 Reverse Object Order

The class Polygon adds an additional field to its superclass Polyline. This affects the
offsets of the inlined fields points and 1ineColor of the class Polyline. The increased
size of Polygon objects changes the offsets of the child objects that are located after the
parent object. Since a variable of type Polyline can also refer to a Polygon object, the
offset for optimized field loads of the fields points and 1ineColor are no longer fixed.

76

Support for Class Hierarchies

Figure 6.15 illustrates this situation. For example, the optimized field load in the
method Polyline.getLineColor() shown in Figure 6.9 uses the offset 24 relative to
the Polyline object to load the field rgb. If this method were called for a Polygon
object, it would access the wrong memory position and load the mark word of the
Color object instead of the value of the field rgb.

—»{ Polyline —»{ Polygon
8| points *~|——- 8| points *~———,
12] lineColor *-(—-~ : 12] lineColor *-|——- :
16 Color <« : 16| fillPattern > : !
241 8l rgb : 20| (padding) : :
28| 12| (padding) I 24 Color <—~ :
32 ArrayList <« - 321 8rgb :
40| 8 modCount 36| 12| (padding) :
441 12| size 40 ArrayList <« —~
48| 16| elementData @-|—~ 48| 8 modCount
52| 20| (padding) v 52| 12| gjze
6| 16| elementData @-|—~
60| 20| (padding) v
Figure 6.15: Inconsistent inline offsets with class hierarchies
-40 ArrayList « - -40 ArrayList «-
=321 8 modCount : =321 8 modCount :
-28| 12] gize A 28| 121 gize Al
24| 16| elementData |-~ : -24| 16| elementData |-~ :
-26| 20| (padding) : -26| 26| (padding) :
-16 Color <« -16 Color <« !
-8 8lrgb (1 -8l 8rgb [
-4 12| (padding) : : -4 12| (padding) : :
—»| Polyline : : —>» Polygon : :
8| points 0——4|J 8| points o——4|J
12| lineColor *|—~ 12| lineColor *-|—~
16| fillPattern >
20| (padding)

Figure 6.16: Reverse object order to support class hierarchies

We solve this problem by reversing the object order, i.e. we place the child objects in
front of the parent object on the heap. With this reverse order, the offset of the children
are fixed negative values. Figure 6.16 illustrates the object order and the field offsets
that are used to access fields of inlined objects. For example, the optimized field access
of the field rgb uses the offset -8, which is equal for Polyline and Polygon objects. The

77

Object Inlining

8-byte alignment of objects is still necessary, i.e. a padding of 4 bytes is inserted
between the field rgb and the Polyline header.

Mixing normal and reverse object order is not reasonable. For example, it would not be
possible to combine a parent object optimized using the normal order and another
parent object optimized using the reverse order to an inlining hierarchy later on.
Therefore, we use the reverse object order in all cases.

6.8.2 Modifications for Reverse Object Order

Reversing the object order requires modifications of some algorithms presented in the
previous chapters. However, no architectural changes are necessary because the objects
of a group are independent. The object group does not need special header
information, so it does not matter that the header of the parent object is now in the
middle of the object group.

The object order is relevant for object colocation in the garbage collector (see
Algorithm 5.2 on page 53 and Algorithm 5.3 on page 55) as well as for co-allocation in
the just-in-time compiler (see Algorithm 6.2). In these algorithms, the loops processing
the child objects must be changed such that children are processed before their parent
and in reverse order. The entries of the colocation table are iterated in reverse order.

78

Chapter 7

Array Inlining

This chapter presents the differences between objects and arrays as far as they
are relevant for inlining. On the one hand, the size of arrays is not fixed at
compile time, which complicates the inlining process. On the other hand, array
fields that are changed several times can be inlined because the check for
modifications can be integrated into the array bounds check. Inlining array
element objects into arrays is not possible without a global data flow analysis.

Arrays play an important role in object-oriented applications. While objects are used to
decompose the functionality of a program into well-understandable small parts, arrays
are ideal for the implementation of dynamic data structures. Objects of business logic
classes use arrays to reference variable-sized lists of related objects. Such dynamic lists
of children are encapsulated in collection classes, which are part of almost every class
library. Because of the additional layer between the business object and the array,
several memory accesses are necessary to load an array element. Array inlining
reduces this overhead by folding field loads into the array accesses.

Java integrates array types smoothly into the object class hierarchy. Arrays are
considered as objects and inherit from the common base class Object. However, there
are certain differences between objects and arrays that affect inlining. When arrays are
used as inlining children, it must be considered that the size of arrays is not necessarily
a compile-time constant. Using arrays as inlining parents is impossible because of the
limited type information in Java bytecodes for accessing array elements.

7.1 Arrays as Inlining Children

The preconditions for object inlining ensure that an object field references the same
inlining child throughout the whole lifetime of the object. The class of the inlining child
and therefore its size is a compile-time constant. The field is not allowed to change
because the new child would not be colocated anymore. Changed object fields cannot
be detected efficiently when the field is loaded, therefore we use guards to intercept
field stores.

The basic algorithm for object inlining can also be applied for the inlining of array
tields. The detection of hot fields and the colocation in the garbage collector remain

79

Array Inlining

unchanged. However, the actual inlining algorithm must take the differences between
objects and arrays into account. On the one hand, the size of an array cannot be
determined at compile time in many cases, which complicates array inlining. On the
other hand, it is possible to integrate the check whether an array field has been
changed into an array access with no additional costs by embedding it into the array
bounds check. Allowing array fields to change increases the number of array fields that
can be inlined. We distinguish the following three cases:

e Fixed array inlining: Inlining of an array field that references only arrays with the
same constant length.

o Variable array inlining: Inlining of an array field that may reference arrays of
different lengths, but is assigned only once.

e Dynamic array inlining: Inlining of an array field where the length of the
referenced arrays may vary at run time, i.e. a field that is modified several
times.

7.1.1 Fixed Array Inlining

If all objects of a parent class point to arrays with the same fixed length, the inlining of
array fields can be handled in the same way as the inlining of object fields. Because
their length is constant, all referenced arrays have the same size. In addition to
eliminating the field access for the array field, other aspects of the array access can be
optimized as well. The constant length can be used to simplify the array bounds check,
which does not need to load the array length anymore. The constant array length is
detected during co-allocation when all methods that allocate the parent objects and the
child arrays are compiled.

In the example in Figure 7.1 a), the class Parent contains the array field child that
always references an array of length 2. To inline this field, the method allocation()
must be compiled with co-allocation. Figure 7.1 b) shows the HIR instructions of the
method where the allocation instructions al and a9 and the field store instruction a10
are combined to the co-allocation instruction a14. The constant i8 with the value 2 is
used for the array length. The just-in-time compiler detects that the array length is
constant and informs the object inlining system. For fixed array inlining, the length
must be equal for all allocation sites of the class Parent. Figure 7.1 c) shows the
optimized object layout.

Compared to a field access, an array access needs two additional machine instructions
for the bounds check. The first instruction compares the index with the length of the
array. The second one branches to an out-of-line code block that throws an exception.
Figure 7.2 a) shows the unoptimized HIR and LIR for the method access(). The LIR
operations 14 and 16 check whether the array index (register edx) is within the bounds
of the array (register ecx) before the array load is performed by the operation 18. These
three LIR operations are emitted for the HIR instruction a4.

80

Arrays as Inlining Children

Parent allocation() { Child access(Parent p, int n) {
Parent p = new Parent(); return p.child[n];
p.child = new Child[2]; }
return p;

4 a) Java source code

tid__instruction Parent

al new Parent 8| child *|—~

ald co-allocation al, a9 16 Child[] (_J

i8 2 24| 8 .

a9 new Child[i8] et

ale al._8 := a9 Parent.child [0]

all areturn al 32| 18/ [1]

b) HIR of method allocation() ¢) Memory layout

Figure 7.1: Example for fixed array inlining

tid__instruction tid__instruction
a3 al. 8 Parent.child a4 (al+1l6)[i2] length:2
a4 a3[i2] a5 areturn a4

a5 areturn a4

nr__operation nr__operation

// ecx: p edx: n // ecx: p edx: n

12 move [ecx + 8] -> eax 12 cmp edx, 2

14 cmp edx, [eax + 8] 14 branch aboveOrkEqual Exception
16 branch aboveOrEqual Exception 16 move [ecx + edx*4 + 28] -> eax
18 move [eax + edx*4 + 12] -> eax 20 return eax

22 return eax

a) Unoptimized method access() b) Optimized method access()

Figure 7.2: HIR and LIR for fixed array inlining

The field load instruction a3 is not necessary in the optimized HIR shown in
Figure 7.2 b). Instead, the array load a4 uses the additional fixed offset 16 to access the
array element relative to the Parent object al. The array load operation 16 therefore
uses the offset 28 instead of 12. Additionally, the array load instruction is augmented
with the fixed array length 2, which is used by the LIR operation 12 for the bounds
check. Instead of three memory loads in the unoptimized code, only one load is
necessary in the optimized code.

7.1.2 Variable Array Inlining

If the objects of a parent class point to arrays with different but fixed lengths, the field
accesses can be eliminated in the same way as with object inlining. However, a parent
object can only have one such inlining child. Because the size is not known at compile

81

Array Inlining

time, a variable-length array must be the last child. The inlining offset of a subsequent
child could not be computed by the compiler.

Figure 7.3 shows a modified version of the example. The length of the allocated array is
not known at compile time because it is passed as a parameter to the method
allocation(). The HIR instruction a9 for the array allocation uses the method
parameter il as the length operand. Co-allocation is still possible. The size of the
memory chunk for the parent and the child is no longer fixed, but also involves the
array length. It is a prerequisite for co-allocation that the length of a variable-sized
array is available to the co-allocation instruction, i.e. the HIR instruction that computes
the length must be located in front of the co-allocation instruction. For example, it is
not allowed that the array length is returned by a method that is called after the
allocation of the parent object but before the allocation of the child array. Array
inlining fails in such cases.

Parent allocation(int k) { Child access(Parent p, int n) {
Parent p = new Parent(); return p.child[n];
p.child = new Child[k]; }
return p;

}

a) Java source code

tid__instruction Parent
a2 new Parent 8| child *~|—~
al4 co-allocation a2, a9 16 Child[] (_l
a9 new Child[il] sal g -
ale a2._8 := a9 Parent.child length: k

- 28| 12 [0]
all areturn a2

32] 16 [1]
b) HIR of method allocation() ¢) Memory layout

Figure 7.3: Example for variable array inlining

tid__instruction tid__instruction
a3 al._8 Parent.child a4 (al+le)[i2]
a4 a3[i2] a5 areturn a4

a5 areturn a4

nr__operation nr__operation

// ecx: p edx: n // ecx: p edx: n

12 move [ecx + 8] -> eax 12 cmp edx, [ecx + 24]

14 cmp edx, [eax + 8] 14 branch aboveOrEqual Exception
16 branch aboveOrkEqual Exception 16 move [ecx + edx*4 + 28] -> eax
18 move [eax + edx*4 + 12] -> eax 20 return eax

22 return eax

a) Unoptimized method access() b) Optimized method access()

Figure 7.4: HIR and LIR for variable array inlining

82

Arrays as Inlining Parents

Figure 7.4 shows the HIR and the LIR for the unoptimized and the optimized access of
a variable-sized array. The left hand side is equal to Figure 7.2. On the right hand side,
the memory access for the array bounds check cannot be eliminated, so two memory
loads are necessary in the optimized code. Both the bounds check operation 12 and the
array load operation 16 use the additional offset to access the array relative to the
Parent object.

7.1.3 Dynamic Array Inlining

If an array field is assigned multiple times, it is no longer safe to eliminate the field
access without further checks. In contrast to object inlining, it is possible to detect
whether an array field has been changed at run time without additional overhead in
the common case. Section 7.3 discusses the different possibilities.

7.2 Arrays as Inlining Parents

Reference arrays contain pointers to other objects or arrays. Therefore, it would be
beneficial to combine an array with the objects that are referenced by the array
elements, i.e. to allow arrays as inlining parents. Figure 7.5 shows the resulting object
structure when the two Data objects referenced by a Data[] array would be inlined.
The access p[n].field could be performed using the address arithmetic p+n*16+32.
However, we claim that this optimization is impossible without a global data flow
analysis because of the nature of the array access bytecodes.

Data[] allocation() { Datal]
Data[] p = new Data[2]; 8/ length: 2
p[@] = new Data(); 12{ 19 _
p[1] = new Data(); [0] s 3
return p; 161 1] & (— 7y
} 24 Data <’ :
32 8[f
int access(Data[] p, int n) { 10 field :
return p[n].field; Data -
} 48 8| field
a) Java source code b) Memory layout

Figure 7.5: Inlining with an array as the inlining parent

Java bytecodes are executed using an operand stack. Most bytecodes pop their
arguments from the stack, perform an operation, and then push the result back on the
stack. Only arguments that are constant for the Java source language compiler, such as
numeric constants or offsets of local variables, are part of the bytecodes. Other
examples of such constants are indices into the constant pool of the class. The
bytecodes that load and store fields, getfield and putfield, include a symbolic
reference to the name of the accessed field and the class to which the field belongs. The

83

Array Inlining

VM linker converts the symbolic reference to a field offset. With this static information,
it is possible to find out which fields of which classes are changed at run time.

In contrast, the bytecodes that load and store elements of reference arrays, aaload and
aastore, have no static metadata. Both the array and the index of the accessed element
are taken from the operand stack. The lack of static type information inhibits inlining of
array elements. It is not possible to find out which array is modified by an aastore
bytecode, i.e. it is not possible to insert the parent of the array element into the method
table. Using the declared type of variables, e.g. the type of the method parameter if an
array is passed as a parameter, would be possible in some cases, but is not sufficient in
general.

Array stores would need a concept similar to our guards for field stores. As described
in Section 6.4 on page 67, a static check at compile time is not possible. A field store can
be guarded because precise information about the modified field, i.e. its parent class, is
available from the bytecodes. In contrast, for an aastore bytecode we do not know the
type of the affected array, so an aastore bytecode can possibly modify any reference
array on the heap. Therefore, it is impossible to guarantee the second precondition, i.e.
that a reference to a child object is not modified after it was assigned for the first time.

Figure 7.6 and Figure 7.7 illustrate the differences between the putfield and the
aastore bytecodes. Figure 7.6 corresponds to the object structure presented in
Figure 7.3. Assume that the field child of the class Parent should be inlined. The
bytecode putfield Parent.child in method m1 tells the object inlining system that the
field child of the class Parent is modified here. If the method modifies an already
initialized Parent object, the object inlining system knows that the field is not inlinable.
Similarly, the bytecode putfield Other.child in method m2 affects the inlining of the
field Other.child, but not the inlining of Parent.child. In other words, the type in
the putfield bytecode tells us which objects are modified.

void ml(Parent p, Child[] c) { 0: aload_©
p.child = c; 1: aload_1
} 2: putfield Parent.child
void m2(Other p, Child[] c) { 0: aload o
p.child = c; 1: aload_1
} 2: putfield Other.child

Figure 7.6: Java source code and bytecodes for field stores

Figure 7.7 corresponds to the example presented in Figure 7.5. Because the aastore
bytecode is not typed, the same bytecodes are emitted for the methods m1 and m2. In
the method m2, the variable p is declared of type Object[], while in fact it might
reference a Data[] array because Data[] is assighment compatible with Object[].
When p[@] is modified, we do not know whether an Object[] array or a Data[] array
is affected. The method m2 therefore prohibits array element inlining of Data[] and all
other array types.

84

Implementation of Dynamic Array Inlining

void mi(Data[] p, Data c) { 0: aload ©
p[@] = c; 1: iconst_©
2: aload_1

3: aastore

void m2(Object[] p, Data c) { 0: aload_©
p[e] = c; 1: iconst_o
2: aload_1

3: aastore

Figure 7.7: Java source code and bytecodes for array stores

Methods like m2 are common in most applications. For example, the method
ArraylList.set() of the frequently used collection class ArrayList modifies an
element of an Object[] array. Therefore, our implementation cannot handle arrays as
inlining parents.

Only a global data flow analysis can solve this problem. It is necessary to know all
contexts where the method m2 is called. It must then be checked whether a Datal]
array can be passed to this method. Although such an analysis would be possible,
global reasoning about Java classes is complicated by the dynamic features of Java like
lazy class loading and reflection.

7.3 Implementation of Dynamic Array Inlining

Arrays are used to model dynamic data structures in object-oriented applications.
Because the number of fields in an object is fixed, one has to allocate and link multiple
objects to model e.g. a list with a variable number of elements. Using an array, all
elements can be stored in a single array with the appropriate length. When elements
are added and the length of the array does not suffice, the common solution is to
allocate a larger array, copy all existing elements from the old to the new array, and
then discard the old one. This strategy is used for example in the Java collection class
ArraylList.

7.3.1 Basic Principle

The location and order of objects on the heap can only be influenced during allocation
and garbage collection. It is not possible to move objects at other times because all
references to these objects would have to be updated. We use the following approach
to allow inlining of changing array fields:

e At allocation, the child array with the initial size is co-allocated with the parent
object, so an optimized access is possible.

o After the field has been overwritten with a reference to a new array, an
optimized access using address arithmetic is no longer possible because it
would still access the old array.

85

Array Inlining

e The next garbage collection colocates the new array to the parent object.
Therefore, an optimized access is possible again.

Figure 7.8 shows the third version of the example started in Section 7.1. The array field
child of the class Parent, which references a Child[] array, is inlined. In contrast to
the previous examples, the field can now be changed. The array lengths are the
constants 2 and 4 to simplify the example, but they could also be any non-constant
value. The co-allocation of the Parent object and the Child[] array shown in
Figure 7.8 b) is equal to the previous example. However, the method resize() in
Figure 7.8 c) also contains a field store of the field child. It modifies an existing Parent
object that is passed as a parameter. The method Arrays.copyOf() is a utility method
that allocates a new array and initializes it with the elements of the old array.

Parent allocation() { void resize(Parent p) {
Parent p = new Parent(); p.child = Arrays.copyOf(p.child, 4)
p.child = new Child[2]; }
return p;
} Child access(Parent p, int n) {
return p.child[n];
}

a) Java source code

tid__instruction tid__instruction
al new Parent a2 al._8 Parent.child
al4 co-allocation al, a9 i3 4
ig 2 a7 invokestatic(a2, i3)
a9 new Child[i8] Java.util.Arrays.copyOf()
ale al._8 := a9 Parent.child all al._8 := a7 Parent.child
all areturn al vl2 return
b) HIR of method allocation() c) HIR of method resize()

Figure 7.8: Example for dynamic array inlining

Initially, the Parent object and the Child[] array are colocated as shown in
Figure 7.9 a). When the method resize() installs a new Child object into the Parent
object, it is not possible to immediately colocate it with the Parent object. The Java
HotSpot VM allows neither to allocate the new Child[] array next to the existing
Parent object nor to move the Parent object to a new location in front of the new
Child[] array. Both operations could not be performed without influencing other
objects and references to objects.

Therefore, the colocation can only be established during the next run of the garbage
collector, which deallocates the old array and colocates the Parent object with the new
Child[] array, as shown in Figure 7.9 c). Because the optimized access is not possible
between the resize operation and the next garbage collection, an additional colocation
check is necessary before an element of the inlined array is accessed.

86

Implementation of Dynamic Array Inlining

Parent Parent Parent
8| child *[—~ 8| child ° » Child[l 8| child *~—-
16| [Childll |« 16 Child[] 8 length: 4 16| [Child] |«
24 8l length: 2 24 8| length: 0 12110] 24| 8| length: 4
28 12 [0] 28 12 [0] 16 [1] 28 12 [0]
32 16 [1] 32 16 [1] 20 [2] 32 16 [1]
24 [3] 36 20 [2]
40 24 [3]
a) After allocation b) After resize c) After GC

Figure 7.9: Principle of dynamic array inlining

Array inlining saves one machine instruction, i.e. the load of the inlined field child,
therefore it is only beneficial if the check does not require additional instructions. It is
necessary to combine the colocation check with the array bounds check that precedes
every array access according to the Java specification.

When an inlined array field is modified, we set the length of the old inlined array to 0,
which forces the array bounds check to fail. Instead of throwing an exception
immediately, we check whether the field has been changed, i.e. whether it points to a
non-colocated array. In this case, we access the new array and continue normally. Only
if the bounds check for the new array also fails, an exception is thrown. Therefore, the
length of the old Child[] array in Figure 7.9 b) is 0. The length is set to 0 by the HIR
instruction for the field store a1l in the method resize() (see Figure 7.8 c) before the
field is actually modified.

The overhead for accessing the non-colocated array occurs only until the next garbage
collection, at which time the new array is colocated with its parent. In order to
guarantee that the colocation succeeds, we require that the new array is allocated
inside the method that performs the field store and that the allocation sets the
isColocationChild bit in the array header. For example, this covers the case where an
array that is already the child of another parent object is used as the new array, which
would lead to a child with two parents. As a result, the new array is always in the
young generation. In our example, this constraint is satisfied because the method
Arrays.copyOf() is handled by the compiler like an array allocation.

Figure 7.10 shows the normal and the optimized HIR and LIR for the array access. The
optimized LIR code is split into a fast path and a slow path. The fast path code
performs the optimized array access. One memory load is saved compared to the
unoptimized code. When the field is overwritten with the reference to a new array, the
length of the old inlined array, i.e. the memory location [ecx + 24], is set to 0, causing
the bounds check to always fail. This case is regarded as uncommon, so the code is
placed out-of-line at the end of the method in the slow path S1. It contains the same
code as the unoptimized machine code, i.e. it loads the field and then accesses the array
using the normal offsets. Another bounds check throws the exception if necessary.

87

Array Inlining

tid__instruction tid__instruction
a3 al. 8 Parent.child a4 (al+le)[i2]
a4 a3[i2] a5 areturn a4

a5 areturn a4

nr__operation nr__operation

// ecx: p edx: n // ecx: p edx: n

12 move [ecx + 8] -> eax 12 cmp edx, [ecx + 24]

14 cmp edx, [eax + 8] 14 branch aboveOrEqual S1

16 branch aboveOrEqual Exception 16 move [ecx + edx*4 + 28] -> eax
18 move [eax + edx*4 + 12] -> eax 20 return eax

22 return eax S1 move [ecx + 8] -> eax

cmp edx, [eax + 8]

branch aboveOrEqual Exception
move [eax + edx*4 + 12] -> eax
jump 20

a) Unoptimized method access () b) Optimized method access()

Figure 7.10: HIR and LIR for dynamic array inlining

7.3.2 Non-Destructive Approach

The basic principle described above has one severe drawback: overwriting the array
length destroys the old array, i.e. it is no longer accessible because the bounds checks
for all following accesses fail. This is no problem if the only reference to the array was
the inlined array field, because this field already points to the new array. However, the
array could also be referenced by fields of other objects or by root pointers. In this case,
overwriting the array length is not allowed. An additional analysis must check
whether such accesses are possible before dynamic array inlining is initiated.

This could be done using a global data flow analysis. An investigation of frequently
used classes like ArrayList shows that even a method-local bytecode analysis would
suffice for most cases. This analysis would check that a child array loaded from the
inlined field is used only for an array access and is not assigned to other fields or
returned by the method. Nevertheless, additional analysis steps would be necessary
and the number of inlinable array fields would be reduced.

Instead of such an analysis, we use a non-destructive approach, which avoids the
problem by cloning the array length. Instead of overwriting the regular array length
that is also accessed by normal bounds checks, a copy of the array length is
overwritten. This copy is accessed only by the optimized machine code. Normal array
accesses in compiled code and in the interpreter use the original array length.

Figure 7.11 shows this approach. Each array has two length fields: length and
inlineLength. In contrast to the previous example, the Child[] array is now also
accessible from the field f of an Other object. When the field Parent.child is changed,
the inlineLength of the inlined array is set to 0, but the length remains unchanged.
Therefore, the array access other.f[m] in the method accessOther() is still possible.

88

Implementation of Dynamic Array Inlining

Parent allocation(Other other) {
Parent p = new Parent();

p:cﬁhil?: = newh(;23ld[2]; Parent
other.f = p.child; s as
] child *-—~
| return p; 16 Childli (_(,
g (W 241 8|]ength: 2
void resize(Parent p 28| 12| a1 .
p.child = Arrays.copyOf(p.child, 4) | 16 }g}meLength.Z
} 36| 20 [1]
Child access(Parent p, int n) {
return p.child[n];
} Other
. . 8| f ——
Child accessOther(Other other, int m) {
return other.f[m];
}
a) Java source code b) After allocation
Parent
8 Chlld & |—
— 16| [Childll <
aren 24| 8[Tonoth:
- | - gth: 4
°| child e > Childl] 28| 12| jnlineLength: 4
16 Child[] <~ 8|length: 4 32| 16| (]
24 8l length: 2 12| inlineLength: 4 36| 20|11
28| 12| inlineLength: 0 181 10] s0| 24|y
32 16 [0] 20 [1] aa| 28|p3
36(20 [1] 24 [2] El
28| [3]
Other Childl[]
8 ;)ther o 8| f .——J/_: length: 2
12| inlineLength: 0
16 [0]
20 [1]
c) After resize d) After GC

Figure 7.11: Non-destructive dynamic array inlining using cloned array length

The next run of the garbage collector restores the colocation of the Parent object and
the new Child[] array. Because the old Child[] array is still accessible, it is preserved
by the garbage collector and moved to a different location. The inlineLength of the
old array remains 0, but is no longer accessed.

To allow a uniform array access, all arrays on the heap must have the second length
field, which increases the required heap space. It would also be possible to place the
copy of the length field not into the array, but at the end of the parent object. This
reduces the required memory, but leads to a more complicated inlining process

89

Array Inlining

because the size of parent objects is changed during inlining. Our implementation uses
the simple non-destructive approach where all arrays have two length fields.

7.4 Support for Class Hierarchies

To support subclasses of the parent object’s class, it is necessary to reverse the object
order, i.e. to place the parent object after its child objects. Section 6.8 on page 76
showed that this does not need architectural changes for object inlining but only leads
to different offsets in optimized field loads. Because the size of child objects is fixed, the
tields of children can be accessed using negative offsets relative to the parent objects.
Arrays with variable size complicate the reverse order because the offset of the first
array element is no longer fixed. It is necessary to compute the offset at run time.

7.4.1 Reverse Order for Arrays

To compute the size of an array, the number of elements and the size of each element
must be known. When the child array is placed in front of the parent object, the normal
array length is not directly accessible because its offset relative to the parent object is
not fixed. It is therefore necessary to place a copy of the array length at the end of the
array. This is no additional overhead because dynamic array inlining needs a copy of
the array length anyway. Figure 7.12 compares the memory layouts for a dynamic
array. Only offsets that are compile-time constants are shown in Figure 7.12b), all
other offsets depend on the array length.

.

Parent

\
8| child |- 8| length: k |
16 Child[] < 121 10] :
241 8|]ength: k 16| 1] I
28| 12| inlineLength: k :
321 16| 0] -4 inlineLength: k :
36| 20| [1] —>{ Parent :

. 8| child o

a) Normal object order

Childl]

€

b) Reverse object order

Figure 7.12: Reverse object order for arrays

When using the reverse order, only the inlineLength of the Child[] array is directly
accessible from the Parent object. The method access() introduced in the previous
sections performs the array access p.child[n]. To load the array element at the index n
without loading the child pointer, the following address arithmetic is necessary (the
element size of the array is 4 bytes):

p - 4 - inlinelength * 4 + n * 4

90

Support for Class Hierarchies

The computation can be transformed to:
p + (n - inlinelLength) * 4 - 4

This address computation and the subsequent load of the computed memory address
require two machine instructions: the subtraction n - inlineLength and the memory
load. The multiplication by 4 and the subtraction of the constant offset are performed
by the indexed addressing mode of the Intel IA-32 architecture. If implemented
naively, the additional subtraction instruction increases the number of machine
instructions necessary for the array access. However, this address computation can be
folded into the array bounds check.

The array bounds check compares the array index n with the inlineLength. On most
architectures, the comparison of two numbers is internally implemented as a
subtraction. The result of the subtraction is used to set the flags register, but is then
discarded. If a compare instruction is replaced by a subtraction instruction, the result is
written to a register, but still used to set the flags register.

Figure 7.13 shows the LIR for the optimized array access with reverse object order. In
comparison to the example of the previous section, the LIR operation 12 in
Figure 7.13 b) now uses a sub operation instead of a cmp operation for the bounds
check. The result n - inlinelLength is written to the register edx. This value is
negative because inlineLength must be greater than n for valid array accesses.

nr__operation nr__operation

// ecx: p edx: n // ecx: p edx: n

12 move [ecx + 8] -> eax 12 sub edx, [ecx - 4] -> edx

14 cmp edx, [eax + 8] 14 branch aboveOrEqual S1

16 branch aboveOrkEqual Exception 16 move [ecx + edx*4 - 4] -> eax
18 move [eax + edx*4 + 12] -> eax 20 return eax

22 return eax S1 add edx, [ecx - 4] -> edx

move [ecx + 8] -> eax

cmp edx, [eax + 8]

branch aboveOrkEqual Exception
move [eax + edx*4 + 12] -> eax
jump 20

a) Unoptimized method access() b) Optimized method access()

Figure 7.13: LIR for array access with reverse order

The subsequent memory access of the LIR operation 16 uses a negative offset. As usual,
the slow path S1 is taken if the array index is out of bounds or the array field has been
changed, i.e. if the inlineLength was set to 0. The slow path must undo the
subtraction by adding the subtracted inlineLength to the register edx.

91

Array Inlining

7.4.2 Object Alignment

The 8-byte alignment of objects and arrays complicates the basic scheme for the reverse
order of arrays. Because the size is rounded up to the next multiple of 8, arrays with
different lengths can have the same size. The optimized array access must consider the
padding, which is inserted between the array elements and the field inlineLength. To
avoid conditional operations in the address arithmetic that was presented in the
previous section, the padding must be incorporated into the only part of the formula
that is loaded from the actual array object: the field inlineLength.

Figure 7.14 illustrates the exact memory layout of inlined arrays with the lengths 1
and 2. Both arrays have the same size of 24 bytes, and the offset of the first array
element relative to the Parent object is -12 in both cases. Therefore, the field
inlineLength for both arrays must be equal, otherwise the subtraction of the
inlineLength could not be uniformly used. To make the array bounds check safe in all
cases, the minimum of the two lengths must be used, i.e. the array with a length of 2
has an inlineLength of 1.

Childl] <« Childl[] «,
-16| 8| length: 1 ! -16| 8| length: 2 !
-12] 12 [0] | -12) 12 [0] |
8| 15| (padding) | 8| 18\ [1] |
4| 20| inlineLength: 1 : -4| 20| inlineLength:1 | |
—>| Parent : —>{ Parent :
8| child |-~ 8 child |-~

a) Array with length 1 b) Array with length 2

Figure 7.14: Memory layout with 8-byte alignment

The reduced inlineLength does not impact the correctness because the slow path of
the array access handles indices that are above or equal the inlineLength, but below
the length of the array. For example, the slow path is used to access the last element of
all inlined Child[] arrays with an even length. Since inlinelLength is now smaller
than the number of words between the field inlineLength and the beginning of the
array, an additional constant offset of -4 must be added to the LIR operations 12 and 16
in Figure 7.13 b).

The rounding granularity of the inlineLength and the additional offsets for LIR
operations depend on the element size of the arrays. Arrays with an element size of 1
(byte[] arrays) require that the inlineLength is rounded down to the nearest multiple
of 8 plus 1. For example, all byte-arrays with the lengths 1 to 8 have the same size and
therefore the inlineLength 1. In contrast, long[] arrays with an element size of 8
require no rounding at all.

92

Limitations

In summary, array inlining of dynamic arrays with reverse order uses the array bounds
check for several purposes:

o Detection of field changes: The slow path is used if the array field has been
modified and an optimized array access is no longer possible, i.e. if the
inlineLengthis 0.

o Address computation for the first array element: The compare instruction of the
bounds check is replaced by a subtraction instruction.

o The 8-byte alignment of objects: The slow path is used to handle the rounded
inlinelLength appropriately.

o The actual bounds check: Indices that are out of the valid array bounds are
detected.

In the fast path of the optimized array access, the field load of the inlined array field is
eliminated, so one memory access is saved. However, a slow path that performs the
unoptimized array access is needed for correctness.

7.5 Limitations

Dynamic array inlining is only beneficial if the majority of array accesses use the fast
path. The number of slow path accesses is high if the field is changed frequently or if
the timeframe between a field modification and the next garbage collection is long. In
such cases, the array access should be reverted to the unoptimized machine code.
Furthermore, dynamic array inlining does not allow optimizing direct accesses to the
array length, e.g. when generating code for the arraylength bytecode.

Loads of inlined object fields can be optimized by load folding or address computation (see
Section 6.6 on page 70). For dynamic arrays, only load folding is allowed because the
bounds check of the array access is required for correctness. To compute the address of
the inlined child array, the same checks would be necessary, i.e. the inlineLength had
to be accessed. This would be more complex than the access of the array field and thus
not beneficial. If the array field is accessed and the array is used e.g. as a method
parameter, no optimization can be performed.

7.5.1 Access of the Array Length

The array length is loaded implicitly by the bounds check before each array access.
However, it is also possible to load the length explicitly using the arraylength
bytecode and to use it e.g. for mathematical computations. The access could be
optimized using the inlineLength, but this would be complicated and would require
additional code for the correctness. The additional check whether the result of the
optimized access is 0 would require a compare and a branch instruction, which is more
expensive than the unoptimized access. Additionally, the inlinelLength can be

93

Array Inlining

rounded due to the 8-byte alignment, which makes it unusable for explicit loads of the
array length. As a result, we retain the unoptimized field load when the array length is
requested explicitly.

7.5.2 Interdependencies with Garbage Collection

To be beneficial, dynamic array inlining requires that the timeframe between the
modification of an array field and the next garbage collection is short. The Java
HotSpot VM divides the heap into two generations: the small young generation that is
collected frequently because most objects die young, and the old generation that
contains only long-living objects. It is larger than the young generation and is collected
less frequently.

Therefore, it makes a difference whether the parent object is in the young or in the old
generation. When an array field is changed, the new array is always in the young
generation because it was recently allocated. However, the colocated object order can
only be restored by a collection of the young generation if the parent is also still in the
young generation. Heuristics in the age calculation can keep the parent object in the
young generation as long as the inlined array field is changing. For example, we use
the age of the child array instead of the age of the parent object to decide whether the
parent object should be promoted. When the array field is changed frequently, the age
of the array is always low and the parent object is not promoted.

7.5.3 Interdependencies with Array Bounds Check Elimination

Array bounds check elimination removes checks of array indices that are proven to be
in the valid range (see for example [Bodik00] and [Qian02] for Java implementations
and [WiirthingerO7b] for an algorithm integrated into the Java HotSpot client
compiler). If the index variable is guaranteed to be below the array length, the check
can be omitted (fully redundant checks). If the check is in a loop, the array length is loop
invariant, and the maximum value of the index variable is known, then the check can
be moved out of the loop (partially redundant checks).

We use the bounds check to detect changes of the array field. If the bounds check is
eliminated, the optimized array access is no longer possible. Therefore, there is an
optimization conflict between bounds check elimination and dynamic array inlining. In
practice, such conflict situations are unlikely. Bounds check elimination requires static
information about the length of an array. If the array was just loaded from a field,
which is the pattern optimized by array inlining, such information is usually not
available and bounds check elimination is not possible. When bounds checks are
moved out of a loop, the check whether the array field has been changed can still be
performed outside the loop.

94

Java Class Library

7.6 Java Class Library

This section shows the results of object and array inlining for classes of the Java class
library. Because our optimization is performed at run time, all classes used by an
application are optimized uniformly. There is no difference between application
classes, library classes, and system classes.

7.6.1 ArrayList Example

The example of this thesis uses the collection class ArrayList to store a variable list of
points of a Polyline (see Java source code in Figure 3.1 on page 26). Figure 7.15 shows
the combined benefits of object and array inlining when accessing a point stored in the
ArrayList. The Polyline object has two inlining children: the Color object referenced
by the field 1ineColor and the ArraylList object referenced by the field points. The
Object[] array of the ArrayList is an indirect inlining child of the Polyline. Dynamic
array inlining is necessary because the array can be replaced by a larger copy when
new elements are added to the ArraylList.

Object[] € ——)
8| length : nr__operation
12| [0] o——> | // ecx: this edx: index
16| [1] o> : 12 move [ecx - 28] -> eax
| 14 cmp edx, eax
a1l o : 16 branch greaterOrEqual 32
inlineLength [22 sub edx, [ecx - 44] -> edx

-40 ArrayList €« : 24 branch aboveOrEqual S1
=321 8 modCount : I 26 move [ecx + edx*4 - 48] -> eax
-28| 12| gize | : 30 return eax
-24| 16 elementData 0———-:-’ 32
-20| 20 : I
e (padding) | S1 add edx, [ecx - 44] -> edx

Color - : move [ecx - 24] -> eax
-8 8rgb I cmp edx, [eax + 8]
-4| 12| (padding) : : branch aboveOrEqual Exception
»| Polyline : : mz;e E[}gax + edx*4 + 12] -> eax
8| points -’ Jump
12] lineColor *-—~

a) Memory layout b) Optimized method Polyline.getPoint()

Figure 7.15: Combined object and array inlining for ArrayList

The unoptimized access of the ArrayList in the method Polyline.getPoint()
requires several field loads and method invocations. At first, the field
Polyline.points must be loaded. Because this field is declared to be of the interface
type List, dynamic binding is necessary to invoke the method get() of the class
ArrayList. This method loads the field ArrayList.size to check whether the accessed

95

Array Inlining

index is valid. Then, the field ArrayList.elementData is loaded and the array is
accessed. Although the ArrayList has already performed an index check, a bounds
check is necessary for the array load.

Figure 7.15 b) shows the optimized LIR of the method. At first, it is not necessary to
load the field Polyline.points. The field is inlined, so it is known that the offset
relative to the Polyline object is -40 and that the exact type of the referenced object is
ArrayList. No dynamic binding is necessary, and the method ArrayList.get() can be
inlined. LIR operation 12 accesses the field ArrayList.size relative to the Polyline
object. The subsequent compare and branch operations check that the accessed index is
valid. The error handling code starting with LIR operation 32 is uncritical for
performance because it is normally not executed.

The LIR operations 22, 24, and 26 perform the optimized bounds check and array load.
As shown in the previous sections, the bounds check uses a subtraction operation that
sets the flags for the subsequent conditional branch and also modifies the index for the
memory load operation 26. The inlinelLength of the array is accessed directly from the
Polyline object using the offset -44. Finally, LIR operation 26 performs the optimized
array load.

The slow path code S1 of the array load must undo the subtraction of the bounds
check. Then, the field ArrayList.elementData is loaded and a normal array access is
performed. In the slow path, it is again not necessary to load the field
Polyline.points. The slow path is executed if the array field changed, but no garbage
collection happened yet. It is also executed if the last element of the array is accessed
and the array length is even. In this case, the inlineLength is smaller than the actual
array length in order to handle the 8-byte object alignment.

7.6.2 Other Collection Classes

Object inlining is possible for all collection classes similarly to the example of the
previous section. A field of a business object that references a collection object is
usually assigned only once in the constructor or shortly afterwards. Co-allocation
requires that the allocations of the business object and the collection object are in the
same compiled method. This is achieved by aggressive inlining of methods.

Many collection classes use arrays for their internal data structures. Such arrays can be
optimized using array inlining. Optimized array loads are possible for array-based list
implementations like ArrayList and Vector, as shown in the previous section.
Collection classes that are based on hash codes, e.g. the class HashMap, are more
difficult to optimize. The data array is not indexed with a user-supplied index, but
with a computed hash code. The length of the data array is used to map arbitrary hash
code values to the valid range of array indices, e.g. using a modulo operation. As
shown in Section 7.5.1, the optimized access of the array length is therefore not possible
and the array field must be loaded. Load folding for the subsequent array access would
be possible, but not profitable because the array address is already available.

96

Java Class Library

7.6.3 Strings

At first glance, Java strings look like ideal candidates for array inlining. A String
object references a char[] array via the field String.value. Because strings are
immutable, the field is initialized once in the constructor and never changed
afterwards. Most string operations load this field to access the characters.
Unfortunately, the implementation of the String class prohibits array inlining. The
same char[] array can be shared between multiple String objects. Figure 7.16 shows
the memory representation of the string "abcd" and the substring "bc", which is
returned by the method call "abcd".substring(1, 3).

String »(char[]
8 offset: 0 String 8| length: 4
12 t: 4 121 10]: 'a’
16 ;Ou;l 8| offset: 1 1 Fl)} ,;,
as :
20| val 12 count: 2 16| 11, 1
value o 16| hash . [2]:'c
3]:'d'
20| value o Bl

Figure 7.16: Memory representation of a string and a substring

The content of a string is not always the whole char[] array referenced by the field
value. Instead, the fields offset and count specify the relevant range of the array
elements. This allows an efficient implementation of methods that copy parts of a
string, e.g. the method String.substring(). It is not necessary to create a smaller copy
of the character array, but only to allocate a String object and set the fields offset and
count accordingly.

The sharing of the char[] array prohibits its colocation with the String object. One
char[] array would have two parents, which is not allowed. Therefore, optimized
accesses of the array are not possible. In our approach, this is detected by the
just-in-time compiler when co-allocation is not possible, e.g. in the method
String.substring(). To avoid the always failing analysis, we manually exclude the
class String from inlining. However, object colocation is performed for strings.
Because strings are accessed frequently in most applications, a dedicated optimization
of strings can be beneficial. A recently started project evaluates possibilities of object
inlining for strings [Haubl07].

97

Chapter 8

Evaluation

This chapter evaluates the implementation of object and array inlining. It
compares different configurations where object colocation, object inlining, and
array inlining are selectively enabled. The speedup of these configurations and
the number of eliminated field loads is presented for the SPECjum98 and
DaCapo benchmark suites. Additionally, the compile-time impact of the
optimizations is evaluated.

Our implementation of object and array inlining is integrated into Sun Microsystems’
Java HotSpot VM. At the time of writing, the most recent version was the early
snapshot release b21 of the upcoming JDK 7 [SunJava7]. We use the default
configurations for client applications, ie. the client compiler for just-in-time
compilation and the generational, non-parallel, and non-concurrent garbage collector
(see Chapter 2 on page9). In addition to the optimizations of the current product
version, our client compiler also performs array bounds check elimination based on the
algorithm of Wiirthinger [Wiirthinger07b].

The optimizations described in this thesis can be selectively enabled using command
line flags. We use the following four configurations for the evaluation:

Baseline: All of our analyses and algorithms are disabled.

Colocation: This configuration combines the impact of read barriers to detect hot
fields (see Chapter4 on page41) and object colocation (see Chapter5 on
page 47) during garbage collection to improve the cache behavior. Objects and
arrays are optimized uniformly by the garbage collector.

Object Inlining: In addition to the previous configuration, inlinable object fields
are detected and field loads are removed (see Chapter 6 on page57). As a
prerequisite, method tracking is also enabled. Array fields are not inlined, but
still colocated by the garbage collector.

Array Inlining: Both object fields and array fields are inlined in this
configuration. We use the non-destructive reverse dynamic array inlining
scheme that requires the duplication of the array length field (see Chapter 7 on
page 79).

99

Evaluation

We report three different kinds of results for the benchmarks. First and most important
are the benchmark times, i.e. the speedup that can be achieved by the optimizations.
We do not report absolute times because they are highly architecture dependent, but
only relative speedups compared to the baseline. Secondly, we count the number of
compiled methods and the number of optimized fields in the different configurations.
These are static counters that are incremented in the just-in-time compiler or the object
inlining subsystem.

Furthermore, we use dynamic counters to collect field access counts. These counters
are incremented by the generated machine code, similarly to the read barriers.
However, they are active for the whole benchmark run and thus impose a significant
run-time overhead, i.e. the benchmarks are significantly slower. Therefore, separate
measurements are necessary for the speedup and the dynamic field access counters.
Enabling the counters has an impact on object inlining because it changes the timing of
our optimization phases, i.e. it changes the time when methods get compiled and
therefore when the optimizations take effect. However, we verified that the same fields
are optimized in both configurations.

All measurements were performed on an Intel Core2 Quad processor Q6600 with
2.4 GHz, running Microsoft Windows XP with service pack 2. Each of the four cores
has a separate L1 data cache of 32 KByte. Two cores together share a 4 MByte L2 cache,
so there are 8 MByte L2 cache in total. All caches have a cache line size of 64 bytes. The
main memory of 2 GByte is uniformly accessed by all cores. The results were obtained
using a 32-bit operating system and a 32-bit VM.

8.1 Benchmark Results for SPECjvm98

The SPECjvm98 benchmark suite [Spec98] is commonly used to assess the performance
of Java runtime environments. It consists of seven programs derived from real-world
applications that cover a broad range of scenarios. SPECjvm98 measures the overall
performance of a Java VM including class loading, garbage collection, and loading the
input data of the benchmarks from files. The programs are executed several times (five
times for all numbers reported in this thesis) to allow the VM to apply run-time
optimizations. Two results are reported for each benchmark: the slowest run and the
fastest run.

e The slowest run is always the first run in our measurements. It contains the
time necessary for class loading, initial interpretation of methods, and
just-in-time compilation. Therefore, this number is an indicator for the startup
speed of the Java VM. A higher score of the slowest run denotes a faster startup
of applications.

e The fastest run is usually the last run of the benchmark. All hot methods were
already compiled and all run-time optimizations were applied during previous
runs. The execution time has reached a fix point. This number measures the

100

Benchmark Results for SPECjvm98

quality of the machine code generated by the just-in-time compiler as well as
the quality of the garbage collector. A higher score of the fastest run denotes a
higher peak performance of applications.

8.1.1 Impact on Run Time

Figure 8.1 shows how object colocation, object inlining, and array inlining affect the
performance of SPECjvm98. We present the results for the individual benchmarks as
well as the geometric mean of all benchmarks. The slowest and the fastest runs are
shown in the same figure on top of each other: the gray bars refer to the fastest runs,
the white bars to the slowest. Both runs are shown relative to the same baseline, i.e. the
fastest run with all our optimizations disabled.

O,
200% =
Qx
—
N
150% B &
(32 S s <
— Q IS
N = 2 e
RRJ = R RRRLT o owRe® R R®haS=
g8 g 2888= 8288 8%:i: | 2%m
— — -] — = — = — 3 R X —
100% - = -
50% | ElBaseline -
° 0 Ay B @ Colocation -
Slowest Run ¥ F 7 Object Inlining -
| MFastest Run § F (3 Array Inlining g
0% LI RZNIRER AN SPAN] FA-TAN KA R I X
mtrt jess compress db mpegaudio jack javac mean

Figure 8.1: Speedup compared to baseline for SPECjvm98 (taller bars are better)

The differences between the slowest and the fastest runs in the first column point out
the overhead of just-in-time compilation. The overhead is higher for complex object-
oriented benchmarks such as jack and javac. However, the difference is also influenced
by the problem size of the benchmark. The more time the first run takes, the lower is
the impact of just-in-time compilation. Long-running benchmarks such as mpegaudio
have a low difference although many methods are compiled.

The fastest run in the second column shows the benefits of object colocation. This
optimization has a major impact on the db benchmark, which accesses a large number
of objects. There is also a speedup for the mtrt benchmark. The slowest run shows the
overhead of the read barriers, i.e. the overhead of the field counters that are
incremented at run time. To reduce this overhead, the read barriers are removed later
by recompiling methods, which also impairs the slowest run but eliminates the
overhead for the fastest run. Therefore, the slowest run is negatively affected for most
benchmarks.

101

Evaluation

The third column shows the impact of object inlining. The analyses for guaranteeing
the preconditions impact the slowest run negatively. However, this overhead is
justified by the improved peak performance of the fastest run. The benchmarks that
benefit from colocation, db and mitrt, are further improved. Additionally, the compress
benchmark shows a speedup.

Array inlining, which is shown in the fourth column, increases the impact of object
inlining. The fastest runs of the array-intensive benchmarks mtrt, compress, and
mpegaudio are significantly improved. Again, the impact on the slowest runs depends
on the benchmark characteristics: the slowest run of the mtrt benchmark is negatively
affected because of the increased compilation overhead, while the slowest run of the
compress benchmark is improved because the optimization succeeds early enough in
the first run.

The javac benchmark shows a slowdown in all configurations because the overhead is
higher than the benefit. The reason for the slight regression of peak performance is
mostly the overhead of object colocation during garbage collection. This overhead is
similar for all benchmarks, but normally outweighed by the improved cache behavior.
The javac benchmark has a flat distribution of the field accesses and is not improved by
object colocation and inlining.

8.1.2 Field Access Counts

The speedup of object and array inlining is directly related to the number of eliminated
field loads. Figure 8.2 shows the distribution of field and array loads and the impact of
object and array inlining. The same configurations as in the previous section are used,
only the colocation configuration is omitted because it is equal to the baseline. The
configurations are abbreviated as b (baseline), o (object inlining), and a (array inlining).

100% O Array Elements - =
— [B Array Fields — - & —
80% 14— |sell & Array Fields Elim. || % < . [|
° B Object Fields 8 ° 2 s
| || E3Object Fields Elim.[|2 "Q: |
60% \\\
\ R
40% - <
\
N W
" Il 7
bo a boa b o a boa bo a b o a boa
mtrt jess compress db mpegaudio jack javac

Figure 8.2: Dynamic field access statistics for SPECjvm98

102

Benchmark Results for SPECjvm98

We count all loads of references from the heap, i.e. all loads that could be optimized by
inlining, and distinguish between three kinds: object fields, array fields, and array
elements. The figure does not contain loads of scalar values such as int fields or
elements of int[] arrays. The first column shows the distribution of the three kinds.
This distribution is identical in all configurations.

The subsequent columns highlight the percentage of loads that are eliminated by object
inlining and array inlining. The higher the striped bars are, the more field loads are
eliminated. As described in Section 7.2 on page 83, array elements cannot be optimized
without a global data flow analysis. Therefore, the topmost bar shows no eliminated
loads in any configuration.

Object inlining optimizes only object fields, i.e. the bottommost of the three kinds. For
the benchmarks mtrt, db, and mpegaudio, a significant part of the object field loads is
eliminated. For compress, the whole object graph is combined to one object group, so
all reference field loads are eliminated. For mtrt, the number of accessed array fields is
slightly reduced by object inlining though no array fields are optimized. This is a
beneficial side effect of object inlining on other optimizations such as global value
numbering. If it is known that a field never changes, more subsequent array loads are
identified as redundant and can therefore be eliminated.

All benchmarks except javac perform more array field loads than object field loads.
This demonstrates the importance of array inlining. The benchmarks mtrt, compress,
and mpegaudio frequently access arrays whose lengths are compile-time constants.
Because the bounds checks can be simplified for such array accesses, the speedup due
to array inlining is comparatively high. The other four benchmarks jess, db, jack, and
javac mostly use array-based collection classes that can be optimized.

For the jack benchmark, array inlining reduces the number of eliminated object field
loads. The benchmark contains a parent class with three object fields that can be
inlined using object inlining. Each of these fields references a collection. With dynamic
array inlining, the data arrays of the collections are also inlined. Therefore, the offsets
of the second and the third child object are no longer fixed. Inlining them fails, so only
one object field is inlined.

8.1.3 Number of Optimized Fields

Our analysis performs inlining on a field-per-field basis at run time. To limit the
overhead, it is important that no time is wasted analyzing fields that are infrequently
accessed. Table 8.1 shows that detecting hot fields using read barriers acts as an
effective filter. The first column initial shows the overall number of fields in all loaded
classes. Based on the declared type, we distinguish object fields, array fields, and scalar
fields. Scalar fields are not relevant for object inlining, so they are ignored in the
subsequent columns. Most of the several hundred fields are only accessed by methods
that run in the interpreter.

103

Evaluation

Initial Counted Colocated Inlined

Obj. | Arr. |Scalar| Obj. | Arr. | Obj. | Arr. | Obj. | Arr.
mtrt 380 77 315 40 19 18 11 4 4
jess 410 77 407 67 24 19 10 2 4
compress 352 76 296 13 16 7 9 7 5
db 350 74 289 23 17 4 6 2 2
mpegaudio 412 93 346 73 35 18 19 9 11
jack 395 80 330 80 23 20 12 2 3
javac 492 92 344 148 36 24 11 2 4
empty 315 54 208 0 1 0 0 0 0

Table 8.1: Static field access statistics for SPECjvm98

The column counted shows the number of fields for which read barriers are emitted in
the compiled code. The read barrier counters are used to determine whether a field is
frequently accessed. The number of frequently accessed fields is shown in the column
colocated. Only 1% to 5% of the object fields and 8% to 20% of the array fields are
colocated. This is essential to keep the overhead during garbage collection low.

The column inlined shows the number of inlined fields when object and array inlining
is performed. Ideally, all colocated fields should also be inlined. However, this is not
possible because of the strong preconditions necessary for object inlining. Only for the
compress benchmark, all hot object fields can be inlined. For some other benchmarks,
we optimize the relevant fields. For example, the 8 inlined fields of the mtrt benchmark
lead to a significant speedup. Likewise, the 4 inlined field of the db benchmark are also
the most important ones. For other benchmarks such as javac, our analysis cannot
inline the most frequently accessed fields.

Even small applications load many classes. The last row of the table shows the field
counts when executing an application that consists only of an empty method main().
In this case, all loaded fields are part of the class library and are defined in classes that
set up the infrastructure for running an application. Even before main() is called, Java
code is executed. Some methods of the class String are frequently executed and
therefore compiled. These methods access the array field String.value.

8.1.4 Compile-Time Impact

The just-in-time compiler plays an important role in our analysis. We use it to emit
read barriers, to perform co-allocation, to guard field stores, and finally to optimize
tield loads. Therefore, it is necessary to compile more methods, and also to compile
some methods multiple times. Table 8.2 shows the number of compiled methods in the
different configurations. Unfortunately, it is not possible to measure the overall
compilation time because compilation is performed in the background parallel to the
execution of the application. The thread scheduling introduces too much noise to the
compilation time so that no stable results can be measured.

104

Analysis of SPECjvm98

Baseline Colocation Object Inlining | Array Inlining
mitrt 126 168 | +33% 203 | +61% 232 +84%
jess 157 279 +78% 318 | +103% 364 | +132%
compress 37 57| +54% 75| +103% 91| +146%
db 59 92| +56% 9| +68% 109| +85%
mpegaudio 152 351 +131% 418| +175% 468 | +208%
jack 221 341 +54% 379 +71% 430 +95%
javac 527 1046 +98% 1086 | +106% 1111 +111%
empty 3 3 +0% 3 +0% 3 +0%

Table 8.2: Number of compiled methods for SPECjvm98

The removal of read barriers for already hot fields requires that methods containing
those barriers are recompiled. Because object colocation depends on the read barriers
but does not need additional compilations itself, the column colocation accurately
reflects this overhead. Most methods contain field accesses that are initially counted, so
the number of compiled methods increases for all benchmarks.

Object inlining is only initiated for the few frequently accessed fields. Therefore, the
additional compilation overhead of the column object inlining is modest, even though
multiple methods must be compiled to guarantee the preconditions for inlining a field
and to optimize the field loads. The count is further increased when array inlining is
performed. The compilation overhead is not a bottleneck of our implementation
because the just-in-time compiler is fast enough and compilation is done in the
background while the application continues to run. Therefore, we do not use advanced
heuristics to reduce the number of compiled methods.

8.2 Analysis of SPECjvm98

The previous section presented the overall results for the SPECjvm98 benchmark suite.
This section analyzes four of these benchmarks in detail: mtrt, db, compress, and jess.
They represent different scenarios of object inlining. The remaining three benchmarks
are not analyzed because their source code is not available.

8.2.1 mtrt

The mtrt benchmark is a multi-threaded ray tracing application that simulates the
course of light rays. It renders a three-dimensional scene, which is represented by a
large in-memory data structure. The most frequently executed method checks whether
the light ray intersects with a certain Face of an OctNode object. Figure 8.3 shows the
object structure of this data model. Because of the object-oriented programming style,
the data is separated into multiple objects. For example, the coordinates of a point are
maintained in a separate Point object that provides several methods for mathematical
operations on the point.

105

Evaluation

OctNode
NumObj
Adjacent
OctFaces
Child
ObjList

0o

12
16
20
24

The method OctNode.intersect() accesses the coordinates of a Point starting from
the OctNode object, i.e. it repeatedly performs the following field and array accesses:
this.OctFaces[i].Verts[j].x. The values for i and j vary, and all three Point
coordinates x, y, and z are accessed. The fields Direction and Origin of Ray objects are
also accessed in this method to perform the hit testing. Table 8.3 shows that these
6 fields and array elements are the most frequently accessed ones in the benchmark.
They account for 80% of all field and array accesses (scalar values are not counted in

these statistics).

—» OctNode]]
8| length: 6
12110] o>
321 5] >
Facel] Face
8| length: 6 j Verts -
12 [0] P
32| 5] —>
» OctNodel]
8| length: 8
12{ 0] >
40| [7] -

Figure 8.3: Object graph of benchmark mtrt

|
|
-
00

,—>{ Pointl]

length: 4
[0]

12

2 5)

Point

12
16|

Field or Array n*1000 | % | X Kind State
Face[] 32,310 | 20% | 20% | Array element | Colocated
Face.Verts 32,143 | 20% | 40% | Array field Inlined, length 4
Point[] 32,016 | 20% | 60% | Array element | Colocated
OctNode.OctFaces 14,937 | 9% | 69% | Array field Inlined, length 6
Ray.Direction 8,968 | 6% | 75% | Object field Inlined
Ray.Origin 8,899 | 6% | 80% | Object field Colocated
OctNode[] 6,784 | 4% | 84% | Array element | Colocated
OctNode.Child 6,336 | 4% | 88% | Array field Inlined, length 8
IntersectPt.Intersection 2,725 | 2% | 90% | Object field Inlined
ObjNode.theObject 2,461 | 2% | 92% | Object field Colocated
OctNode.Adjacent 1,778 | 1% | 93% | Array field Inlined, length 6

Table 8.3: Access statistics for benchmark mtrt

106

Analysis of SPECjvm98

The data model shown above represents a static structure. It is loaded once at startup
from a file and is never changed by the ray tracing algorithm. Therefore, all fields are
assigned only once in an initialization method and the arrays are allocated with a fixed
length. The most important fields can be inlined. Although the loads of array elements
cannot be eliminated by our algorithm, the preceding array bounds checks are
optimized using the constant array lengths.

The two fields Direction and Origin of the class Ray both reference a point, but the
implementation differs. The direction uses value semantics: when the direction is
changed, the new x, y, and z coordinates are assigned to the existing object. The field
Direction is assigned only once in the constructor, so object inlining is possible. In
contrast, the origin uses reference semantics: whenever the origin is changed, another
Point object is assigned to the field Origin. Therefore, object inlining of this field is not
possible.

We collect the dynamic field access counts by emitting a counter increment in front of
each field access in the just-in-time compiler. Object and array inlining are disabled in
this configuration. However, the number of field accesses is affected by other compiler
optimizations such as value numbering. A field access that is eliminated by such an
optimization is also not counted. We believe that this better reflects the actual program
behavior than an instrumentation of the interpreter.

To illustrate the differences, Table 8.4 shows the counters with and without value
numbering. The rightmost column shows the difference between these two
configurations. For example, the access count of the field OctNode.OctFaces is more
than twice as high without value numbering. Most other studies, such as the analysis
of inlinable fields by Lhotak [Lhotdk02], use bytecode instrumentation, therefore their
numbers match our configuration without value numbering.

With Value Numbering | No Value Numbering

Field or Array n*1000 % 2 n*1000 % > | Difference
Face[] 32,310 | 20% | 20% 32,310 | 16% | 16% 100%
Face.Verts 32,143 | 20% | 40% 32,143 | 16% | 32% 100%
Point([] 32,016 | 20% | 60% 32,076 | 16% | 48% 100%
OctNode.OctFaces 14,937 9% | 69% 32513 | 16% | 64% 218%
Ray.Direction 8,968 6% | 75% 17,147 8% | 72% 191%
Ray.Origin 8,899 6% | 80% 17,069 8% | 80% 192%
OctNode[] 6,784 4% | 84% 7,224 4% | 84% 106%
OctNode.Child 6,336 4% | 88% 6,794 3% | 87% 107%
IntersectPt.Intersection 2,725 2% | 90% 5,188 3% | 90% 190%
ObjNode.theObject 2,461 2% | 92% 3,276 2% | 92% 133%
OctNode.Adjacent 1,778 1% | 93% 1,820 1% | 93% 102%

Table 8.4: Impact of value numbering on benchmark mtrt

107

Evaluation

822 db

The db benchmark loads an address database from a file and performs different query
and modification operations on the in-memory data structure. Figure 8.4 shows the
object structure of the database. A single Database object maintains an array of Entry
objects. Each Entry stores a pointer to a list of strings, which are maintained using the
collection class Vector. Each String stores its value in an array of char. In total, there
are about 15,600 Entry objects that refer to about 125,000 String objects. The
benchmark spends most of its time sorting the entries. Six pointers must be accessed to
retrieve the characters of a String.

Database Entry[] Entry (— ¥ Vector
8| length J_: items o——~/ & modCount
24| index o 12110 o 12| elementCount
18([1] > 16| capacitylInc.
26| elementData -

|
I\) Object(] String char]]
8| length 8| offset 8| length
121 10] o 12| count 121101
16| [1] o> 16| hash 14| 1]
. 26| value o

Figure 8.4: Object graph of benchmark db

Table 8.5 shows the field and array access statistics for this benchmark. Two fields can
be inlined: the object field Entry.items and the array field Vector.elementData.
Dynamic array inlining is necessary because the Object[] array of the Vector can be
replaced by a larger copy when new elements are added. However, the initial capacity
is sufficient for all database entries. Therefore, only the co-allocated array is accessed
and the slow path for the optimized array access is never executed.

Field or Array n*1000 | % | X Kind State
Entry[] 66,564 | 19% | 19% | Array element | Colocated
Database.index 61,060 | 17% | 36% | Array field Colocated
Vector.elementData 54,943 | 15% | 51% | Array field Inlined, dynamic length
Object(] 54,663 | 15% | 66% | Array element | Colocated
Entry.items 50,947 | 14% | 80% | Object field Inlined
String.value 45,648 | 13% | 93% | Array field Colocated
Vector$1.this$0 23,126 | 6% | 99% | Object field Not optimized

Table 8.5: Access statistics for benchmark db

108

Analysis of SPECjvm98

It is not possible to inline the field Database.index because it can be null. The null
value is used internally as a marker that no sorted database index is available, i.e. the
tield is set to null whenever the database is modified. Our array inlining does not
support null values because a null check before an optimized field load would be as
expensive as the field load itself. The field String.value cannot be optimized as
described in Section 7.6.3 on page 97.

The class Vector$l is an anonymous inner class of Vector that implements the
Enumeration interface and is used to iterate over all elements. Its synthetic field
Vector$l.this$e provides the back link from the iterator to the iterated Vector. Object
inlining is not possible because multiple iterator objects are allocated for the same
Vector. Furthermore, object colocation is not beneficial because iterator objects have a
short lifetime. Because these arguments hold for most synthetic fields, we exclude them
from the analysis and do not even emit read barriers for them.

Short-living temporary objects are the main optimization target for escape analysis. It
eliminates the allocation of an object that does not escape its allocating method and
replaces its fields by local variables, which removes all field accesses to this object. For
example, the escape analysis algorithm of Kotzmann for the Java HotSpot client
compiler [Kotzmann0O5a] optimizes the Vector iterator and therefore eliminates all
accesses of the field Vector$1.thisse.

8.2.3 compress

The compress benchmark uses the well-known LZW algorithm [Welch84] for
compression and decompression of several input files. The algorithm uses large arrays
for the input and output data as well as for several temporary tables. Figure 8.5 shows
the data structure used for compression. The decompression uses similar objects. In
contrast to the benchmarks of the previous sections, only one instance of this graph is
alive at the same time.

The field and array access statistics in Table 8.6 do not differentiate between
compression and decompression because both parts are performed alternately. Most of
the fields can be inlined, so the whole data structure is combined to one large object
group. Only the actual data arrays for the input and output data are not inlinable
because they are allocated much earlier than the other objects. The three arrays that are
internally used by the algorithm have a fixed length. Because they are large, object
colocation does not improve the cache behavior. Inlining eliminates all object field
loads and nearly two thirds of array field loads. Additionally, the bounds checks can
be simplified using the constant array length. The whole object group with an overall
size of 414,240 bytes is allocated at once.

109

Evaluation

— —— % Input_Buffer bytel[]
! 8| InCnt 8| length
| 12 Current 12110]
| 16| InBuff o 13| [1]
|
|
: g Output_Buffer bytel]
Compressor l | #[OutCnt 8[length
: : 12| OutBuff o 121 10]
48| Input ol ! 2
44| Ouput e|——"~
48| buf e e ittt —— > bytell
8 .
i || Hash Table o= —>{intl] b E‘gth' o
76 8| size i 8|length: 69001
codetab e&j—— | | 12
I this$0 o | [0] 27| [15]
I : 16| tab o——_i ’
! 276012 [69000]
|
__ -»{ Code_Table — = short[]
8| tab o ——~/ 8l length: 69001
12 [0]
138012 [69000]
Figure 8.5: Object graph of benchmark compress
Field n*1000 | % | X Kind State
Code_Table.tab 92,339 | 12% | 12% | Array field Inlined, length 69001
Hash_Table.tab 66,369 | 8% | 20% | Array field Inlined, length 69001
Input_Buffer.InBuff 65,616 | 8% | 28% | Array field Colocated
Output_Buffer.OutBuff 65,616 | 8% | 37% | Array field Colocated
Comp_Base.Output 65,614 | 8% | 45% | Object field Inlined, subclasses
Compressor.htab 56,019 | 7% | 52% | Object field Inlined
Comp_Base.Input 48,286 | 6% | 58% | Object field Inlined, subclasses
Decompressor.de_stack 47,053 | 6% | 64% | Object field Inlined
De_Stack.tab 47,053 | 6% | 70% | Array field Inlined, length 8000
Suffix_Table.tab 47,046 | 6% | 76% | Array field Inlined, length 65536
Decompressor.tab_suffix | 47,039 | 6% | 82% | Object field Inlined
Compressor.codetab 46,157 | 6% | 88% | Object field Inlined
Decompressor.tab_prefix | 46,144 | 6% | 94% | Object field Inlined
Comp_Base.buf 20,956 | 3% | 97% | Array field Inlined, length 16, subcl.
Compress.rmask 19,723 | 2% | 99% | Array field Not optimized
Compress.Imask 9,862 | 1% | 99% | Array field Not optimized

Table 8.6: Access statistics for benchmark compress

110

Analysis of SPECjvm98

The handling of the input and output data is equal for compression and
decompression. Therefore, the classes Compressor and Decompressor have the same
superclass Comp_Base, which defines the fields Input, Output, and buf. These three
fields can only be inlined using the reverse object order, otherwise the offsets of the
child objects would be different during compression and decompression. A
Compressor object has a size of 80 bytes, while a Decompressor object has a size of
72 bytes, i.e. the offsets would differ by 8 bytes.

The fields rmask and lmask are static fields defined in the class Compress. It is not
possible to colocate or to inline such fields because the class descriptor that contains the
fields is located in the permanent generation, while the actual arrays are placed in the
young or old generation. Therefore, we exclude such fields from optimization and do
not emit read barriers for them.

8.2.4 jess

The jess benchmark is an early version of the Java Expert Shell System [Jess08], which
applies rules to a set of data to solve several puzzles. Figure 8.6 shows a simplified
version of the data model. Some of the classes have subclasses, and Value objects can
reference arbitrary other objects.

TokenVector ¢ —» Token][] Token
8| ptr | 8[length I
12y e ———) 121 0] 24| facts *-|—

[&)
16| [1] o> :
[
[
|
o e J
|
'_»/ ValueVectorl] ValueVector (— »| Value
8| length 8| ptr : >
12| [0] 12|y «|——
161 11] o

Figure 8.6: Object graph of benchmark jess

Table 8.7 shows the field access statistics. All three array fields shown in the object
graph can be inlined. Dynamic array inlining is necessary because the arrays are used
to manage dynamic lists of elements, similar to the collection classes. The most
frequently accessed field ValueVector.v can only be optimized with reverse object
order because the class ValueVector has a subclass.

During the solving process, the lists of tokens and values are frequently changed.
Several arrays must be replaced by larger copies, i.e. the change rate of the array fields
is high. Therefore, the slow path of the optimized array loads is taken for 13% of the

111

Evaluation

loads of ValueVector.v and for 25% of the loads of TokenVector.v. The additional
overhead of the slow path countervails the benefit of object inlining, so there is no
speedup for this benchmark. Additionally, the successful inlining of the field
Hashtable.table does not lead to optimized array loads because the array length is
explicitly accessed before the array load (see Section 7.6.2 on page 96).

Field or Array | n*1000 | % | X Kind State
ValueVector.v 39,024 | 22% | 22% | Array field Inlined, dyn. length, subclasses
Value[] 36,400 | 21% | 43% | Array element | Colocated
ValueVector(] 26,339 | 15% | 58% | Array element | Colocated
Token.facts 25,673 | 15% | 73% | Array field Inlined, dynamic length
TokenVector.v 5865 | 3% | 77% | Array field Inlined, dynamic length
Token[] 5840 | 3% | 80% | Array element | Colocated
Node?2.tests 5025 | 3% | 83% | Array field Colocated
Object(] 4,517 | 3% | 86% | Array element | Colocated
Hashtable$Entry([] 3,515 | 2% | 88% | Array element | Colocated
Hashtable.table 3,515 | 2% | 90% | Array field Inlined, dyn. length, subclasses

Table 8.7: Access statistics for benchmark jess

8.3 The DaCapo Benchmarks

The DaCapo benchmark suite [Blackburn06] consists of eleven object-oriented
applications. They are more elaborate than the SPECjvm98 benchmarks regarding code
complexity, class structures, and class hierarchies. We evaluate these benchmarks
similarly to the SPECjvm98 benchmarks and report the same metrics, i.e. the speedup
of the different configurations as well as static and dynamic field access counts.

8.3.1 Impact on Run Time

Figure 8.7 shows the results for the DaCapo benchmarks. We executed each benchmark
five times and show the slowest and the fastest runs on top of each other. The slowest
run is always the first one and contains the compilation time. Because of the higher
complexity of the benchmarks, more methods must be compiled in the startup phase.
Therefore, the difference between the slowest and fastest runs is usually higher than
for SPECjvm98.

The complexity also reduces the impact of our optimizations. The benchmarks require
a larger heap size, which increases the overall time spent in the garbage collector. Our
object colocation algorithm is embedded into the garbage collector and introduces a
small but measurable overhead. This overhead outweighs the benefit for some of the
benchmarks. For example, the benchmark antlr is slightly slower with object
colocation, but then benefits from object and array inlining. For some other
benchmarks such as fop and hsqldb, the overhead is higher than the benefit for all
configurations. However, no benchmark has a slowdown of more than 2%.

112

The DaCapo Benchmarks

150%
2 o2 I R
Seln SIEs SSSF O SERE S Sl Blfe S538 £l £23F E..
3nc= 8588 288z 8352 8&5%X oggg SHBR SS3T BERH S=== 3RRN
1000/ — & — = e — —~ AR N R RN e — O\ — — XA — AR
/-
50% - . = e I X x
-] Ed Baseline iy | X
O == = B Colocation - X =
Slowest Run (A Object Inlining [{- 3 - B
:If WFastest Run Array Inlining ({ s - K
0o LEE FEHAN EE FIFN FLFA Ei- x x B

antlr bloat chart eclipse fop hsqldb jython luindex lusearch pmd xalan

Figure 8.7: Speedup compared to baseline for DaCapo (taller bars are better)

8.3.2 Field Access Counts

The lower speedup of the DaCapo benchmarks is explained by the dynamic field
access counts shown in Figure 8.8. Only a small percentage of the dynamic object field
and array field accesses can be eliminated. One exception is the benchmark luindex:
about two thirds of the array field loads are eliminated. Other benchmarks with a
significant number of eliminated field loads are chart, fop, lusearch, and pmd.

100% T
80% -
W
il B N 1L
60% N
i N \
., |0 Array Elements N
40% 1@ Array Fields §
B Array Fields Elim. e N
., | BObject Fields .
20% 1 B Object Fields Elim. & < N
O%J Gl B / __H M
boa | boa | boa | boa | boa | boa | boa | boa | boa | boa | boa
antlr | bloat | chart |eclipse | fop |hsqldb |jython |luindex|lusearch) pmd | xalan

Figure 8.8: Dynamic field access statistics for DaCapo

The dynamic field access statistics reflect only one of the optimizations that are
performed for inlined fields. Other benefits such as the elimination of type checks, the
improved method inlining, and the simplification of array bounds checks also affect
the benchmark speed. For example, the benchmark antlr shows a speedup although no
significant number of field loads is eliminated.

113

Evaluation

8.3.3 Number of Optimized Fields

The higher complexity of the DaCapo benchmarks compared to SPECjvm98 is also
visible in the static field access statistics shown in Table 8.8. The effective detection of
hot fields using read barriers is essential to keep the run-time overhead of object
colocation and inlining in an acceptable range.

Initial Counted Colocated Inlined

Obj. | Arr. |Scalar| Obj. | Arr. | Obj. | Arr. | Obj. | Arr.
antlr 795 126 606 238 43 24 13 1 2
bloat 1008 167 578 251 62 47 12 8 2
chart 1592 274 | 1296 207 68 32 11 4 2
eclipse 3079 767 | 2162 771 374 75 65 11 5
fop 1452 158 949 324 48 31 12 1 3
hsqldb 844 209 689 209 92 26 9 2 1
jython 1264 234 841 278 94 77 31 3 7
luindex 709 155 643 191 63 35 19 6 4
lusearch 684 140 623 148 55 22 15 3 4
pmd 1092 173 779 238 58 65 26 9 8
xalan 1335 183 852 449 75 13 11 0 1

Table 8.8: Static field access statistics for DaCapo

The several thousand object fields and several hundred array fields are reduced to at
most 77 colocated object fields and 65 colocated array fields. However, our inlining
algorithm is too conservative, so only few of the colocated fields can be inlined. The
main constraint is object co-allocation where the time frame between the allocation of
parent and children is too long, i.e. the allocations are not in the same compiled
method so that co-allocation is not possible.

8.3.4 Compile-Time Impact

Table 8.9 shows the number of compiled methods for the different configurations. The
recompilations necessary for the removal of read barriers, which are included in the
column colocation, increase the number of compiled methods significantly. In contrast,
the number of additionally compiled methods for object inlining and array inlining
is low.

114

SPECjbb2005

Baseline Colocation Object Inlining | Array Inlining
antlr 761 1164 | +53% 1263 | +66% 1283 +69%
bloat 646 901 | +39% 996 | +54% 1016 +57%
chart 496 660 | +33% 702 +42% 729 | +47%
eclipse 2563 3982 +55% 4147 | +62% 4287 | +67%
fop 593 978 | +65% 1054 | +78% 1109 +87%
hsqldb 444 744 +68% 804 +81% 819 +84%
jython 1030 1446 | +40% 1519 | +47% 1659 | +61%
luindex 517 727 +41% 788 +52% 821 +59%
lusearch 383 615| +61% 656 | +71% 648 | +69%
pmd 813 1121 +38% 1242 +53% 1296 | +59%
xalan 1094 1833 | +68% 1842 +68% 1883 | +72%

Table 8.9: Number of compiled methods for DaCapo

8.4 SPECjbb2005

The benchmark SPECjbb2005 [Spec05] emulates a client/server application and reports
the executed number of transactions per second. It represents a typical three-tier
business application with a database layer, a business logic layer, and a user interface.
The focus is on the business logic. The database layer and the user interface are
simulated by Java classes. For example, database tables are replaced by Java
collections. A textual user interface is simulated by a two-dimensional character array
that is filled with tabular results of the executed transactions. To benchmark the
scalability of a Java VM, the number of transaction threads is variable. In our
configuration, the thread count is incremented from 1 to 8.

Though some field loads can be eliminated, we fail to optimize the most important
fields of SPECjbb2005. The business objects do not use Java collections themselves.
Instead, either a HashMap or a TreeMap are wrapped by a MapDataStorage object. The
field MapDataStorage.data cannot be inlined because it can reference either a HashMap
or a TreeMap object, but we require that inlined fields reference only objects of a single
class. Furthermore, the tree-based structure of the TreeMap cannot be optimized by
object inlining because the left and right pointer of a tree node can be null. For all
configurations of object colocation and inlining, the same number of executed
transactions per second is reported, i.e. there is neither a speedup nor a slowdown.

8.5 SciMark

SciMark 2.0 [Pozo99] is a benchmark suite for scientific and numerical computing. It
executes and measures five computational kernels and reports a score in Mflops. All
kernels perform a large number of floating point operations in a low number of long-
running and small loops. No objects are allocated in the benchmark runs, so no
garbage collection is necessary. The data is stored in large scalar arrays. Because no
object fields and array fields are accessed, no speedup can be expected from our

115

Evaluation

optimizations. However, there should also be no slowdown due to the analysis
overhead. We verified this by executing SciMark in all configurations mentioned
above. All configurations showed the same results as the baseline.

8.6 Java Grande Benchmarks

The Java Grande benchmark suite [BullOO] consists of large-scale applications for
numerical computing. Similarly to SciMark, most of these applications operate on large
scalar arrays. We use only Section II and Section III of the sequential benchmarks.
Section I consists of micro-benchmarks for primitive mathematical operations and is
therefore unsuitable for our optimizations. Object and array inlining lead to no
speedup, but have no negative impact either.

The only exception is the benchmark RayTracer, which renders a three-dimensional
scene. The algorithm is similar to the mtrt benchmark of SPECjvm98, however the
RayTracer benchmark has a much simpler internal structure than mtrt. Among other
tields, our algorithms inlines the two important fields Sphere.v and Sphere.c. This
eliminates about 60% of all object field loads (40% of all reference loads) and leads to a
speedup of 33%.

116

Chapter 9

Related Work

This chapter discusses other research projects that work on similar
optimizations. The focus is on related work for object inlining and for object
colocation. So far, object inlining was only performed in static compilers, while
object colocation was usually integrated into virtual machines. The chapter also
presents some related work on dynamic profiling.

The success of programming languages that are based on a virtual machine and a
garbage collector led to a large number of research projects that use this infrastructure
for optimizations of the memory system. For example, various heuristics were
proposed that guide the garbage collector. As a result, fields that are frequently
accessed together end up in the same cache line (see Section 9.2).

In contrast to that, all previous work on object inlining was performed in static
compilers, even if the target language was Java, which lends itself to dynamic
optimizations in the virtual machine (see Section 9.1). We give an overview of existing
approaches for object inlining and then focus on the algorithm of Dolby, which is cited
most often in the context of object inlining.

Escape analysis [Blanchet03, Choi03, KotzmannO5b] is another optimization that
reduces the overhead of memory accesses. It detects objects that do not escape a certain
method (in which case the object fields are replaced by local variables) and objects that
do not escape a certain thread (in which case they are allocated on the method stack).
Escape analysis is orthogonal to object inlining because it optimizes short-living
objects, whereas object inlining optimizes long-living data structures.

9.1 Object Inlining

Dolby et al. extended a static compiler for ICC++, a dialect of C++, with an algorithm
for automatic object inlining [Dolby97, Dolby98, Dolby(00]. The compiler provides a
highly sophisticated interprocedural analysis framework. Their algorithm clones the
code of methods that access optimized fields. Therefore, there can be both optimized
and unoptimized objects of the same class as long as the same method always works
on objects of the same kind. In order to inline a field, they analyze and modify not only
all methods that assign the field, but also all methods that load the field. This is

117

Related Work

necessary because they eliminate object headers and pointers to inlined objects. The
details of their analysis are presented in Section 9.1.2.

Because they use an advanced global data flow analysis, they are able to convert arrays
of references to arrays of object values. Our analysis is not capable of performing such
transformations. However, we can handle dynamic arrays where an array field can be
changed to point to arrays of different sizes. This is not possible in any of the existing
static approaches. The optimization of such dynamic data structures is a significant
advantage of a run-time analysis, in addition to the benefit that no complex and time-
consuming data flow analysis is necessary.

The time for their global data flow analysis varies from one quarter to half of the total
compilation time. An analysis time of about 30 minutes is reported for an application
with about 30,000 lines of code measured using a Pentium Pro system with 266 MHz
[Dolby98]. This is several orders of magnitude too slow for being used in a just-in-time
compiler. The speedup highly depends on the structure of the application. While some
small benchmarks execute up to three times faster [Dolby97], a collection of medium-
sized applications shows a maximum speedup of 50% [Dolby98].

Laud implemented object inlining in a static Java compiler [Laud01] that is based on
the CoSy compiler construction framework [Alt94]. His algorithm can detect and
handle the case when a child object is replaced with a new object. Instead of replacing
the inlined field with a reference to the new object, the fields of the new object are
assigned to the fields of the old object, i.e. a deep copy is performed. It is, however, not
allowed that a child object is referenced by anything else than its parent object, e.g. by a
field of another object. The algorithm can handle fields that are assigned multiple
times, so it could be used for the inlining of dynamic arrays. However, no details
regarding arrays are published. To the best of our knowledge, only the detection of
inlinable fields was implemented, but not the necessary program transformations that
remove loads of inlined fields. Therefore, no benchmark results are available.

Lhotak et al. provide a good introduction to object inlining and analyze the possible
impact on several Java benchmarks [Lhotak05]. Depending on the access pattern, they
distinguish four classes of inlinable fields, and use this classification to compare the
number of fields that can be optimized by the algorithms of Dolby and Laud (see
Section 9.1.1).

They focus on object fields in their study; array fields are not thoroughly evaluated.
While they present the access counts of array fields and compare them with the
number of object fields, their subsequent analysis and listing of inlinable fields does
not cover array fields. Furthermore, they do not distinguish between arrays with
constant length and arrays with variable length. Inlining of array elements is not
evaluated. The study does not describe an analysis or implementation for object
inlining, so no benchmark results are published, except for three hand-optimized
benchmarks.

118

Object Inlining

Veldema et al. present an algorithm for object combining that groups objects with the
same lifetime [VeldemaO5]. Their optimizations are integrated into Manta, a static
compiler for Java [VeldemaOl]. Object combining is more aggressive than object
inlining because it also optimizes unrelated objects if they have the same lifetime. This
allows the garbage collector to free multiple objects at once. Elimination of pointer
accesses is performed separately by the compiler. Similar to our approach, they retain
the object headers of child objects, which contain the virtual method table and a flags
field. Inlining of a single variable-length array per object group is possible. Their
optimizations focus on reducing the overhead of memory allocation and deallocation.
This is beneficial for their system because it uses a mark-and-sweep garbage collector
where these costs are high. They report a speedup of up to 34% for a set of object-
oriented applications.

Ghemawat et al. use a cheap interprocedural analysis for object inlining and for other
global optimizations [Ghemawat00]. Their analysis is integrated into Swift [Scales00],
an optimizing static Java compiler for the Alpha architecture. They collect a variety of
properties for each field, e.g. whether the field is never null or whether it is always
assigned an object of the same type. Objects can be inlined either with their header or
without their header. The header is necessary when the child object can be referenced
from outside the parent. Arrays are only inlined if the length is a compile-time
constant. Arrays with variable size are not optimized. There are no timing results with
only object inlining enabled, so it is not possible to quantify the impact of object
inlining.

Budimli¢ et al. present a static Java bytecode optimizer that performs object and array
inlining [Budimli¢97, Budimli¢98]. According to our definitions, they mix the terms
object inlining and escape analysis. When they inline an object, they eliminate the
allocation and replace the fields by local variables, i.e. they perform scalar replacement
of objects. For arrays, they replace an array of references by separate arrays of scalar
values, one for each field of the inlining child. This is consistent with our definition of
inlining because it performs some sort of address arithmetic to combine an array access
and a field load into a single array access. Their algorithm requires that all array
elements are initialized at the time the array is allocated and that all elements are
newly allocated objects of the same class. It is not necessary that the length of the array
is constant. The evaluation is limited to four small mathematical computations where
their optimization is highly effective, leading to a speedup of up to 460%.

9.1.1 Classification of Inlinable Fields

The study of Lhotak et al. [Lhotak05] analyzes the field access behavior of several Java
benchmarks, including SPECjvm98, to evaluate the possible impact of object inlining.
They use the Soot framework [Vallée-Rai99] for bytecode instrumentation. The
instrumented benchmarks emit traces of all field and array accesses. From these traces,
they compute the following four predicates for each field f:

119

Related Work

1.

[contains-unique]: The field f of a parent object references the same child object
throughout its lifetime.

[unique-container-same-field]: An object assigned to the field f of one object is
never assigned to the same field f of another object.

[unique-container-different-field]: An object assigned to the field f of one object is
never assigned to any other field of any other object.

[not-globally-reachable]: An object assigned to the field f of one object is never
stored in a static field or an array. Together, the predicates 3 and 4 ensure that
the object is not reachable by anything else than the field f.

Based on these predicates, they classify the field in one of the following categories. The
categories determine whether the field is inlinable by the algorithm of Dolby, the
algorithm of Laud, or by both algorithms. Figure 9.1 shows an example for each
category.

Simply one-to-one field: If all four predicates are satisfied for a field, both
approaches can optimize the field.

Field-specific one-to-one field: If only the predicates 1 and 2 are satisfied, the field
can be inlined by the algorithm of Dolby, but not by the algorithm of Laud. The
child object is referenced by different fields of different objects.

Unique-store field: If only the predicates 2, 3, and 4 are satisfied, the field can be
inlined by the algorithm of Laud, but not by the algorithm of Dolby. The field of
the same parent object is assigned multiple times.

Non-inlinable fields: If any other combination of predicates is satisfied, the field is
not inlinable by any of the two algorithms.

Parent Parent Other
f &*|— f o |—~ g [
| |
| | T
Child (€’ Child |«
a) Simply one-to-one field b) Field-specific one-to-one field
Parent Parent Parent
f -~ f - f =
|
Child |«’ '»{cChild Child |«
¢) Unique-store field d) Non-inlinable field

Figure 9.1: Examples for field categories

120

Object Inlining

Based on this field classification, the study summarizes the number of field loads that
can be eliminated by an algorithm that inlines fields of a certain category. Their main
findings are that 1) a low number of fields account for a high percentage of field loads
at run time, 2) most object fields are either simply one-to-one fields or not inlinable at all,
and that 3) many array fields are unique-store fields. In addition to the summarized
field access counts reported in [Lhotdk05], the appendix of [Lhotdk02] lists the detailed
access counts for each field.

The study already states that the reported numbers may be overly optimistic. For
example, they do not analyze whether the length of an array referenced by an array
field is a compile-time constant, which could be required by an inlining algorithm.
Additionally, we identified the following deficiencies:

e They neglect the problem of possible null values. If a field is not initialized in
all code paths, explicit null checks are necessary before the field is accessed.
Such checks are not possible for inlined fields, so the field is not inlinable. For
example, they report the field FieldDefinition.nextMatch of the javac
benchmark as inlinable, which is not correct.

e They do not analyze whether an inlined object needs an object header, e.g.
whether synchronization is performed on it.

e They focus only on the number of eliminated field loads, but do not analyze
other benefits of object inlining such as the increased amount of static type
information for the compiler or the simplification of array bounds checks.

Our object inlining algorithm is conceptually similar to the algorithm of Dolby. We
require that the same predicates are satisfied for a field to be inlinable, i.e. the
predicates [contains-unique] and [unique-container-same-field]. These two predicates
match our two preconditions for inlinable fields (see Section 3.3.2 on page 32).

For array fields, our approach for dynamic array inlining (see Section 7.3 on page 85)
weakens the preconditions. It is not necessary that an inlined field is assigned only
once, i.e. that the predicate [contains-unique] is satisfied. In contrast to the algorithm of
Laud, we allow other fields to reference an inlined array, therefore we do not require
the predicates [unique-container-different-field] and [not-globally-reachable] to be true.

9.1.2 Inlining Algorithm of Dolby

The object inlining algorithm of Dolby et al. [Dolby97, Dolby98, Dolby00] and our
algorithm require the same properties to be satisfied for object inlining: the parent
object must reference the same child object throughout its lifetime. Differences arise
from the implementation strategies: Our dynamic optimization at run time must be
more conservative to keep the analysis time low, while their static algorithm can
optimize all possible candidates. Additionally, we must deal with dynamic class
loading, while they can apply a global analysis and need not support dynamic loading
of code that was not known at compile time.

121

Related Work

Their algorithm is integrated into the Concert compiler [Chien97]. The input language
is ICC++, a dialect of C++ [Chien96]. It supports concurrency on the language level, i.e.
the same source code can be compiled either to a serial or to a parallel version of the
application. Some features of C++ such as value objects are missing in ICC++, therefore
existing C++ applications and benchmarks must be slightly modified before they can be
compiled.

The Concert compiler provides a global analysis framework for context-sensitive flow
analysis. A contour represents the execution context of a method, e.g. the callers of the
method with the run-time types of the parameters at the call site. When a method is
called twice with parameters of different run-time types, the contour is split on
demand so that each new contour has exact parameter types. The cloning framework
of the compiler duplicates the code for the method so that the type information of the
contours can be used for individual optimizations. It is also possible to clone a whole
class. The following analyses and transformations are necessary for object inlining;:

o Assignment specialization: All methods that assign the inlined field must be
modified such that the assignment by reference is replaced by an assignment by
value. The analysis must ensure that this copying is safe, i.e. that the original
object is not accessed afterwards.

e Use specialization: All uses of the inlined field must be transformed such that the
field access is replaced by address arithmetic. If the inlining child is passed to
another method, this method must be rewritten to take the parent object as its
parameter because the child object does not have a correct header.

e Building fused classes: Object inlining eliminates the header of the child object
and the pointer from the parent to the child. This changes the layout of both the
parent and the child. The layout algorithm tries to minimize the layout changes
such that as few methods as possible must be duplicated.

Figure 9.2 shows an example for use specialization. Assume that the class Rectangle
has two fields p1 and p2 of the declared type Point2D. The class Point2D holds the x
and y coordinates of a point. The class Point3D is a subclass of Point2D and adds the z
coordinate. The area calculation is performed differently in Point2D.area() and
Point3D.area(). These methods are called from the method Rectangle.area() using
dynamic binding. The method buildRect() allocates the Rectangle object. The two
points are specified as parameters so that the method main() can construct both a two-
dimensional and a three-dimensional rectangle.

When the fields p1 and p2 are inlined, it depends on the context whether the field z is
needed for the points. The method Rectangle.area() can be called for an inlined
object with or without this field, i.e. with objects of different sizes. The entire call graph
must be cloned so that two specialized variants of the methods buildRect() and
Rectangle.area() are available: one for two-dimensional rectangles and one for three-
dimensional ones.

122

Improvement of Cache Behavior

void main() { void main() {
pl = new Point2D(1, 2); pl = new Point2D(1, 2);
p2 = new Point2D(3, 4); p2 = new Point2D(3, 4);
buildRect(pl, p2); buildRect(pl, p2);
p3 = new Point3D(1, 2, 3); p3 = new Point3D(1, 2, 3);
p4 = new Point3D(4, 5, 6); p4 = new Point3D(4, 5, 6);
buildRect(p3, p4); buildRect(p3, p4);
))) 4)
void buildRect(pl, p2) { [3D] void buildRect(pl, p2) {..}
r = new Rectangle(pl, p2);
.. = r.area(); [2D] void buildRect(p1, p2) {..}
!)
\ 4
int Rectangle::area() { [3D] int Rectangle::area() {..}
return pl.area(p2); v
} [2D] int Rectangle::area() {..}
int Point3D::area() {..} \4
int Point3D::area() {..}
int Point2D::area() {..} y

\
int Point2D::area() {..}

a) Before method cloning b) After method cloning

Figure 9.2: Example for use specialization with method cloning

Due to the flexible cloning framework, their algorithm can optimize all fields that
satisfy the preconditions for object inlining. All methods that load or store the inlined
field are analyzed and possibly cloned. In contrast, we analyze only methods that store
the field. Methods that load the field and that are infrequently executed stay
unmodified even after the optimization has finished. We require that all objects of a
certain class have the same layout, so we cannot optimize the example shown above
even though the preconditions would be satisfied. However, our dynamic array
inlining can optimize more array fields than their algorithm. Our approach for
dynamic array inlining requires run-time support of the garbage collector and thus
cannot be implemented in a static compiler.

9.2 Improvement of Cache Behavior

History has shown that processor speed tends to grow faster than memory speed.
Current processors spend a lot of time waiting for requested data to be loaded,
especially in memory-intensive applications. Multi-level caches and memory
prefetching strategies reduce this gap. The number of cache misses has a high impact
on the overall application performance, so optimizations that improve the cache
behavior are profitable.

123

Related Work

Unfortunately, there is no efficient algorithm to compute an optimal memory layout
with respect to a minimum number of cache misses [Petrank02]. Even if the exact
sequence of memory accesses is known, finding the optimal solution has an
exponential time complexity. Furthermore, it is not even possible to get close to the
optimum, so it is not possible to evaluate how much of the theoretical benefit is
obtained by a particular strategy.

Because of this constraint, all optimization algorithms for improving the cache
behavior are based on heuristics. The usual strategy is to place data items that are
accessed together next to each other in memory so that they can end up in the same
cache line. When one data item is accessed, the others are automatically loaded into the
cache and are thus available with a lower delay.

9.2.1 Object Colocation in the Garbage Collector

One possibility for improving the cache performance is to modify the order of objects
on the heap. The object order can be influenced by garbage collection algorithms that
move objects to new locations. Typically, such algorithms traverse the object graph and
place all live objects next to each other in memory. The resulting object order depends
on the order in which references are traversed. Hirzel evaluates ten different layouts
and shows that no layout is best for a variety of benchmarks [Hirzel07]. The following
three approaches are widely used in Java virtual machines. Details and examples are
presented e.g. in [Siegwart06] and [Jones96].

e Breadth-first layout: The object graph is traversed breadth-first. This can be
implemented without an additional data structure and is therefore simple and
space-efficient, but leads to a mostly random object order.

e Depth-first layout: After an object was copied, the copying method is called
recursively for the references inside this object. The object and its first child are
colocated.

e Hierarchical layout: The breadth-first layout is performed independently for
small memory blocks, e.g. the page size of the system. Related objects tend to
end up colocated at least in the same page.

The normal copying order of these algorithms can be further refined by heuristics.
When it is known that one field of a certain class is accessed frequently, the garbage
collector can process this field first and place the referenced object next to its parent on
the heap. The published algorithms differ mainly in the way how the most important
fields are detected. For example, our object colocation algorithm described in Chapter 5
on page 47 uses profiling data collected by read barriers that increment field access
counters.

Huang et al. describe a system called online object reordering [Huang04], implemented
for the Jikes RVM. They use the adaptive compilation system of Jikes [Alpern00] that
periodically records the currently executed methods. Fields accessed in the most

124

Improvement of Cache Behavior

frequently recorded methods are traversed first by the garbage collector. The decision
which fields are hot is based on a static analysis of the methods. It is performed by the
just-in-time compiler when compiling the methods before their first execution. The
compiler distinguishes hot and cold blocks, e.g. based on the loop depth. All fields that
are accessed in hot blocks are considered hot. This information is not as precise as our
dynamic numbers obtained from the read barriers. By using the existing interrupts of
Jikes, their analysis has a low run-time overhead of 2% to 3%.

Chilimbi et al. use generational garbage collection for cache-conscious data placement
[Chilimbi98] and present results for the dynamically typed and purely object-oriented
programming language Cecil [Chambers98]. They collect run-time information about
accessed objects using a sequential buffer. When an object is accessed, its address is
written into the next free position of the buffer. The granularity is at the object level
and not at the field level, using the assumption that most objects are small so that it is
not necessary to distinguish different fields within the same object. The object access
information is converted to an object affinity graph before garbage collection. Objects
that are accessed together with at most one other object access in between are added to
the graph. The garbage collector places objects connected by an edge next to each other
in memory. It is not necessary that the objects reference each other. They report a
reduced execution time of 14% to 26% for their benchmarks.

Chen et al. use garbage collection as a proactive technique to improve the locality of
objects [Chen06], i.e. they trigger garbage collection not only when the heap is full but
also when the locality should be improved. They use read barriers to track all accessed
objects. For the optimization of the cache behavior, the object references are inserted
into a circular buffer similar to Chilimbi et al. For the optimization of page locality,
objects are marked using a special bit in the object header when they are accessed. The
instrumentation overhead is reduced by enabling the read barriers only during short
sampling intervals. The implementation is integrated into the Common Language
Runtime of Microsoft. The evaluation with several C# applications shows an average
speedup of 17%, with an analysis overhead of less than 3%.

Shuf et al. improve the locality of objects in Java applications by co-allocating objects
and then preserving this order during garbage collection [Shuf02b]. Their
implementation is integrated into the Jikes RVM [Alpern00]. Instead of detecting
frequently accessed fields, they use frequently instantiated types, called prolific types
[Shuf02a], to guide the optimization. Similar to our co-allocation, they build parent-
child relationships of objects. The allocation profiles that show the frequently
instantiated classes are loaded from a file that was created by a prior profiling run of
the application. The just-in-time compiler uses this information to co-allocate at most
two objects if they have both a prolific type and if they are connected by a field. The
garbage collector preserves this optimized order using a modified object traversal
algorithm. When only co-allocation is performed, they report speedups of up to 21%
with a non-copying mark-and-sweep collector where object allocation costs are high,
but they observe no speedup with a copying collector. This corresponds with our

125

Related Work

experience that co-allocation itself is not beneficial if object allocations are cheap. For
the configuration with a copying garbage collector, the average speedup of
co-allocation combined with the modified garbage collector that preserves the object
order is about 5%.

Calder et al. perform cache-conscious data placement not only for dynamically allocated
objects, but also for global variables, constants, and the method stack [Calder98]. They
optimize C, C++, and Fortran programs that do not use a garbage collector, so they
cannot reorder objects. Instead, they modify the object allocation such that the initial
position of a memory element is optimized. The profiling data is collected by a
preceding profiling run of the instrumented application. Because they only simulate
the resulting optimized data layout, they report only the impact on the cache miss rates
and no speedups for the benchmarks.

Guyer et al. define dynamic object colocation in a different way than we do. They modify
object allocation such that new objects that will be referenced by an object of the old
generation are immediately allocated in the old generation and not in the nursery
space [Guyer04]. The garbage collector is not modified. This colocation reduces
garbage collection time and improves locality. They integrated the optimization into
the Jikes RVM [Alpern00] and report a speedup of up to 10%.

9.2.2 Field Reordering and Object Splitting

A complementary approach to modifying the object order is modifying the objects
themselves. If an object has multiple fields with different access frequencies, it is either
possible to reorder the fields such that all frequently accessed ones are at the beginning
of the object, or to split an object into a part with the frequently accessed fields and a
second part with the infrequently accessed ones.

Chilimbi et al. evaluate both techniques, but they do it in different systems
[Chilimbi99]. They perform structure splitting for structures of a size comparable to the
cache line size. With splitting, the hot fields of multiple objects end up in the same
cache line. They use profiling data collected by an instrumented version of the
application to guide a static compiler for Java. Together with cache-conscious object
colocation performed by the garbage collector, they report a speedup of 18% to 28%.
Large objects with several hot fields cannot benefit from object splitting. Instead, it is
beneficial to reorder the fields so that all hot fields are at the beginning of the object
and therefore in the same cache line. They do not perform this optimization
automatically, but implemented a tool that outputs reordering hints for the
programmer.

Kistler et al. change the order of fields automatically at run time to improve the
memory performance [Kistler00]. They collect profiling data and swap in a modified
code image when the optimization was applied. This continuous program optimization
is active for the whole application run [KistlerO1]. They build a temporal relationship
graph that contains the information how the fields of an object are accessed. The graph

126

Dynamic Profiling Techniques

is then partitioned into aggregates that fit into one cache line. Inside these aggregates,
the optimal field order is computed so that the load latency is minimized. The
optimization is integrated into the Oberon system [Wirth92]. They report speedups of
up to 96% for their set of Oberon applications. However, the overhead of continuous
profiling is higher than the speedup in some cases.

Rubin et al. present a profiling framework for optimizations of the data layout
[Rubin02]. They search the space of possible layouts using profiling data collected by
an instrumented application. Instead of compiling and running the optimization
candidates, they simulate the cache behavior on a representative trace of memory
accesses. Simulation also yields the objects that are responsible for a poor performance,
which is used to narrow the search space for the best layout. Using this framework,
they perform field reordering and custom memory allocation. The experimental results
show that the iterative search performed by the framework outperforms the existing
single-pass heuristic optimizations.

Zhong et al. split structures and regroup arrays based on a model of reference affinity
[Zhong04]. Reference affinity measures the relationship between memory accesses of a
group of data in an execution trace, i.e. how many other memory accesses are
performed between the optimization candidates. They use instrumented source code to
collect the access profiles for a set of C applications, as well as a modified C compiler
that can handle only type-safe C applications to perform structure splitting. They
report an average speedup of about 10% for several tree-based benchmarks.

9.3 Dynamic Profiling Techniques

Many profiling techniques have been proposed to collect accurate profiling data with a
low overhead [Arnold05]. Information can be obtained by monitoring run-time
services of a virtual machine, by using hardware performance counters, by sampling
the running application, by program instrumentation, or by a combination of these
techniques. Most optimizations of the cache behavior described above are guided by
profiling data.

Blackburn et al. evaluate the dynamic impact of read and write barriers on different
platforms [Blackburn04]. They focus on current garbage collection algorithms that
require barriers for correctness. Such barriers cannot be removed after a short
measurement interval. The paper therefore reports the overhead that would arise by
continuous profiling. For example, a complex conditional read barrier shows an
average slowdown of 16% on a Pentium 4 processor, with a maximum slowdown of
over 30% for certain benchmarks. Because such an overhead can hardly be amortized
by any optimization, the overhead must be reduced by enabling profiling selectively or
by removing the barriers when they are no longer needed.

Arnold et al. present a general sampling framework for reducing the costs of
instrumented code [Arnold01]. The framework dynamically switches between the

127

Related Work

original uninstrumented code and the instrumented code in a fine-grained manner.
This requires duplication of the code. A check at all method entries and backward
branches switches between the two code versions. The tradeoff between accuracy and
overhead can be adjusted at run time. They report an average overhead of 3% for
profiles that overlap 93% to 98% with a perfect profile.

Hirzel et al. extend the above framework to collect profiling data on longer traces
[HirzelO1]. In contrast to Arnold, they are not limited to intraprocedural and acyclic
paths, but they collect information on paths that can span procedure boundaries and
loops. To limit the overhead, they reduce the number of checks that switch between
instrumented and uninstrumented code, while still guaranteeing that a check is
performed in a bounded timeframe. They directly instrument machine code and report
a run-time overhead of 3% to 18%.

128

Chapter 10

Summary

This chapter summarizes the basic principles of feedback-directed object
inlining. It presents the main contributions and recapitulates the optimization
phases, which are integrated into the just-in-time compiler and the garbage
collector. Finally, the thesis is concluded with an outlook on future work that
could increase the number of inlined fields.

In this thesis, we presented algorithms for object inlining and array inlining in a Java
virtual machine. The project is part of a long-standing and ongoing collaboration
between Sun Microsystems and the Institute for System Software at the Johannes
Kepler University Linz. Because our work is integrated into Sun Microsystems’ Java
HotSpot virtual machine, several design decisions are influenced by existing VM
subsystems such as the metadata model for classes and objects, the client compiler for
just-in-time compilation, and the deoptimization framework for undoing optimistic
optimizations.

10.1 Contributions

Although many feedback-directed optimizations for virtual machines have been
proposed in literature, this area is still under active research because it offers novel and
promising possibilities for optimization. To the best of our knowledge, our approach is
the first that applies object inlining at run time in a virtual machine without requiring
actions on the part of the programmer. Additionally, we are not aware of any system
that allows inlining of array fields that are changed at run time. In this thesis, we
contribute the following:

e We propose to integrate automatic object inlining and array inlining as a
feedback-directed optimization into a Java virtual machine.

e We use just-in-time compilation and garbage collection for optimizations that
cannot be performed by a static compiler.

e We use read barriers inserted by the just-in-time compiler to get a dynamic field
access profile and remove read barriers when they are no longer needed.

129

Summary

e We perform object colocation in a system with dynamic class loading and
generational garbage collection.

e We guarantee the preconditions for inlining by dynamically compiling and
recompiling methods with co-allocation and field store guards, thus avoiding a
global data flow analysis.

e We present an approach for inlining array fields that are assigned multiple
times. It can optimize dynamic data structures such as collections.

e We handle class hierarchies by reversing the inlining order such that inlining
offsets are constant even if a parent class has subclasses.

e We fully support Java’s dynamic class loading by using the deoptimization
framework of the Java HotSpot virtual machine.

e We build our implementation on a production-quality Java virtual machine that
is highly tuned for performance.

e We evaluate our implementation and compare different configurations of object
colocation, object inlining, and array inlining using several benchmark suites.

10.2 The Big Picture

Object inlining reduces the costs of field accesses by replacing memory accesses with
address arithmetic. While the actual optimization that transforms field loads is quite
simple and straightforward, the preceding analysis steps that detect inlinable fields
and guarantee the necessary preconditions are challenging. We rely on algorithms that
are mostly integrated into the just-in-time compiler and the garbage collector.
Figure 10.1 summarizes the steps that are necessary for the inlining of a field. The flow
chart shows the dependencies of the subsystems and the order in which methods are
analyzed and compiled to guarantee the preconditions.

In order to find out which methods allocate objects and which methods store fields, the
bytecodes of all methods must be analyzed before they are executed for the first time.
This fills the method table—a hash table that maps class names and field names to
methods that instantiate the class or store the field. The analysis of a method can be
done at any time between loading the method’s class and executing the method for the
tirst time. To exclude methods that are loaded but never executed, we analyze them as
late as possible, i.e. at link time.

All methods start being executed in the interpreter. Only frequently executed methods
are scheduled for compilation. Our modified compiler inserts read barriers that count
field accesses at run time. When a field counter exceeds a certain threshold, the field is
considered important, added to the hot-field tables, and optimized. All successive
steps are performed only for the few hot fields.

130

The Big Picture

Class Loader

|
methods that load the field

Execute in Interpreter

methods that

methods that store the field

allocate the field’s class

»i
<

in Full GC

| 7777777\ T T T T T 7Y Method Tracking |
method invocation counter overflow : | | Fill Method Table | | | | Fill Method Table | | :
:_Hot-Field Detection] : :
I I : Ly |
: | | Compile with Read Barriers | | : : / Method Table / :
| read barrier counter overflow : _ _| _______] |
: I I I
| | | Add to Hot-Field Tables | | : | |
|
[|
| |
\ 4 | |
/ Hot-Field Tables / methods must methods must
be compiled be compiled
I e a1 W & 1 A 9 Tt T
| Object Colocation I | \ 4 | Object Inlining |
[- I Compile with I
| | | Colocate during GC | | : | Co-allocation | I
|
| l : y |
[| | Compile with |
| | | Field Store Guards |
: Guarantee Colocation : I I :
1
| | |
| | |

inlining successful

Optimized Field Loads

l |
|
Compile with \»{

r Run-Time Monitor

| Monitor Preconditions | |

precondition invalidated

Figure 10.1: Phases of automatic object inlining

The hot-field tables are used by the ga
to place objects connected by hot field

rbage collector to perform object colocation, i.e.
s next to each other in memory. This improves

the spatial locality of objects and therefore the cache performance. It is a statistical

optimization, i.e. it is desirable that a
colocated, but non-colocated objects do

large number of objects of a certain class are
not affect correctness.

In contrast to that, object inlining demands that all objects of a certain class are

colocated. To guarantee this, all methods that allocate parent objects as well as all

methods that store inlined fields are

analyzed. We combine the analysis and the

necessary transformations of the methods by using the just-in-time compiler, i.e. we

131

Summary

compile all such methods. The compiler reports feedback whether the transformation
succeeded. The information which methods must be compiled is available from the
method table. Methods that allocate parent objects are compiled with co-allocation, i.e.
allocations of parent and child objects are merged into a single allocation. Methods that
store the field are compiled with field store guards, i.e. field stores are preceded by
calls of a runtime function that reverts object inlining.

When the compilation of the methods succeeds, the preconditions are satisfied for all
objects allocated by the newly created machine code. However, it is still necessary to
wait until no old machine code is executed anymore and until a run of the
mark-and-compact garbage collector performed object colocation for the entire heap.
After this, optimized field loads are possible.

A field load can be optimized by load folding (if the address of the child object is not
needed) or by address computation (if the address of the child object is needed
explicitly). Care must be taken to preserve an implicit null check that is integrated into
the memory access. Additionally, the increased amount of static type information can
be used for optimizations.

Array inlining, i.e. the optimization of fields that reference an array instead of another
object, does not need additional analysis steps. Arrays can be handled mostly like
objects. However, some differences must be considered. On the one hand, the size of an
array is not a compile-time constant but depends on the actual array length. This
restricts some optimizations, e.g. only one array with a variable length can be part of
an object group. On the other hand, the array bounds check that precedes each array
access can be used to optimize array fields that are stored multiple times. For example,
this enables the optimization of collection classes.

Class hierarchies pose another problem for object inlining: If the class of a parent object
has a subclass, an inlining child cannot be placed at a fixed offset after the parent
because the parent’s size is different for the superclass and the subclass. This problem
is solved by placing the child objects in front of the parent object on the heap, which
leads to negative but constant offsets. However, the reverse order complicates array
inlining and requires a copy of the array length at the end of the array. With this length
field, it is possible to integrate the address arithmetic for the optimized array access
into the array bounds check without inserting additional machine instructions.

Dynamic class loading as well as object allocations and field stores that are done via
reflection, the Java Native Interface, or object cloning can violate a precondition at any
time after the optimization was performed. Such cases are detected via run-time
monitoring. They trigger deoptimization of all methods that contain optimized field
loads so that these fields are loaded from memory again. However, object colocation in
the garbage collector is still possible to improve the cache behavior.

Method execution, just-in-time compilation, and garbage collection are performed
asynchronously, therefore the subsystems are not invoked sequentially. All phases

132

Future Work

mentioned above are partly overlapping, so they are properly synchronized and
operate correctly even if new classes are loaded later on. This leads to a sometimes
conservative design that misses possible optimizations, but is inevitable for a feedback-
directed optimization that is performed at run time.

10.3 Future Work

Our extension of the Java HotSpot VM is a reliable implementation of object and array
inlining. The benchmark results show that removing field loads is profitable for many
applications, and that the overhead is reasonably small if no optimization is possible.
The implementation is stable enough to execute the benchmarks, but should not be
considered production-quality because some corner cases could lead to unexpected
behavior. Additionally, we are conservative and do not optimize some cases where the
expected benefit was too small compared to the implementation complexity. The
following small-scale improvements could be implemented without changing the
overall architecture of our system:

e Some algorithms handle complicated cases conservatively, mostly the
algorithm for object co-allocation. Currently, we fail to co-allocate objects if the
code between the allocation of the parent object and the allocation of the child
object is too complex, e.g. if arbitrary methods are called in between.
Improvements of co-allocation would directly lead to more inlinable fields.
Additionally, we perform object colocation only for the first element of an
array, even though colocating some or all array elements could be profitable.

e We do not optimize fields that are accessed using the dynamic features of Java,
i.e. reflection, the Java Native Interface, and object cloning. It would be possible
to handle these features less conservatively. Object cloning would be the
simplest of the three because the semantics of Object.clone() are clearly
defined, so this method could be replaced by specialized machine code created
by the just-in-time compiler. Reflection would be more complicated but still in
the scope of Java, while analyzing the impact of the Java Native Interface would
require the analysis of arbitrary application-specific machine code.

¢ In order to guarantee the preconditions for object inlining and to remove
unnecessary read barriers, many methods have to be compiled. A better
heuristic for scheduling the compilations could reduce this number. For
example, we compile a method several times when it is a precondition for
several fields. It would be possible to perform all transformations in a single
compilation.

e In general, inlining of array elements is not possible with our approach.
However, some special cases could be handled, e.g. rectangular multi-
dimensional arrays. This optimization would replace an array of arrays by a
single large array. Such arrays are frequently used in scientific applications.

133

Summary

Some constraints result from the basic design of our approach. We do not support
certain optimizations because they would introduce too much complexity that cannot
be handled in our dynamic approach. A future implementation of object inlining could
rely more on static analysis in favor of more optimizations.

For example, we do not allow optimized and unoptimized objects of the same class to
coexist. This is the most severe restriction because a single allocation site where
co-allocation is not possible prevents the inlining of a field in all objects. Especially
library classes such as collections are frequently allocated. If instances of such classes
were separated into disjoint groups, the optimization of a single group would be
possible. This would require some sort of global analysis. While a global data flow
analysis is complicated and expensive because of dynamic class loading, a limited form
could be sufficient for this purpose.

Our approach eliminates neither the object headers of inlined objects nor the pointers
to inlined fields. This is necessary because we use a dynamic optimization model that
smoothly transitions between unoptimized and optimized machine code. This
approach does not allow structural changes of the heap. To support such changes,
explicit phases would have to be introduced. For example, removing a field from all
objects of a certain class would require a single transition point at which the heap is
rewritten.

After this point, it would not be allowed to access the field anymore, i.e. all methods
that access the field would have to be rewritten at this point. This would require
information about all places where the optimized field is loaded, in addition to our
information where the field is stored. If deoptimization is necessary, the heap would
have to be rewritten again to reintroduce the field. Future work could investigate
whether the complexity of such phase changes is justified by the reduced memory
consumption of the optimized application.

In summary, we think that a compromise between the static solutions of object inlining
presented in the related work and our fully dynamic solution could lead to a higher
number of optimized fields while still being suitable for a virtual machine.

10.4 Conclusions

From the perspective of software engineering, the comparison of Java with C or C++
shows the progress of programming languages over time. The features of Java
[Gosling05] such as strong typing, portability, exception handling, language support
for synchronization, garbage collection, and many more simplify application
development. Additionally, the precise specification of the execution environment
[Lindhom99] and the memory model [Manson05] are clear benefits of Java.

Java has been considered slow for a long time. The introduction of just-in-time
compilation, the implementation of novel optimizations for these compilers, and the
enhancement of the garbage collection algorithms have improved the performance

134

Conclusions

significantly, so Java is used for a wide variety of desktop and server applications
today.

After traditional compiler optimizations were successfully applied inside Java virtual
machines, research shifted to optimizations that go beyond the possibilities of static
compilers. Feedback-directed optimizations that build on profiling data collected at
run time allow virtual machines to adapt to the actual workload of an application,
while static compilers can optimize only for an average workload.

Instead of viewing just-in-time compilation and garbage collection as a run-time
overhead stealing time that could have been spent executing the application, they
should be considered as a powerful vehicle for dynamic optimizations. Our algorithm
for inlining array fields that are modified at run time is one example of an optimization
that is not possible in C or C++.

135

List of Figures

Figure 1.1: Motivating example for object inliningcccooeveveieiiiciiiccce, 4
Figure 2.1: System structure of the Java HotSpot VM ..., 10
Figure 2.2: Bit usage of the object mark word.........ccooovovoiiiiiii, 12
Figure 2.3: Class hierarchy for a Java object ... 14
Figure 2.4: Structure of the client compilerccooovoiniiiiii, 18
Figure 2.5: Compilation example—Java source code and Java bytecodes....................... 18
Figure 2.6: Compilation example —high-level intermediate representation (HIR) 19
Figure 2.7: Compilation example —construction of the HIR............ccccccoeviiniiinininnnnns 20
Figure 2.8: Compilation example —low-level intermediate representation (LIR)........... 21
Figure 2.9: Compilation example—lifetime intervals ..., 22
Figure 2.10: Compilation example —fragment of the machine code.........c.cccceoevrnnnnn. 22
Figure 2.11: Object allocation using a thread-local allocation buffer (TLAB).................. 23
Figure 2.12: Example that requires deoptimizationcccooeeieieiicccccce, 23
Figure 3.1: Java source code of the example classes............ccccceovriiiiiiiininninniin, 26
Figure 3.2: Object graph for example classesccccoouvveveirinieiiiciciciciccccccce, 27
Figure 3.3: Definition of terms.........ccccovviiiiiiiiiiiniiiiccccccccccc e 28
Figure 3.4: Possible memory layouts for inlined objectsc.cccoeeeiiiiiiie, 30
Figure 3.5: Consequences when inlining preconditions are not satisfied........................ 32
Figure 3.6: Components for object inliningccocoveveveinieieiiiieiccccccccce, 34
Figure 3.7: Optimization phases for a field ..o, 35
Figure 3.8: HIR of method Polyline.getLineColor() ..., 36
Figure 3.9: HIR fragment of method Test.allocate()., 37
Figure 3.10: HIR of constructor Polyline.<init> () ..o, 38
Figure 3.11: HIR of method Polyline.getLineColor() ... 39
Figure 4.1: Data structures and machine code for a read barrier..........ccccooevvivininnn, 42
Figure 4.2: Hot-field tables for example classes...........cccccoviiiiiiiiiniiiiinininiccccecccie 46

137

List of Figures

Figure 4.3: Hot-field graph for example classes..........cccccoviivinniinniiiniiiiiccen, 46
Figure 5.1: Example of colocation tables used during garbage collection........................ 48
Figure 5.2: Assigning edge states to the hot-field graph...........ccccccoeviiiiniinnnn. 50
Figure 5.3: Example for object colocation in the stop-and-copy algorithm...................... 54
Figure 6.1: Field access across class hierarchy...........ccccooeovoiinininniniicecceccecce 60
Figure 6.2: HIR fragment of method Test.allocate() ... 64
Figure 6.3: Co-allocation tree built for method Test.allocate()cccoviinniinnne. 64
Figure 6.4: LIR for co-allocation in method Test.allocate()cccccovivvvrcccnnncncnne. 65
Figure 6.5: Control flow for co-allocationcccceeiiiiiiiiiiniiiiccce, 66
Figure 6.6: Memory flow for co-allocation..........ccccceuvurueinnieicininiiiieeccceceeeene 67
Figure 6.7: HIR of constructor Polyline.<init>() ..o, 68
Figure 6.8: LIR fragment for constructor Polyline.<init>() oo, 69
Figure 6.9: Load folding in Polyline.getLineColor() ..., 71
Figure 6.10: Field offsets of inlined ObJectsccccouvuiueiniricieininiiiirccieeeeeeeene 71
Figure 6.11: Address computation in Polyline.getPoint () ..o 72
Figure 6.12: Influence of null checks on address computationccceeeueveerurucnnnne 74
Figure 6.13: Influence of null checks on load folding.........ccccccoeviiiiininininnniiice 75
Figure 6.14: Java source code for class hierarchy ..o, 76
Figure 6.15: Inconsistent inline offsets with class hierarchies............c.cccccooveiininnnne. 77
Figure 6.16: Reverse object order to support class hierarchiesccccoeeeinnicinnnn. 77
Figure 7.1: Example for fixed array inlining...........cccococeeivinniininiiinniiinicnecne, 81
Figure 7.2: HIR and LIR for fixed array inlining...........cccccoeeeininieninnncninneccireeene 81
Figure 7.3: Example for variable array inliningccccoceeiiviiiinnnniniccnccne, 82
Figure 7.4: HIR and LIR for variable array inliningcccccceveeinnncinnnccnineccne. 82
Figure 7.5: Inlining with an array as the inlining parent..........ccccoovviinininnnnne. 83
Figure 7.6: Java source code and bytecodes for field storesccccoeeiviviiinnnccnnnn 84
Figure 7.7: Java source code and bytecodes for array stores............cccocovvvvrirereieiereiennnnne. 85
Figure 7.8: Example for dynamic array inliningcccceeeeevnicinniinneccneccne 86
Figure 7.9: Principle of dynamic array inliningcccoeeiivniiinnniniccnccne, 87
Figure 7.10: HIR and LIR for dynamic array inliningccccceeeevevvncvinnecncnnecenne. 88
Figure 7.11: Non-destructive dynamic array inlining using cloned array length........... 89
Figure 7.12: Reverse object order fOr arraysccccceeeerneueinininicinineeieneeeeseeeeenene 90
Figure 7.13: LIR for array access with reverse orderccccoevivinniniiiinniccnnn, 91
Figure 7.14: Memory layout with 8-byte alignment............cccccceeiinniiinniinnnecien 92

138

List of Figures

Figure 7.15: Combined object and array inlining for ArrayList........cccoviiiinniins 95
Figure 7.16: Memory representation of a string and a substringccccceeevvvvrccncne 97
Figure 8.1: Speedup compared to baseline for SPECjvm98 (taller bars are better)....... 101
Figure 8.2: Dynamic field access statistics for SPEGGvmOS..........ccccccvrueinnvcinnicnnne 102
Figure 8.3: Object graph of benchmark mtrtccoooiiiiiiie, 106
Figure 8.4: Object graph of benchmark dbccccccociviiiiniiiiccce, 108
Figure 8.5: Object graph of benchmark compresscccoeereiciiiniinnnce, 110
Figure 8.6: Object graph of benchmark jess...........cccccvuveiiniiiinnineiiniccnecceeeens 111
Figure 8.7: Speedup compared to baseline for DaCapo (taller bars are better)............. 113
Figure 8.8: Dynamic field access statistics for DaCapo.........cccccevueuicinricinnncinnicnnne 113
Figure 9.1: Examples for field categoriescccooviiiiniiiininiiiiiiicccccn, 120
Figure 9.2: Example for use specialization with method cloning.............cccccoeeuiinnneee. 123
Figure 10.1: Phases of automatic object inlining............ccccceoeeriiiiinniieeees 131

139

List of Tables

Table 3.1:
Table 6.1:
Table 6.2:
Table 8.1:
Table 8.2:
Table 8.3:
Table 8.4:
Table 8.5:
Table 8.6:
Table 8.7:
Table 8.8:
Table 8.9:

Mapping of classes and fields to method lists.........ccccoveiininiiiiiiice 35
Method table for class hierarchycccocoeiiiniiinniiiiiiincce, 60
Details of the co-allocation instruction in method Test.allocate()........... 65
Static field access statistics for SPEGHvm98...........ccccoeiiviniiiiiniiiiiiice, 104
Number of compiled methods for SPEGvmM98 ... 105
Access statistics for benchmark mtrt ... 106
Impact of value numbering on benchmark mtrt.........ccoooovvinnnn 107
Access statistics for benchmark dbccccooeiiiii 108
Access statistics for benchmark compress ..., 110
Access statistics for benchmark jess.........ccccccoviiiiiiiiiniinice 112
Static field access statistics for DaCapo........ccoceecciiiieniniiiicecceece 114
Number of compiled methods for DaCapo.........cccccceeevinniiiiniicinniiccnen 115

141

List of Algorithms

Algorithm 2.1:
Algorithm 2.2:
Algorithm 4.1:
Algorithm 5.1:
Algorithm 5.2:
Algorithm 5.3:
Algorithm 6.1:
Algorithm 6.2:

Stop-and-copy algorithm for collection of the young generation........... 15
Mark-and-compact algorithm for full collection...........cccoeuviiviiuiinnnnns 16
Detection of hot fields based on access countersccccocevviiriiiinnns 44
Filling a colocation table during garbage collection.............ccceeueuiennne, 51
Modified stop-and-copy algorithm for object colocation 53
Modified mark-and-compact algorithm for object colocation 55
Bytecode analysis to fill method table ... 59
Co-allocation in just-in-time compilerccccovviiciiiniiiiinniiiiiicn, 62

143

Bibliography

[Agesen99]

[Agesen(0]

[Alpern00]

[Alt94]

[Anderson97]

[Arnold01]

[Arnold05]

O. Agesen, D. Detlefs, A.Garthwaite, R.Knippel, Y.S. Rama-
krishna, D. White: An Efficient Meta-lock for Implementing Ubiquitous
Synchronization. In Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
pages 207-222. ACM Press, 1999. d0i:10.1145/320384.320402

Ole Agesen, David Detlefs: Mixed-mode Bytecode Execution. Technical
Report TR-2000-87, Sun Microsystems Laboratories, 2000.

B. Alpern, C.R. Attanasio, J.J. Barton, M. G. Burke, P. Cheng, J.-D.
Choi, A.Cocchi, S.].Fink, D.Grove, M. Hind, S.F.Hummel,
D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar,
M.]. Serrano, J.C.Shepherd, S.E.Smith, V.C.Sreedhar, H.
Srinivasan, J. Whaley: The Jalapefio Virtual Machine. In IBM Systems
Journal, volume 39, issue 1, pages 211-238. IBM Press, 2000.

Martin Alt, Uwe Afimann, Hans van Someren: Cosy Compiler Phase
Embedding with the CoSy Compiler Model. In Proceedings of the
International Conference on Compiler Construction, LNCS 786, pages
278-293. Springer-Verlag, 1994. d0i:10.1007/3-540-57877-3_19

J. M. Anderson, L. M. Berg, J. Dean, S. Ghemawat, M. R. Henzinger,
S. A.Leung, R.L.Sites, M.T.Vandevoorde, C.A.Waldspurger,
W. E. Weihl: Continuous profiling: where have all the cycles gone? In
ACM Transactions on Computer Systems, volume 15, issue 4, pages
357-390. ACM Press, 1997. d0i:10.1145/265924.265925

Matthew Arnold, Barbara G. Ryder: A Framework for Reducing the
Cost of Instrumented Code. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 168-179. ACM Press, 2001. doi:10.1145/378795.378832

Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind, Peter
F. Sweeney: A Survey of Adaptive Optimization in Virtual Machines. In
Proceedings of the IEEE, volume 93, issue 2, pages 449-466. IEEE
Computer Society, 2005. doi:10.1109/JPROC.2004.840305

145

http://dx.doi.org/10.1145/320384.320402
http://dx.doi.org/10.1007/3-540-57877-3_19
http://dx.doi.org/10.1145/265924.265925
http://dx.doi.org/10.1145/378795.378832
http://dx.doi.org/10.1109/JPROC.2004.840305

Bibliography

[Bacon98]

[BilardiO3]

[Blackburn04]

[Blackburn06]

[Blanchet03]

[Bodik00]

[Briggs94]

[Briggs97]

[Budimli¢97]

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano: Thin
Locks: Featherweight Synchronization for Java. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 258-268. ACM Press, 1998. doi:10.1145/
277650.277734

Gianfranco Bilardi, Keshav Pingali: Algorithms for Computing the
Static Single Assignment Form. In Journal of the ACM, volume 50,
issue 3, pages 375-425. ACM Press, 2003. doi:10.1145/765568.765573

Stephen M. Blackburn, Antony L. Hosking: Barriers: Friend or Foe? In
Proceedings of the International Symposium on Memory Management,
pages 143-151. ACM Press, 2004. d0i:10.1145/1029873.1029891

S. M. Blackburn, C.Hoffman, A.M. Khan, K.S.
McKinley, R.Bentzur, A.Diwan, D.Feinberg, D.Frampton, S.Z.
Guyer, M. Hirzel, A.Hosking, M. Jump, H.Lee,].E.B.Moss,
A.Phansalkar, D. Stefanovi¢, T.VanDrunen, D. von Dincklage,
B. Wiedermann: The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 169-190. ACM Press, 2006. doi:10.1145/
1167473.1167488

R. Garner,

Bruno Blanchet: Escape Analysis for Java: Theory and Practice. In ACM
Transactions on Programming Languages and Systems, volume 25,
issue 6, pages 713-775. ACM Press, 2003. doi:10.1145/945885.945886

Rastislav Bodik, Rajiv Gupta, Vivek Sarkar: ABCD: Eliminating Array
Bounds Checks on Demand. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 321-333. ACM Press, 2000. doi:10.1145/349299.349342

Preston Briggs, Keith D. Cooper, Linda Torczon: Improvements to
Graph Coloring Register Allocation. In ACM Transactions on
Programming Languages and Systems, volume 16, issue 3, pages 428-
455. ACM Press, 1994. d0i:10.1145/177492.177575

Preston Briggs, Keith D. Cooper, L. Taylor Simpson: Value
Numbering. In Software: Practice and Experience, volume 27, issue 6,
pages 701-724. John Wiley & Sons, 1997. doi:10.1002/(SICI)1097-
024X(199706)27:6<701::AID-SPE104>3.0.CO;2-0

Zoran Budimli¢, Ken Kennedy: Optimizing Java: Theory and Practice.
In Concurrency: Practice and Experience, volume 9, issue 6, pages 445
463. John Wiley & Sons, 1997. doi:10.1002/(SICI)1096-9128
(199706)9:6<445:: AID-CPE301>3.0.CO;2-L

146

http://dx.doi.org/10.1145/277650.277734
http://dx.doi.org/10.1145/277650.277734
http://dx.doi.org/10.1145/765568.765573
http://dx.doi.org/10.1145/1029873.1029891
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/945885.945886
http://dx.doi.org/10.1145/349299.349342
http://dx.doi.org/10.1145/177492.177575
http://dx.doi.org/10.1002/(SICI)1097-024X(199706)27:6%3c701::AID-SPE104%3e3.0.CO;2-0
http://dx.doi.org/10.1002/(SICI)1097-024X(199706)27:6%3c701::AID-SPE104%3e3.0.CO;2-0
http://dx.doi.org/10.1002/(SICI)1096-9128(199706)9:6%3c445::AID-CPE301%3e3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1096-9128(199706)9:6%3c445::AID-CPE301%3e3.0.CO;2-L

Bibliography

[Budimlic98]

[Bull00]

[C1Visualizer]

[Calder98]

[Chaitin81]

[Chambers91]

[Chambers98]

[Chen06]

[Cheney?70]

[Chien96]

Zoran Budimli¢, Ken Kennedy: Static Interprocedural Optimizations in
Java. Technical Report CRPC-TR98746, Center for Research on
Parallel Computation, Rice University, 1998.

J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, R. A. Davey: A
Benchmark Suite for High Performance Java. In Concurrency: Practice
and Experience, volume 12, issue 6, pages 375-388. John Wiley &
Sons, 2000. doi:10.1002/1096-9128(200005)12:6<375::AID-CPE480>
3.0.CO;2-M

Christian Wimmer: Java HotSpot™ Client Compiler Visualizer, 2008.
https://clvisualizer.dev.java.net/

Brad Calder, Chandra Krintz, Simmi John, Todd Austin: Cache-
Conscious Data Placement. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 139-149. ACM Press, 1998. d0i:10.1145/291069.291036

Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John
Cocke, Martin E. Hopkins, Peter W. Markstein: Register Allocation via
Coloring. In Computer Languages, volume 6, issue 1, pages 47-57.
Elsevier Science Ltd., 1981. doi:10.1016/0096-0551(81)90048-5

Craig Chambers, David Ungar: Making Pure Object-Oriented
Languages Practical. In Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
pages 1-15. ACM Press, 1991. doi:10.1145/117954.117955

Craig Chambers: The Cecil Language Specification and Rationale,
Version 3.0. Department of Computer Science and Engineering,
University of Washington, 1998.

Wen-ke Chen, Sanjay Bhansali, Trishul M. Chilimbi, Xiaofeng Gao,
Weihaw Chuang: Profile-Guided Proactive Garbage Collection for
Locality Optimization. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 332-340.
ACM Press, 2006. doi:10.1145/1133981.1134021

C.]J. Cheney: A Nonrecursive List Compacting Algorithm. In
Communications of the ACM, volume 13, issue 11, pages 677-678.
ACM Press, 1970. doi:10.1145/362790.362798

Andrew A. Chien, Uday. S. Reddy, John Plevyak, Julian Dolby:
ICC++ - A C++ Dialect for High Performance Parallel Computing. In
Proceedings of the JSSST International Symposium on Object
Technologies for Advanced Software, LNCS 1049, pages 76-95.
Springer-Verlag 1996. doi:10.1007/3-540-60954-7_45

147

http://dx.doi.org/10.1002/1096-9128(200005)12:6%3c375::AID-CPE480%3e3.0.CO;2-M
http://dx.doi.org/10.1002/1096-9128(200005)12:6%3c375::AID-CPE480%3e3.0.CO;2-M
https://c1visualizer.dev.java.net/
http://dx.doi.org/10.1145/291069.291036
http://dx.doi.org/10.1016/0096-0551(81)90048-5
http://dx.doi.org/10.1145/117954.117955
http://dx.doi.org/10.1145/1133981.1134021
http://dx.doi.org/10.1145/362790.362798
http://dx.doi.org/10.1007/3-540-60954-7_45

Bibliography

[Chien97]

[Chilimbi98]

[Chilimbi99]

[Choi03]

[Click95]

[Click02]

[Cramer97]

[Cytron91]

[Dean95]

Andrew A. Chien, Julian Dolby, Bishwaroop Ganguly, Vijay
Karamcheti, Xingbin Zhang: Supporting High Level Programming with
High Performance: The Illinois Concert System. In Proceedings of the
Internal Workshop on High-Level Programming Models and Supportive
Environments, pages 15-24. IEEE Computer Society, 1997.
doi:10.1109/HIPS.1997.582952

Trishul M. Chilimbi, James R. Larus: Using Generational Garbage
Collection to Implement Cache-Conscious Data Placement. In Proceedings
of the International Symposium on Memory Management, pages 37-48.
ACM Press, 1998. d0i:10.1145/286860.286865

Trishul M. Chilimbi, Bob Davidson, James R. Larus: Cache-Conscious
Structure Definition. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 13-24.
ACM Press, 1999. doi:10.1145/301618.301635

Jong-Deok Choi, Manish Gupta, Mauricio]. Serrano, Vugranam
C. Sreedhar, Samuel P. Midkiff: Stack Allocation and Synchronization
Optimizations for Java Using Escape Analysis. In ACM Transactions on
Programming Languages and Systems, volume 25, issue 6, pages 876—
910. ACM Press, 2003. doi:10.1145/945885.945892

Cliff Click, Michael Paleczny: A Simple Graph-Based Intermediate
Representation. In Papers from the ACM SIGPLAN Workshop on
Intermediate Representations, pages 35-49. ACM Press, 1995.
doi:10.1145/202529.202534

Cliff Click, John Rose: Fast Subtype Checking in the HotSpot [VM. In
Proceedings of the ACM-ISCOPE Conference on Java Grande, pages 96—
107. ACM Press, 2002. doi:10.1145/583810.583821

T.Cramer, R.Friedman, T.Miller, D.Seberger, R:Wilson,
M. Wolczko: Compiling Java Just in Time. In IEEE Micro, volume 17,
issue 3, pages 36-43. IEEE Computer Society, 1997. doi:10.1109/
40.591653

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman,
F. Kenneth Zadeck: Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph. In ACM Transactions on
Programming Languages and Systems, volume 13, issue 4, pages 451—
490. ACM Press, 1999. doi:10.1145/115372.115320

Jeffrey Dean, David Grove, Craig Chambers: Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis. In Proceedings
of the European Conference on Object-Oriented Programming, LNCS 952,
pages 77-101. Springer-Verlag, 1995.

148

http://dx.doi.org/10.1109/HIPS.1997.582952
http://dx.doi.org/10.1145/286860.286865
http://dx.doi.org/10.1145/301618.301635
http://dx.doi.org/10.1145/945885.945892
http://dx.doi.org/10.1145/202529.202534
http://dx.doi.org/10.1145/583810.583821
http://dx.doi.org/10.1109/40.591653
http://dx.doi.org/10.1109/40.591653
http://dx.doi.org/10.1145/115372.115320

Bibliography

[Detlefs99]

[Dolby97]

[Dolby98]

[Dolby00]

[Eclipse08]

[Fink03]

[Ghemawat00]

[Gosling05]

[Griesemer00]

[Guyer04]

David Detlefs, Ole Agesen: Inlining of Virtual Methods. In Proceedings
of the European Conference on Object-Oriented Programming, LNCS
1628, pages 258-277, Springer-Verlag, 1999.

Julian Dolby: Automatic Inline Allocation of Objects. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 7-17. ACM Press, 1997. doi:10.1145/
258915.258918

Julian Dolby, Andrew A. Chien: An Evaluation of Automatic Object
Inline Allocation Techniques. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 1-20. ACM Press, 1998. doi:10.1145/
286936.286943

Julian Dolby, Andrew A. Chien: An Automatic Object Inlining
Optimization and its Evaluation. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 345-357. ACM Press, 2000. d0i:10.1145/349299.349344

Eclipsepedia — Rich Client Platform, 2008. http://wiki.eclipse.org/
Rich_Client_Platform

Stephen J. Fink, Feng Qian: Design, Implementation and Evaluation of
Adaptive Recompilation with On-Stack Replacement. In Proceedings of the
International Symposium on Code Generation and Optimization, pages
241-252. IEEE Computer Society, 2003. doi:10.1109/CGO.2003.
1191549

Sanjay Ghemawat, Keith H. Randall, Daniel J. Scales: Field Analysis:
Getting Useful and Low-cost Interprocedural Information. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 334-344. ACM Press 2000. doi:10.1145/
349299.349343

James Gosling, Bill Joy, Guy Steele, Gilad Bracha: The Java™
Language Specification, Third Edition. Addison-Wesley, 2005.

Robert Griesemer, Srdjan Mitrovic: A Compiler for the Java HotSpot™
Virtual Machine. In Laszld Boszorményi, Jiirg Gutknecht, Gustav
Pomberger (editors): The School of Niklaus Wirth: The Art of Simplicity,
pages 133-152. dpunkt.verlag, 2000.

Samuel Z. Guyer, Kathryn S. McKinley: Finding Your Cronies: Static
Analysis for Dynamic Object Colocation. In Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 237-250. ACM Press, 2004.
doi:10.1145/1028976.1028996

149

http://dx.doi.org/10.1145/258915.258918
http://dx.doi.org/10.1145/258915.258918
http://dx.doi.org/10.1145/286936.286943
http://dx.doi.org/10.1145/286936.286943
http://dx.doi.org/10.1145/349299.349344
http://wiki.eclipse.org/Rich_Client_Platform
http://wiki.eclipse.org/Rich_Client_Platform
http://dx.doi.org/10.1109/CGO.2003.1191549
http://dx.doi.org/10.1109/CGO.2003.1191549
http://dx.doi.org/10.1145/349299.349343
http://dx.doi.org/10.1145/349299.349343
http://dx.doi.org/10.1145/1028976.1028996

Bibliography

[Haubl07]

[Hegde07]

[Hirzel01]

[Hirzel07]

[Holzle91]

[Holzle92]

[Ho1z1e94]

[Holz1e96]

[Hosking93]

[Huang04]

Christian Haubl: Optimized Strings for the Java HotSpot™ VM.
Master’s thesis proposal, Institute for System Software, Johannes
Kepler University Linz, 2007.

Ravi Hegde: Optimizing Application Performance on Intel® Core™
Microarchitecture Using Hardware-Implemented Prefetchers. Intel®
Software Network, 2007.

Martin Hirzel, Trishul M. Chilimbi: Bursty Tracing: A Framework for
Low-Overhead Temporal Profiling. In Proceedings of the ACM Workshop
on Feedback-Directed and Dynamic Optimization, 2001.

Martin Hirzel: Data Layouts for Object-Oriented Programs. In
Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages 265-276. ACM
Press, 2007. doi:10.1145/1254882.1254915

Urs Holzle, Craig Chambers, David Ungar: Optimizing Dynamically-
Typed Object-Oriented Languages with Polymorphic Inline Caches. In
Proceedings of the European Conference on Object-Oriented
Programming, LNCS 512, pages 21-38. Springer-Verlag, 1991.
doi:10.1007/BFb0057013

Urs Holzle, Craig Chambers, David Ungar: Debugging optimized code
with dynamic deoptimization. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 32-43. ACM Press, 1992. d0i:10.1145/143095.143114

Urs Holzle, David Ungar: Optimizing Dynamically-Dispatched Calls
with Run-Time Type Feedback. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 326-336. ACM Press, 1994. d0i:10.1145/178243.178478

Urs Holzle, David Ungar: Reconciling Responsiveness with Performance
in Pure Object-Oriented Languages. In ACM Transactions on
Programming Languages and Systems, volume 18, issue 4, pages 355—
400. ACM Press, 1996. d0i:10.1145/233561.233562

Antony L. Hosking, Richard L. Hudson: Remembered Sets Can Also
Play Cards. In Proceedings of the OOPSLA Workshop on Garbage
Collection and Memory Management. ACM Press, 1993.

Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley,
J. Eliot B. Moss, Zhenlin Wang, Perry Cheng: The Garbage Collection
Advantage: Improving Program Locality. In Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 69-80. ACM Press, 2004.
doi:10.1145/1028976.1028983

150

http://dx.doi.org/10.1145/1254882.1254915
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1145/143095.143114
http://dx.doi.org/10.1145/178243.178478
http://dx.doi.org/10.1145/233561.233562
http://dx.doi.org/10.1145/1028976.1028983

Bibliography

[Intel07]

[1SO14882]

[1S023270]

[1S023271]

[Jess08]

[Jones96]

[Kawachiya02]

[Kawahito00]

[Kistler00]

[Kistler01]

[Kotzmann02]

[Kotzmann(5a]

Intel Corporation: Intel® 64 and I[A-32 Architectures Software
Developer’s Manual, Volume 2A and 2B: Instruction Set Reference. Order
numbers 253666 and 253667, 2007.

ISO/IEC: C++. International Standard ISO/IEC 14882, 2nd
edition, 2003.

ISO/IEC: C#. International Standard ISO/IEC 23270, 2nd
edition, 2006.

ISO/IEC: Common Language Infrastructure (CLI). International
Standard ISO/IEC 23271, 2nd edition, 2006.

Ernest Friedman-Hill: Jess, the Rule Engine for the Java™ Platform,
2008. http://www jessrules.com/

Richard Jones, Rafael Lins: Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. John Wiley & Sons, 1996.

Kiyokuni Kawachiya, Akira Koseki, Tamiya Onodera: Lock
Reservation: Java Locks can Mostly do without Atomic Operations. In
Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 130-141.
ACM Press, 2002. d0i:10.1145/582419.582433

Motohiro Kawahito, Hideaki Komatsu, Toshio Nakatani: Effective
Null Pointer Check Elimination Utilizing Hardware Trap. In Proceedings
of the International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 139-149. ACM Press, 2000.
doi:10.1145/378993.379234

Thomas Kistler, Michael Franz: Automated Data-Member Layout of
Heap Objects to Improve Memory-Hierarchy Performance. In ACM
Transactions on Programming Languages and Systems, volume 22,
issue 3, pages 490-505. ACM Press, 2000. doi:10.1145/353926.353937

Thomas Kistler, Michael Franz: Continuous Program Optimization:
Design and Evaluation. In IEEE Transactions on Computers, volume 50,
issue 6, pages 549-566. IEEE Computer Society, 2001. doi:10.1109/
12.931893

Thomas Kotzmann: Ein Just-in-Time-Compiler fiir Java. Master’s
thesis, Institute for Practical Computer Science, Johannes Kepler
University Linz, 2002.

Thomas Kotzmann: Escape Analysis in the Context of Dynamic
Compilation and Deoptimization. PhD thesis, Institute for System
Software, Johannes Kepler University Linz, 2005.

151

http://www.jessrules.com/
http://dx.doi.org/10.1145/582419.582433
http://dx.doi.org/10.1145/378993.379234
http://dx.doi.org/10.1145/353926.353937
http://dx.doi.org/10.1109/12.931893
http://dx.doi.org/10.1109/12.931893

Bibliography

[Kotzmann05b]

[Kotzmann07]

[Kotzmann08]

[LaudO1]

[Lhotak02]

[Lhotak05]

[Lindholm99]

[Loid107]

[Manson05]

[M6ssenbock00]

[M6ssenbock02]

Thomas Kotzmann, Hanspeter Mdssenbock: Escape Analysis in the
Context of Dynamic Compilation and Deoptimization. In Proceedings of
the ACM/USENIX International Conference on Virtual Execution
Environments, pages 111-120. ACM Press, 2005. doi:10.1145/
1064979.1064996

Thomas Kotzmann, Hanspeter Mdssenbock: Run-Time Support for
Optimizations Based on Escape Analysis. In Proceedings of the
International Symposium on Code Generation and Optimization, pages
49-60. IEEE Computer Society, 2007. d0i:10.1109/CG0O.2007.34

Thomas Kotzmann, Christian Wimmer, Hanspeter Mo&ssenbock,
Thomas Rodriguez, Kenneth Russell, David Cox: Design of the Java
HotSpot™ Client Compiler for Java 6. In ACM Transactions on
Architecture and Code Optimization. ACM Press, 2008.

Peeter Laud: Analysis for Object Inlining in Java. In Proceedings of the
JOSES Workshop, 2001.

Ondrej Lhoték: Run-time Evaluation of Object Inlining Opportunities in
Java. Technical Report SOCS-02.3, School of Computer Science,
McGill University, 2002.

Ondrej Lhotdk, Laurie Hendren: Run-time Evaluation of Opportunities
for Object Inlining in Java. In Concurrency and Computation: Practice
and Experience, volume 17, issue 5-6, pages 515-537. John Wiley &
Sons, 2005. doi:10.1002/cpe.848

Tim Lindholm, Frank Yellin: The Java™ Virtual Machine Specification,
Second Edition. Addison-Wesley, 1999.

Stefan Loidl: Compiler Data Flow Visualization. Master’s thesis,
Institute for System Software, Johannes Kepler University
Linz, 2007.

Jeremy Manson, William Pugh, Sarita V. Adve: The Java Memory
Model. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 378-391. ACM Press,
2005. d0i:10.1145/1040305.1040336

Hanspeter M6ssenbock: Adding Static Single Assignment Form and a
Graph Coloring Register Allocator to the Java HotSpot™ Client Compiler.
Technical Report 15, Institute for Practical Computer Science,
Johannes Kepler University Linz, 2000.

Hanspeter Mossenbock, Michael Pfeiffer: Linear Scan Register
Allocation in the Context of SSA Form and Register Constraints. In
Proceedings of the International Conference on Compiler Construction,
LNCS 2304, pages 229-246. Springer-Verlag, 2002.

152

http://dx.doi.org/10.1145/1064979.1064996
http://dx.doi.org/10.1145/1064979.1064996
http://dx.doi.org/10.1109/CGO.2007.34
http://dx.doi.org/10.1002/cpe.848
http://dx.doi.org/10.1145/1040305.1040336

Bibliography

[Muchnick97]

[NetBeans08]

[Paleczny(1]

[Pelegri88]

[Petrank02]

[Pettis90]

[Poletto99]

[P0z099]

[Qian02]

[Reder07]

[Reder08]

Steven S. Muchnick: Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers, 1997.

NetBeans Module and Rich Client Application Development, 2008.
http://platform.netbeans.org

Michael Paleczny, Christopher Vick, Cliff Click: The Java HotSpot™
Server Compiler. In Proceedings of the Java Virtual Machine Research and
Technology Symposium, pages 1-12. USENIX, 2001.

Eduardo Pelegri-Llopart, Susan. L. Graham: Optimal Code Generation
for Expression Trees: An Application BURS Theory. In Proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 294-308. ACM Press, 1988. doi:10.1145/73560.73586

Erez Petrank, Dror Rawitz: The Hardness of Cache Conscious Data
Placement. In Proceedings of the ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 101-112. ACM Press,
2002. doi:10.1145/503272.503283

Karl Pettis, Robert C. Hansen: Profile Guided Code Positioning. In
Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 16-27. ACM Press, 1990.
doi:10.1145/93542.93550

Massimiliano Poletto, Vivek Sarkar: Linear Scan Register Allocation.
In ACM Transactions on Programming Languages and Systems,
volume 21, issue 5, pages 895-913. ACM Press, 1999. doi:10.1145/
330249.330250

Roldan Pozo, Bruce Miller: SciMark 2.0, 1999. http://math.nist.gov/
scimark?2/

Feng Qian, Laurie J. Hendren, Clark Verbrugge: A Comprehensive
Approach to Array Bounds Check Elimination for Java. In Proceedings of
the International Conference on Compiler Construction, LNCS 2304,
pages 325-342. Springer-Verlag, 2002.

Alexander Reder: Bytecode Visualizer. Bachelor thesis, Institute for
System Software, Johannes Kepler University Linz, 2007.

Alexander Reder: Visualization of Machine Code. Practical in Software
Engineering, Institute for System Software, Johannes Kepler
University Linz, 2008.

153

http://platform.netbeans.org/
http://dx.doi.org/10.1145/73560.73586
http://dx.doi.org/10.1145/503272.503283
http://dx.doi.org/10.1145/93542.93550
http://dx.doi.org/10.1145/330249.330250
http://dx.doi.org/10.1145/330249.330250
http://math.nist.gov/scimark2/
http://math.nist.gov/scimark2/

Bibliography

[Rubin02]

[Russell06]

[Scales00]

[Shuf02a]

[Shuf02b]

[Siegwart06]

[Spec98]

[Spec05]

[Stiftner06]

[SunHotSpot]

[SunJava6]

Shai Rubin, Rastislav Bodik, Trishul Chilimbi: An Efficient Profile-
Analysis Framework for Data-Layout Optimizations. In Proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 140-153. ACM Press, 2002. doi:10.1145/
503272.503287

Kenneth Russell, David Detlefs: Eliminating Synchronization-Related
Atomic Operations with Biased Locking and Bulk Rebiasing. In
Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 263-272.
ACM Press, 2006. doi:10.1145/1167473.1167496

Daniel J. Scales, Keith H. Randall, Sanjay Ghemawat, Jeff Dean: The
Swift Java Compiler: Design and Implementation. WRL Research Report
2000/2, Compaq Western Research Laboratory, 2000.

Yefim Shuf, Manish Gupta, Rajesh Bordawekar, Jaswinder Pal
Singh: Exploiting Prolific Types for Memory Management and
Optimizations. In Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 295-306.
ACM Press, 2002. doi:10.1145/503272.503300

Yefim Shuf, Manish Gupta, Hubertus Franke, Andrew Appel,
Jaswinder Pal Singh: Creating and Preserving Locality of Java
Applications at Allocation and Garbage Collection Times. In Proceedings
of the ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 13-25. ACM Press, 2002.
doi:10.1145/582419.582422

David Siegwart, Martin Hirzel: Improving Locality with Parallel
Hierarchical Copying GC. In Proceedings of the International Symposium
on Memory Management, pages 52—63. ACM Press, 2006. doi:10.1145/
1133956.1133964

Standard Performance Evaluation Corporation: The SPECjom98
Benchmarks, 1998. http://www.spec.org/jvm98/

Standard Performance Evaluation Corporation: The SPECjbb2005
Benchmark, 2005. http://www.spec.org/jbb2005/

Bernhard Stiftner: Comparison of Eclipse RCP and NetBeans Platform.
Bachelor thesis proposal, Institute for System Software, Johannes
Kepler University Linz, 2006.

Sun Microsystems, Inc.: The Java HotSpot™ Performance Engine
Architecture. White Paper, 2008.

Sun Microsystems, Inc.: Java Platform, Standard Edition 6 Releases,
2008. http://download.java.net/jdk6/

154

http://dx.doi.org/10.1145/503272.503287
http://dx.doi.org/10.1145/503272.503287
http://dx.doi.org/10.1145/1167473.1167496
http://dx.doi.org/10.1145/503272.503300
http://dx.doi.org/10.1145/582419.582422
http://dx.doi.org/10.1145/1133956.1133964
http://dx.doi.org/10.1145/1133956.1133964
http://www.spec.org/jvm98/
http://www.spec.org/jbb2005/
http://download.java.net/jdk6/

Bibliography

[SunJava7]

[SunMemory]

[SunOpen]DK]

[Traub98]

[Ungar84]

[Vallée-Rai99]

[VeldemaO1]

[Veldema05]

[Welch84]

[Wimmer04]

Sun Microsystems, Inc.: Java Platform, Standard Edition 7 Snapshot
Releases, 2008. https://jdk7.dev.java.net/

Sun Microsystems, Inc.: Memory Management in the Java HotSpot™
Virtual Machine. White Paper, 2006.

Sun Microsystems, Inc.: Open-Source |JDK Community, 2008.
http://openjdk.java.net/

Omri Traub, Glenn Holloway, Michael D. Smith: Quality and Speed
in Linear-Scan Register Allocation. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 142-151. ACM Press, 1998. doi:10.1145/277650.277714

David Ungar: Generation Scavenging: A Non-Disruptive High
Performance Storage Reclamation Algorithm. In Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, pages 157-167. ACM Press, 1984.
doi:10.1145/800020.808261

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren,
Patrick Lam, Vijay Sundaresan: Soot — A Java Bytecode Optimization
Framework. In Proceedings of the Conference of the Centre for Advanced
Studies on Collaborative Research, pages 125-135. IBM Press, 1999.

Ronald S. Veldema, Thilo Kielmann, Henri E. Bal: Optimizing Java-
Specific Overheads: Java at the Speed of C? In Proceedings of the
International ~ Conference on High-Performance Computing and
Networking, LNCS 2110, pages 685-692. Springer-Verlag, 2001.
doi:10.1007/b80746

Ronald S. Veldema, Ceriel J. H. Jacobs, Rutger F. H. Hofman, Henri
E. Bal. Object Combining: A New Aggressive Optimization for Object
Intensive Programs. In Concurrency and Computation: Practice and
Experience, volume 17, issue 5-6, pages 439—464. John Wiley & Sons,
2005. d0i:10.1002/cpe.836

Terry A. Welch: A Technique for High-Performance Data Compression.
In Computer, volume 17, issue 6, pages 8-19. IEEE Computer Society,
1984. doi:10.1109/MC.1984.1659158

Christian Wimmer: Linear Scan Register Allocation for the Java
HotSpot™ Client Compiler. Master’s thesis, Institute for System
Software, Johannes Kepler University Linz, 2004.

155

http://dx.doi.org/10.1145/277650.277714
http://dx.doi.org/10.1145/800020.808261
http://dx.doi.org/10.1007/b80746
http://dx.doi.org/10.1002/cpe.836
http://dx.doi.org/10.1109/MC.1984.1659158

Bibliography

[Wimmer05]

[Wimmer06]

[Wimmer07]

[Wimmer08]

[Wirth92]

[Wiirthinger06]

[Wiirthinger(07a]

[Wiirthinger07b]

[Wiirthinger08a]

[Wiirthinger0O8b]

Christian Wimmer, Hanspeter Mossenbock: Optimized Interval
Splitting in a Linear Scan Register Allocator. In Proceedings of the
ACM/USENIX International — Conference on Virtual —Execution
Environments, pages 132-141. ACM Press, 2005. doi:10.1145/
1064979.1064998

Christian Wimmer, Hanspeter Mossenbock: Automatic Object
Colocation Based on Read Barriers. In Proceedings of the Joint Modular
Languages Conference, LNCS 4228, pages 326-345. Springer-Verlag,
2006. doi:10.1007/11860990_20

Christian Wimmer, Hanspeter Mossenbock: Automatic Feedback-
Directed Object Inlining in the Java HotSpot™ Virtual Machine. In
Proceedings of the ACM/USENIX International Conference on Virtual
Execution Environments, pages 12-21. ACM Press, 2007. doi:10.1145/
1254810.1254813

Christian Wimmer, Hanspeter Mossenbock: Automatic Array Inlining
in Java Virtual Machines. In Proceedings of the International Symposium
on Code Generation and Optimization. ACM Press, 2008.

Niklaus Wirth, Jiirg Gutknecht: Project Oberon. Addison-
Wesley, 1992.

Thomas Wiirthinger: Visualization of Java Control Flow Graphs.
Bachelor thesis, Institute for System Software, Johannes Kepler
University Linz, 2006.

Thomas Wiirthinger: Visualization of Program Dependence Graphs.
Master’s thesis, Institute for System Software, Johannes Kepler
University Linz, 2007.

Thomas Wiirthinger, Christian Wimmer, Hanspeter Mossenbock:
Array Bounds Check Elimination for the Java HotSpot™ Client Compiler.
In Proceedings of the International Conference on Principles and Practice
of Programming in Java, pages 125-133. ACM Press, 2007.
doi:10.1145/1294325.1294343

Thomas Wiirthinger, Christian Wimmer, Hanspeter Mdssenbock:
Visualization of Program Dependence Graphs. In Proceedings of the
International ~ Conference on Compiler —Construction. Springer-
Verlag, 2008.

Thomas Wiirthinger, Christian Wimmer, Hanspeter Mossenbock:
Array Bounds Check Elimination for the Java HotSpot™ Client Compiler.
Submitted to Science of Computer Programming, 2008

156

http://dx.doi.org/10.1145/1064979.1064998
http://dx.doi.org/10.1145/1064979.1064998
http://dx.doi.org/10.1007/11860990_20
http://dx.doi.org/10.1145/1254810.1254813
http://dx.doi.org/10.1145/1254810.1254813
http://dx.doi.org/10.1145/1294325.1294343

Bibliography

[Yasue03] Toshiaki Yasue, Toshio Suganuma, Hideaki Komatsu, Toshio
Nakatani: An Efficient Online Path Profiling Framework for Java
Just-in-Time Compilers. In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, pages 148-158. IEEE
Computer Society, 2003. doi:10.1109/PACT.2003.1238011

[Zhong04] Yutao Zhong, Maksim Orlovich, Xipeng Shen, Chen Ding: Array
Regrouping and Structure Splitting Using Whole-Program Reference
Affinity. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 255-266.
ACM Press, 2004. doi:10.1145/996841.996872

157

http://dx.doi.org/10.1109/PACT.2003.1238011
http://dx.doi.org/10.1145/996841.996872

	Table of Contents
	Acknowledgements
	1 Introduction
	1.1 Java
	1.2 Feedback-Directed Optimizations
	1.3 Problem Statement
	1.4 State of the Art
	1.5 Project History
	1.6 Structure of the Thesis

	2 The Java HotSpot VM
	2.1 System Structure
	2.1.1 Client and Server Configuration

	2.2 Object Layout
	2.2.1 Mark Word
	2.2.2 Class Hierarchy

	2.3 Garbage Collection
	2.3.1 Stop-and-Copy Algorithm
	2.3.2 Mark-and-Compact Algorithm

	2.4 Client Compiler
	2.4.1 Bytecodes
	2.4.2 Front End
	2.4.3 Back End

	2.5 Deoptimization

	3 Architecture of Object and Array Inlining
	3.1 Source Code of Example
	3.2 Definition of Terms
	3.2.1 Example
	3.2.2 Method Inlining

	3.3 Design Principles
	3.3.1 Memory Layout
	3.3.2 Preconditions for a Field

	3.4 Components for Object Inlining
	3.4.1 Method Tracking
	3.4.2 Hot-Field Detection
	3.4.3 Object Colocation
	3.4.4 Coallocation of Objects
	3.4.5 Guards for Field Stores
	3.4.6 Transition to Object Inlining
	3.4.7 Optimized Field Loads
	3.4.8 Run-Time Monitoring

	4 Hot-Field Detection
	4.1 Read Barriers
	4.1.1 Machine Code Pattern
	4.1.2 Processing of Field Counters

	4.2 Hot-Field Tables
	4.2.1 Graph Representation

	5 Object Colocation
	5.1 Colocation Tables
	5.1.1 Creation of Colocation Tables before Garbage Collection
	5.1.2 Filling the Colocation Tables with Objects

	5.2 Stop-and-Copy Algorithm
	5.3 Mark-and-Compact Algorithm

	6 Object Inlining
	6.1 Method Tracking
	6.1.1 Bytecode Analysis
	6.1.2 Class Hierarchies

	6.2 Inline Requests
	6.3 Coallocation of Objects
	6.3.1 Modification of the Just-in-Time Compiler
	6.3.2 Example
	6.3.3 Control Flow and Memory Flow

	6.4 Guards for Field Stores
	6.5 Transition to Object Inlining
	6.6 Optimized Field Loads
	6.6.1 Load Folding
	6.6.2 Address Computation
	6.6.3 Additional Optimizations
	6.6.4 Handling Null Checks

	6.7 Run-Time Monitoring
	6.8 Support for Class Hierarchies
	6.8.1 Reverse Object Order
	6.8.2 Modifications for Reverse Object Order

	7 Array Inlining
	7.1 Arrays as Inlining Children
	7.1.1 Fixed Array Inlining
	7.1.2 Variable Array Inlining
	7.1.3 Dynamic Array Inlining

	7.2 Arrays as Inlining Parents
	7.3 Implementation of Dynamic Array Inlining
	7.3.1 Basic Principle
	7.3.2 Non-Destructive Approach

	7.4 Support for Class Hierarchies
	7.4.1 Reverse Order for Arrays
	7.4.2 Object Alignment

	7.5 Limitations
	7.5.1 Access of the Array Length
	7.5.2 Interdependencies with Garbage Collection
	7.5.3 Interdependencies with Array Bounds Check Elimination

	7.6 Java Class Library
	7.6.1 ArrayList Example
	7.6.2 Other Collection Classes
	7.6.3 Strings

	8 Evaluation
	8.1 Benchmark Results for SPECjvm98
	8.1.1 Impact on Run Time
	8.1.2 Field Access Counts
	8.1.3 Number of Optimized Fields
	8.1.4 Compile-Time Impact

	8.2 Analysis of SPECjvm98
	8.2.1 mtrt
	8.2.2 db
	8.2.3 compress
	8.2.4 jess

	8.3 The DaCapo Benchmarks
	8.3.1 Impact on Run Time
	8.3.2 Field Access Counts
	8.3.3 Number of Optimized Fields
	8.3.4 Compile-Time Impact

	8.4 SPECjbb2005
	8.5 SciMark
	8.6 Java Grande Benchmarks

	9 Related Work
	9.1 Object Inlining
	9.1.1 Classification of Inlinable Fields
	9.1.2 Inlining Algorithm of Dolby

	9.2 Improvement of Cache Behavior
	9.2.1 Object Colocation in the Garbage Collector
	9.2.2 Field Reordering and Object Splitting

	9.3 Dynamic Profiling Techniques

	10 Summary
	10.1 Contributions
	10.2 The Big Picture
	10.3 Future Work
	10.4 Conclusions

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

