JOHANNES KEPLER
UNIVERSITY LINZ

Research and teaching network

Thomas Wrthinger

Visualization of Program Dependence Graphs

A thesis submitted in partial satisfaction of
the requirements for the degree of

Master of Science
(Diplom-Ingenieur)

Supervised by:
o.Univ.-Prof. Dipl.-Ing. Dr. Dr.h.c. Hanspeter M ssenbéck
Dipl.-Ing. Christian Wimmer

Institute for System Software
Johannes Kepler University Linz

Linz, August 2007

Johannes Kepler University Linz
A-4040 Linz * Altenberger StraBe 69 * Internet: http://www.jku.at - DVR 0093696

Abstract

The Java HotSp&¥ server compiler of Sun Microsystems uses intermediatehgglage struc-
tures when compiling Java bytecodes to machine code. Thphgrae program dependence
graphs, which model both data and control dependencies.délmrgging, there are built-in
tracing mechanisms that output a textual representatitimecgraphs to the command line.

This thesis presents a tool which displays the graphs oféhees compiler. It records inter-
mediate states of the graph during the compilation of a ntkthithe user can then navigate
through the graph and apply rule-based filters that chareagphearance of the graph. The tool
calculates an approximation of the control flow to clusternibdes of the graph into blocks.

Using a visual representation of the data structures spgedebugging and helps understand-
ing the code of the compiler. The thesis describes the codedatb the server compiler and
the Java application that displays the graph. Additiongty server compiler and the NetBeans
platform are outlined in general.

Kurzfassung

Der Java HotSpdt! Server Compiler von Sun Microsystems benutzt Graphen aipdeire
Datenstrukturen beim Kompilieren von Java Bytecodes zuckiasncode. Die Graphen des
Compilers sind Programmabhangigkeitsgraphen, mit deoewold der Kontrollfluss als auch
die Datenabhangigkeiten modelliert werden. Fur die SudreRehlern kann eine textuelle
Reprasentation der Graphen auf die Kommandozeile ausgegedrden.

Diese Arbeit beschreibt ein Programm zur Anzeige der Gnaples Server Compilers. Bei der
Kompilierung einer Methode werden Zustande des Graphegeaaichnet. Der Benutzer kann
durch den Graphen navigieren und regelbasierte Filter adere um die graphische Anzeige
des Graphen zu veréandern. Das Programm berechnet eine é&unnghdes Kontrollflusses, um
die Knoten in Blocke zu gruppieren.

Die Verwendung einer graphischen Reprasentation der Batauren beschleunigt die Fehler-
suche und hilft den Quelltext des Compilers zu verstehere Adbeit behandelt den Quell-
text, der zum Server Compiler hinzugefugt wurde, und di@ Jawendung, die den Graphen
anzeigt. Weiters werden der Server Compiler und die Net8&%attform beschrieben.

Contents

1 Introduction 1
1.1 ClassDiagramlLegend 2
1.2 RelatedWork e 2

2 NetBeans 4
21 WhyNetBeans? 4
2.2 HIStOry e e 5
2.3 ModularDesign 6
2.4 Filesystem e e 7
25 Lookup 8
2.6 VisualLibrary 9

3 Server Compiler 12
3.1 TheJavaHotSpBf VM 12

3.1.1 Clientversus Server Compiler 13
3.1.2 JavaExecutionModel 14
3.2 Architecture of the Server Compiler 15
3.3 IdealGraph 16
3.3.1 DataDependence 17
3.32 EmptyMethod 17
3.3.3 PhiandRegionNodes, 18
3.3.4 SafepointNodes 20
3.4 Optimizations 21
3.4.1 Identity Optimization 21

3.4.2 ConstantFolding

3.4.3 Global Value Numbering

3.4.4 Loop Transformations
3.5 MachNode Graph
3.6 Register Allocation e

User Guide

4.1 GeneratingData
4.2 Viewingthe Graph e
4.3 Navigatingwithinthe Graph
4.4 Control FlowWindow
45 Filters e
4.6 Bytecode WIindow

Visulializer Architecture

5.1 Module Structure

52 GraphModels e
5.2.1 XMLFileStructure
5.2.2 DisplayModel
5.2.3 LayoutModel

5.3 Propertiesand Selectors e

54 Filters e

5.5 Difference Algorithm

Hierarchical Graph Layout

6.1 WhyHierarchical?
6.2 Processed Steps
6.3 BreakingCycles.
6.4 AssignLayers
6.5 InsertDummyNodes
6.6 AssignY-Coordinates e

6.7 CrossingReduction

6.8 Assign X-Coordinates 60

6.8.1 DAGMethod 60
6.8.2 RubberBandMethod 62
6.9 ClusterLayout 46
6.10 Drawing of Backedges 65
6.11 Optimization for Large Graphs 66
7 Compiler Instrumentation 67
7.1 OVEIVIEW o e e 67
7.2 lIdentifyingBlocks 68
7.3 BuildingDominatorTree e e 70
7.4 Scheduling 73
7.5 AddingStates 4 7
8 Conclusions 75

Chapter 1

Introduction

When compiling Java methods to machine code, the Java Hot$server compiler of Sun
Microsystems uses an intermediate representation thiaspmnds to a directed graph. Several
nodes are added to the graph for every bytecode. Afterwaeshssformations are applied to the
graph with the goal to increase the execution speed of theadetAfter all optimizations are
applied, the graph is converted to code that can be dirextigiged on the target machine. The
graph is complex for large methods. It is difficult to undarst the purpose of a certain node
in the graph because of the high number of applied optindmati Currently, developers use
code that prints the graph on the command line when they dnegdgng the server compiler.
This thesis presents a tool that helps the developer umaershe graph by giving a visual
representation of it.

The user can specify rule-based filters, which change theaappce of the graph. Different
filters can be used when different properties of the grapbfargerest. Navigation mechanisms
are available, such that the user can focus on specific gartage graph. An additional feature
of the tool is to display the differences between two graphs.

This thesis is divided into eight chapters. Alongside theoituction these chapters are: Chap-
ter2 describes the NetBeans platform in general. The pnoginat displays the graph is based
on the NetBeans platform. Some important concepts of NetBaad the visual library of Net-
Beans are explained. Chapiér 3 outlines the server compiter general architecture and the
differences to the client compiler are presented. The foftise chapter lies on the graph data
structure and the optimizations applied by the compiler.

Chapteilt is a user guide for the visualization tool. It exgdnow to connect the server com-
piler to the Java program. The navigation possibilities, filiers, the Control Flow Window,
and the Bytecode View Window are described.

Chaptef b presents the architecture of the Java applicttaindisplays the graph. The data
models and the class structure are outlined. Chépter 6 isaiggon of the hierarchical layout
algorithm used to find coordinates for the nodes of the gragghimterpolation points for the
edges.

Introduction Class Diagram Legend

Chaptel 7 presents the C++ code added to the server comphés.code is responsible for
the scheduling and for saving the state of the graph duriegdmpilation of methods. Chap-
ter[@ describes the main difficulties during developmenthef tool and points out extension
possibilities.

1.1 Class Diagram Legend

The class diagrams in this thesis follow the conventionsvshim Figure[ZLlL. Interfaces are
orange boxes with an italic name of the interface in it. Greexes are classes which are part
of a previously explained or external API. The connectidithie current classes with them are
part of the drawing. Generally, classes that are strond&tee are grouped using a rounded
rectangle with a dashed border.

For inheritance and composition, the standard UML symb@siaed. When no cardinality is

specified at the start or end of a composition, then the calitins 1. The blue arrow means

that the source uses the destination of the arrow. A texttrddate classifies the relation further.
class of external or

interface previously explained API group of related classes

EditFil Ki
ditFilterCookie | ScriptEngine l \

boolean edit() Ny /

. . has-a relation .
uses relation
inheritance T default cardinality = 1

Figure 1.1: Conventions used in the class diagrams.

1.2 Related Work

A debugging tool for the HotSp8Y client compiler [17] visualizes three different data struc
tures: The control flow graph, the data dependence graphinémnation about the register
allocation. The data is traced by the compiler in a textuahft. In contrast to the tool pre-
sented in this thesis, a direct communication between thgder and the application is not
possible.

Stefan Loidl presents the data dependence graph visuafitiee tool [20]. It displays the data
dependencies of the intermediate representation of teatatiompiler. In comparison to the
graph of the server compiler, the data dependence graple alitnt compiler is more sparse.

Introduction Related Work

As most of the nodes have only few incoming edges, the toad doé need to define slots to
distinguish between them.

The author’s bachelor thesis [32] presents a visualized&a control flow graphs, which is
also part of the client compiler visualization applicatidime graph is recorded at several stages
during compilation. The control flow graph of the client cahlapis simpler than the graph of
the server compiler, because it contains only control flopedelencies and no data dependen-
cies. Additionally, there is not a node for every instrustibut for every block of instructions.
This significantly reduces the size of the graph. Therefsoee of the advanced navigation
and filtering concepts are not necessary for the control fiaply

Several software products can draw arbitrary graph strestulhe development of a specific
visualization tool for the server compiler has the advaatdngt the layout and the navigation
is adapted to the needs of the graph of the server compiler.fdlfowing list presents three

tools that can be used to draw graphs automatically. Fesasuieh as filtering or fast navigation
within the graph are not available in these tools.

Graph Visualization Software (GraphViz) [13]: GraphViz is a group of open source pro-
grams that visualize directed graphs, which are specifiedtextual format. The exe-
cutabledot . exe is part of the GraphViz group and converts the textual reprdion
of a directed graph into an image file. The hierarchical laydgorithm presented in this
thesis is based on the algorithm used by GraphViz. The majoge of GraphViz is not
to interactively view the graph, but to produce a static imélg for the graph. Enhance-
ments to the GraphViz layout algorithm presented in thisighare the cutting of edges
and a second way to assign x-coordinates to the nodes baslked nbber band method.
Additionally, backward edges are treated by the visuabpaol in a special way.

aiSee Graph Layout Software [[14]: aiSee is a commercial graph layout software that is a suc-
cessor of the free tool Visualization of Compiler Graphs (3)J27] developed by Georg
Sander. It is not specialized on hierarchical graph laylouttenables the user to choose
from different layout algorithms including force direct&d/out. It supports clustering
and folding of the graph. The tool uses a custom input formatife graphs.

uDraw [30]: The uDraw graph visualization software is developed at thieéfsity of Bremen
and is specialized on hierarchical layout. One of the ketufes is that the user can, under
some restrictions, manually change the layout after thenaatic algorithm was applied.

Chapter 2

NetBeans

NetBeans[[22] is amntegrated development environméHDE) written in Java. It is an open
source project highly supported by Sun Microsystems. Algtoit is mainly designed to sup-
port developers in creating Java applications, it can aésoded for C/C++ projects. Addition-
ally, there are extensions available for NetBeans thawaitouse the IDE also for completely
different purposes like UML modeling, scripting in Ruby orddvy, creating LaTeX docu-
ments, and so on. The visualization tool uses the NetBeamslitwaries as a platform for
building rich client applications with Java.

This chapter explains some important concepts of NetBdatsate used by the visualization
tool. It gives a short overview of the NetBeans platform foitware developers who are using
NetBeans as the basis for their applicatidn [2]. If you aokiog for a description of NetBeans
as a development environment, se€ [21].

2.1 Why NetBeans?

Building upon a platform instead of using only plain Swingegs up the development of a Java
application and prevents developers from reinventing theekover and over again. How can
an application benefit from using the NetBeans platform asmalerlying layer? The following
list introduces some useful aspects of the NetBeans libfdrg most important of them will be
explained in detail in upcoming sections.

Module: NetBeans itself can be seen as a collection of Java modudehae well-defined
dependencies. It is assured that only the modules curreetiyled are loaded. This
improves memory usage as well as the startup time of an apiplic Additionally, de-
velopers are enforced to develop modular applicationsghvl@ads to a better design in
general.

Window System: The built-in windowing system allows docking of componeautsl supports
tabbing of multiple documents. Additionally, actions tlgerate on the global selection

NetBeans History

can be declared. Only using Swing means that either suchidmadity does not exist or
it must be implemented by hand, highly increasing the tagaetbpment effort.

Persistence: Configuration and serialization data is organized in virfilesystems. When the
NetBeans application is not running, the data is stored ilesystem on the hard disk.

Visual Library: The NetBeans platform comes with a high-level drawing lifardt is espe-
cially useful for the visualization tool as it is designeditaw graphs. It can add a large
set of features to a drawing application for "free", at Idasjust adding a few lines of
Java code. Examples for such functionalities are zoomatg|lge view, and animation.

Java libraries with the same functionality that are not pathe NetBeans platform could be
used, itis however more convenient if the libraries areatiyentegrated into the platform. This
allows the libraries to work together without compatilyiltonflicts. Additionally, all NetBeans
libraries take benefit of the module system, which managssltading of the modules. The
drawback of using a large amount of underlying librariesafqroject is a higher development
time needed at the beginning of a project, because the gmrah@eds to get familiar with the
libraries. However, for larger projects this additionastpays off in the long run. Additionally,
this cost needs not be paid when subsequent projects alsbealefit of the same libraries. So
building the first application on top of NetBeans means at ficshg additional work, but the
longer one uses the platform, the bigger are the advantdges [

2.2 History

The first code for the system that evolved over more than adéettathe current version 5.5
of NetBeans was written in 1996. It was a student project, sghatention was to build an
integrated development environment by using only Java.cédehis time the program was
called Xelfi [33]. For producing the screenshot of Xelfi showrFigure[Z1, installing the
old JDK version 1.1 was necessary. The NetBeans of today &t have only few things
in common, but some of the basic design concepts have neaeget since the early days.
Among them are the modular design and the concept of virtiealystems. Xelfi soon became
a success and therefore a company named after the IDE wadeduduring these days the
current name of NetBeans was introduced: One of the busideas was to developetvork-
enabled JavBeans

In 1999, Sun Microsystems, the founder of the Java programgimanguage, acquired the com-
pany. The company was interested in NetBeans and so theqtffoduns their flagship Java IDE
until nowadays. Sun soon realized that the growth of NetBeam be accelerated by building
a development community around it, instead of distributiras a commercial product. There-
fore, they open-sourced the whole IDE in 2000. After thipspeople started using NetBeans
not only as an IDE, but also as a library to build their own agtions. This brought up the
idea of a rich client platform.

NetBeans Modular Design

Lol

System Edt Project Design Run Debug Window Help

2 g g " st

Standara [extencea] inemet [sampies | i
E:Projec Deial R =IET] Agliﬂl I
i = rai

Packages: Objects: Members: |/

OS5 Architecture; XB6 _ on finished p

08 Name: Windows NT

Java version: 118

Registered version.
(c) 1996, 97 Xelfi Technologies

F——
ife) K _"
V clasdv (v v intelv Mdv vai| SMnenronized Identifier expected.? =’_| m‘ MI 100 Il Il

Figure 2.1: Screenshot of Xelfi, the ancestor of NetBeams)ing with JDK 1.1.

The number of NetBeans users grows steadily. The currebliestarsion of NetBeans is 5.5,
but there is already a pre-release version of NetBeans @itable. The development of the
visualization tool started with NetBeans 5.5, but latertomas ported to NetBeans 6.0] [1]

2.3 Modular Design

NetBeans applications consist of separate modules wotkiether to form one big program.
The IDE itself is a set of NetBeans modules that support d@ezk at programming in Java.
There are some official extensions available like a profdpecial support for mobile applica-
tion development, and C/C++ programming. Various moduaslbped by other companies
can also enrich the IDE. The NetBeans platform consists et afsmodules that manage the
co-operation between the modules and also provide some d@stepts regarding data storage
and the user interface.

A NetBeans module is defined by a JAR file with additional infation in the manifest. It has

a version and specifies on which modules it depends, e.ghwhadules need to be available
for running this module. Modules can be enabled and disablel@ the application is running.
Such components are also calf@dg-insas they resemble a plug. In NetBeans, the term plug-in
is reserved for a collection of modules that are deployechasumit.

Each module has a custom classloader, which searches &seslanly in the standard Java
classpath and in the modules that are listed as dependeridiesminimum version of a re-
quired module is defined when declaring dependencies. ddity, there must not be any
cyclic dependencies. A module must explicitly declare \utpackages are accessible by other
modules. The usage of public classes declared outside s ttheclared packages is not pos-
sible. A lazy loading mechanism for the modules helps redyonemory usage and startup
time.

NetBeans Filesystem

2.4 Filesystem

One of the base concepts of module interaction in a NetBegplgcation uses virtual filesys-
tems. A module can define an XML layer file to add declarativia da thesystem filesystem
l.e. a virtual filesystem that is shared among all modules.stAttup, the filesystems of the
individual modules are merged into the system filesystemtriémin the filesystem can be
directories, virtual files or pointers to real files. Virtddés consist of a name and a set of
key-value pairs that are defined in the XML layer file.

Listing[Z shows an example layer file describing the filemysof a module. It is a simplified
version of one of the layer files used by the visualizatiot tAa application can use the system
filesystem for example to register windows or to add actiorthé toolbar and the menu bar.

Actions are registered as files in the filesystem in the fofdd¢ri ons. The module responsible
for instantiating the action objects scans through thiddol The name of a file specifies the
class that represents the action, in this example the tlagsr t Act i on. An action can be
registered as a menu item by adding an entry to the fdldexu. As the import action should
appear in the file menu, it is added to the subfol€iel e.

There should only be one instance of claspor t Act i on in the system, so we use a shad-
owing mechanism that functions similar to link files. Theemdion. shadow specifies that
the file points to another file and the attribatei gi nal Fi | e specifies the destination of the
pointer. There is also a mechanism available for hiding.filesemove the standard open menu
item from the file menu, we simply hide the file that defines thahu item by declaring a file
with the extension i nst ance_hi dden.

Listing 2.1 An XML layer file defining an action and hiding a menu item.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<IDOCTYPE fil esystem PUBLI C "-// Net Beans// DTD Fil esystem 1. 1//EN'
“"http://ww. net beans. org/dtds/filesystem1 1.dtd">
<fil esystenr
<f ol der name="Actions">
<fol der nane="File">
<file name="at-ssw | nport Action.instance"/>
</ f ol der >
</ f ol der>
<f ol der name="Menu" >
<fol der nane="File">
<file name="at-ssw | nport Acti on. shadow' >
<attr name="original File" stringval ue=
"Actions/Edit/at-ssw | nportAction.instance"/>
</[file>
<fil e name="or g- net beans- nodul es-openfil e-
OpenFi | eActi on. i nstance_hi dden"/ >

</ fol der>
</ f ol der >
</[fil esystenr

NetBeans Lookup

The filesystem is also used to save the state of a NetBeangatppi after shutdown. A
subdirectory of the user directory is used to save the datahi$ case the filesystem is not
represented by an XML file, but by a directory structure tgthysically present on the hard
disk. At startup, the user-specific filesystem is merged thighfilesystems of the modules.

2.5 Lookup

Another mechanism that is specific to NetBeans is the conmkelstokup The idea behind
lookup is to change the set of interfaces that an object gesvduring program execution. In
Java it is only possible to declare interfaces for classepmpile time. This set cannot be
changed later on. It is also impossible that a certain olgEatclass implements an interface
and another one does not.

The interfaceLookup defines functions that return a collection of objects coibpato the
type specified as a parameter. This way it is possible to &lkdbkup object if it can provide
an implementation of a certain interface. The object caarneitself or any other existing
or newly created object, the only restriction is that theime¢éd object must implement the
interface.

An example for the use of the lookup mechanism is how the sareuritem and an editor of a
file interact. The save menu item does not know how to savetaicdile type. Everything it
needs to do is checking whether it is currently possibleve sdile and trigger the save process
when the menu item is clicked.

/ \
Service User '\ | SaveAction | |
~- - - - --——,———,—eYm t-_—e,s ey e-_——,_,——_,_,_,____,_ e 2 4
find active editor ask lookup for an implementation of
s, - - - " 4-"-"-"-""-""-"""-""-"""=""=""=""=""=""=""=""=""“="“=""“"“="“"“"“"*7T“~-—-""—"—"">
/ 3 A
| Lookup.Provider SaveCookie |
Shared Interfaces | - |
| | Lookup getlLookup() void save() |
\ A A /
—_—— e e
S cmlentstonts ottt it
| GraphEditor creates GraphSaveCookie \I
Service Provider | o —
4 Lookup getLookup() void save() |
/
AN g

Figure 2.2: Using lookup, there is no dependency betweeficeauser and service provider.

Figure[Z2 shows how the classes are related. The intdifackup. Pr ovi der is part of the
standard NetBeans API and is implemented by objects thatde@ lookup. In this case, the
service is defined by the interfa@aveCooki e with a method that can be used for saving.

NetBeans Visual Library

TheSaveAct i on object first retrieves the lookup of the active editor andsdek an object of
kind SaveCooki e. When the editor cannot provide the service, it retumak| and the menu
item is disabled. Otherwise it returns an object that im@ets the interface and that can be
used by the menu item in case the user clicks it.

The figure also shows how the classes can be separated irdifieeent modules. One module
just contains the declaration of the service. Provider a®d af the service only need to depend
on this APl module and need no dependencies among each @nde the service user and
the service provider are able to work together, none of thepedds on the other.

There are several additional classes that enrich the loflagbionality. Itis possible to monitor
the lookup of an object by installing listeners. The clBssxyLookup allows to combine the
lookups of several objects into a single one. A list compdfen example, proxies the lookup
of the currently selected nodes. So a pattern similar todkie mechanism can be used for any
action that works with the elements of the list. The actiodl@es the interface that an object
must provide that the action can work. It will get enabled disdbled depending on the current
selection of the list.

The NetBeans platform predefines two global lookup objeCise can be reached by calling
Lookup. get Def aul t () and represents the global system lookup. The other oneas oft
used by actions that depend on the current active windovante accessed using the method
Utilities.actionsd obal Context (). It proxies the lookup of the window that is
currently focused. When the user activates another wintog/Jookup is changed. Reacting
on changes can be done by adding listeners to lookup objddts. visualization tool uses
this mechanism to always display the properties of the tedeabjects of the currently active
window in the Properties Window.

The Node class is closely related to the lookup mechanism. A node eae An unlimited
number of child nodes but only one parent node, so they fomeealike structure. The children
of a node are only accessed when the node is expanded by th& beee are several compo-
nents such as a treeview or a list that are able to use such aftr@des as their model. These
components provide a proxy lookup that combines the lookdfiise currently selected nodes.
The visualization tool uses the Node API in the Outline anthenBytecode Window.

2.6 Visual Library

The NetBeans visual library is a high-level graphical fraragk built on top of Swing and
Javaz2D. Itis designed to support applications that neecsfday editable graphs such as UML
diagrams. The library can also be used by applications tieahat built upon the NetBeans
platform.

Figure[ZB shows a class diagram of the most important dasfsthe visual library and how

they interact. Graphical components are calldgetsand are organized in a tree hierarchy.
The topmost widget is alwaysscene This widget forms the bridge between Swing and the
visual library. A scene can createJ€onponent object that displays the contents of the

NetBeans Visual Library

scene. In contrast to Swing components, widgets need netdagctangular shape. There is
a predefined mechanism for drawing a connection between fdgets. A connection has a
source and a target anchor that are both related to sometwidge

creates Swing component

———————————————————————— JComponent

SceneAnimator

children

WidgetAction - -

related anchors *

2

source and target anchor

|ConnectionWidget |<> -

Figure 2.3: Class diagram of the NetBeans visual library.

A widget has araction mapassociated with it, i.e. a list of objects of typé dget Act i on
that can react on GUI events. There are a lot of predefinedracthat automatically perform
for example moving, selecting or resizing of a widget triggeby user input. The built-in
animation mechanisms can be used to move widgets smootthtpdat them fade in or out.

Additionally there are some high-level functions builtdriheScene class that allow zooming
with different levels of details and the automatic condinrc of satellite views. Listing 212
shows the power of the Visual Library in an example. The taswd label that can be zoomed
and that changes its background color when it is double &tickA screenshot of the result-
ing program is shown in Figule2.4. The NetBeans libraries #ie needed for running this
application arer g- openi de-uti | . j ar andor g- net beans- api - vi sual . j ar.

I[=] B3

Figure 2.4: Screenshot of the visual library example pnogdaring execution.

First, the application createsSg ene object and adds W dget Act i on that allows the user
to zoom using the mouse wheel. It constructsadbel W dget and adds it as a child to the
scene. Then it constructs\d dget Act i on that calls anEdi t Provi der when a widget
is double clicked. This action is added to the label. An actian be added to any number

10

NetBeans Visual Library

of widgets. As the scene itself also represents a widgetsdhgre itself would also change its
background on double click when the example action was atidiedrFinally a swingJ Fr ane
component is created, and the view of the scene is addedstavitidow.

Listing 2.2 Java source code of a visual library program with a label efidgmd an action.

public class Visual Exanpl e {

}

/] Create edit action
W dget Action editAction = ActionFactory. createEditAction(

)

new Edi t Provider() {
public void edit(Wdget w {
w. set Backgr ound(Col or. RED) ;
}

}

public static void main(String[] args) {

}

/'l Create scene object and assign zoom acti on
Scene s = new Scene();
s.get Actions().addActi on(Acti onFactory. creat eZoomAction());

/1l Create | abel wi dget

Label Wdget | = new Label Wdget (s, "Hello world!");
s.addChi I d(1);

| . set Opaque(true);

/1l Add action to |abel
| . get Actions().addAction(editAction);

/1 Create swing frame

JFrame f = new JFrane();

f.setSize(200, 100);

f.setDefaul t Cl oseQperation(JFrame. EXIT_ON CLCSE);

/1l Add scene view
f.add(s.createView));
f.setVisible(true);

11

Chapter 3

Server Compiler

The visualization tool improves the abilities to analyzéeinal data structures of the Java
HotSpotf™ server compilerl[23], which is part of the Java HotSpbwirtual Machine of Sun
Microsystems. A virtual machine (VM) acts as a bridge betwag@rogram and the operating
system. The primary purpose of VMs is to enable the creatigriadform-independent appli-
cations. In the beginning of this chapter the Java HotSh&tM is described in general, later
on the main data structure of the server compiler and someeahist important optimization
steps are presented.

3.1 The Java HotSpot™ VM

The Java HotSp&Y¥ VM is a virtual machine developed by Sun Microsystems thaiéments
the Java Virtual Machine Specificatidn29]. Figlrd 3.1 shdlwe main components of this VM.
Basically Java methods are executed by the interpreter.nVehaethod is invoked a specific
number of times, the just-in-time compiler produces magluode for the method. Later calls
of the method jump to the compiled machine code and will tioeeerun faster. The reason
why a method is not immediately compiled to machine code afitet execution is that most
Java methods are executed so infrequently that compilem @hoes not pay off. Depending on
whether the virtual machine is started with the flager ver or not, the server compiler or the
client compiler [1I5][18] is chosen to do the compilationkas

There are some cases in which the compiled machine code offendhean no longer be used

and execution continues in the interpreter. Such cases edwen a compiler makes an opti-

mistic assumption to produce faster code. When the assomiptiater invalidated, e.g. because
of dynamic class loading, the machine code is no longer asakhimping from the interpreter

to the compiler and vice versa is not only possible at theaation of a method, but also during

the execution. Reverting back from the compiled machinedodhe interpreter can be done
at specific points of a method callsdfepoints This process is calledeoptimization

12

Server Compiler The Java HotSpé¥ VM

There is also an opposite of deoptimization cathedstack-replacementmagine a method that

is executed only once but consists of a long-running loopiritig the whole loop in the inter-

preter would heavily decrease execution speed. Therdfoganterpreter does not only count
the invocations of a method, but also how often a backwargjooturs. When this counter
exceeds a specific threshold, the method is compiled witreeialpon-stack-replacement en-
try. At this entry, machine instructions for loading the reunt values from the interpreter are
inserted.

Compilation Just-In-Time
- T Compilers

 _ompfers R
4 \
Runtime : Client Compiler :
Interpreter I |
| | Server Compiler | !
Garbage Collector Y //

<

Deoptimization
Figure 3.1: Architecture of the Java HotSpétvirtual Machine.

3.1.1 Client versus Server Compiler

The difference between client and server compiler is thatctlent compiler focuses on high
compilation speed, while the focus of the server compits bn peak performance. The client
compiler performs only a limited set of optimizations antést-suited for short-running client
applications. The server compiler needs more time for ctatipn, but produces more opti-
mized machine code, so the compiled Java methods will eedaster. Therefore it is best for
long-running server applications. Currently there are seiffforts to allowtiered compilation
This means that methods are first compiled using the cliempder and only very important
methods of a Java program are later on recompiled using thierssompiler.

Internally, the client compiler uses a control flow basedreepntation of the Java code to
perform optimizations. The instructions are grouped takséowhere all instructions are ex-
ecuted sequentially if no exception occurs. The server dempy contrast, uses a program
dependence graph [10], where data dependence and conperiadtnce are both represented
by use-def edges.e. edges pointing from the use of a value to its definitibimis allows more
sophisticated optimizations spanning over larger regadres method, but the data structure is
also more complex. The visualization tool helps understapithis program dependence graph.
At a late stage during compilation, the nodes of the prograpeddence graphs are scheduled
in blocks.

13

Server Compiler The Java HotSpé¥ VM

3.1.2 Java Execution Model

The Java HotSpd¥ VM follows strictly the Java Virtual Machine Specificatiog] when
executing a program. Java source cdde [28] is first compdethva bytecodes. The virtual
machine reads the bytecodes and executes them accordimg gpécification. In the bytecode
language, the state of a method consists of a set of localblas and an operand stack. All
operands work on the stack. There are load and store bytet¢odeansfer a value from a
local variable to the top of the stack and vice versa. Thew@t model is specified for this
stack-like language. Figute—B.2 shows a Java method withigdesinstruction and the resulting
bytecodes of the method when it is compiled usjrayvac. The interpreter maintains the
current state that consists of the values of the local vEsathe operand stack and monitors
used for locking. It steps through the bytecodes and updagestate accordingly.

Java Method Java Bytecodes State at specific Bytecode

0 iconst_5 .
local variables

. . 1iload_0
int test(int x) { :
return 5 + X + 7; 2 iadd
d 3 bipush 7 operand stack

5 iadd
6 return)
monitors
States when executing test(3)
s - - - - - -7/ "="=-"7"¥/"¥"/=-"¥"¥/-"/-""/=/"¥"/"""¥/-"¥/-\"/"\¥"/""¥/-"/""¥"/7""¥/"/-"\"7""7""= N
I’ performed operation const 5 iload_0 iadd bipush 7 iadd return |
I
| bytecodeindex 0 1 2 3 5 6 |
[
I local variables 3 3 3 3 3 :
: | s B g | |r15 return |
+ + I
I = value
| operand stack N 3 7 :
|
I monitors :
N y

g

Figure 3.2: States during the execution of an example method

The lower part of Figure-3l2 shows the states of the integprehen the method is invoked with

the value 3 as the argument. As this method has no synchtimmzade, there are no monitors
in the state. The size of the array of local variables and temum stack size are both known
for each method before invocation. First, the constant Slaagarameter value, which is 3, are
pushed onto the stack. The add operation pops the two totersents and pushes their sum

14

Server Compiler Architecture of the Server Compiler

onto the stack. Afterwards, the constant 7 is pushed anah ageadd operation is performed.
The returned result is the topmost stack element at the et @xecution of the method.

When the interpreter is given a correct state for a bytecind®n continue the execution in
the middle of a method. This property is used by deoptimiratiThe registers and memory
locations from which the current state can be reconstruantetracked by the compiler. When it
wants to deoptimize at a specific location, it inserts theestants that construct the interpreter
state and call the interpreter. Internally, the server aenmorks with a program dependence
graph instead of stack operations. While constructing thely the compilers maintain which
nodes correspond to the current value of the local variabidghe elements on the stack.

3.2 Architecture of the Server Compiler

Figure[33B shows the steps applied by the server compilenwhecessing a method. The
compiler starts with an empty graph and adds nodes to it yhilsing the bytecodes. Whenever
a node is added, it performs locally the optimizations idgnglobal value numberind 4] and
constant folding (see Secti@nB.4). Afterwards it cleanshgpgraph by properly building the
method exits and performing dead code elimination.

The next steps are global optimizations applied to the grdpley are not mandatory and can
be skipped by the compiler. After applying an iterative glblalue numbering algorithm, the

ideal loop step is performed at most three times. The ides jghase is capable of doing

loop peeling, loop unrolling, and iteration splitting (filange check elimination). When major
progress is made running the ideal loop phase, it is run agtierwise the compiler continues

with the next step. Conditional constant propagation is @imozation that combines simple

constant propagation with the ability to remavie statements when the result of their condition
Is constant. Then iterative global value numbering andrs¢igeal loop phases are performed
again.

The ideal graph is then converted to the more machine spédifidiNode graph (see Sec-
tion[3.8). Basic blocks are built from the control dependesicFor every node, the latest and
earliest possible scheduling is computed satisfying tlopgmty that it must be scheduled after
all its predecessors and before all its successors. Thekhosation of a node should be late
to avoid unnecessary computations that are never used,dhduld be outside of loops when-
ever possible. A graph coloring register allocation (seeti8e[3.®) is performed. After some
peephole optimizations, the final machine code is genefetedtheMachNode graph.

15

Server Compiler Ideal Graph

Building Ideal Graph Once per Bytecode

—— e — —_—— e —— - ———

(Parsing Bytecodes >v~ —

!
C Build Exits)
!

(Dead Code Elimination)

/_______\
e e

i (Identity >
| !

- ~<Global Value Numbering)

_—— | — —— e —— s — —

A 4
(Iterative Global Value Numbering)

Ideal Loop
A 4

/
I
|
|
|
|
|
| (Conditional Constant Propagation)
|
|
|
|
|
|
\

Build Control Flow Graph)

Register Allocation)

(Iterative Global Value Numbering)

Ideal Loop

\
\ 2 ~

N N N N e

Output Machine Code)

C
C
(Peephole Optimizations)
C

Figure 3.3: Architecture of the Java HotSpbtserver compiler of Sun Microsystems.

3.3 Ideal Graph

The representation of the program in the compiler highlg&# the complexity and effective-
ness of applied optimizations. A common representationgybgram is acontrol flow graph
The source code is a flat sequential structure with an exdefiped order of the instructions.
An instruction is defined by an operator and operands thgpr@agously defined instructions.
The control flow graph groups instructions that are guasghte be executed consecutively into
basic blocks At the end of every basic block there is a conditional branch ump. A basic
block is connected with its predecessors and success@slneg control flow.

The Java HotSp&Y server compiler uses a control flow representation in ther lstges of
compilation. For most of its optimizations, however, it sisedata structure that combines
control flow and data dependencies. This graph data steuwalledideal graph The in-
structions are not ordered, but form a graph where the edgastel either definition-use data
dependencies or control dependencies. By handling coatldata dependence more uni-
form, some of the optimization steps, especially thoselimmg code motion, are less complex.
Implementation details of the graph are describedlin [8].

16

Server Compiler Ideal Graph

The program dependence graph in the server compiler is & giatp structure with lightweight
edges. An edge in the graph is only represented by a C++ poinémother node. A node is an
instance of a subclass Nbde and has an array ®ode pointers that specifies the input edges.
The advantage of this representation is that changing art egge of a node is fast.

3.3.1 Data Dependence

Figure[3# shows a part of the program dependence graphajeddry the compiler when
processing the expressipa 100+1 wherep denotes a parameter of the current method. Nodes
are represented by filled rectangles with the type of the modiesome additional information

in them. Edges are drawn without arrows, but they always atahe bottom side of a node
and end at the top side of a node. The layout arranges the sodbat most edges are going
downwards. Every node has a fixed number of input slots threbp#ionally be used as an end
point of an input edge. There are some special nodes that aloarbitrary number of input
edges. These additional edges are always stored after ligatoby input slots.

|
|
|
|
|
| 23 Mull
|
|
|
|
|
|

N e e e e e

Figure 3.4: Program dependence graph when procepsih§0+1.

The operations are represented in the graph by nodes thadramected with the operands. The
Mul I and theAndl node both take two integer operands. They have three aleagédis, but
the first one is not used in this example. Parameters aresaokesia thePar mnode, the
additional informatiorPar n0: i nt indicates that it is the parameter with index 0 and that it
is of typei nt . The constants 100 and 1 are also represented as nodes.

3.3.2 Empty Method

Figure[3b shows the graph of an empty method. Every grapla Rast node and this node

is always connected to ti&t art node. To make traversing the graph simpler, nodes at which
the method is exited have an outgoing edge toRbet node. A node produces exactly one
outgoing value, so the outgoing edges have no particularoRtojection nodes likBar mare
used to model nodes that produce tuples. $har t node produces the following values:

17

Server Compiler Ideal Graph

Control: The control flow is modeled as edges just like data dependgndihe semantic is
however different. The graph formed when all non-contraje=xiare removed can be
viewed as a petri net. When the method is executed, the ddoken passes along the
control edges from node to node. Am node has two projection nodes as successors.
The control token uses one of the two ways.

| _O: This type exists for historical reasons. It is used to segatertain instructions.

Memory: To serialize memory stores that could interfere with eadteipta type to express
memory dependencies is used.

Frame Pointer and Return Address: Projection nodes that represent the value of the frame
pointer and the return address. They are produced bytilae t node and are mostly
hidden to simplify the graph.

3 Start

5 Parm 6 Parm 7 Parm 8 Parm 9 Parm
Control 1.0 Memory FramePtr ReturnAdr

\\\\

20 Return

N e — — — — —

Figure 3.5: Graph when processing an empty method.

3.3.3 Phi and Region Nodes

The ideal graph is irstatic single assignmerfSSA) form [9]. This means that a value is
assigned only once to a symbol at its definition and is nevangéd. To model conditional
assignment, e.qg. if a variable gets assigned differenegaludifferent control flow path&hi
nodes are necessary. They merge values from differentatdluws. In the ideal graph they
are always connected fegi on nodes, which merge the control floMRegi on nodes are
usually inserted at the end bf statements or at the loop header. The first input®tie node

is always connected to its correspondiRggi on node. The other inputs specify the values
selected for each control flow going into tRegi on node.

18

Server Compiler Ideal Graph

24 Bool
[ne]

int test(int x) {
if(x == 1) {
i return 5;
} else {
return 6;
3
h

32 Conl

33 Return

Figure 3.6: Graph when processingidan statement.

Figure[3.6 shows the Java source code and the graph re@ésemtf a method containing an

i f statement. Th€npl node compares the parameter and the constant 1Bdbk node is
related to theCnpl node and specifies the compare operator, in this case theairgeerator
isused. Thé f node splits control flow into a true and a false path. Theseaibs are merged
by theRegi on node. The value of thBhi node is in dependence of the taken control flow
either the constant 5 or the constant 6. The small circle elblo® first input of thdregi on
node indicates that this first input is connected to the regmde itself. Everyregi on node is
connected to itself, which makes the block finding algorgheasier. The order of the inputs of
theRegi on andPhi nodes is essential. Rhi node gets the value of itéhinput when the
control path corresponding to th& mput of theRegi on node is taken.

19

Server Compiler Ideal Graph

3.3.4 Safepoint Nodes

At the safepoints of a method execution can jump back to ttezpreter as explained in Sec-
tion[33. All elements of the operand stack and the valuesadllvariables must be restored
from the registers and the machine stack. In the graph, saoutispare calledsaf ePoi nt
nodes. In addition to the first five values produced by3har t node (Control, |_O, Memory,
Frame Pointer, and Return Address), they have an incomigg fxat every stack element and
for every local variable. ASaf ePoi nt node also stores the bytecode index (bci), where the
interpreter can continue execution.

—_——— e e e —————

5 Parm 6 Parm 20 MergeMem 8 Parm 9 Parm 10 Parm 22 Conl 24 Conl
Control 10 {-} FramePtr ReturnAdr Parm0: int #int:5 #int:7

manyp-

N e —

int test(int x) {
return 5+x+7;
h

Figure 3.7:Saf ePoi nt node after parsing 5+x+7.

Figure[3.¥Y shows a safepoint node during parsing of the eleampthodt est , also listed in
Figure[3:2. The snapshot of the graph was taken aftebitipish bytecode. The interpreter
could resume with the secomédd bytecode, so thbci of the safepoint is 5. The first three
inputs of the safepoint node specify the control, I_O, andnory dependence. The frame
pointer and the return address are also needed by the ieterphfter these five standard input
slots start the slots for the local variables. The methodexastly one local variable and at
bytecode index 5, its value is equal to the value of the pai@noé the method. The expression
stack is formed by the next two inputs: One edge comes fronAtlid node, the other from
the constant value 7. While processing the bytecodes, fepa@at inputs are used to lookup
the values of the local variables and the expression statle safepoint inputs are updated
according to how a bytecode affects the local variables edtack.

20

Server Compiler Optimizations

3.4 Optimizations

While building the graph by processing the bytecodes, lopsimizations are applied. After

adding a node to the graph the compiler checks whether thé/ reelded node can somehow
be replaced by another node that does the same computatercheaper way. There are
three such optimizations implemented: Identity optim@atconstant folding, and global value
numbering. The program dependence graph data structorgsaome of the optimizations
run in parallel benefiting from each othér [6][7]. The follmg three subsections give small
examples for each of them. The fourth subsection presentxample of an optimization

applied globally after parsing.

3.4.1 Identity Optimization

The identity optimization searches for nodes that comphatgame result. In contrast to global
value numbering, it searches also for nodes that are diffelit produce the same output.
Figure[3.8 shows how the expressioR0 is processed by the server compiler. First, the full
expression including thaddl and theConl node are generated (left side). Now the identity
optimization finds out that thear mnode produces always the same result as the newly created
Addl node and uses only tiegar mnode further on. After parsing all bytecodes, the compiler
performs a dead code elimination: It deletesAldkell node and th€onl node. The resulting
graph is shown on the right side.

—_——————— — — — — =

Figure 3.8: Identity optimization; x+0) is transformed tx.

21

Server Compiler Optimizations

3.4.2 Constant Folding

Arithmetic operations on constants are performed at canjpile and the result is represented
by a constant node. In Figute B.9 the graph for the expre$stgt7 is shown. The first add
operatiorb+p is modeled as aAddl node, but it isimmediately transformed to the expression
p+5, as the convention that the constant part is always therlpst simplifies constant folding.
After the compiler has generated the nodes for the secondpeidtion, the constant folding
algorithm identifies a simplification possibility and the ol expression is replaced py12.

The algorithm looks for the pattern that the second inpubhefadd operation is a constant and
the first input is arAddl node, which has a constant input too. Dead code elimina¢iomoves
the unnecessary two constant nodes anddtied node.

Y —_—_— e — — — — — —_—_— e ——— —_——— e ——— —

3 Start

10 Parm
Parm0: int
23 Addl
25 Addl

23 Addl

25 Addl

/__________________
N - =

Figure 3.9: Constant folding:5+p+7) is transformed t¢ p+12) .

3.4.3 Global Value Numbering

Global value numbering is an optimization similar to thentity optimization. It searches for
nodes that are equal to the currently inserted nodes. Eguadians that the nodes themselves
and also all of their inputs are equal. In this case, only drikem is needed and the other one
gets deleted by dead code elimination. A node has a hash faltest equality testing. It is
based on its properties and the C++ memory addresses opittsin

Figure[3ID shows the graph produced when compiling therst(x+1) * (x+1) . The left

graph is a snapshot taken after the processingxefl) . In the middle the secon@x+1) is

represented by thaddl and theConl node. As the hashcode of the twddl nodes is the
same, the old\ddl node is connected a second time to the safepoint node instéae newly
createdAddl node. So the followindvul t I node gets a connection to the fisddl node
in both slots. After dead code elimination the compiler tkdehe secondddl node. The
resulting graph is shown on the right side.

22

Server Compiler Optimizations

—_—_——— e — — ——— = o ————— e ——— ——

23 Addl 24 Addl

___________________\
—— e e e e~

e — —

Figure 3.10: Global value numberingx+1) * (x+1) is transformed t@ x+1) 2.

3.4.4 Loop Transformations

The server compiler performs a large number of global oattnons after parsing. They can
be divided into three main categories: Iterative globalgahumbering, conditional constant
propagation, and loop transformations. As presentingfaliem would go beyond the scope of
this thesis, only the step to identify counted loops is dbedrin this section.

The identification of loops brings advantages for array losucheck elimination and is nec-
essary for loop unrolling and loop peeling. After parsing bytecodes, a loop is represented
by a control flow cycle involvindgregi on nodes. The first task is to find regular loops within
the graph and identiffRegi on nodes that represefdop headersi.e. nodes that the control
token must always pass when entering the loop. A loop headepresented bylaoop node,
which replaces th&®egi on node. When the input bytecodes were created by compiling Jav
code, then there exist only loops with one entry. There amelier no such restrictions on
the bytecodes. As loops with more than one entry are a raeeasashandling them would be
complicated, the server compiler does not optimize suchdoo

A common loop pattern is represented by a loop variableistpat a specific value and going
constant steps up to an upper bound. After reaching the hdbedoop is exited. Some
languages like FORTRAN have language constructs for td kif loops, but in Java this
must be coded using a local variable and manually inseri@@nments and conditions. There
are special optimizations for such loops, so the server demgdentifies the loop pattern and
converts it to a construct with@unt edLoop node and &ount edLoopEnd (CLE) node.
Figure[3.1]l shows the nodes that define a counted loop. Theeyfgphe beginning and end of
the loop, as well as the loop variable and the increment [ogr it@ration.

23

Server Compiler MachNode Graph

Loop entry .
| Backedge

Initial loop variable value

. ——Stride value

75 Cmpl

76 Bool

77 CLE

—_—— e e e e =

Loop exit

Figure 3.11: Nodes that define a counted loop.

3.5 MachNode Graph

After all global optimizations are applied, the ideal gragpstill in a machine-independent form.

The next step is converting the graph to a more machine-peat fThe resulting nodes are later
scheduled and directly converted to machine code. Bottpmewrite systems [24] can be used
for the optimal selection of machine instructions when pidg machine code from expression
trees. The server compiler selects subtrees out of theggdaph and converts them one by one.
It selects specific nodes as root nodes and transforms étatied tree using tree selection rules.
Some nodes likéhi nodes are marked abont car e and have no corresponding nodes in
the new graph. Other instructions are markedshar ed, which means that they must not

be shared among subtrees. Code for instructions that ateoparore than one subtree is

duplicated. The result of the root node of a tree is alwaysqulan a register so it can be reused
without recomputation.

24

Server Compiler MachNode Graph

—_—_— e, e e e e e ——

|
|
|
|
|
|
|
|
|
I 24 Bool
|
|
|
|
|
|
|
|
|
|
\

~_— e e - — —_— e e — =

MachProj loadConl loadConl
#5 #5 #6

10
compl_eReg_imm
#1

Figure 3.12: Matching and register allocation example.

Each tree is converted using a deterministic finite auton¥dtare exist architecture description
files fori 486, AMD64, and Spar c that describe the available instructions and their costs.
Listing[3-1 shows schematically an extract of th€86 architecture description file. The line
starting withmat ch specifies the tree pattern that can be converted by this Autele has an
associated estimated cost. The compiler matches a tredrsatdhe total cost of applied rules

25

Server Compiler Register Allocation

is minimal. The file also contains additional propertieshd tules including for example the
resulting machine code. The first rule convertSngpl node with a register and an immediate
operand to @onpl _eReg_i mmnode. The second rule can conve@bvel node with two

Bi nar y nodes as predecessors to a sirgtev! _r eg node.

Listing 3.1 Architecture description file extract.

/1 Signed conpare instruction

instruct conpl_eReg inm flags cr, register opl, inmedi ate op2
mat ch: Set cr (Cmpl opl op2)
opcode: 0x81, 0x07

// Conditional nove

instruct cnovl _reg: register dst, register src, flags cr, operator cop
mat ch: Set dst (Cwvovel (Binary cop cr) (Binary dst src))
ins_cost: 200
opcode: 0xO0F, 0x40

Figure[3IP shows how the graph for the example method presém Figurd 3 is converted
to a machine-specific form. During global optimizationg dompiler replaces thef and the
Phi node with aCVbvel node (see top-left). For the rules to match correctly sonmstrocts
must be changed. In this case, the ®ranar y nodes are inserted and form new inputs of the
CMbvel node (see top-right). The matcher identifies that the twesrdefined in

Listing[31 can be applied. The tw@nl nodes representing the values 5 and 6 are converted
tol oadConl nodes. The node for constant 1 is no longer necessary, ettaisiformation
thatconpl _eReg i nmshould compare the input with 1 is modeled as a parametemdde
cnovl _regis created according to the second rule. The bottom-lefitgsliows the result of
the matching process.

After the construction of thé/achNode graph, the compiler builds the control flow graph
consisting of basic blocks and schedules the nodes. Theegister allocator selects machine
registers for the nodes (see bottom-right graph).

3.6 Register Allocation

Register allocation selects machine registers to holdegliat must be stored between calcu-
lations. If there are not enough registers available to hbldalues, they must be temporarily
stored in the main memory, which is an expensive operatibacspilling. The goal is to have
as less spillings as possible when executing a method.lifeheange of a value is the range
between its production and its last usage. Two values catobedsin the same register if their
life ranges do not intersect. If the life ranges intersdwntat some time both of them must be
stored, so it is impossible to store both values in the sagistes.

26

Server Compiler Register Allocation

The server compiler uses a graph coloring register allog@}@]. First it builds aninterference
graph, which is a graph with the values as nodes and an undirectagection between two
nodes if their life ranges intersect. A coloring of a graplamsassignment of a color to each
node of the graph with the restriction that two directly cected nodes must not have the same
color. When the available registers are viewed as the cdloes a valid coloring the graph is
a valid register allocation. Two values that have inteisgdife ranges are directly connected
in the interference graph and get therefore different tegssassigned. When it is not possible
to color the graph, then spilling a value is unavoidable. Tiieerange of the value is splitted:
one life range between its production and the storage to mgranother life range between
its loading from memory and its last usage. Now the interfeeegraph has a better chance of
being successfully colored as most likely some of the cotmres of the original life range do
not exist in one of the two shorter new life range intervals..

First, the algorithm to color a graph with colors selects nodes with less thameighbors.
Obtaining a correct color for such a node is trivial when thst of the graph is successfully
colored. The node gets the color that is not used by any okitghbors and as there are max-
imal n- 1 neighbors, such a color always exists. Such easily colenatiies are consecutively
removed from the graph. If at some point there is no such ribée,the graph is not colorable.
The server compiler iteratively inserts spilling code Latvalid coloring is found.

The register allocation by graph coloring is expensive éogé methods. The client compiler
uses a linear scan register allocafor [31] instead of a geafting algorithm.

27

Chapter 4

User Guide

This user guide introduces the most important functioieslibf the Java HotSpbY server
compiler visualization tool. The tool consists of a Javali@pgion, which is used to display
and analyze the graphs, and an instrumentation of the Jai®ps®" server compiler that
generates the data. Figureld.1 shows the global archigecfittrere are two ways to transfer
the data from the server compiler to the Java applicatidgheevia intermediate XML files or
directly via a network stream. The Java application coasitseveral window components that
are explained in this user guide.

Server Compiler

4‘ Instrumentation

Editor Windows
Java Application P

XML file

Network Stream . ‘

.
S | v\ l

.]

Outline Window Properties Window Filter Window

Figure 4.1: Architectural overview.

28

User Guide Generating Data

4.1 Generating Data

A special debug version of the Java HotSpbserver compiler is needed for generating data.
It has an additional command line optieXX: Pri nt | deal Gr aphLevel =I that specifies
how detailed the compiled methods should be recorded, ow&.rhany snapshots of the graph
should be taken during compilation. There are four diffetevels:

Level O: This is the default value and stands for disabling tracirgjlat

Level 1: At this level only three states per method of the graph aettaone state immedi-
ately after parsing, one state after the global optimizatioave been applied, and one
state at the end of compilation before machine code is getera

Level 2. This level includes intermediate steps for the global oations: iterative global
value numbering, loop transformations, and conditionaktant propagation. The num-
ber of graphs depends on the number of applied optimizagoles. Additionally, the
state of the graph is traced before it is converted MaahNode graph and once before
register allocation.

Level 3: The third level is detailed: After each parsed bytecode ctirapiler traces a graph
state, and the loop transformations are dumped with moeentediate steps.

With increasing level, the necessary storage space andileotinpe overhead increases too, so
the lowest needed level should be used.

At startup, the server compiler tries to open a network cotioe to the Java visualization ap-
plication. The two options XX: Pri nt | deal G- aphAddr ess=i p specifies the network
address and XX: Pri nt | deal Gr aphPor t =p the port. The default values are "127.0.0.1",
i.e. the local computer, and port 4444. If opening of the @mtion succeeds, the data is im-
mediately sent to the tool. Otherwise, the data is saved te adiledout put _1. xm . With
multiple compiler threads the second thread saves its daattput _2. xm and so on.

All compiled methods are recorded. By default the Java Hot'$hVM decides based on the
invocation count and the number of loop iterations whenheskles a method for compilation.
The flag- Xconp completely disables the interpreter, so all methods gefpdechbefore their
first invocation. Using this flag however means that a largalver of methods get compiled.
The option- XX: Conpi | eOnl y=nane can be used to restrict compilation to a certain class
or method.

The currently loaded methods of the application are avigliatthe Outline Window. XML data
files can be loaded using th& | e- >Qpen menu item. When the network communication is
in use, the transferred methods appear automatically.eliojn section of the Outline Window,
listening on a port for data can be enabled and disabled witieakbox. Additionally, a filter
can be specified to reduce the number of methods that shoutddesl. The server compiler
sends only methods to the Java application if their nameagmthe string specified in the
textbox next to the checkbox.

29

User Guide Viewing the Graph

The methods appear with a folder icoi= and the available snapshots for a method are child
elements =z . Double clicking on a snapshot opens a new editor window éncénter and
displays the graph.

4.2 Viewing the Graph

The viewed graph consists of nodes with input and outpus sliotl edges that connect two slots.
The input slots are always drawn at the top of a node, the ostpts at the bottom. When a
node is selected using the left mouse button, its key-vahies @re shown in the Properties
Window. This functionality is also available for all itemsthe Outline Window. The text that
appears inside the nodes is an extract of their propertysand can be customized in the pref-
erences dialog. Figute3.2 shows the editor window of an gl@graph and the corresponding
Properties and ControlFlow Window.

| virtusl it java lang String indexOtokject): Start x | A~ gl
Search 1 4| A e ravlan e s T8
Panel | g & =
Backward
_ ~_ Edge
e
_ EEn e
Selected « |
Node
N Control Flow
\'__ | ControlFlow Window ¥ X|
1
| Properties window: 5 x‘ R
Parm I
[ElProperties
con 2 J
idlx 7 N E
name Parm J
Key-Va|ue «— — | dump_spec Mernary J
Pairs debug_idx 35700007 N
type memary J
short_name M J

Figure 4.2: Viewing a graph using the Java application.

Right-clicking on an edge shows a context menu with its searad destination nodes. This is
especially useful for edges that are only partially visithen an edge would be so long that it

30

User Guide Navigating within the Graph

disturbs the drawing, it is cut and only its beginning andiegds drawn. By default, the nodes
are drawn grouped into clusters. This can be turned off angsorg a toolbar buttong® .

Rolling the mouse wheel zooms in and out, there are also @aoddbttons available for this
purpose & &, . The currently shown extract of the graph is changed by hglttie middle
mouse button pressed and dragging around. A detailed gésardf how to navigate through
the graph is given in the next section. The current graph eagxported to an SVG file using
theFi | e- >Export menu item.

When a graph is currently opened, the difference to a secaaghgan be calculated: Right-
clicking on another graph and selecting the optlairf f erence to current graph
opens a new window with an approximation of a difference leetwthe two graphs.

4.3 Navigating within the Graph

As in most cases only a particular part of a graph is of intemegvigation possibilities are
mandatory. When a graph is opened for the first time, all nadesisible and the root node is
shown horizontally centered on the screen. Selected n@iebehidden from the view using
the context menu or a toolbar buttog#i . There is a button to show again all nod*%*. In the
context menu of a node, two submenus allow to navigate to bite immediate predecessors
Or SuUCCessors.

Nodes that are not marked as fully visible can be either ssmisparent or invisible: Not fully
visible nodes are semi-transparent when they are connextedode that is fully visible, oth-
erwise they are invisible. When such semi-transparentsiade double clicked, they become
fully visible. On the other hand, fully visible nodes becosaeni-transparent or invisible when
they are double clicked. This allows fast expanding anch&ig of the current set of visible
nodes without using the context menu. There is one excepfitime double click semantics:
When all nodes are fully visible, then double clicking on al@aoes not hide this node, but
hides all other nodes of the graph.

So the standard use when analyzing a specific node is to fasthséor the node in the full
graph. Then show only this node by double clicking it andrafséeds expand the predecessors
and successors of the node as needed. When the selection tafglet node set is done, the
semi-transparent nodes are more disturbing than helpfuiast cases. Therefore they can be
completely hidden using the toolbar buttc .

Another way of navigating through a large graph and nevégtisekeeping overview is to use
the satellite view. It can be enabled by holding the key '€gsed or using the toolbar button
8 . It displays a zoomed out view of the whole graph that exdisyinto the editor window
and draws a rectangle that indicates the part that was dlyrisfrown. This viewport can be
moved around using the mouse. When the satellite view ig@xither by releasing the key
or deselecting the toolbar button, the new extract of thelyia shown. Figurg4l3 shows the
satellite window of an example graph and the correspondibrget of the graph that is shown
in the editor window.

31

User Guide Control Flow Window

Current Extract Satellite View
L.nid } wirtual jirt javalang String indexOf(jobject). Start X] _<| 3 ;IEI L.nid } wirtual jint jauva.lang String indexCOf(jobject) Start X] _<| 3 ;IEI
L” G wr A st L” G wr Ao s gt
=] M 18 ;I
44 CmpP 41 AddP
/

57 CastPP
#inat:
56 Halt ‘ | 58 AddP || 60 AddP H'

Kl [—r '

v

press key “s”

release key “s”

Figure 4.3: The satellite view gives an overview of a graph.

4.4 Control Flow Window

To increase the overview in large methods, an approximatidime control flow graph is avail-
able. Every node is assignedasic blocki.e. a set of instructions that are executed consecu-
tively without any branches. The Control Flow Window showgraph with a node for every
block that is connected to the block’s predecessors ancesseors. Note that this is only an
approximation as the real control flow information is onhadable in a late stage during com-
pilation. Every node is put in the latest possible block fiutig the condition that it must be
evaluated before all its successors. Selecting a blocktseddl nodes that are assigned to this
block in the full graph and centers them in the view. Invisibbdes of the block get automati-
cally visible.

45 Filters

The graph coming from the server compiler does not contairdaplay information. The only
additional information available beside the graph desiompare key-value pairs for the nodes
of the graph. Filters change the representation of the glbagkd on node properties. There

32

User Guide Filters

are filters for changing the color of nodes and edges, for vémganodes and also two special
filters for combining and splitting nodes.

In the Filter Window, all currently available filters aretisl in their processing order. Filters
can be activated and deactivated using the checkbox Idfieiotame. The toolbar buttons on
the right allow adding o removing ==, and moving filters + 1. The current set of
selected filters can be saved as a prc [and is then recallable using the combobox on the
left.

The following list explains the standard filters that areilade when first installing the tool.
They all use selection rules based on key-value pairs andeanstomized.

Basic Coloring: Color filter that should be enabled by default. It sets a stesh@olor and
special colors for control flow specific nodes.

Matcher Flags Coloring: Before converting the ideal graph toMachNode graph, the two
flagsi s_shar ed andi s_dont car e are calculated. This filter visualizes the flags
when their value is available.

Register Coloring: Colors the nodes according to the selected register. Theteegllocator
information is available at a late stage during compilation

Extended Coloring: Gives a color to constant nodes, projection nodes, and rtbdekave a
bci property, i.e. nodes that are safepoints.

Line Coloring: Colors the connections according to the type of the sourde nbifferentiates
between integer values, control flow, memory dependenitipke values, and the special
typebot t om

Difference Coloring: In a difference graph all nodes have a state expressed aparfyrthat
can be either same, changed, new or deleted. Accordingsetttie, the filter sets a node
color. When the nodes do not have a state property, the geapains unchanged.

Only Control Flow: This filter is useful when the full graph is too complex and on wants
to focus on the control flow. It removes all nodes that do notipce a control flow value
and are not immediate successors of a node that producesral dlanv value.

Remove FramePtr, | _O, and ReturnAddress. Removes the three nodes FramePtr, I_O, and
ReturnAddress from the graph as they normally are not ofeésteand disturb the view of
the graph. They are connected to all safepoint nodes.

Remove Memory: Removes any node that produces a memory dependence asiés val

Remove Root Inputs: Every possible end of a method has a backward edge going todhe
node. So for large graphs the number of inputs into the roder@an be high, which
disturbs the drawing. Therefore this option should be esthbk the root inputs are not
of interest in most cases.

33

User Guide Filters

Remove Safepoint Inputs: The inputs of a safepoint specify the values of the expressack
and local variables at the safepoint’s bci. This is intengstvhen the graph is built from
the bytecodes, but not very important afterwards. Remotieginputs improves the
overview and the drawing performance.

Combine: When a node produces more than one output value, it produtggleaand the
specific values must be selected using projection nodes.filter combines such a node
with all its projection nodes and creates a single node wiihipie output slots.

Split: Constants are shared among all nodes. So when a constaedisnustiple times, all
usages refer to a single node representing the constastisligiasonable to save memory
capacity but is impractical for displaying the graph. Thitefiremoves constant nodes
and writes their value directly to all slots where they weseadl

Filters are written in JavaScript using Java objects andtshiofunctions. Double clicking on
a filter opens a dialog that allows editing its name and itecddlters are programmed based
on selection rules applied to the graph. There exist sondefireed functions that cover most
filtering tasks. They are listed in the following table:

Colors all nodes whose propertanme
matches the regular expressioagexp.
Predefined color variables aret ack,

bl ue, cyan, dar kG ay, gr ay, gr een,
I i ght G ay, magent a, or ange, pi nk,
red,white,andyel | ow.

Removes the matching nodes from the
graph.

Removes all inputs from the matching
nodes from the indegt ar t to the index
end.

split(nane, regexp) Splits the matching nodes.

col ori ze(nanme, regexp, color)

renove(name, regexp)

renovel nput s(name, regexp,
start, end)

r egexp stands for a string representing the regular expressidrtiibavalue of the property
with the specified name must fulfill. The syntax correspomdhé standard Java regular ex-
pression syntax used by the classes intaea. uti | . r egex package. Amongst others, the
following rules are defined: "." stands for any charactet,iffeans that the preceding element
IS repeated zero or more times, and "|" expresses alteesativ

Figurel4# shows each of the predefined functions applied &xample graph. The plain graph
without any filters applied is displayed top left. Then thagr is colored using theol ori ze
function and regular expressions. Afterwards e node is removed. The functiapl i t
removes th&Conl node from the graph and displays the short name for the noeleeay use.

So "0" is drawn at the third input of th@érpl node. The last applied step removes the second
input of theSt ar t node.

34

User Guide Filters

The search panel in the toolbar of the center window works &alar way to a filter. A
property name can be selected in the combobox, and a regyiegssion that this property of
the target nodes must fulfill can be entered in the textfielierdoressing enter in the textfield
or the search toolbar buttoi™ , all matching nodes are selected.

colorize(“name”, “Root”, orange)
Start graph colorize(“name”, “.*I”, green)

0 Root 0 Root

3 Start | | 22 Conl 3 Start I—

10 Parm 10 Parm

38 Phi | 27cmpt 38 Phi —

remove(“idx”, “38”) split(“name”, “Con.*”) removelnputs(“idx”, “3”, 1, 1)

0 Root
0 Root

0 Root. | | 3 Start

|__-1Fam‘—_| 3 Start
10 Parm
10 Parm 10 Parm

Cagm]

Ic

Figure 4.4: Four functions applied to an example graph.

35

User Guide Bytecode Window

4.6 Bytecode Window

The Bytecode Window shows the Java bytecodes of the metlood ¥hich the currently
opened graph was generated. Bytecodes that are referencedddes through the bci prop-
erty are shown with a special icon. Double clicking on sucltatode will select all nodes that

have a reference to it. These are mainly safepoint nodes.

The server compiler inlines small methods to avoid the ceadrof calling them. The bytecodes
of inlined methods are shown as child elements of a node benlea bytecode that would
invoke the method. Figufe4.5 shows the bytecode view foixamele method. The bytecode
with the index 3 is a call to another method, which the sereenmiler decided to inline. The
bytecodes of the inlined method are all shown in the sublikere are two safepoint nodes in
the graph that reference the bytecode indices 13 and 25 aflthed method. Therefore, those
bytecodes have a special ico% and by double clicking on them, the corresponding nodes in

the graph are selected.

Bytecodehyiew Window o = |

------ E] Ziconst_0

------ |:‘| 3 invokevirtual 11776 <index0f = <{Ljavaflang/String; 1= 5 Inlined Method
[=][= wirtual jint java.lang. String.indexCOf(jobject, jint) -

------ E] 12 aload_1
------ ‘5. 13 getfield 768 <value> (1 nodes) — C.onnected
...... [16 aload_t = with Nodes

------ [17 getfield 256 <affset: /
------ E] 20 aload_1 g
------ [21 getfield 512 <counts

------ [24iload_z e

------ <}=='4> 25 invokestatic 12032 <indexOfF = <([CII[CIIDI= (1 nodes) /

------ E] 28 ireturn

------ D & ireturn

Figure 4.5: Bytecode Window showing the Java bytecode®efiorm.

36

Chapter 5

Visulializer Architecture

In this chapter, the architecture of the visualization agapion that is based on the NetBeans
platform is explained. Additionally, it contains a destiop of the algorithm for finding the dif-
ferences between two graphs. The layout algorithms andoite added to the server compiler
are presented in two subsequent chapters.

5.1 Module Structure

The NetBeans application is split into several modulesasgmted by NetBeans projects. For
a discussion of modular programming see Sedfioh 2.3. Figirshows the modules and their
dependencies. Transitive dependencies are omitted f@iisity. Two modules represent third
party libraries: RhinoScripting for the execution of Jasa® code and BatikSVG for the export
of SVG files. There are three top-level modules: Bytecodesti©lFlow, and Coordinator.
Here is a list of all modules in alphabetical order:

BatikSVG: The Batik SVG Toolkit is part of the Apache XML Graphics PrijeSVG stands
for Scalable Vector Graphics and is a vector-based staizeardraphics format. The
Batik SVG library allows to create a Ja@ aphi cs object that writes into an SVG file
instead of painting on the screen. The visualization toekukis functionality to export
the currently selected graph into an SVG file.

Bytecodes. A top-level module that is responsible for the bytecode vidwhe method of the
current active graph. It listens to the lookup of the windoithwocus and displays the
tree of bytecodes of the current graph’s method.

ControlFlow: Contributes the control flow view of the currently activegaand listens to the
lookup of the current active window similar to the Bytecodesdule. It is also a top-
level module and uses the NetBeans visual library for digptathe control flow graph.
It forwards the changes of the block selection to the actreplg editor window.

37

Visulializer Architecture Module Structure

. = :
- ~ | Coordinator \
- /
=" -7
- Bytecodes / =\
- “ - .
\ g :
[| _ - / View ;770
\ ContrQIFIow _ 17/ —, N

—

‘ Difference ‘

-
\ =
-~ “‘ \ /

/ N A

K / N\
| Fiter | 7 BatikSVG)
. /

) /
/ / g

pa Ve
e -
v ¥ ¥ g

‘ Graph ‘ l/‘ RhinoScripting ‘ Y &
\ ’

N AN /Q'b

\ e
\\ N /8
4

¥ Vv N 2N
‘ HierarchicalLayout ‘ ‘ Data ‘ Settings AN

Figure 5.1: Dependencies of the NetBeans modules.

Coordinator: Top-level module that contains the code for the outline dadfiiter window.
All predefined filters are defined in this module. It is respblesfor opening new graph

editors in the center area. The task of actually creatingnrinelow and displaying the
graph is forwarded to the View module.

Data: Contains the data model used to transfer data between e sempiler and the tool.
It parses the XML data coming from the server compiler andveds it to an internal

data structure. It uses a SAX XML parser. For a detailed getswn of the data model
see Section 5.2.1.

Difference: Used to create a difference graph of two input graphs. It dépenly on the Data
module and the Util module. The difference algorithm is exptd in Sectiof hl5.

Filter: Contains the filters that can be applied to the graph modetlandialog to edit a filter.
It depends on the Graph module and the RhinoScripting mddukxecuting JavaScript
code. Sectiofbl4 contains a description of the filter agchitre.

Graph: The data model used internally for the graphically enrichegph. In comparison to
the data model defined in the Data module, it adds displaynmtion to the nodes and
edges of the graph. For a detailed description see Sdéctioh Rdditionally, it contains
the graph selectors that are used by the filters and are eegla Sectiofi 5l4.

38

Visulializer Architecture Graph Models

Layout: Defines an API for layouting a graph which is explained in ®ed&.Z.3. It contains
the interface definitions for the nodes and edges of the gaaphalso an interface for
clusters of nodes.

HierarchicalLayout: Actual implementation of a graph layouter as defined in theouamod-
ule. It also contains a hierarchical layouter that can hatlistering. The layout algo-
rithms are explained in Chapf{@r 6.

RhinoScripting: Rhino is an open source implementation of a JavaScript eragid is part of
the Mozilla project. It contains all features of JavaSctif. The visualization tool uses
the library to allow the user to write filters in JavaScriptieo

Settings: Module that is responsible for loading and storing settithgs$ should be persistent.
It also contains the code for displaying the settings dialog

Util: Contains some utility classes that are used by other modlilesntains the definitions
for the properties mechanism described in Sedfiah 5.3.

View: Responsible for displaying the graph in a new editor winddtwises the NetBeans
visual library to render the graph. For a description of tisial library see Sectidn2.6.

5.2 Graph Models

The application uses three different models for the gragie data modeffor the transfer of
the data from the server compiler to the Java applicatiandigplay modefor displaying and
filtering the graph, and thlayout modefor layouting the graph. Working with different models
comes with the cost of converting between them. The data hi®denverted to the display
model whenever a graph is opened in a new editor window. Tyeutanodel is a submodel of
the display model, so no conversion is needed there. An galyaf using different models is
the avoidance of unused fields. For example, all fields comgidisplay information such as
the color of the nodes would be undefined for all loaded graplaswould only get a meaning
after a graph is opened.

The application saves for every node of the display graphaiibé corresponding nodes in the
data model. When the graph of the display graph model isexldat the first time, every new

node represents exactly one node of the data model. Throligyis fihowever, a node of the
display model may represent several nodes of the data model.

Figure[B2 shows the lifecycle of a graph and how it is comeetietween the models. For
transmitting the data from the server compiler to the Jaydi@gion and for storing it on the
hard disk, an XML structure based on the data model is used.Jata application reads the
data and builds a memory representation of it. When a grappered in a new editor window,
the data model representation of the graph is converted isptagt model representation. The
application applies all activated filters on the graph andkes the layout manager. The layout

39

Visulializer Architecture Graph Models

manager works on the layout model, which is a submodel of isiglaly model. The editor
windows use the NetBeans visual library to show the displag@hrepresentation of the graph
on the screen. The following three sections describe tleetimodels in detail.

Data Model Display Model
s T T T T T = N s - - - - - -"-"=-"-—"F-"-""-"""""="="="="="="="—"=—"—-= ~

/ \ / \

[| | Layout Model !

I v XML file | | ittt > '

B © : - | | (Layout Manager | :

erver Compiler |- —

o I AN, = ¥ |
.

: 4 Outline Window i Apply Filter Editor Window :

\ /l \]

Figure 5.2: Lifecycle of the graph data.

5.2.1 XML File Structure

The data transferred from the server compiler to the vigaabn tool is represented in XML.

The main advantage of using XML instead of a custom binargn&dris better changeability.
When new XML elements are introduced, it is simple to mamtackward and forward com-
patibility: On the one hand, the old application can readnée XML data because it ignores
the new elements. On the other hand, the new applicationezhthe old XML data by ignor-

ing the elements that are no longer valid. The main disadgenof using XML is the higher

storage requirement compared to a binary format.

One of the goals when designing the data model was that itigHmmugenerally usable for
describing directed graphs. This is an important desigisaetthat opens the possibility that
the visualization tool is used to analyze graph-like datacstires of a completely different
application.

Another concept of the data model are properties based owdtag pairs. All descriptive
information about an entity is stored uniformly as a list efkvalue pairs, instead of introducing
XML attributes for the properties of Java methods, graphs, modes. This concept is used
throughout the application and is explained more detaitefiactio 5.13.

Figure[5.B shows the XML elements and their relationgrAaphDocunent is the top-level
element and can contagr oup child elements. The server compiler creategraup ele-
ment for every traced method. g oup element has exactly omeet hod child element that
describes the bytecodes and inlining of the methodyrAup element can have an arbitrary
number ofgr aph child elements that describe the traced states of the grajriigdcompilation
of the method. Agr aph element has oneodes, oneedges, and onecont r ol Fl owchild
element.

Concerning the nodes and edges, only the difference to #hegus graph of the method is
saved. Therefore, theodes element can contain definitions of nodesnagle elements or

40

Visulializer Architecture Graph Models

r enoveNode elements, which state that a certain node of the previoyshgisano longer
present. A similar mechanism is used for the edges. Suaugeplaphs of a method often
have similar nodes and edges. The number of equal nodes gad éepends on the number of
traced intermediate steps. Using a difference-basedggdoamat highly reduces the necessary
storage space.

Every node has a unique identifier that is referenced fronedlges and the control flow blocks.
An edge is defined by the identifiers of its source and destimatode and the index at which
the edge ends at the destination node. d¢bat r ol FI ow element contains the information
necessary to cluster the nodes into blocks. For each bltsckuccessor blocks and the nodes
that are related to that block are specified. The nodes aeerefed via their unique id.

A met hod element contains two child elements: Thel i ned element can have method
child elements expressing inlining. The bytecodes of a ote#re stored in the textual format
that is used to trace the bytecodes in the server compiler.

| graphDocument

- —> zero or one child

\ 4 —» zero or more children
// _—— | group
// & _
/ : method
name
[shortName graph
“ | // “\\ name
| ‘ inlined ‘ ‘ bytecodes ‘ ! T
edges controlFlow
TEXT
node removeNode edge removeEdge block
\ i id index index name
Y ¥ _— from from dom
properties] to o -
,,/ \\
v . >
p ‘successors‘ ‘ nodes ‘
name l l
v‘ successor node
TEXT name id

Figure 5.3: XML file structure.

The elementgr aphDocunent , gr oup, net hod, andnode can have groperti es
subelement that specifies key-value pairs via its child elgs The concept of properties is
also present in the data and the display model and is deddrilmetail in Sectiofh]3.

The XML data is read using a parser that processes the elsmdmie reading it. Reading
from the network stream and reading from a file is treated initotm manner. The network

41

Visulializer Architecture Graph Models

communication between the server compiler and the visai#dia tool is interactive: After the
server compiler has sentgr oup element and its properties, the client compiler writes the
character 'y’ if it wants to receive that group of graphs drdtherwise.

From the XML data, the data model memory representation ii$. bbigure [5.4 shows the
classes that represent the data model. The structure igstmihe XML structure. The nodes
and edges are however no longer represented as the diteietiee previous graph. The parser
resolves this differences without any additional memogureements by sharing tHenput -
Node objects. If a node does not change between two graphs of seothetien both graphs
contain a memory pointer to that node.

Properties API _| GraphDocument |

I:&

InputMethod
0.1

InputBytecode

I*

InputNode InputEdge | InputBlock |

int id int from
int to 2
int index

InputBlockEdge

Figure 5.4: Data module class diagram.

5.2.2 Display Model

The display model is similar to the data model, but contaispldy information for the nodes
and edges of the graph. When a new editor window is openeddpkcation first creates a
new display graph based on the data model graph. Then thes fiite applied to the display
graph and it is drawn on the screen.

There is a semantic difference concerning the graph bettieetiata and the display model: In
the data model every node produces exactly one output, s@ ieXactly one output slot. This
is due to the structure of the ideal graph in the server canpilt is however possible that a
filter combines several nodes into a single one with more @menoutput slot. Therefore, this
can be expressed in the display model, but cannot be exgriesttee data model. Additionally,
slots can have a shortcut that is displayed on the screen stmatedescription that is shown as
a tooltip.

Figure[Eb shows the classes of the display model. The &aagr amcorresponds to the
classl nput G- aph in the data model. A diagram can contain any numbéfiafur e objects.

42

Visulializer Architecture Graph Models

Figures can have any number of input and output slots. A adiomeis always between exactly
onel nput Sl ot object and on®@ut put Sl ot object.

A figure has &our ce object that points to one or moreput Node objects of the data model
that this figure represents. When the display model reptaten is constructed from the data
model representation, eveRy gur e object has exactly onSour ce object pointing to one

I nput Node object. Filters may alter the graph and are responsibledp Kee pointers to the
data model up-to-date. The filter that combines multiplgur e objects into a single one sets
the node pointers of thBour ce object of the new figure to the union of the node pointers of

the Sour ce objects of the original figures.
Data Model

| Diagram l—

Properties API Y

|) | - B
| PropertyObject |<]|—| Figure I‘—' Source |»

¢

InputSlot OutputSiot |

S

Connection

Figure 5.5: Display model class diagram.

5.2.3 Layout Model

The layout algorithm should be commonly usable, so a depaydmn the display model should

be avoided. Converting the graph in the display model rgmtasion to another data structure
is however computationally intensive. So the layout mosi@ submodel of the display model.
This is implemented using the Java interface mechanisnurélig.® shows a class diagram of
the layout model.

In the layout model, a graph consists\dr t ex objects that have a size and a positiBor t
objects are assigned to\&er t ex object and have a position relative to tier t ex object.

A Li nk object represents an edge between Reot objects. Eaclii nk object has a list of
points in which the first and last are the start and end poiintiseoedge. The other points are
interpolation points. The valueul | in the point list is valid and means that the edge should
be cut off at the previous point and resumed at the next poitiig list.

43

Visulializer Architecture Graph Models

There is an additional aspect in the layout model that ivagileto layout algorithms that allow
clustering of nodes. Each vertex is assigned @ ast er object. ACl ust er object itself
can have a parel ust er object and preceding and succeed@igist er objects.

Layout Gr aph is a concrete class that represents a layout graph compsddtln nk objects.
The Port objects andver t ex objects are implicit defined by thei nk objects as uncon-
nected vertices are not interesting for layoutingL&yout Manager is capable of layouting
the graph by setting the positions of thler t ex objects, the point lists of thei nk objects
and the bounds of th@l ust er objects.

TheFi gur e class of the display model implements fHier t ex interface. TheSl ot class
implements thd?or t interface and th€onnect i on class implements thei nk interface.
The cluster information is only available in the data modwel & not converted to the display
model. The block of &i gur e object is retrieved by getting the block of thaput Node
objects the figure was created from. Whenltimput Node objects of a figure are in different
blocks, an arbitrary block is chosen.

A diagram can be given to hayout Manager object by creating a newayout G- aph
object and adding allonnect i on objects of the diagram to theayout G- aph. There is no
need to reconstruct the graph.

Data Model Display Model
o~ N Cluster T B
/ \
Cluster getOuter() | a
| | InputBlock ll—'Dvoid setBounds(Rectangle r) | | Diagram | I
\ / Set<? extends Cluster> getSuccessors() | ’ |
Se——————— Set<? extends Cluster> getPredecessors() | |
X |
\ ' |
*] | |
Vertex : . :
Cluster getCluster() j | q |
Dimension getSize() | Figure I
Point getPosition() ’ I
void setPosition(Point p) : |
|
T | |
* ‘ | |
Port ' - !
' Slot | !
LayoutManager Vertex getVertex() | |
Point getRelativePosition() | ’
void doLayout(LayoutGraph) D) Y | > |
|
x | | |
processes _‘ | |
| Link | . |
A 4
Port getFrom() | . | |
| LayoutGraph H Port getTo() K |—|| Connection l
void setControlPoints(List<Point>) \ Y,
List<Point> getControlPoints() N e e~

Figure 5.6: Layout model class diagram.

44

Visulializer Architecture Properties and Selectors

5.3 Properties and Selectors

The mechanism for handling properties is uniform throudhioe application. This makes the
application more robust against modifications and incieaseing efficiency. Properties are
stored in the most general form as key-value pairs where ¢lgeakd the value are both Java
St ri ng objects.

Figure[.Y shows parts of the architecture that are relatguidperties and how they interact.
The Properties API defines the basic classes for properilingn The clas$r operty con-
sists of twoSt r i ng fields representing the name and the value of a properBr.dperti es
object is a collection oPr oper t y objects.Pr ovi der is an interface for objects that offer
aProperties object. Propert yQbj ect is a simple implementation of the interface. By
subclassing fronfPr oper t yObj ect instead ofCbj ect , a class can define that its objects
have attributes specified as key-value string pairs.

The Properties Window is implemented using the NetBearigipmechanism (see Sectionl2.5).
It listens forPr ovi der objects in the lookup of the current active window. When sabh
jects are available, it updates its view to show their proper Therefore, there is no difference
for the Properties Window if a user selects an item in the i@aitiVindow or a node in an
editor window. In both cases, it retriev@sovi der objects and displays the corresponding
key-value string pairs.

Other parts of the application that make use of propertiestes search panel and the filters.
In both cases, a set of nodes of the graph need to be seleabedhi$ purpose there exists
an interfacePr oper t yMat cher, which can match string key-value pairs. Objects of type
Propert yMat cher specify the name of the property they are matching and hauadibn
mat ch. For checking whether@r oper t yObj ect matches or not, the value of the property
with the name associated with tReoper t yMat cher object is given to themat ch function

as an argument. THer oper t yMat cher object returng r ue orf al se.

There are two different implementations of theoper t yMat cher interface available: The
St ri ngPropertyMat cher checks whether the value equals a given string value. The mor
complex clasRegexpPr oper t yMat cher allows regular expressions for the value. The
matching ofFi gur e objects is possible, becausegur e subclasseBr opert yCbj ect .

The Selector API defines &el ect or interface with a single method that returns a list of
figures of a diagram. Thieht cher Sel ect or has an associatdet oper t yMat cher and
returns all figures of the diagram for which that ch function returng r ue. The subclass

O Sel ect or returns the union of the result of two selectors. BmelSel ect or returns the
conjunction of the result of two selectors. TRet Sel ect or returns the inverse of the result
of its inner selector.Th8uccessor Sel ect or returns the immediate successors of the result
of its inner selector, and tHer edecessor Sel ect or returns the immediate predecessors of
the result of its inner selector.

45

Visulializer Architecture Filters

Properties API
AN A Display Model
| : - T >
. provides Provider | | \
: | Properties Properties getProperties() : | | Diagram | :
' | : |
: . I | [
| Property : | | . :
| [String name | PropertyObject |<} T } | Figure |)
: String value A I - “ _____ /
\ /’ ‘
selects
matches
Property Matcher API Selector API

s T T T T =-=-=-=-= I ;- - - - - -"F-----""=”""-""-"_-"--"-"-\"-""--"""-"-"="""7"= \\
/ \ /
PropertyMatcher		SREEE 2
String getName() _;_	_‘	MatcherSelector l_D List<Figure> selected(Diagram d)
boolean match(String)	I T N\	
N\		
[[[[
		—QI SuccessorSelector
	RegexpPropertyMatcher	
I I I I
I I I P PredecessorSeIector| AndSelector I
' | StringPropertyMatcher ' ' '
' ' ' ’I NotSelector '
\ / \ /

N o 7 N e

Figure 5.7: Properties and selectors class diagram.

5.4 Filters

When designing the architecture of the filters, the main g@alto make them highly customiz-
able. The application should easily adapt to changes inghe&scompiler and even be able to
display and filter completely different graph data. The ®&wi this goal is the properties mech-
anism explained in Sectidn®.3. The attributes of the noadlélse graph are not hard-coded as
Java fields, but represented by key-value string pairsersillefine rules that apply a certain
function on a set of nodes. The set of nodes is selected uSag@act or object. A filter takes
aDi agr amobject and modifies it based on the rules.

Predefined filters are available for coloring nodes, cofpedges, splitting nodes, combining
nodes, removing input edges and removing self edgesClisé onFi | t er is a special filter
that carries out the changes of the graph based on JavaSedet The available JavaScript
functions and their effects are explained in Secfioh 4.5.

The order in which the application applies the filters is imt@ot. For example, if the affected
sets of nodes of two color filters intersect, the order in Whitey are applied changes the
appearance of the graph. So the Filter Window lets the useomy activate and deactivate
the available filters, but also change their processingro/&lé&i | t er Chai n object contains
a list of orderedi | t er objects. The filter chain can apply its filters in the specibeder to

46

Visulializer Architecture Filters

a diagram. Thédi t Fi | t er Cooki e class is used to add an edit action to the filters that is
available via the context menu or via double clicking on edigry.

The Java 6 scripting mechanisms are used to execute thecigta®de of the custom filters.
The Rhino Scripting Library registers a JavaScript sangtengine. The custom filter uses
theScri pt Engi neManager class to retrieve the register&dr i pt Engi ne object that is
capable of executing the code. The application providesraédavaScript functions that apply
filters to the graph. The functions are explained in the usategin Sectiof 415.

The listener pattern is frequently used in the tool. Inte@disteners register themselves at
some object to be notified when the object changes. In Javastbften implemented by adding
addLi st ener,renoveli st ener,andnoti f yLi st ener methods and a list that stores
the listeners to a class. Tl@hangedPr ovi der <T> class can be used to avoid to program
the three methods over and over again. Itis also not negetssdefine new interfaces for every
listener. TheFi | t er class, for example, has a field of ty@aangedPr ovi der <Fi | t er >
that is accessible via a method. Objects that implemenChiengedLi st ener<Fil ter>
interface can register at tli@angedPr ovi der <Fi | t er > object and are then informed of
changes by th€&i | t er object.

Event API Filter API
A \\ oo h Display Model
T ges L FilterChain | |, - —————-—
| | : ,«‘/"OV\"E”' : 1 I I e ™\
2> ey Y mod% 2)
| ChangedProvider<T> 4L'des|—— Filter N _ /

String getName()
void apply(Diagram)
EditFilterCookie getEditor()

*

|
|
|
ChangedListener<T> | |
|
/

ChangedProvider<Filter> getChangedProvider()

\
|
|
|
|
|
|
|
|
—
|
o i [[setestor]
\ provides | l\)
! N g
|
|
|
|
|
|
|
|
|
|
|
|

void changed(T)

\ s/

A |

Ve ~N
/ \ | - EditFilterCookie
| ScriptEngineManager |«|F - CustomFilter boolean edi()

| provides

|
|
| |
| |
'\ ScriptEngine | Il

CombineFilter RemoveFilter

N

Figure 5.8: Filters class diagram.

Visulializer Architecture Difference Algorithm

5.5 Difference Algorithm

The displayed graphs are snapshots of the data structune eétver compiler during the com-
pilation of a method. The difference algorithm takes twoptisaas the input and outputs a
difference graph. The nodes of a difference graph have asdstate property for every node.
This property can be eithexane, changed, new or del et ed. The Difference Coloring
filter (see Sectiof415) can be used to color the nodes acaptditheir state. Additionally,
each edge gets either the statare, new, ordel et ed. The algorithm is invoked on the input
graph coming from the server compiler, before it is conwkttethe display model.

Optimal graph matching is an NP-complete problem, so fotahge graphs of the application
it is only reasonable to solve it using heuristics. Creatndjfference graph means choosing
related pairs of nodes (u, v) where u is a node from the firgilgeand v a node from the second
graph. Every node may occur in at most one such relation. ddes in the first graph that do
not appear in a relation are marked as deleted. All nodesisg¢hond graph that do not appear
in a relation are marked as new. Nodes that appear in a nelateeither marked asamne if
they do not differ in important properties or otherwisecaganged.

Two edges starting at nodes (n1, n2) and ending at nodes (2)lam® marked asane if the
pairs (n1, n2) and (m1, m2) appear in the matching relatidcutasted for the nodes and their
end slot index is equal. All other edges of the first graph aaeked aslel et ed, those of the
second graph are marked rasw.

The difficult task is to select pairs of nodes to be related.eWtine two input graphs are both
snapshots of the same method, this is straightforward. drsénver compiler, the nodes are
allocated on the heap and therefore have a unique memorgsadthroughout their lifetime.
This address is used as a unique identifier for the nodes. iffieeetice algorithm adds a pair
of nodes (u, v) to the matching relation if their unique ideet is equal.

For two arbitrary graphs, the task of choosing "good" pairseé matched becomes more diffi-
cult. The implemented algorithm is based on a cost funcoomfatching a pair of nodes (u, v).
The cost is calculated by comparing their properties, presiors, and successors. First, the
set of possible matches is built by adding all theoretic ibagges. To reduce the total number
of inserted pairs, nodes that differ in the important propémame” are not added, so they will
never be matched.

Then the algorithm selects the pair (u, v) with the least trosh the set of possible matches.
The selected pair (u, v) is added to the set of matching nodgsrtwards, all pairs containing

either the node u or v are removed from the set of possiblelaatcThen the algorithm con-
tinues by choosing the next pair (u, v) with the least costhéfleast cost for matching a pair
of nodes exceeds a predefined threshold or the set of possdbides is empty, it is no longer
reasonable to match nodes and the algorithm terminates.

Listing[51 shows the difference algorithm for two arbiyr@graphs in pseudo-code. The most
difficult part of the implementation is to find a "good" furmti that computes the penalty for
matching two nodes. The quality of this function determitimesresult of the matching.

48

Visulializer Architecture Difference Algorithm

Listing 5.1 Algorithm for calculating the difference between two graph

Di fference: graph a, graph b
s = set of possible node pairs
result = enpty set of node pairs
while s not enpty do
(n, mM = best matching pair of s
if penalty of (n, nm) > THRESHOLD t hen
return result
end if
add (n, m to result
renove all tuples (n, ?) and (?, n) froms
renove all tuples (m ?) and (?, nm) froms
end while
return result

Figure[5.® displays the difference graph for two graph shassof an example method. The
Root node has changed and thé, Regi on andPhi node were replaced by tl@&vbvel
node. New edges are drawn as thick lines, while deleted extgedrawn as dashed lines.

e D Unchanged ——
D Changed

3 Start 22 Conl 31 Conl 32 Conl D New —
/\ B Deleted ===
[sPam 10 Pd rm

34 CMovel

Figure 5.9: The difference algorithm applied on two exangubgphs.

49

Chapter 6

Hierarchical Graph Layout

This chapter describes a hierarchical layout algorithm vl different approaches for the
assignment of x-coordinates. The data model used as inpthdalgorithm are presented in
Sectio 5. Z1B. The layout algorithm assigns a position th @ede and a list of control points
to each edge.

6.1 Why Hierarchical?

Most layout algorithms are either tree-based, hierarthicece-directed, or planar. Choosing
the type of layout algorithm has a high impact on the undedsthility of a graph. Additionally,
some algorithms require a graph to be in a certain form: Dessed layouting can only be
applied on trees, hierarchical layouting on directed acgehphs, and a planar layout algorithm
only works when the graph is planar. Preprocessing stepsiaarge a graph such that it fulfills
the requirements of the layout algorithm. In a postprocesstiep, the results must then be
mapped back to the original graph.

The graph that is displayed by the visualization tool is &ced graph, which has cycles in
most cases. The tool uses a hierarchical layout algoritbnt,fas best for the visualization of
a program dependence graph. The advantage of using a hieedralgorithm is that there is a
natural flow of data and control in one direction. The onlygpoeessing needed is to remove
directed cycles. The tool layouts the nodes from top to Inottdodes that were generated from
a bytecode with a low index are likely to be in the top secttbonse that were generated from a
bytecode with a high index are likely to be in the bottom smttf the graph. So there is a local
coherence between the position of a node and the Java bgtélcadit was generated from.
The root node is always at the top. Edges that must be reviertéate a cycle-free graph are
called backward edges and are drawn in a special way. They ardstly due to variables that
are changed in a loop.

A negative aspect of using a hierarchical layout is that ttal tength of the edges is higher
compared to a force-directed approach. This is especialigal for large graphs, because

50

Hierarchical Graph Layout Processed Steps

some of the edges nearly span from the top to the bottom ofrtighg Sectiofi6.11 describes a
solution for this problem.

6.2 Processed Steps

The layout algorithm performed by the visualization tochisadaptation of the algorithm de-
scribed in [TL][I2]. The algorithm performs the steps shawfrigure[6.1. These steps are
common to most hierarchical layout algorithms. There anwdwer differences in how the
steps are performed, especially the crossing reductionhenxl-coordinate assignment are var-
ied. The sections in this chapter explain the steps in datailpresent two different algorithms
for assigning x-coordinates. The following list introdsdie steps applied by the algorithm:

Input Graph: First, a copy of the input graph is constructed. This is neagsas the algorithm
alters the graph and needs a lightweight graph data steuftitifast processing. There is
always a mapping back to the original graph to be able to wmgaesult back in the last
step.

Remove Cycles: The only condition for the graph to apply a hierarchical latyis that it does
not contain any directed cycles. Edges in the intern graphemersed to make the graph
cycle-free. In Figur€gl1, the three nodes B, D, and F formcéecyT he algorithm selects
one of the edges involved in the cycle, e.g. the edge from B &mé& reverses it. In the
last step, this is taken into account and the result edgeigdks correct direction.

Assign Layers. This step assigns a number to each node, indicatintptfez to which it be-
longs. A layer consists of a set of nodes that are placed isetime row. The postcondition
of this step is that each edge ends at a node whose layer nisrtbgher than the layer
number of the start node. All edges point in one direction.

Insert Dummy Nodes: The crossing reduction and x-coordinate assignment séepsre that
an edge only connects nodes of adjacent layers. Therefasmediate nodes are in-
serted when an edge is longer. The position of these nodas iimial layout form inter-
polation points for the corresponding edge. In the exammply the edge from B to F
spans across two layers, so one intermediate dummy nodgeided.

Assign Y-Coordinates: Assigning an y-coordinate to a node basically means to piyithe
layer number with the size of a layer. For a good layout, it3e aeasonable to center the
nodes within a layer and to allow variable layer heights.

Reduce Crossings: The number of crossings in the final drawing can be reduceddrylering
the nodes within their layers. After this step, the orderhaf hodes within a layer is not
changed any more. The initial ordering in the example gragahthree crossings while
there are no crossings at all after reordering the nodeithitd layer.

51

Hierarchical Graph Layout Processed Steps

Assign X-Coordinates: Retaining the ordering constraints given by the crossimycgon,

this step assigns x-coordinates to the nodes. The goaloétip is to minimize the total
length of all edges and producing a symmetric layout.

Result: After all steps are applied, the result calculated for therimgraph is written back to

the original graph. The algorithm flips again all edges reedriin the cycle-removal step,
i.e. the edge from B to F, and converts dummy nodes to intatjool points.

Input Graph Remove Cycles Assign Layers Insert Dummy Nodes
A A
E |« E |«
~ C v C ~ .
: , v A v A
B| |C B| |C
" " <
| V% \A « —
D |
E
| | /
v | v A | ye y e
B « v B |v | \ -

Assign Y-Coordinates Reduce Crossings Assign X-Coordinates

Result
A A A A
A 4 A A) A / \ / \
B c B c B c B c
\\ 1 / /'/ AN A /'/ AN
:\\ w“‘ N \) / \\ ;““ \ //, \
Nv / ¥ ¥
im D E - E | D E
,,,/;fﬁ / ‘ /
a ¥ v ¥ g
F F F F
Figure 6.1:

Steps of a hierarchical layout algorithm.

52

Hierarchical Graph Layout Breaking Cycles

6.3 Breaking Cycles

The hierarchical layout algorithm can only process cyobefgraphs, because it is impossible
that all edges point in one direction when a graph contaictesy There are usually different

sets of edges that can be reversed to make the graph cyeleWieen deciding between two

different sets, either the total number of reversed edgeleolength of all edges could be a

good criteria.

The algorithm used by the tool does not use any sophisticaedtion strategy for the reversed
edges, but performs a simple depth first search. This is pppte for program dependence
graphs, because reversed control flow edges usually aredqueps back to the loop header.
The algorithm runs in linear time to the number of edges.

Listing 61 shows the pseudo-code of the cycle-removalrdlgn. A depth-first search is
started at every node without an incoming edge. When thene such node, the depth-first
search is started at the node specified by thet parameter. This guarantees that every node is
reached. Thei si t ed flag of a node ensures that a node is visited at most once. Trenty
active nodes form a path from the start node without inpueedg the current node.

When the algorithm finds an edge between the current noderaadt&e node, it knows that
this edge is part of a directed cycle and reverses it. Suchsedg callethackedges

Edges between the current node and a visited node, which &ctee, are no problem as these
edges would only be part of cycles if the edges of the graple wadirected. Such edges are
calledcrossedges

Listing 6.1 Algorithm for breaking cycles in a directed acyclic graph.

BreakCycl es: directed graph g, node root
for each node n w thout any inconi ng edge of g do
Br eakCycl esRecur si ve(n)
end for
if root was not visited then
Br eakCycl esRecur si ve(root)
end if

Br eakCycl esRecur si ve: node n
mark n as visited
mark n as active
for each outgoing edge e of n
t = target node of e
if t is active then
reverse edge e
else if t was not visited then
Br eakCycl esRecur si ve(t)
end if
end for
unmark n as active

53

Hierarchical Graph Layout Breaking Cycles

Figure[&.2 shows the cycle-removal algorithm applied $tgystep to the example graph. The
algorithm starts with the node A, because this node has nd eqges. Afterwards B, D, and F
are visited and also marked as active. The edge between Faod Bonnects two active nodes.
Therefore, it is a backedge and needs to be reversed. Agpalisiof F have been processed
the active flag is cleared and the algorithm continues bygssiag D. This node also has no
unvisited outgoing edges, so its active flag is cleared tooeMprocessing B, the edge between
B and F forms a crossedge and is therefore ignored. Nodes € anel processed in a similar
matter, the crossedge between C and D is ignored again.

1 2 3 4
E |« — E |« 7 E |« — E l«——
v C y C v C y C
A v A v A v A ¥
D D D D
4 l A ‘\ Y l
B v Y B L B |« Y B |«
F 1 F T~ F F
5 6 7 8
E <« E |« E |« E «
v C v C v C / C
A J A J A J A J
D D D D
B - B v B v B v
\ F N F F N E
Backedge => reverse Crossedge => ignore
9 10 11 12
E [«] E « | E |« —— E |«
y| C P | C P C y| C
A A j
1 4 . v 2 v
D D D D
\ 4 A\ 4 ‘\ v A
B Y B Az B v B v
v F ¥ F v F .y F
Crossedge => ignore

D normal D visited D visited and active

Figure 6.2: Breaking cycles of an example graph.

54

Hierarchical Graph Layout Assign Layers

Reversed edges possibly need additional interpolatiomgor he tool always draws the edges
such that they start at the bottom of a node and end at the tamofle. Therefore backedges
need a special treatment, which is described in SeEfion &di@itional problems arise when
the graph containself-loopsi.e. nodes that are connected with themselves. It makesmses
to reverse a self-loop edge because it would not break arg.cVherefore, self-loops must be
deleted from the graph before the cycle-removal step. Téalization tool currently does not
draw self-loops at all.

6.4 Assign Layers

After preprocessing the graph such that it is free of cyddisnodes are assigned to layers.
Layers are numbered starting with one. The postconditigdhisfstep is that for any edge going
from noden to nodet , the layer of nod@ has a lower number than the layer of nade

A subgoal of layer assignment is to minimize the total nundfdiayers. The length of the
longest directed path through the graph without visitingpdentwice plus one is a minimum
bound for the number of necessary layers. Every edge in ttenpast go from a node in layer

i to a node in layer +1. So we need at least one layer for every end of an edge and one
additional layer for the start node.

Listing 6.2 Algorithm for assigning layers.

Assi gnLayers: graph g
s = new enpty set of nodes

for each node n w thout any incomnm ng edge of g do
layer of n =1
add n to s

end for

s is not enpty do
new enpty set of nodes

s -

for each node p in s do
for each node n in successors of p do
if all predecessors of n are already assigned to a |ayer then
add n to t
end if
end for
end for

assign layer i to all nodes int
s =t
i =i +1

end while

55

Hierarchical Graph Layout Insert Dummy Nodes

Listing[&2 presents a simple layer assignment algorithpsieudo-code. First, it assigns all
nodes without input to the first layer. In each loop iteratibassigns nodes whose predecessors
have all been processed before to a new layer. This way, ttegadition is guaranteed. Any
incoming edge of a node starts at one of its predecessorsn @hihe predecessors have been
processed before, they all are assigned to layers with arloumber fulfilling the condition.
The algorithm terminates when there are no more unassigoekesrieft.

All nodes are processed by the algorithm. Nodes without eanmng edge are automatically
assigned to the first layer. For all other nodes, there muatlast predecessor that is assigned
to a layer as the graph is cycle-free. One iteration afteddlepredecessor is assigned to a
layer, the node itself gets assigned to a layer.

Figure[6:B shows the layer assignment algorithm appliedhéoetxample graph. Node A is
assigned to the first layer. In the next step, the graph wittimialready processed nodes is
shown. In the second graph, the two nodes B and C have no wegsed predecessor and are
therefore assigned to layer two. E and D are assigned to itfielélyer and node F is assigned
to the last layer.

1 2 3 4
E f«— E |« E
v C (o
A
v v
D D D
, | |
| |
z v = v v
s F s F F F

Figure 6.3: Assigning layers for the nodes of the examplplgra

6.5 Insert Dummy Nodes

For the crossing reduction and x-coordinate assignmeps $tework properly, a stronger con-
dition for all edges must be met: Every edge must go from a wbétkeyeri to a node of layer

i +1. This is done by insertingummy nodeto the graph. These node have no corresponding
node in the input graph, but are later converted to intetfmrigoints of the original edge. Their
height and width is set to 0. The algorithm is presented itirigd6.3. Every edge is checked
and intermediate nodes and intermediate edges are insdr&tever necessary. In the example
graph, only one dummy node must be inserted between the iBodes F.

56

Hierarchical Graph Layout Assign Y-Coordinates

The tool has an additional ability that tries to layout edgesing from the same node as long
as possibly as a single edge. The dummy insertion step ismsgpe for this behavior. When
there is already a dummy node for an edge coming from the sadwand the same port in the
current layer, this dummy node is shared among the two edges.

Listing 6.3 Algorithm for creating dummy nodes.
Cr eat eDummyNodes: graph g

for each edge e of g do

source node of e
target node of e

S
t

i | ayer of s plus 1
last =s

while i not equal to layer of t do
d = new dummy node in |ayer i
renove connecti on between | ast and t
add connection between | ast and d
add connection between d and t

last = d
i =i +1
end while
end for

6.6 Assign Y-Coordinates

The assignment of y-coordinates benefits from assignmemiasés to layers. All nodes of the
same layer should lie on a horizontal line. Nodes can haverdiit height, so they are centered
within the rectangular space of their layer.

Listing[6.4 shows the pseudo-code of the algorithm. The mari height of a node within a
layer is calculated. All nodes are aligned according toltleight.

57

Hierarchical Graph Layout Crossing Reduction

Listing 6.4 Algorithm for assigning y-coordinates.

Set YCoor di nate: graph g

base = 0

for each layer | of g do
max = maxi mum hei ght of a node in | ayer
for each node n of layer | do

y coordinate of n = base + (max - height of n)/2

end if
base = base + max + vertical node offset

end for

Figure[63 shows the values calculated by the algorithm vettigning a node. The node D of
the example graph is centered. In its layer, the node E isdbe with maximum height.

base

{ (max - height)/2
A
max E D height

A 4

Figure 6.4: Calculations when assigning y-coordinates.

This simple y-coordinate assignment step can be enhancaitblayng a variable vertical offset
between the layers. When the edges between two layers dammdes that have a high hori-
zontal offset, it is reasonable to increase the verticaledffo avoid sharp bends. In this case,
the y-coordinate assignment step must be applied after-to®rsdinate assignment.

6.7 Crossing Reduction

Until now the order of the nodes within their layer was adoigrand did not affect any of the
processing steps. The crossing reduction step tries to fingk@er that minimizes the edge
crossings of the graph.

Let n1 and m1 be two nodes in the first layer and n2 and m2 be t@esim the second layer.

Two edges (from nl to n2 and from m1 to m2) cross if and only éf dinder between nl1 and
m1 in the first layer is opposite to the order between n2 andmi2a second layer. To simplify

the analysis, the crossing reduction algorithms oftennoigi the crossings locally between
two layers. Finding an optimal solution that minimizes thessings is NP-complete even for
graphs that have only two layers. Therefore, heuristice h@be applied that give good results
in the normal case.

The algorithm iteratively sweeps down and up the layers. Waveeeping down, the nodes of
layer i+1 are reordered by looking at the edges from layelayer i+1. When sweeping up, the

58

Hierarchical Graph Layout Crossing Reduction

nodes of layer i are reordered by looking at the edges froerligp layer i+1. Listing &b shows
the pseudocode for a single downsweep. The new relativéignosif a node is calculated by
forming the mean of the positions of its predecessor noddsen/¢weeping up, the successor
nodes are used respectively. After calculating the redginsition for all nodes in a layer, they

are reordered according to that position. The number dititans is arbitrary, acceptable results
can be achieved with only one or two iterations.

Listing 6.5 Crossing reduction algorithm.
DownSweep: graph g
for the second to the last |ayer of g do
for each node n in layer i of g do
sum = sum of the position of all predecessors of n
crossi ng number of n = sum/ nunber of predecessors
end for

resort the nodes in the list of |layer i according to crossing nunber
end for

Figure[& shows the downsweep step at layer 2 and 3 of thepdeagraph. B and C are

numbered 1 and 2 according to their position within theielayThe only predecessor of E is
C, so E gets a relative position of 2. D has two predecessothesmean of the position of its

predecessors is calculated and D gets a relative positidrbofThe dummy node has only one
predecessor, so it gets the relative position its only presksor.

After reordering the nodes, the dummy node becomes the rewéde, D stays in the middle
and E becomes the new last node of layer three. When caluylie relative positions for the
nodes in the next layer, the new positions 1, 2 and 3 are used.

Process E Process D Process dummy node Reorder
2 1 2 1 2 1 2
B C B C B C B C
S N ~
l

N
AN

R

\

\ , \
\ - - |
E D [E D i D E

(1+2)2=1.5 15 ! M5 15

3(2)

Figure 6.5: Crossing reduction applied on a layer of the gtamgraph.

59

Hierarchical Graph Layout Assign X-Coordinates

6.8 Assign X-Coordinates

In this section, two different approaches for assigningardinates to the nodes are presented.
The inputs to these algorithms are a graph that fulfills tretqunditions of the dummy insertion
step, the widths of the nodes, and the horizontal spacerssgants between nodes.

The goal of x-coordinate assignment is to find an x-cooréif@tevery node meeting the space
requirements of the nodes. A subgoal is to minimize the todaizontal length of all edges.
Another consideration is that the graph should look symimetr

Both methods iteratively improve the layout of the graple tlumber of iterations influences
the layout quality. The order of the nodes within a layer ketaunchanged from the crossing
reduction step.

6.8.1 DAG Method

After the initial layouting, the algorithm sweeps iteraiy up and down the graph. In the
remaining section only the downsweep is described. The e@gworks in a similar manner,
but the outgoing instead of the incoming edges of a node aeepsed and the successors are
used instead of the predecessors.

The initial positioning is arbitrary, however less itecaits are needed if the first positioning
is reasonable. One possibility is to align all nodes asredtt as possible meeting the space
requirements of the nodes.

All nodes of a layer are repositioned in a special sequenoéeblwith less incoming edges are
processed first. A node with a low degree in a bad positiorheatsomeone’s eye more than
a node with a high degree in a bad position. Additionallyedijes between dummy nodes are
processed first. This way long edges, which are split acasral edges connecting dummy
nodes, are drawn as straight lines.

Then, the optimal position of a node is calculated as the amedf the positions of its pre-
decessors. This minimizes the horizontal length of thenmog edges. If the node has an
even number of predecessors, the mean of the two mediancesste's is taken to increase the
symmetry of the drawing.

Listing[6.8 presents the pseudo-code for the downsweepafgtithm. After the optimal x-
coordinate was calculated, positioning a node works exdlo# same way for both up- and
downsweep.

The final position of a node must take the layout constramis account. If no other node
on that layer is already positioned, we can just set the xelinate of the node to the optimal
position. Otherwise there is a range of legal positionsitinast be considered.

60

Hierarchical Graph Layout Assign X-Coordinates

Listing 6.6 Algorithm for assigning x-coordinates.

DownSweep: graph g
for i from2 to |layer count of g do
I = all nodes in |ayer
sort | in increasing order of predecessor count
for each node n in | do
pos = medi an of predecessor positions
AddNode(n, pos)
end for
end for

AddNode: node n, optimal position p
| eft = nearest already positioned node to the left of n
right = nearest already positioned node to the right of n
m nX = position of left + width of Ieft + horizontal node of fset
maxX = position of right mnus width of right
increase nminX by width and offset of all nodes between left and n
decrease maxX by width and of fset of all nodes between n and right
if pos < minX then
pos = m nX
else if pos > maxX then
pos = maxX
end if
position of n = pos

In the code listing, the metho&lddNode gives a pseudo-code representation of how the final
position is calculated. Figute®.6 shows graphically thewatd range for an example node X,
that should be placed. Nodes L and R are the first nodes toftrenie: the right of X that are
already positioned| ef t _of f set is the minimum space required for all nodes between L
and X.ri ght _of f set is the minimum space required for all nodes between X and R plu
the width of X itself.

So the x-coordinate of X must be in the range betweenX and max X. When the optimal
position lies outside this range, then the x-coordinatél®eeset taxi nX andmax X, whichever
is closer to the optimal position.

Finding the nearest already positioned nodegt andri ght can be done in O(log(n)) time,

where n denotes the total number of nodes, using a balancad/liree. The number of neces-
sary iterations to get an acceptable result is low, a valueofis used by the tool. Therefore,
the total time complexity of the algorithm is O(n*log(n)).

61

Hierarchical Graph Layout Assign X-Coordinates

A
\ 4

left_offset allowed range for X T right_offset
left “ right
|

minX maxX

Figure 6.6: X-coordinate assignment example.

6.8.2 Rubber Band Method

Another way to assign x-coordinates to the nodes uses agqathysbdel and is called rubber
band method. The algorithm presented in this section wasloleed by Georg Sandér[25][26].
The nodes of the graph are regarded as balls and the edgebbes bands affecting the nodes.
The vertical position of the nodes is fixed, so they can onlyenlorizontally. Long edges

represented by dummy nodes would be skewed, so their xic@bed are fixed to a single

value. They can be regarded as sticks.

Listing [627 presents the rubber band algorithm in pseudtecd-irst, segments are formed
out of nodes. A segment is regarded by the layout algorithm @tangular entity that can
span across several layers. Each segment will get a singpendinate assigned. Basically, a
segment is represented by exactly one node. Only dummy rregessenting the same edge
are merged into a single segment to assure that the edgenis dsaa straight line.

The algorithm constructs a graph with the segments as nodesmeedge between two segments
(s and t) if and only if s contains a node that is the immedieterdeighbor of a node of t.
Based on this graph, a topological ordering of the segmeantslculated. Afterwards, they
are positioned as left as possible. Segments without pesdecs in the intermediate graph
are positioned at the minimum x-coordinate. The leftmosisgale x-coordinate for the other
segments is calculated by taking the maximum of the righhdauy of all its predecessors. The
topological sorting ensures that the predecessors of aessdgre processed before the segment
itself is processed.

On this initial ordering, the physical model is now appliéeratively. The algorithm usually
produces a reasonable layout faster when in a downsweeplenfpyredecessors of a node and
in an upsweep only the successors of a node are taken intargcdbis however also possible
to incorporate both predecessors and successors in thaatados, in the code listing this way
to calculate the forces is used.

Two segments that touch and whose forces cross are comlairgedinhgle region to conform
better to the physical reality. So the algorithm starts bitipg every segment into a single

62

Hierarchical Graph Layout Assign X-Coordinates

region. When two such interacting regions are found, they@moved from the set of regions
and the combined region is added.

The desired position for a region is its old position plusfibree on the region. The region is
moved to this position, however stopping when touching ahgroregion. There is no specific
processing order of the regions, and the result can varyrdicgpto this order. A high number
of iterations should however balance this.

Listing 6.7 Rubber-band algorithm for assigning x-coordinates.

Rubber Band: graph g
generate segnents
sort segnments topol ogically
set initial positions
for i from1l to MAX | TERATI ONS do
Process(Q)
end for

Process: graph g
for each segnent s of g do
force on s = nean of predecessors and successors horizontal offsets
end for

regions of g = new set of regions with one region for each segnent
for each region r of g do
for each region t contacting r on the right do
if force onr > force ont then
combi ne the regions of r and t
end if
end for
end for

for each region r of g do

position p = old position of r + force on r

nove r to p stopping when hitting another region
end for

Figurd&.Y shows the main parts of the algorithm. In a pregssiag step, the nodes are grouped
into segments. In this example, the two dummy nodes are gubinpio a single segment. The
third graph shows the edges of the graph used for topologaréihg and one legal topological
sorting expressed by the numbers of the nodes. It also st@asitial positioning. The fourth
graph shows the regions created when performing a downswéepsegments 2, 3, and 4 have
only node 1 as their predecessor. If there were no other sggnike rubber band would move
them exactly under the segment 1. But in the example, the #egments would hit another and
move together such that they are all three side by side @hterder node 1. So the algorithm
combines the three segments to a single region. Nodes 6 agrésent a similar case. The
fifth graph shows the segments with the x-coordinates asdigfter the first downsweep.

63

Hierarchical Graph Layout Cluster Layout

When continuing with an upsweep, the regions must be releaitgti Now only the two seg-
ments 3 and 4 are interacting. After a few iterations, thétjpos of the segments are translated
to positions of the nodes of the original graph.

Input Graph ‘ Segments Topological Sorting Regions at Downsweep
1 1
S o= AN \;\\ _
RN N l _ VOO T e
I AN N 2 s
/ ‘ 3
/ 3
// o v
> 5 5
/ // /
/ / /
I% v S e ¥y ¥ ¥ ¥
6 —» 7 6 7
After Downsweep Regions at Upsweep After Upsweep Result
1 1 1
7 R VAN
/ \\ d // \ N
ya— — P « K N
2 4 2 4 2 F
3) 3 \ ‘
A Y v
5 5
N I\
\\
\ | \
W 2 LV ¥ N v vy X
6 7 6 7 6 7

Figure 6.7: X-coordinate assignment using the rubber bagttioal.

6.9 Cluster Layout

The general goal of clustering is to layout nodes of the sdostar close together. The visu-
alization application draws a rectangle around nodes atgrto the same cluster. Therefore,
the nodes need to be positioned in rectangular regions,thathhe application can draw the
cluster rectangles without intersections. This is achddwe first layouting each cluster sepa-
rately and then performing the hierarchical layout reslyi by treating the cluster rectangles
as nodes.

64

Hierarchical Graph Layout Drawing of Backedges

Figure[6.8 shows a simple clustered graph with two nodeseMad assigned to cluster 1, node
B is assigned to cluster 2. There is a connection between Mafist, the connection is split
into three parts by inserting two intermediate nodes. Thenlest graph shows the resulting
structure. The connection between A and B is split into aregglgng from A to a dummy
node, an edge to another dummy node, and a third edge goingTtheBdummy nodes have
a dual function: When performing the separate layout of thsters, they are treated just like
dummy nodes. However, when performing the global layouty thre slots of the nodes that
represent the rectangular cluster areas.

First, the application performs the layout algorithm ontilve blocks separately. The dummy
node, which is a successor of node A, is always put in thedgst] The dummy node, which is
a predecessor of node B, is put in the first layer. After thedayor the two blocks is calculated,
the width and height of the rectangle encapsulating all smde cluster is known. Then, an
artificial graph is built: The cluster rectangles form theles and the two dummy nodes form
slots. The hierarchical layout algorithm is applied agairttee artificial cluster graph.

Clustered Input Graph Layout Cluster 1 Global Layout

A

C1 C1

A
T i Last Layer Dummy Node Output Slot
i

A 4

B

Edge
Layout Cluster 2 a

E First Layer Dummy Node c2 Input Slot

C2

B

Figure 6.8: Recursive cluster layout.

6.10 Drawing of Backedges

In Section[6.B, an algorithm for reversing edges to make nipetigraph free of cycles was
presented. The visualization tool always paints edges thaththey start at the bottom of a
node and end at a top of a node. For backedges, a specialgtatiadding interpolation point
IS needed.

All backedges are processed in a right-to-left order. Thibtehal interpolation points and the
port are calculated as shown in Figlirel 6.9. A node with bagésadvill not only get new ports,
but also change its size. The horizontal and vertical spaeded for the backedges are added
to the size of the node.

65

Hierarchical Graph Layout Optimization for Large Graphs

IOﬁ

Additional Ports

101 Rethrow 100 Return

- ¥
———_ Interpolation Points

Figure 6.9: Example for the routing of a backedge.

6.11 Optimization for Large Graphs

When the server compiler processes long Java methods, sbkimg graph is so large that
the time for performing the layout is annoying for the useleraph of the server compiler
contains a high number of edges, which leads to some edgey spanning over the whole
graph. Long edges are a problem for two reasons: First, afldummy nodes need to be
created and later processed by the coordinate assignmeheicrossing reduction. Second,
they disturb the drawing, because they are representechfystaaight lines and the nodes along
their way are either drawn on the right or on the left.

The benefit of drawing the long edges is not high, becauselymmdly a small part of them is
visible. An edge that starts and ends outside of the curi@eea extract is not informative.
Therefore, the visualization application cuts long edges draws only their beginning and
ending. This way, the drawing performance as well as thetgualthe drawing is improved.

66

Chapter 7

Compiler Instrumentation

This chapter describes the coded added to the Java HotSgetver compiler. The current
version is based on JDK 7 build 13716]. The design goal foiitlkrumentation was to change
as little code of the server compiler as possible and to esutafe the added code.

7.1 Overview

Figure[Z1 shows the classes added to the server compiléoanthey are connected to already
existing classesl deal G aphPri nt er is the main class that manages the tracing of the
graphs. As explained in Sectibn 512.1, a graph is seriaki=ethe difference to the previous
graph. The server compiler does not store old versions djtiéueh, so the graph printer object
must handle thisDescr i pt i on objects are used for this purpose.

When printing a graph, first thBescr i pti on objects of the previous graph are marked as
i nval i d. Descri pti on objects of the new graph start with the stagaw. If the new object
equals an old one, then the new one replaces the old one andhgestateval i d. For an
invalid Descr i pti on object, only a mark that it has been removed is stored. A \idisl-

cri pti on object needs no storage space at all, as it was serializédhatprevious graph.
Only for newDescr i pt i on objects, the graph printer outputs the full data.

Descri pti on has two subclasse€dgeDescri pti on andNodeDescri pti on. An
object of clas€EdgeDescri pti on has a reference to the start and end node of the edge. It
stores the input index at which the edge enters the end nduesdrver compiler works with

an object of clas€onpi | e, which consists oNode objects. ANodeDescr i pti on object
stores a reference to the descrildedie object. It is an object that has properties represented by
string key-value pairs. The C++ memory address bbde object forms the unique identifier

of a node.

The scheduler constructs a control flow graph by groupingntbees into blocks (see Sec-
tion [Z2). This process is repeated for every graph. Therabfiow graph is not stored

67

Compiler Instrumentation Identifying Blocks

difference-based like the normal graph, because a smaibehia the normal graph can cause
a big change in the control flow graph.

Every Conpi | eThr ead object has its own deal Gr aphPri nt er object to avoid multi-
threading conflicts. The graph printer uses®Bm@aseChai t i n class to get information about
the selected registers and life ranges of the nodes (foilsletathe register allocation see Sec-
tion[38). Thelvat cher class is used to retrieve the matcher flags that identifyubé&ses of
the graph, which are convertedMachNode objects (see Sectidn_B.5).

For actually outputting the data, the printer either used ihl eSt r eamclass of the server
compiler or thenet wor kSt r eamclass. They are both subclassesof put St r eam

Server Compiler

CompilerThread

networkStream | —QI IdealGraphPrinter |<>—

!

Description

state: invalid, valid or new

[

|

|

|

|

|

|

|

|

|

I EdgeDescription O
| (\?'e> =
|)

|

|

|

|

|

|

|

T
i/
Property
\ v

T R R R R =

Figure 7.1: Compiler instrumentation class diagram.

7.2 Identifying Blocks

The nodes of the ideal graph are ungrouped. The control floonlg expressed as control
dependence edges. The printer schedules the nodes inks ibtoallow the visualization appli-

cation to group the nodes. This increases the overview ofithgh and is essential for large
methods.

68

Compiler Instrumentation Identifying Blocks

In a first step, all nodes that are related to control flow,aither have a control dependence
input or output edge, are assigned to blocks. The contraénidgncies link the control flow
related nodes of a block together in a linear list. This eestinat there are no branches in a
block. The start node is either a node that joins severarcbiibw dependencies, e.g.Re-

gi on node, or a node that represents a successor of a node thsisplirol flow, e.g. am f
node. The end node of a block is either a node that is the pesdercof a node that joins control
flow or a node that splits control flow.

The algorithm processes the graph in reversed order, rejaati theRoot node. Figurd_7]2
shows the steps applied for each node that is popped frontdbk. sSWhen the node was not
visited before, it forms the end of a new basic block. The @ligon walks up the graph along
the control dependence edges and adds the nodes to the sarke Dhe end of the walk is
reached when the algorithm either finds a node marked as Iplag&ction, i.e. a successor
node of a node that splits control flow, or a node marketilasck_st art, e.g. aRegi on
node. This last node is the start node of the block and itsgmesbors are pushed onto the stack.
Listing[Z] presents the pseudo-code for identifying bakicks.

Listing 7.1 Algorithm for identifying blocks

Fi ndBl ocks: graph g
push root node of g onto stack

whi |l e stack not enpty do
node n = pop from stack
if nnot visited then
mark n as visited
create new bl ock b
add nto b

while n not block_proj and n not block_start do
n = control dependence predecessor of p
add n to b

end while

for each node p in predecessors of n do
push p onto stack
end for
end if
end for

69

Compiler Instrumentation Building Dominator Tree

New nodes pushed onto stack

-

Start node of block

Block Projection Region Node

Intermediate nodes

Node popped from stack
End node of block

|

Figure 7.2: Steps applied for identifying a block.

7.3 Building Dominator Tree

A block is the dominator of another block if it is always extsmli before the other block is
executed. Knowing the dominators is essential for schedulie nodes, because the arguments
of an operation must be executed in all control paths. Theeethe operands of an operation
must be either in the same block or in one of the dominatorsebtock of the operation itself.

A block a is theimmediate dominatoof another blocko, if all other dominators of block
dominate blocka. The dominator tree consists of the blocks as nodes and ddgesen a
block and its immediate dominator. The immediate dominata block is the parent of the
block in the dominator tree. The start block of a method dart@s all other blocks. Therefore,

it is the root of the dominator tree.

There is an iterative Of) solution for calculating the dominators of all nodes of apir.

It starts by initializing the set of dominators of each noddhe full set of all nodes. Then
the algorithm reduces the dominator set of the root node tp e root node itself. The
algorithm uses the following rule to iteratively update tleeninator sets of the other nodes: The
dominator set of a node is the conjunction of the dominatts gkits predecessors. If a node
dominates all predecessors of another node, it must alstndterthat node too. Additionally,

70

Compiler Instrumentation Building Dominator Tree

the node itself is always kept in its the dominator set. Thyo@thm iteratively updates the
dominator sets until a full iteration over all nodes bringsfurther changes.

Lengauer and Tarjail [19] present a faster algorithm forutating the immediate dominators,
which runs in O(n*log(n)) time. First, the algorithm numbehe nodes of the graph based on
a depth-first search traversal and stores the parents ofeaindlde depth-first search tree. The
depth first tree has some special properties that are usbtrn walculating the dominators. A
parent node in the depth-first tree has a lower number thats alildren. As the dominator of
a node is always reached on any path from the root to the nooheist also be reached by the
depth-first search algorithm before the node itself is redcihere cannot be another way to
reach the node. Therefore, the dominator of a node is ant@nc#she node in the depth-first
search tree.

The second step of the algorithm is to calculs¢eni-dominators.e. approximate dominators
that are later used to calculate the immediate dominatarmiator candidates for a node are
all nodes that are ancestors of the node in the depth-firgtis&a@e. Another node cannot be the
dominator of that node, because there would be another paththe root to that node using
the ancestors of the depth-first tree. When a node has onlpm@aecessor, this predecessor
must be the dominator of that node. There cannot be a pattethetes that node without using
the edge from its predecessor to the node.

When there are two possible paths from node a to node b, teatefith-first search numbers of
the second path are all higher than the numbers of node b.€fhiedominator of a node is the
node closest to the root that is the start of two possiblesaatthat node. Figule—1.3 shows the
relations between a node, its semi-dominator and the rade.n®he nodes between the node
and its semi-dominator in the depth-first search tree cadmmodbminators of the node, because
there exists an alternative path from the root to the node.

Root Node 9

Semi-Dominator

Path in DFS tree - higher DFS numbers

i Any path, all nodes with

Node &

Figure 7.3: Calculation of the semi-dominators.

The semi-dominator is not necessarily the real immediateidator of a node, because there
might exist a path from the root node to one of the nodes betwee node and the semi-

dominator, which does not contain the semi-dominator. Tomidator is always the semi-

dominator, the root, or it lies between the semi-dominanal the root in the depth-first search
tree.

71

Compiler Instrumentation Building Dominator Tree

Root Node ?

o — —

| Case 2: Minimum semi-dominator < semi-dominator
Semi-Dominator ——

|
I case 1: Minimum semi-dominator = semi-dominator

|
Node with minimum _
semi-dominator

Figure 7.4: Calculation of the dominators.

Figure[Z% shows the two cases that arise when calculatengrtinediate dominator of a node.
First, the algorithm runs through the nodes between the aodeits semi-dominator in the
depth-first search tree. It selects the node that has thedmmnator with the minimum depth-
first search number. If this minimum semi-dominator is egoahe node’s semi-dominator,
then the node’s dominator is equal to the node’s semi-damin®therwise, the node’s domi-
nator is equal to the dominator of the node with the minimumisgominator.

Initial Graph Assigning DFS Number Semi-Dominators Dominators

T Dy

C) qj 2 (5/1 (211) (5/1/1) (21111)
@ | |

/N v y
C) C Cs) (&) (513) (4i2) (51313) (41211)

Figure 7.5: Algorithm for finding dominators applied on amsple graph.

Figure[Zb gives an example of a dominator calculation tRing nodes are traversed in depth-
first order and get a number assigned. The thick lines represkges that are also present in
the depth-first search tree. Next, the semi-dominators @eilated. For example, the semi-
dominator of node 3 is the node 1 as there exists a path (1 - haByisits only nodes with a

higher depth-first search number. The last step is the @dlonlof the immediate dominators
based on the semi-dominators. Node 4 represents a casedh thiei semi-dominator and the
dominator differs. This is because the node 3 is betweendtle # and its semi-dominator, and
the semi-dominator of node 3 is the node 1, which has a lowmabeu than the semi-dominator

72

Compiler Instrumentation Scheduling

of node 4. There exists an alternative path from the root tler®(1 - 5 - 3) that does not use
the semi-dominator node 2. Therefore, the dominator of fbaeequal to the dominator of
node 3, which is the root node 1.

7.4 Scheduling

When scheduling nodes, the dominator tree plays a main folede has several input nodes
that form parameters and the result of a node is used by ottsrsn Before a node itself is
scheduled, all input nodes need to be evaluated. On the loéimel, a node must be scheduled
before its result is used for the first time. Therefore, it tius scheduled in a block that
dominates all the blocks in which the node is used.

The graph printer uses a scheduling strategy that puts aindde latest possible block, i.e. in
the block that dominates all blocks in which the result ofilbee is used. First, the dominator
tree is constructed from the dominator information cali@day the algorithm of Lengauer and
Tarjan (see Sectidn1.3).

Figurd Zb explains how the common dominator of two blocksalsulated. First, the dominator
tree is constructed. In this tree, each block is the childsoinmediate dominator. Finding the
common dominator of two blocks corresponds to finding the dingestor of two blocks in the
dominator tree. For example, the common dominator of F argltke block B. The algorithm
goes from the block F upwards to the root and marks each dibiteck with a flag. Then, it
goes from the block E up to the root and the first block whichthasflag set is the common
dominator of the two blocks.

Initial Graph Dominator Tree Common Dominator of E and F

@& @
® @

& @

T®

Figure 7.6: Finding common dominators.

The control flow related nodes are already scheduled (se@B8BC2). Now, the other nodes
are scheduled iteratively: Whenever all successors of & made been assigned to certain
blocks, the node is put into the common dominator of the Baxdfkts successors. The common
dominator of n blocks is equal to the common dominator of #st block and the common
dominator of the first n-1 blocks.

73

Compiler Instrumentation Adding States

7.5 Adding States

Additional states of the graph can be traced by callingpthient method of the printer object of
the current thread. A call to the static metHatkeal GraphPri nter:: printer () returns
the current printer object ddULL if printing is disabled. Figur€—7.7 explains the sequence,
in which calls to the public methods of a graph printer obgaet valid. The compiler threads
automatically call the constructor and destructor of tpemter objects at startup and shutdown
of the VM. For every method, theew_net hod function must be called before any graphs are
printed, and thend_net hod function must be called afterwards. In between, any number o
calls to thepr i nt method are allowed.

v |

il new_method print end_method 2|
constructor desctructor

Compile &c char *name
int level

Figure 7.7: Life cycle of ah deal G- aphPri nt er object.

When calling thepr i nt method, the name and the level of the state must be specifiegl. T
call topri nt isignored when the level set by the user is lower than thd téhtbe state.

Listing [Z2 lists the code necessary to add a new state.| Teal G- aphPri nt er object
is obtained by a call to a static function. This function auoédically returns the graph printer
object of the current compiler thread. It retutddLL when printing graphs is disabled. In this
example, the level of the new state is set to 2.

Listing 7.2 Code for adding a state.
| deal GraphPrinter *printer = | deal GaphPrinter::printer();
if (printer !'= NULL) {
printer->print("New State", 2);
}

74

Chapter 8

Conclusions

In this thesis, a tool for the visualization of the graph dstiaicture of the Java HotSgét
server compiler was presented. It assists at debuggingtkiersccompiler and at understanding
optimization steps. The tool allows the analysis of larggpgs and has built-in navigation and
filtering possibilities. It clusters the nodes of the grajpisdd on control flow and displays the
graph using a hierarchical layout algorithm. Code in thevesxecompiler allows the user to
generate data for the visualization tool by using a comieey.

One of the most challenging problems during the developroktite tool was to understand
the graph of the server compiler. Its mixture of a control flawd a data dependence graph is
less intuitive than the graph of the client compiler, whitdecly separates these two concepts.
The high number of edges of the graph in comparison to the cowlet is prejudicial to a clear
drawing. Difficult to handle are nodes that resemble shaag@dbles such as the node for the
frame pointer and the return address. They are defined inlane,but used very often in the
graph. The visualization tool uses a splitting filter forlsumodes.

The first attempts to draw the graph ended up in a confusiniglder even for small methods.
A lot of time was necessary for incrementally increasingdteving by filters and better layout
algorithms. Each of the optimizations contributes a littiehe clarity of the graph. Applying
all of them finally gives an acceptable drawing. The perforoeawas also a big issue, because
the graph of a large Java method can have a high number of aade=iges. For such a graph,
not only efficient layout algorithms are necessary, but alsser interface that allows to focus
on specific parts of the graph.

One of the planned improvements is the enhancement of theérdygerformance of the user
interface. Drawing performance is a critical issue, beedls graph can contain a few thousand
nodes with multiple slots and more than ten thousand edgeswiiltiple interpolation points.

The Java HotSp&Y compiler group of Sun Microsystems is currently testingttsa on real-
world examples. Based on these testing experiences, thavilbbe further enhanced. Con-
cerning the hierarchical layout algorithm, there are planstegrate it into the official version
of the NetBeans visual library.

75

List

11
2.1
2.2
2.3
2.4
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
4.1
4.2
4.3
4.4
4.5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.1
6.2

of Figures

Conventionsused inthe classdiagrams. 2
Screenshot of Xelfi, the ancestor of NetBeans, runnitig ddK 1.1. 6
Using lookup, there is no dependency between servigeauskservice provider. 8
Class diagram of the NetBeans visual library. 10
Screenshot of the visual library example program dwmutlon 10
Architecture of the Java HotSpbt Virtual Machine. 13
States during the execution of an example method. 14
Architecture of the Java HotSpdt server compiler of Sun Mlcrosystems ... 16
Program dependence graph when procegsid®0+1. 17
Graph when processing an empty method. 18
Graph when processing ah statement. 19
Saf ePoi nt node after parsing 5+x+7. 20
Identity optimization(x+0) is transformedtx.. 21
Constant folding{ 5+p+7) is transformed t¢ p+12) 22
Global value numbering:x+1) * (x+1) is transformed t§ x+1) 2. 23
Nodes that defineacounted loop. 24
Matching and register allocationexample. 25
Architectural overview. L L e 28
Viewing a graph using the Java application. 30
The satellite view gives an overviewofagraph. 32
Four functions applied to an example graph. C i oo 35
Bytecode Window showing the Java bytecodes in tree form 36
Dependencies of the NetBeans modules. 38
Lifecycle ofthegraphdata., 40
XML file structure. 41
Data module classdiagram. 42
Display model classdiagram. 43
Layout model classdiagram. 44
Properties and selectors class diagram. 46
Filtersclassdiagram. e a7
The difference algorithm applied on two example graphs.. 49
Steps of a hierarchical layout algorithm. 52
Breaking cycles of an examplegraph. 54

76

6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.1
7.2
7.3
7.4
7.5
7.6
7.7

Assigning layers for the nodes of the example graph. 56

Calculations when assigning y-coordinates. w e v..... b8
Crossing reduction applied on a layer of the examplergrap 59
X-coordinate assignmentexample. ae L 62
X-coordinate assignment using the rubber band method.. 64
Recursive cluster layout. 65
Example for the routing ofabackedge. 66
Compiler instrumentation classdiagram. 68
Steps applied for identifyingablock. 70
Calculation of the semi-dominators. 71
Calculation of the dominators. uu... 72
Algorithm for finding dominators applied on an examplegr. 72
Finding common dominators. 73
Life cycle of anl deal GraphPrinter object. 74

77

Code Listings

2.1
2.2
3.1
5.1
6.1
6.2
6.3
6.4
6.5
6.6
6.7
7.1
7.2

An XML layer file defining an action and hiding a menu item.. 7
Java source code of a visual library program with a lale$et and an actlon 11
Architecture description file extract. 26
Algorithm for calculating the difference between twapjns. 49
Algorithm for breaking cycles in a directed acyclicgmnap 53
Algorithm for assigning layers. 55
Algorithm for creating dummynodes. 57
Algorithm for assigning y-coordinates. 58
Crossing reduction algorithm. 59
Algorithm for assigning x-coordinates. 61
Rubber-band algorithm for assigning x-coordinates...... 63
Algorithm for identifyingblocks 69
Codeforaddingastate. 74

78

Bibliography

[1] A Brief History of NetBeandJRL: http://www.netbeans.org/about/history.html, Z00

[2] Tim Boudreau, Jaroslav Tulach, and Geertjan WieleRieh Client Programming: Plug-
ging into the NetBeans PlatforRrentice Hall, 2007.

[3] Preston Briggs, Keith D. Cooper, and Linda Torczdémprovements to Graph Color-
ing Register Allocationin ACM Transactions on Programming Languages and Systems,
ACM Press, 16, 428-455, 1994.

[4] Preston Briggs, Keith D. Cooper, and L. Taylor Simpsbalue NumberingSoftware:
Practice and Experience 27, 6, 701-724, 1997.

[5] Gregory ChaitinRegister Allocation and Spilling via Graph Colorintn Proceedings of
the 1982 SIGPLAN Symposium on Compiler Construction, ACMd3r 98-105, 1982.

[6] CIiff Click, Global Code Motion/Global Value Numberintn Proceedings of the ACM
SIGPLAN 1995 Conference on Programming Language Designliepiementation,
ACM Press, 246-257, 1995.

[7] CIiff Click and Keith D. CooperCombining Analyses, Combining OptimizatipimsACM
Transactions on Programming Languages and Systems, AC$48,Frg, 181-196, 1995.

[8] CIiff Click and Michael PalecznyA Simple Graph-Based Intermediate Representation
ACM SIGPLAN Workshop on Intermediate Representations, ARidss , 1995.

[9] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wagrand F. Kenneth Zadeck,
Efficiently Computing Static Single Assignment Form andCivatrol Dependence Graph
In ACM Transactions on Programming Languages and Systei@d) Rress, 451-490,
1991.

[10] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. WafitenProgram Dependence Graph
and its Use in Optimizatigin ACM Transactions on Programming Languages and Sys-
tems, ACM Press, 9, 319-349, 1987.

[11] Emden R. Gansner, Stephen C. North, and Kiem-Phon®®¥& - A Program that Draws
Directed Graphsin Software, Practice and Experience 18, John Wiley & Stbhs1047-
1062, 1988.

79

[12] Emden R. Gansner, Eleftherios Koutsofios, Stephen CGthiNand Kiem-Phong VoA
Technique for Drawing Directed Graphk IEEE Transactions on Software Engineering
19, 214-230, 1993.

[13] Graph Visualization Software (GraphVj2)RL: http://www.graphviz.org, 2007.
[14] Graph Layout Software aiSegRL: http://www.aisee.com, 2007.

[15] Robert Griesemer and Srdjan Mitrovie Compiler for the Java HotSpot Virtual Machine
In The School of Niklaus Wirth, "The Art of Simplicity”, dpkverlag, 133-152, 2000.

[16] Java Platform Standard Edition 7 SourdgRL: http://jdk7.dev.java.net, 2007.
[17] Java HotSpot Client Compiler Visualizéattps://clvisualizer.dev.java.net, 2007.

[18] Thomas Kotzmann, Christian Wimmer, Hanspeter Mos8ekpblrhomas Rodriguez, Ken-
neth Russell, and David CoXyesign of the Java HotSpot Client Compiler for Java 6
Technical Report, 2007.

[19] Thomas Lengauer and Robert E. Tarj@nfast Algorithm for Finding Dominators in a
Flowgraph In ACM Transactions on Programming Languages and Sysi&@ig, Press,
121-141, 1979.

[20] Stefan Loidl,Compiler Data Flow VisualizationMaster’s Thesis at the Johannes Kepler
University Linz, 2007.

[21] Adam Myatt,Pro NetBeans IDE 5.5 Enterprise EditioApress, 2007.
[22] NetBeansURL.: http://www.netbeans.org, 2007.

[23] Michael Paleczny, Christopher Vick, and Cliff Clickhe Java HotSpot Server Compiler
In Proceedings of the Java Virtual Machine Research andntéoy Symposium, 1-12,
USENIX, 2001.

[24] Eduardo Pelegri-Llopart and Susan L. Grah@nptimal Code Generation for Expression
Trees: an Application BURS Theogrin Proceedings of the 15th ACM Symposium on
Principles of Programming Languages, ACM Press, 294-3883 1

[25] Georg SanderGraph Layout Through the VCG Tgdh Proceedings of the DIMACS
International Workshop on Graph Drawing, Springer-VertbB@4-205, 1994.

[26] Georg SandeA Fast Heuristic for Hierarchical Manhattan Laygquh Proceedings of the
Symposium on Graph Drawing, Springer, 447-458, 1996.

[27] Georg Sander,Visualization of Compiler Graphs (VCG)URL: http://rw4.cs.uni-
sb.de/~sander/html/ gsvcgl.html, 2007.

[28] Bill Joy, Guy Steele, James Gosling, and Gilad Bradfiee Java(TM) Language Specifi-
cation (Third Edition) Prentice Hall, 2005.

80

[29] Tim Lindholm and Frank Yellin,The Java(TM) Virtual Machine Specification (Second
Edition), Prentice Hall, 2007.

[30] uDraw(Graph) URL.: http://www.informatik.uni-bremen.de/uDrawGra[@907.

[31] Christian Wimmer and Hanspeter Mossenbd@bktimized Interval Splitting in a Linear
Scan Register Allocatoin Proceedings of the ACM/USENIX International Conferenc
on Virtual Execution Environments, ACM Press, 132-141,200

[32] Thomas Wirthingelisualization of Java Control Flow GraphBachelor’s Thesis at the
Johannes Kepler University Linz, 2006.

[33] Xelfi, URL: http://tecfa.unige.ch/pub/software/win95/lagga/java/xelfi, 2007.

81

	Deckblatt_english.pdf
	masterthesis.pdf
	Introduction
	Class Diagram Legend
	Related Work

	NetBeans
	Why NetBeans?
	History
	Modular Design
	Filesystem
	Lookup
	Visual Library

	Server Compiler
	The Java HotSpotTM VM
	Client versus Server Compiler
	Java Execution Model

	Architecture of the Server Compiler
	Ideal Graph
	Data Dependence
	Empty Method
	Phi and Region Nodes
	Safepoint Nodes

	Optimizations
	Identity Optimization
	Constant Folding
	Global Value Numbering
	Loop Transformations

	MachNode Graph
	Register Allocation

	User Guide
	Generating Data
	Viewing the Graph
	Navigating within the Graph
	Control Flow Window
	Filters
	Bytecode Window

	Visulializer Architecture
	Module Structure
	Graph Models
	XML File Structure
	Display Model
	Layout Model

	Properties and Selectors
	Filters
	Difference Algorithm

	Hierarchical Graph Layout
	Why Hierarchical?
	Processed Steps
	Breaking Cycles
	Assign Layers
	Insert Dummy Nodes
	Assign Y-Coordinates
	Crossing Reduction
	Assign X-Coordinates
	DAG Method
	Rubber Band Method

	Cluster Layout
	Drawing of Backedges
	Optimization for Large Graphs

	Compiler Instrumentation
	Overview
	Identifying Blocks
	Building Dominator Tree
	Scheduling
	Adding States

	Conclusions

