

Thomas Würthinger

Visualization of Program Dependence Graphs

A thesis submitted in partial satisfaction of
the requirements for the degree of

Master of Science

(Diplom-Ingenieur)

Supervised by:
 o.Univ.-Prof. Dipl.-Ing. Dr. Dr.h.c. Hanspeter Mössenböck

Dipl.-Ing. Christian Wimmer

Institute for System Software
Johannes Kepler University Linz

Linz, August 2007

Johannes Kepler University Linz
A-4040 Linz • Altenberger Straße 69 • Internet: http://www.jku.at • DVR 0093696

Abstract

The Java HotSpotTM server compiler of Sun Microsystems uses intermediate graph data struc-
tures when compiling Java bytecodes to machine code. The graphs are program dependence
graphs, which model both data and control dependencies. Fordebugging, there are built-in
tracing mechanisms that output a textual representation ofthe graphs to the command line.

This thesis presents a tool which displays the graphs of the server compiler. It records inter-
mediate states of the graph during the compilation of a method. The user can then navigate
through the graph and apply rule-based filters that change the appearance of the graph. The tool
calculates an approximation of the control flow to cluster the nodes of the graph into blocks.

Using a visual representation of the data structures speedsup debugging and helps understand-
ing the code of the compiler. The thesis describes the code added to the server compiler and
the Java application that displays the graph. Additionally, the server compiler and the NetBeans
platform are outlined in general.

Kurzfassung

Der Java HotSpotTM Server Compiler von Sun Microsystems benutzt Graphen als temporäre
Datenstrukturen beim Kompilieren von Java Bytecodes zu Maschinencode. Die Graphen des
Compilers sind Programmabhängigkeitsgraphen, mit denen sowohl der Kontrollfluss als auch
die Datenabhängigkeiten modelliert werden. Für die Suche von Fehlern kann eine textuelle
Repräsentation der Graphen auf die Kommandozeile ausgegeben werden.

Diese Arbeit beschreibt ein Programm zur Anzeige der Graphen des Server Compilers. Bei der
Kompilierung einer Methode werden Zustände des Graphen aufgezeichnet. Der Benutzer kann
durch den Graphen navigieren und regelbasierte Filter anwenden, um die graphische Anzeige
des Graphen zu verändern. Das Programm berechnet eine Annäherung des Kontrollflusses, um
die Knoten in Blöcke zu gruppieren.

Die Verwendung einer graphischen Repräsentation der Datenstrukturen beschleunigt die Fehler-
suche und hilft den Quelltext des Compilers zu verstehen. Die Arbeit behandelt den Quell-
text, der zum Server Compiler hinzugefügt wurde, und die Java Anwendung, die den Graphen
anzeigt. Weiters werden der Server Compiler und die NetBeans Plattform beschrieben.

Contents

1 Introduction 1

1.1 Class Diagram Legend .2

1.2 Related Work . 2

2 NetBeans 4

2.1 Why NetBeans? . 4

2.2 History . 5

2.3 Modular Design . 6

2.4 Filesystem . 7

2.5 Lookup . 8

2.6 Visual Library . 9

3 Server Compiler 12

3.1 The Java HotSpotTM VM . 12

3.1.1 Client versus Server Compiler .. . 13

3.1.2 Java Execution Model . 14

3.2 Architecture of the Server Compiler 15

3.3 Ideal Graph . 16

3.3.1 Data Dependence . 17

3.3.2 Empty Method . 17

3.3.3 Phi and Region Nodes . 18

3.3.4 Safepoint Nodes . 20

3.4 Optimizations .21

3.4.1 Identity Optimization .. 21

i

3.4.2 Constant Folding . 22

3.4.3 Global Value Numbering . 22

3.4.4 Loop Transformations . 23

3.5 MachNode Graph . 24

3.6 Register Allocation .. . 26

4 User Guide 28

4.1 Generating Data .29

4.2 Viewing the Graph . 30

4.3 Navigating within the Graph 31

4.4 Control Flow Window . 32

4.5 Filters . 32

4.6 Bytecode Window . 36

5 Visulializer Architecture 37

5.1 Module Structure .37

5.2 Graph Models . 39

5.2.1 XML File Structure . 40

5.2.2 Display Model . 42

5.2.3 Layout Model . 43

5.3 Properties and Selectors 45

5.4 Filters . 46

5.5 Difference Algorithm .. . 48

6 Hierarchical Graph Layout 50

6.1 Why Hierarchical? .50

6.2 Processed Steps .51

6.3 Breaking Cycles .53

6.4 Assign Layers . 55

6.5 Insert Dummy Nodes . 56

6.6 Assign Y-Coordinates .. . 57

6.7 Crossing Reduction .. 58

ii

6.8 Assign X-Coordinates .. . 60

6.8.1 DAG Method . 60

6.8.2 Rubber Band Method . 62

6.9 Cluster Layout . 64

6.10 Drawing of Backedges .. 65

6.11 Optimization for Large Graphs 66

7 Compiler Instrumentation 67

7.1 Overview . 67

7.2 Identifying Blocks .. 68

7.3 Building Dominator Tree .. . 70

7.4 Scheduling . 73

7.5 Adding States . 74

8 Conclusions 75

iii

Chapter 1

Introduction

When compiling Java methods to machine code, the Java HotSpotTM server compiler of Sun
Microsystems uses an intermediate representation that corresponds to a directed graph. Several
nodes are added to the graph for every bytecode. Afterwards,transformations are applied to the
graph with the goal to increase the execution speed of the method. After all optimizations are
applied, the graph is converted to code that can be directly executed on the target machine. The
graph is complex for large methods. It is difficult to understand the purpose of a certain node
in the graph because of the high number of applied optimizations. Currently, developers use
code that prints the graph on the command line when they are debugging the server compiler.
This thesis presents a tool that helps the developer understand the graph by giving a visual
representation of it.

The user can specify rule-based filters, which change the appearance of the graph. Different
filters can be used when different properties of the graph areof interest. Navigation mechanisms
are available, such that the user can focus on specific parts of a large graph. An additional feature
of the tool is to display the differences between two graphs.

This thesis is divided into eight chapters. Alongside the introduction these chapters are: Chap-
ter 2 describes the NetBeans platform in general. The program that displays the graph is based
on the NetBeans platform. Some important concepts of NetBeans and the visual library of Net-
Beans are explained. Chapter 3 outlines the server compiler. The general architecture and the
differences to the client compiler are presented. The focusof the chapter lies on the graph data
structure and the optimizations applied by the compiler.

Chapter 4 is a user guide for the visualization tool. It explains how to connect the server com-
piler to the Java program. The navigation possibilities, the filters, the Control Flow Window,
and the Bytecode View Window are described.

Chapter 5 presents the architecture of the Java applicationthat displays the graph. The data
models and the class structure are outlined. Chapter 6 is a description of the hierarchical layout
algorithm used to find coordinates for the nodes of the graph and interpolation points for the
edges.

1

Introduction Class Diagram Legend

Chapter 7 presents the C++ code added to the server compiler.This code is responsible for
the scheduling and for saving the state of the graph during the compilation of methods. Chap-
ter 8 describes the main difficulties during development of the tool and points out extension
possibilities.

1.1 Class Diagram Legend

The class diagrams in this thesis follow the conventions shown in Figure 1.1. Interfaces are
orange boxes with an italic name of the interface in it. Greenboxes are classes which are part
of a previously explained or external API. The connections of the current classes with them are
part of the drawing. Generally, classes that are strongly related are grouped using a rounded
rectangle with a dashed border.

For inheritance and composition, the standard UML symbols are used. When no cardinality is
specified at the start or end of a composition, then the cardinality is 1. The blue arrow means
that the source uses the destination of the arrow. A textual attribute classifies the relation further.

boolean edit()

EditFilterCookie

has-a relation

default cardinality = 1
uses relation

group of related classes

inheritance

ScriptEngine

interface
class of external or

previously explained API

Figure 1.1: Conventions used in the class diagrams.

1.2 Related Work

A debugging tool for the HotSpotTM client compiler [17] visualizes three different data struc-
tures: The control flow graph, the data dependence graph, andinformation about the register
allocation. The data is traced by the compiler in a textual format. In contrast to the tool pre-
sented in this thesis, a direct communication between the compiler and the application is not
possible.

Stefan Loidl presents the data dependence graph visualizerof the tool [20]. It displays the data
dependencies of the intermediate representation of the client compiler. In comparison to the
graph of the server compiler, the data dependence graph of the client compiler is more sparse.

2

Introduction Related Work

As most of the nodes have only few incoming edges, the tool does not need to define slots to
distinguish between them.

The author’s bachelor thesis [32] presents a visualizer forJava control flow graphs, which is
also part of the client compiler visualization application. The graph is recorded at several stages
during compilation. The control flow graph of the client compiler is simpler than the graph of
the server compiler, because it contains only control flow dependencies and no data dependen-
cies. Additionally, there is not a node for every instruction, but for every block of instructions.
This significantly reduces the size of the graph. Therefore,some of the advanced navigation
and filtering concepts are not necessary for the control flow graph.

Several software products can draw arbitrary graph structures. The development of a specific
visualization tool for the server compiler has the advantage that the layout and the navigation
is adapted to the needs of the graph of the server compiler. The following list presents three
tools that can be used to draw graphs automatically. Features such as filtering or fast navigation
within the graph are not available in these tools.

Graph Visualization Software (GraphViz) [13]: GraphViz is a group of open source pro-
grams that visualize directed graphs, which are specified ina textual format. The exe-
cutabledot.exe is part of the GraphViz group and converts the textual representation
of a directed graph into an image file. The hierarchical layout algorithm presented in this
thesis is based on the algorithm used by GraphViz. The main purpose of GraphViz is not
to interactively view the graph, but to produce a static image file for the graph. Enhance-
ments to the GraphViz layout algorithm presented in this thesis are the cutting of edges
and a second way to assign x-coordinates to the nodes based onthe rubber band method.
Additionally, backward edges are treated by the visualization tool in a special way.

aiSee Graph Layout Software [14]: aiSee is a commercial graph layout software that is a suc-
cessor of the free tool Visualization of Compiler Graphs (VCG) [27] developed by Georg
Sander. It is not specialized on hierarchical graph layout,but enables the user to choose
from different layout algorithms including force directedlayout. It supports clustering
and folding of the graph. The tool uses a custom input format for the graphs.

uDraw [30]: The uDraw graph visualization software is developed at the University of Bremen
and is specialized on hierarchical layout. One of the key features is that the user can, under
some restrictions, manually change the layout after the automatic algorithm was applied.

3

Chapter 2

NetBeans

NetBeans [22] is anintegrated development environment(IDE) written in Java. It is an open
source project highly supported by Sun Microsystems. Although it is mainly designed to sup-
port developers in creating Java applications, it can also be used for C/C++ projects. Addition-
ally, there are extensions available for NetBeans that allow to use the IDE also for completely
different purposes like UML modeling, scripting in Ruby or Groovy, creating LaTeX docu-
ments, and so on. The visualization tool uses the NetBeans core libraries as a platform for
building rich client applications with Java.

This chapter explains some important concepts of NetBeans that are used by the visualization
tool. It gives a short overview of the NetBeans platform for software developers who are using
NetBeans as the basis for their application [2]. If you are looking for a description of NetBeans
as a development environment, see [21].

2.1 Why NetBeans?

Building upon a platform instead of using only plain Swing speeds up the development of a Java
application and prevents developers from reinventing the wheel over and over again. How can
an application benefit from using the NetBeans platform as anunderlying layer? The following
list introduces some useful aspects of the NetBeans library. The most important of them will be
explained in detail in upcoming sections.

Module: NetBeans itself can be seen as a collection of Java modules that have well-defined
dependencies. It is assured that only the modules currentlyneeded are loaded. This
improves memory usage as well as the startup time of an application. Additionally, de-
velopers are enforced to develop modular applications, which leads to a better design in
general.

Window System: The built-in windowing system allows docking of componentsand supports
tabbing of multiple documents. Additionally, actions thatoperate on the global selection

4

NetBeans History

can be declared. Only using Swing means that either such functionality does not exist or
it must be implemented by hand, highly increasing the total development effort.

Persistence: Configuration and serialization data is organized in virtual filesystems. When the
NetBeans application is not running, the data is stored in a filesystem on the hard disk.

Visual Library: The NetBeans platform comes with a high-level drawing library. It is espe-
cially useful for the visualization tool as it is designed todraw graphs. It can add a large
set of features to a drawing application for "free", at leastfor just adding a few lines of
Java code. Examples for such functionalities are zooming, satellite view, and animation.

Java libraries with the same functionality that are not partof the NetBeans platform could be
used, it is however more convenient if the libraries are directly integrated into the platform. This
allows the libraries to work together without compatibility conflicts. Additionally, all NetBeans
libraries take benefit of the module system, which manages lazy loading of the modules. The
drawback of using a large amount of underlying libraries fora project is a higher development
time needed at the beginning of a project, because the developer needs to get familiar with the
libraries. However, for larger projects this additional cost pays off in the long run. Additionally,
this cost needs not be paid when subsequent projects also take benefit of the same libraries. So
building the first application on top of NetBeans means at first doing additional work, but the
longer one uses the platform, the bigger are the advantages [2].

2.2 History

The first code for the system that evolved over more than a decade to the current version 5.5
of NetBeans was written in 1996. It was a student project, whose intention was to build an
integrated development environment by using only Java code. At this time the program was
called Xelfi [33]. For producing the screenshot of Xelfi shownin Figure 2.1, installing the
old JDK version 1.1 was necessary. The NetBeans of today and Xelfi have only few things
in common, but some of the basic design concepts have never changed since the early days.
Among them are the modular design and the concept of virtual filesystems. Xelfi soon became
a success and therefore a company named after the IDE was founded. During these days the
current name of NetBeans was introduced: One of the businessideas was to developnetwork-
enabled JavaBeans.

In 1999, Sun Microsystems, the founder of the Java programming language, acquired the com-
pany. The company was interested in NetBeans and so the product forms their flagship Java IDE
until nowadays. Sun soon realized that the growth of NetBeans can be accelerated by building
a development community around it, instead of distributingit as a commercial product. There-
fore, they open-sourced the whole IDE in 2000. After this step, people started using NetBeans
not only as an IDE, but also as a library to build their own applications. This brought up the
idea of a rich client platform.

5

NetBeans Modular Design

Figure 2.1: Screenshot of Xelfi, the ancestor of NetBeans, running with JDK 1.1.

The number of NetBeans users grows steadily. The current stable version of NetBeans is 5.5,
but there is already a pre-release version of NetBeans 6.0 available. The development of the
visualization tool started with NetBeans 5.5, but later on it was ported to NetBeans 6.0. [1]

2.3 Modular Design

NetBeans applications consist of separate modules workingtogether to form one big program.
The IDE itself is a set of NetBeans modules that support developers at programming in Java.
There are some official extensions available like a profiler,special support for mobile applica-
tion development, and C/C++ programming. Various modules developed by other companies
can also enrich the IDE. The NetBeans platform consists of a set of modules that manage the
co-operation between the modules and also provide some basic concepts regarding data storage
and the user interface.

A NetBeans module is defined by a JAR file with additional information in the manifest. It has
a version and specifies on which modules it depends, e.g. which modules need to be available
for running this module. Modules can be enabled and disabledwhile the application is running.
Such components are also calledplug-insas they resemble a plug. In NetBeans, the term plug-in
is reserved for a collection of modules that are deployed as one unit.

Each module has a custom classloader, which searches for classes only in the standard Java
classpath and in the modules that are listed as dependencies. The minimum version of a re-
quired module is defined when declaring dependencies. Additionally, there must not be any
cyclic dependencies. A module must explicitly declare which packages are accessible by other
modules. The usage of public classes declared outside of these declared packages is not pos-
sible. A lazy loading mechanism for the modules helps reducing memory usage and startup
time.

6

NetBeans Filesystem

2.4 Filesystem

One of the base concepts of module interaction in a NetBeans application uses virtual filesys-
tems. A module can define an XML layer file to add declarative data to thesystem filesystem,
i.e. a virtual filesystem that is shared among all modules. Atstartup, the filesystems of the
individual modules are merged into the system filesystem. Entries in the filesystem can be
directories, virtual files or pointers to real files. Virtualfiles consist of a name and a set of
key-value pairs that are defined in the XML layer file.

Listing 2.1 shows an example layer file describing the filesystem of a module. It is a simplified
version of one of the layer files used by the visualization tool. An application can use the system
filesystem for example to register windows or to add actions to the toolbar and the menu bar.

Actions are registered as files in the filesystem in the folderActions. The module responsible
for instantiating the action objects scans through this folder. The name of a file specifies the
class that represents the action, in this example the classImportAction. An action can be
registered as a menu item by adding an entry to the folderMenu. As the import action should
appear in the file menu, it is added to the subfolderFile.

There should only be one instance of classImportAction in the system, so we use a shad-
owing mechanism that functions similar to link files. The extension.shadow specifies that
the file points to another file and the attributeoriginalFile specifies the destination of the
pointer. There is also a mechanism available for hiding files. To remove the standard open menu
item from the file menu, we simply hide the file that defines thatmenu item by declaring a file
with the extension.instance_hidden.

Listing 2.1 An XML layer file defining an action and hiding a menu item.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE filesystem PUBLIC "-//NetBeans//DTD Filesystem 1.1//EN"
"http://www.netbeans.org/dtds/filesystem-1_1.dtd">

<filesystem>
<folder name="Actions">

<folder name="File">
<file name="at-ssw-ImportAction.instance"/>

</folder>
</folder>
<folder name="Menu">

<folder name="File">
<file name="at-ssw-ImportAction.shadow">

<attr name="originalFile" stringvalue=
"Actions/Edit/at-ssw-ImportAction.instance"/>

</file>
<file name="org-netbeans-modules-openfile-

OpenFileAction.instance_hidden"/>
</folder>

</folder>
</filesystem>

7

NetBeans Lookup

The filesystem is also used to save the state of a NetBeans application after shutdown. A
subdirectory of the user directory is used to save the data. In this case the filesystem is not
represented by an XML file, but by a directory structure that is physically present on the hard
disk. At startup, the user-specific filesystem is merged withthe filesystems of the modules.

2.5 Lookup

Another mechanism that is specific to NetBeans is the conceptof lookup. The idea behind
lookup is to change the set of interfaces that an object provides during program execution. In
Java it is only possible to declare interfaces for classes atcompile time. This set cannot be
changed later on. It is also impossible that a certain objectof a class implements an interface
and another one does not.

The interfaceLookup defines functions that return a collection of objects compatible to the
type specified as a parameter. This way it is possible to ask theLookup object if it can provide
an implementation of a certain interface. The object can return itself or any other existing
or newly created object, the only restriction is that the returned object must implement the
interface.

An example for the use of the lookup mechanism is how the save menu item and an editor of a
file interact. The save menu item does not know how to save a certain file type. Everything it
needs to do is checking whether it is currently possible to save a file and trigger the save process
when the menu item is clicked.

Lookup getLookup()

GraphEditor

void save()

GraphSaveCookie

void save()

SaveCookie

SaveAction

Lookup getLookup()

Lookup.Provider

creates

find active editor ask lookup for an implementation of

Service User

Shared Interfaces

Service Provider

Figure 2.2: Using lookup, there is no dependency between service user and service provider.

Figure 2.2 shows how the classes are related. The interfaceLookup.Provider is part of the
standard NetBeans API and is implemented by objects that provide a lookup. In this case, the
service is defined by the interfaceSaveCookie with a method that can be used for saving.

8

NetBeans Visual Library

TheSaveAction object first retrieves the lookup of the active editor and asks for an object of
kindSaveCookie. When the editor cannot provide the service, it returnsnull and the menu
item is disabled. Otherwise it returns an object that implements the interface and that can be
used by the menu item in case the user clicks it.

The figure also shows how the classes can be separated in threedifferent modules. One module
just contains the declaration of the service. Provider and user of the service only need to depend
on this API module and need no dependencies among each other.While the service user and
the service provider are able to work together, none of them depends on the other.

There are several additional classes that enrich the lookupfunctionality. It is possible to monitor
the lookup of an object by installing listeners. The classProxyLookup allows to combine the
lookups of several objects into a single one. A list component, for example, proxies the lookup
of the currently selected nodes. So a pattern similar to the save mechanism can be used for any
action that works with the elements of the list. The action declares the interface that an object
must provide that the action can work. It will get enabled anddisabled depending on the current
selection of the list.

The NetBeans platform predefines two global lookup objects.One can be reached by calling
Lookup.getDefault() and represents the global system lookup. The other one is often
used by actions that depend on the current active window. It can be accessed using the method
Utilities.actionsGlobalContext(). It proxies the lookup of the window that is
currently focused. When the user activates another window,this lookup is changed. Reacting
on changes can be done by adding listeners to lookup objects.The visualization tool uses
this mechanism to always display the properties of the selected objects of the currently active
window in the Properties Window.

The Node class is closely related to the lookup mechanism. A node can have an unlimited
number of child nodes but only one parent node, so they form a tree-like structure. The children
of a node are only accessed when the node is expanded by the user. There are several compo-
nents such as a treeview or a list that are able to use such a tree of nodes as their model. These
components provide a proxy lookup that combines the lookupsof the currently selected nodes.
The visualization tool uses the Node API in the Outline and inthe Bytecode Window.

2.6 Visual Library

The NetBeans visual library is a high-level graphical framework built on top of Swing and
Java2D. It is designed to support applications that need to display editable graphs such as UML
diagrams. The library can also be used by applications that are not built upon the NetBeans
platform.

Figure 2.3 shows a class diagram of the most important classes of the visual library and how
they interact. Graphical components are calledwidgetsand are organized in a tree hierarchy.
The topmost widget is always ascene. This widget forms the bridge between Swing and the
visual library. A scene can create aJComponent object that displays the contents of the

9

NetBeans Visual Library

scene. In contrast to Swing components, widgets need not have a rectangular shape. There is
a predefined mechanism for drawing a connection between two widgets. A connection has a
source and a target anchor that are both related to some widget.

Scene

Widget

ConnectionWidget

Anchor

WidgetAction

JComponent
creates Swing component

children

source and target anchor

*

2

*

*

* *

related anchors

SceneAnimator

Figure 2.3: Class diagram of the NetBeans visual library.

A widget has anaction mapassociated with it, i.e. a list of objects of typeWidgetAction
that can react on GUI events. There are a lot of predefined actions that automatically perform
for example moving, selecting or resizing of a widget triggered by user input. The built-in
animation mechanisms can be used to move widgets smoothly and to let them fade in or out.

Additionally there are some high-level functions built into theScene class that allow zooming
with different levels of details and the automatic construction of satellite views. Listing 2.2
shows the power of the Visual Library in an example. The result is a label that can be zoomed
and that changes its background color when it is double clicked. A screenshot of the result-
ing program is shown in Figure 2.4. The NetBeans libraries that are needed for running this
application areorg-openide-util.jar andorg-netbeans-api-visual.jar.

Figure 2.4: Screenshot of the visual library example program during execution.

First, the application creates aScene object and adds aWidgetAction that allows the user
to zoom using the mouse wheel. It constructs aLabelWidget and adds it as a child to the
scene. Then it constructs aWidgetAction that calls anEditProvider when a widget
is double clicked. This action is added to the label. An action can be added to any number

10

NetBeans Visual Library

of widgets. As the scene itself also represents a widget, thescene itself would also change its
background on double click when the example action was addedto it. Finally a swingJFrame
component is created, and the view of the scene is added to this window.

Listing 2.2 Java source code of a visual library program with a label widget and an action.
public class VisualExample {

// Create edit action
WidgetAction editAction = ActionFactory.createEditAction(

new EditProvider() {
public void edit(Widget w) {

w.setBackground(Color.RED);
}

}
);

public static void main(String[] args) {

// Create scene object and assign zoom action
Scene s = new Scene();
s.getActions().addAction(ActionFactory.createZoomAction());

// Create label widget
LabelWidget l = new LabelWidget(s, "Hello world!");
s.addChild(l);
l.setOpaque(true);

// Add action to label
l.getActions().addAction(editAction);

// Create swing frame
JFrame f = new JFrame();
f.setSize(200, 100);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Add scene view
f.add(s.createView());
f.setVisible(true);

}
}

11

Chapter 3

Server Compiler

The visualization tool improves the abilities to analyze internal data structures of the Java
HotSpotTM server compiler [23], which is part of the Java HotSpotTM Virtual Machine of Sun
Microsystems. A virtual machine (VM) acts as a bridge between a program and the operating
system. The primary purpose of VMs is to enable the creation of platform-independent appli-
cations. In the beginning of this chapter the Java HotSpotTM VM is described in general, later
on the main data structure of the server compiler and some of the most important optimization
steps are presented.

3.1 The Java HotSpotTM VM

The Java HotSpotTM VM is a virtual machine developed by Sun Microsystems that implements
the Java Virtual Machine Specification [29]. Figure 3.1 shows the main components of this VM.
Basically Java methods are executed by the interpreter. When a method is invoked a specific
number of times, the just-in-time compiler produces machine code for the method. Later calls
of the method jump to the compiled machine code and will therefore run faster. The reason
why a method is not immediately compiled to machine code at the first execution is that most
Java methods are executed so infrequently that compiling them does not pay off. Depending on
whether the virtual machine is started with the flag-server or not, the server compiler or the
client compiler [15][18] is chosen to do the compilation task.

There are some cases in which the compiled machine code of a method can no longer be used
and execution continues in the interpreter. Such cases occur when a compiler makes an opti-
mistic assumption to produce faster code. When the assumption is later invalidated, e.g. because
of dynamic class loading, the machine code is no longer usable. Jumping from the interpreter
to the compiler and vice versa is not only possible at the invocation of a method, but also during
the execution. Reverting back from the compiled machine code to the interpreter can be done
at specific points of a method calledsafepoints. This process is calleddeoptimization.

12

Server Compiler The Java HotSpotTM VM

There is also an opposite of deoptimization calledon-stack-replacement. Imagine a method that
is executed only once but consists of a long-running loop. Running the whole loop in the inter-
preter would heavily decrease execution speed. Therefore,the interpreter does not only count
the invocations of a method, but also how often a backward jump occurs. When this counter
exceeds a specific threshold, the method is compiled with a special on-stack-replacement en-
try. At this entry, machine instructions for loading the current values from the interpreter are
inserted.

Interpreter

Garbage Collector

Runtime Client Compiler

Server Compiler

Compilation

Deoptimization

Just-In-Time

Compilers

Figure 3.1: Architecture of the Java HotSpotTM Virtual Machine.

3.1.1 Client versus Server Compiler

The difference between client and server compiler is that the client compiler focuses on high
compilation speed, while the focus of the server compiler lies on peak performance. The client
compiler performs only a limited set of optimizations and isbest-suited for short-running client
applications. The server compiler needs more time for compilation, but produces more opti-
mized machine code, so the compiled Java methods will execute faster. Therefore it is best for
long-running server applications. Currently there are some efforts to allowtiered compilation.
This means that methods are first compiled using the client compiler and only very important
methods of a Java program are later on recompiled using the server compiler.

Internally, the client compiler uses a control flow based representation of the Java code to
perform optimizations. The instructions are grouped to blocks where all instructions are ex-
ecuted sequentially if no exception occurs. The server compiler, by contrast, uses a program
dependence graph [10], where data dependence and control dependence are both represented
by use-def edges, i.e. edges pointing from the use of a value to its definition.This allows more
sophisticated optimizations spanning over larger regionsof a method, but the data structure is
also more complex. The visualization tool helps understanding this program dependence graph.
At a late stage during compilation, the nodes of the program dependence graphs are scheduled
in blocks.

13

Server Compiler The Java HotSpotTM VM

3.1.2 Java Execution Model

The Java HotSpotTM VM follows strictly the Java Virtual Machine Specification [29] when
executing a program. Java source code [28] is first compiled to Java bytecodes. The virtual
machine reads the bytecodes and executes them according to the specification. In the bytecode
language, the state of a method consists of a set of local variables and an operand stack. All
operands work on the stack. There are load and store bytecodes to transfer a value from a
local variable to the top of the stack and vice versa. The execution model is specified for this
stack-like language. Figure 3.2 shows a Java method with a single instruction and the resulting
bytecodes of the method when it is compiled usingjavac. The interpreter maintains the
current state that consists of the values of the local variables, the operand stack and monitors
used for locking. It steps through the bytecodes and updatesthe state accordingly.

local variables

operand stack

monitors

State at specific Bytecode Java Bytecodes

0 iconst_5

1 iload_0

2 iadd

3 bipush 7

5 iadd

6 return

Java Method

int test(int x) {

return 5 + x + 7;

}

javac

States when executing test(3)

3

0

3

1

3

2

3

3

3

5

3

6bytecode index

local variables

operand stack
5 5

3

8 8

7

15+ +
return

value

monitors

performed operation const_5 iload_0 iadd bipush 7 iadd return

Figure 3.2: States during the execution of an example method.

The lower part of Figure 3.2 shows the states of the interpreter when the method is invoked with
the value 3 as the argument. As this method has no synchronization code, there are no monitors
in the state. The size of the array of local variables and the maximum stack size are both known
for each method before invocation. First, the constant 5 andthe parameter value, which is 3, are
pushed onto the stack. The add operation pops the two topmostelements and pushes their sum

14

Server Compiler Architecture of the Server Compiler

onto the stack. Afterwards, the constant 7 is pushed and again an add operation is performed.
The returned result is the topmost stack element at the end ofthe execution of the method.

When the interpreter is given a correct state for a bytecode,it can continue the execution in
the middle of a method. This property is used by deoptimization. The registers and memory
locations from which the current state can be reconstructedare tracked by the compiler. When it
wants to deoptimize at a specific location, it inserts the statements that construct the interpreter
state and call the interpreter. Internally, the server compiler works with a program dependence
graph instead of stack operations. While constructing the graph, the compilers maintain which
nodes correspond to the current value of the local variablesand the elements on the stack.

3.2 Architecture of the Server Compiler

Figure 3.3 shows the steps applied by the server compiler when processing a method. The
compiler starts with an empty graph and adds nodes to it whileparsing the bytecodes. Whenever
a node is added, it performs locally the optimizations identity, global value numbering [4] and
constant folding (see Section 3.4). Afterwards it cleans upthe graph by properly building the
method exits and performing dead code elimination.

The next steps are global optimizations applied to the graph. They are not mandatory and can
be skipped by the compiler. After applying an iterative global value numbering algorithm, the
ideal loop step is performed at most three times. The ideal loop phase is capable of doing
loop peeling, loop unrolling, and iteration splitting (forrange check elimination). When major
progress is made running the ideal loop phase, it is run again, otherwise the compiler continues
with the next step. Conditional constant propagation is an optimization that combines simple
constant propagation with the ability to removeif statements when the result of their condition
is constant. Then iterative global value numbering and several ideal loop phases are performed
again.

The ideal graph is then converted to the more machine specificMachNode graph (see Sec-
tion 3.5). Basic blocks are built from the control dependencies. For every node, the latest and
earliest possible scheduling is computed satisfying the property that it must be scheduled after
all its predecessors and before all its successors. The chosen location of a node should be late
to avoid unnecessary computations that are never used, but it should be outside of loops when-
ever possible. A graph coloring register allocation (see Section 3.6) is performed. After some
peephole optimizations, the final machine code is generatedfrom theMachNode graph.

15

Server Compiler Ideal Graph

Once per BytecodeBuilding Ideal Graph

Code GenerationOptimizations

Iterative Global Value Numbering

Parsing Bytecodes Constant Folding

Identity

Global Value Numbering

Build Exits

Dead Code Elimination

Ideal Loop

Conditional Constant Propagation

Iterative Global Value Numbering

Ideal Loop

Generate MachNode Graph

Build Control Flow Graph

Register Allocation

Peephole Optimizations

Output Machine Code

Figure 3.3: Architecture of the Java HotSpotTM server compiler of Sun Microsystems.

3.3 Ideal Graph

The representation of the program in the compiler highly affects the complexity and effective-
ness of applied optimizations. A common representation of aprogram is acontrol flow graph.
The source code is a flat sequential structure with an exactlydefined order of the instructions.
An instruction is defined by an operator and operands that arepreviously defined instructions.
The control flow graph groups instructions that are guaranteed to be executed consecutively into
basic blocks.At the end of every basic block there is a conditional branch or a jump. A basic
block is connected with its predecessors and successors regarding control flow.

The Java HotSpotTM server compiler uses a control flow representation in the later stages of
compilation. For most of its optimizations, however, it uses a data structure that combines
control flow and data dependencies. This graph data structure is calledideal graph. The in-
structions are not ordered, but form a graph where the edges denote either definition-use data
dependencies or control dependencies. By handling controland data dependence more uni-
form, some of the optimization steps, especially those involving code motion, are less complex.
Implementation details of the graph are described in [8].

16

Server Compiler Ideal Graph

The program dependence graph in the server compiler is a graph data structure with lightweight
edges. An edge in the graph is only represented by a C++ pointer to another node. A node is an
instance of a subclass ofNode and has an array ofNode pointers that specifies the input edges.
The advantage of this representation is that changing an input edge of a node is fast.

3.3.1 Data Dependence

Figure 3.4 shows a part of the program dependence graph generated by the compiler when
processing the expressionp*100+1wherep denotes a parameter of the current method. Nodes
are represented by filled rectangles with the type of the nodeand some additional information
in them. Edges are drawn without arrows, but they always start at the bottom side of a node
and end at the top side of a node. The layout arranges the nodesso that most edges are going
downwards. Every node has a fixed number of input slots that can optionally be used as an end
point of an input edge. There are some special nodes that allow an arbitrary number of input
edges. These additional edges are always stored after the obligatory input slots.

Figure 3.4: Program dependence graph when processingp*100+1.

The operations are represented in the graph by nodes that areconnected with the operands. The
MulI and theAndI node both take two integer operands. They have three available slots, but
the first one is not used in this example. Parameters are accessible via theParm node, the
additional informationParm0: int indicates that it is the parameter with index 0 and that it
is of typeint. The constants 100 and 1 are also represented as nodes.

3.3.2 Empty Method

Figure 3.5 shows the graph of an empty method. Every graph hasaRoot node and this node
is always connected to theStart node. To make traversing the graph simpler, nodes at which
the method is exited have an outgoing edge to theRoot node. A node produces exactly one
outgoing value, so the outgoing edges have no particular order. Projection nodes likeParm are
used to model nodes that produce tuples. TheStart node produces the following values:

17

Server Compiler Ideal Graph

Control: The control flow is modeled as edges just like data dependencies. The semantic is
however different. The graph formed when all non-control edges are removed can be
viewed as a petri net. When the method is executed, the control token passes along the
control edges from node to node. AnIf node has two projection nodes as successors.
The control token uses one of the two ways.

I_O: This type exists for historical reasons. It is used to serialize certain instructions.

Memory: To serialize memory stores that could interfere with each other, a type to express
memory dependencies is used.

Frame Pointer and Return Address: Projection nodes that represent the value of the frame
pointer and the return address. They are produced by theStart node and are mostly
hidden to simplify the graph.

Figure 3.5: Graph when processing an empty method.

3.3.3 Phi and Region Nodes

The ideal graph is instatic single assignment(SSA) form [9]. This means that a value is
assigned only once to a symbol at its definition and is never changed. To model conditional
assignment, e.g. if a variable gets assigned different values in different control flow paths,Phi
nodes are necessary. They merge values from different control flows. In the ideal graph they
are always connected toRegion nodes, which merge the control flow.Region nodes are
usually inserted at the end ofif statements or at the loop header. The first input of aPhi node
is always connected to its correspondingRegion node. The other inputs specify the values
selected for each control flow going into theRegion node.

18

Server Compiler Ideal Graph

int test(int x) {

if(x == 1) {

return 5;

} else {

return 6;

}

}

Figure 3.6: Graph when processing anif statement.

Figure 3.6 shows the Java source code and the graph representation of a method containing an
if statement. TheCmpI node compares the parameter and the constant 1. TheBool node is
related to theCmpI node and specifies the compare operator, in this case the unequal operator
is used. TheIf node splits control flow into a true and a false path. These twopaths are merged
by theRegion node. The value of thePhi node is in dependence of the taken control flow
either the constant 5 or the constant 6. The small circle above the first input of theRegion
node indicates that this first input is connected to the region node itself. EveryRegion node is
connected to itself, which makes the block finding algorithms easier. The order of the inputs of
theRegion andPhi nodes is essential. APhi node gets the value of its nth input when the
control path corresponding to the nth input of theRegion node is taken.

19

Server Compiler Ideal Graph

3.3.4 Safepoint Nodes

At the safepoints of a method execution can jump back to the interpreter as explained in Sec-
tion 3.1. All elements of the operand stack and the values of local variables must be restored
from the registers and the machine stack. In the graph, such points are calledSafePoint
nodes. In addition to the first five values produced by theStart node (Control, I_O, Memory,
Frame Pointer, and Return Address), they have an incoming edge for every stack element and
for every local variable. ASafePoint node also stores the bytecode index (bci), where the
interpreter can continue execution.

int test(int x) {

return 5+x+7;

}

Figure 3.7:SafePoint node after parsing 5+x+7.

Figure 3.7 shows a safepoint node during parsing of the example methodtest, also listed in
Figure 3.2. The snapshot of the graph was taken after thebipush bytecode. The interpreter
could resume with the secondiadd bytecode, so thebci of the safepoint is 5. The first three
inputs of the safepoint node specify the control, I_O, and memory dependence. The frame
pointer and the return address are also needed by the interpreter. After these five standard input
slots start the slots for the local variables. The method hasexactly one local variable and at
bytecode index 5, its value is equal to the value of the parameter of the method. The expression
stack is formed by the next two inputs: One edge comes from theAddI node, the other from
the constant value 7. While processing the bytecodes, the safepoint inputs are used to lookup
the values of the local variables and the expression stack. The safepoint inputs are updated
according to how a bytecode affects the local variables and the stack.

20

Server Compiler Optimizations

3.4 Optimizations

While building the graph by processing the bytecodes, localoptimizations are applied. After
adding a node to the graph the compiler checks whether the newly added node can somehow
be replaced by another node that does the same computation ina cheaper way. There are
three such optimizations implemented: Identity optimization, constant folding, and global value
numbering. The program dependence graph data structure allows some of the optimizations
run in parallel benefiting from each other [6][7]. The following three subsections give small
examples for each of them. The fourth subsection presents anexample of an optimization
applied globally after parsing.

3.4.1 Identity Optimization

The identity optimization searches for nodes that compute that same result. In contrast to global
value numbering, it searches also for nodes that are different, but produce the same output.
Figure 3.8 shows how the expressionx+0 is processed by the server compiler. First, the full
expression including theAddI and theConI node are generated (left side). Now the identity
optimization finds out that theParm node produces always the same result as the newly created
AddI node and uses only theParm node further on. After parsing all bytecodes, the compiler
performs a dead code elimination: It deletes theAddI node and theConI node. The resulting
graph is shown on the right side.

Figure 3.8: Identity optimization:(x+0) is transformed tox.

21

Server Compiler Optimizations

3.4.2 Constant Folding

Arithmetic operations on constants are performed at compile time and the result is represented
by a constant node. In Figure 3.9 the graph for the expression5+p+7 is shown. The first add
operation5+p is modeled as anAddI node, but it is immediately transformed to the expression
p+5, as the convention that the constant part is always the last input simplifies constant folding.
After the compiler has generated the nodes for the second addoperation, the constant folding
algorithm identifies a simplification possibility and the whole expression is replaced byp+12.
The algorithm looks for the pattern that the second input of the add operation is a constant and
the first input is anAddI node, which has a constant input too. Dead code elimination removes
the unnecessary two constant nodes and theAddI node.

Figure 3.9: Constant folding:(5+p+7) is transformed to(p+12).

3.4.3 Global Value Numbering

Global value numbering is an optimization similar to the identity optimization. It searches for
nodes that are equal to the currently inserted nodes. Equality means that the nodes themselves
and also all of their inputs are equal. In this case, only one of them is needed and the other one
gets deleted by dead code elimination. A node has a hash valuefor fast equality testing. It is
based on its properties and the C++ memory addresses of its inputs.

Figure 3.10 shows the graph produced when compiling the statement(x+1)*(x+1). The left
graph is a snapshot taken after the processing of(x+1). In the middle the second(x+1) is
represented by theAddI and theConI node. As the hashcode of the twoAddI nodes is the
same, the oldAddI node is connected a second time to the safepoint node insteadof the newly
createdAddI node. So the followingMultI node gets a connection to the firstAddI node
in both slots. After dead code elimination the compiler deletes the secondAddI node. The
resulting graph is shown on the right side.

22

Server Compiler Optimizations

Figure 3.10: Global value numbering:(x+1)*(x+1) is transformed to(x+1)2.

3.4.4 Loop Transformations

The server compiler performs a large number of global optimizations after parsing. They can
be divided into three main categories: Iterative global value numbering, conditional constant
propagation, and loop transformations. As presenting all of them would go beyond the scope of
this thesis, only the step to identify counted loops is described in this section.

The identification of loops brings advantages for array bounds check elimination and is nec-
essary for loop unrolling and loop peeling. After parsing the bytecodes, a loop is represented
by a control flow cycle involvingRegion nodes. The first task is to find regular loops within
the graph and identifyRegion nodes that representloop headers, i.e. nodes that the control
token must always pass when entering the loop. A loop header is represented by aLoop node,
which replaces theRegion node. When the input bytecodes were created by compiling Java
code, then there exist only loops with one entry. There are however no such restrictions on
the bytecodes. As loops with more than one entry are a rare case and handling them would be
complicated, the server compiler does not optimize such loops.

A common loop pattern is represented by a loop variable starting at a specific value and going
constant steps up to an upper bound. After reaching the bound, the loop is exited. Some
languages like FORTRAN have language constructs for this kind of loops, but in Java this
must be coded using a local variable and manually inserted increments and conditions. There
are special optimizations for such loops, so the server compiler identifies the loop pattern and
converts it to a construct with aCountedLoop node and aCountedLoopEnd (CLE) node.
Figure 3.11 shows the nodes that define a counted loop. They specify the beginning and end of
the loop, as well as the loop variable and the increment per loop iteration.

23

Server Compiler MachNode Graph

Loop entry

Backedge

Loop exit

Initial loop variable value

Stride value

Figure 3.11: Nodes that define a counted loop.

3.5 MachNode Graph

After all global optimizations are applied, the ideal graphis still in a machine-independent form.
The next step is converting the graph to a more machine-near form. The resulting nodes are later
scheduled and directly converted to machine code. Bottom-up rewrite systems [24] can be used
for the optimal selection of machine instructions when producing machine code from expression
trees. The server compiler selects subtrees out of the idealgraph and converts them one by one.
It selects specific nodes as root nodes and transforms their related tree using tree selection rules.
Some nodes likePhi nodes are marked asdontcare and have no corresponding nodes in
the new graph. Other instructions are marked asshared, which means that they must not
be shared among subtrees. Code for instructions that are part of more than one subtree is
duplicated. The result of the root node of a tree is always placed in a register so it can be reused
without recomputation.

24

Server Compiler MachNode Graph

Figure 3.12: Matching and register allocation example.

Each tree is converted using a deterministic finite automata. There exist architecture description
files for i486, AMD64, andSparc that describe the available instructions and their costs.
Listing 3.1 shows schematically an extract of thei486 architecture description file. The line
starting withmatch specifies the tree pattern that can be converted by this rule.A rule has an
associated estimated cost. The compiler matches a tree suchthat the total cost of applied rules

25

Server Compiler Register Allocation

is minimal. The file also contains additional properties of the rules including for example the
resulting machine code. The first rule converts aCmpI node with a register and an immediate
operand to acompI_eReg_imm node. The second rule can convert aCMoveI node with two
Binary nodes as predecessors to a singlecmovI_reg node.

Listing 3.1 Architecture description file extract.
// Signed compare instruction
instruct compI_eReg_imm: flags cr, register op1, immediate op2
match: Set cr (CmpI op1 op2)
opcode: 0x81,0x07

// Conditional move
instruct cmovI_reg: register dst, register src, flags cr, operator cop
match: Set dst (CMoveI (Binary cop cr) (Binary dst src))
ins_cost: 200
opcode: 0x0F,0x40

Figure 3.12 shows how the graph for the example method presented in Figure 3.6 is converted
to a machine-specific form. During global optimizations, the compiler replaces theIf and the
Phi node with aCMoveI node (see top-left). For the rules to match correctly some constructs
must be changed. In this case, the twoBinary nodes are inserted and form new inputs of the
CMoveI node (see top-right). The matcher identifies that the two rules defined in

Listing 3.1 can be applied. The twoConI nodes representing the values 5 and 6 are converted
to loadConI nodes. The node for constant 1 is no longer necessary, because the information
thatcompI_eReg_imm should compare the input with 1 is modeled as a parameter. Thenode
cmovI_reg is created according to the second rule. The bottom-left graph shows the result of
the matching process.

After the construction of theMachNode graph, the compiler builds the control flow graph
consisting of basic blocks and schedules the nodes. Then theregister allocator selects machine
registers for the nodes (see bottom-right graph).

3.6 Register Allocation

Register allocation selects machine registers to hold values that must be stored between calcu-
lations. If there are not enough registers available to holdall values, they must be temporarily
stored in the main memory, which is an expensive operation called spilling. The goal is to have
as less spillings as possible when executing a method. Thelife rangeof a value is the range
between its production and its last usage. Two values can be stored in the same register if their
life ranges do not intersect. If the life ranges intersect, then at some time both of them must be
stored, so it is impossible to store both values in the same register.

26

Server Compiler Register Allocation

The server compiler uses a graph coloring register allocator [5][3]. First it builds aninterference
graph, which is a graph with the values as nodes and an undirected connection between two
nodes if their life ranges intersect. A coloring of a graph isan assignment of a color to each
node of the graph with the restriction that two directly connected nodes must not have the same
color. When the available registers are viewed as the colors, then a valid coloring the graph is
a valid register allocation. Two values that have intersecting life ranges are directly connected
in the interference graph and get therefore different registers assigned. When it is not possible
to color the graph, then spilling a value is unavoidable. Thelife range of the value is splitted:
one life range between its production and the storage to memory, another life range between
its loading from memory and its last usage. Now the interference graph has a better chance of
being successfully colored as most likely some of the connections of the original life range do
not exist in one of the two shorter new life range intervals..

First, the algorithm to color a graph withn colors selects nodes with less thann neighbors.
Obtaining a correct color for such a node is trivial when the rest of the graph is successfully
colored. The node gets the color that is not used by any of its neighbors and as there are max-
imal n-1 neighbors, such a color always exists. Such easily colorable nodes are consecutively
removed from the graph. If at some point there is no such node,then the graph is not colorable.
The server compiler iteratively inserts spilling code until a valid coloring is found.

The register allocation by graph coloring is expensive for large methods. The client compiler
uses a linear scan register allocator [31] instead of a graphcoloring algorithm.

27

Chapter 4

User Guide

This user guide introduces the most important functionalities of the Java HotSpotTM server
compiler visualization tool. The tool consists of a Java application, which is used to display
and analyze the graphs, and an instrumentation of the Java HotSpotTM server compiler that
generates the data. Figure 4.1 shows the global architecture. There are two ways to transfer
the data from the server compiler to the Java application, either via intermediate XML files or
directly via a network stream. The Java application consists of several window components that
are explained in this user guide.

Server Compiler

XML file

Network Stream

Outline Window Properties Window Filter Window

Editor Windows

Java Application

Instrumentation

Figure 4.1: Architectural overview.

28

User Guide Generating Data

4.1 Generating Data

A special debug version of the Java HotSpotTM server compiler is needed for generating data.
It has an additional command line option-XX:PrintIdealGraphLevel=l that specifies
how detailed the compiled methods should be recorded, i.e. how many snapshots of the graph
should be taken during compilation. There are four different levels:

Level 0: This is the default value and stands for disabling tracing atall.

Level 1: At this level only three states per method of the graph are traced: one state immedi-
ately after parsing, one state after the global optimizations have been applied, and one
state at the end of compilation before machine code is generated.

Level 2: This level includes intermediate steps for the global optimizations: iterative global
value numbering, loop transformations, and conditional constant propagation. The num-
ber of graphs depends on the number of applied optimization cycles. Additionally, the
state of the graph is traced before it is converted to aMachNode graph and once before
register allocation.

Level 3: The third level is detailed: After each parsed bytecode, thecompiler traces a graph
state, and the loop transformations are dumped with more intermediate steps.

With increasing level, the necessary storage space and compile time overhead increases too, so
the lowest needed level should be used.

At startup, the server compiler tries to open a network connection to the Java visualization ap-
plication. The two options-XX:PrintIdealGraphAddress=ip specifies the network
address and-XX:PrintIdealGraphPort=p the port. The default values are "127.0.0.1",
i.e. the local computer, and port 4444. If opening of the connection succeeds, the data is im-
mediately sent to the tool. Otherwise, the data is saved to a file calledoutput_1.xml. With
multiple compiler threads the second thread saves its data to output_2.xml and so on.

All compiled methods are recorded. By default the Java HotSpotTM VM decides based on the
invocation count and the number of loop iterations when it schedules a method for compilation.
The flag-Xcomp completely disables the interpreter, so all methods get compiled before their
first invocation. Using this flag however means that a large number of methods get compiled.
The option-XX:CompileOnly=name can be used to restrict compilation to a certain class
or method.

The currently loaded methods of the application are available in the Outline Window. XML data
files can be loaded using theFile->Open menu item. When the network communication is
in use, the transferred methods appear automatically. In the top section of the Outline Window,
listening on a port for data can be enabled and disabled with acheckbox. Additionally, a filter
can be specified to reduce the number of methods that should betraced. The server compiler
sends only methods to the Java application if their name contains the string specified in the
textbox next to the checkbox.

29

User Guide Viewing the Graph

The methods appear with a folder icon and the available snapshots for a method are child
elements . Double clicking on a snapshot opens a new editor window in the center and
displays the graph.

4.2 Viewing the Graph

The viewed graph consists of nodes with input and output slots and edges that connect two slots.
The input slots are always drawn at the top of a node, the output slots at the bottom. When a
node is selected using the left mouse button, its key-value pairs are shown in the Properties
Window. This functionality is also available for all items in the Outline Window. The text that
appears inside the nodes is an extract of their property values and can be customized in the pref-
erences dialog. Figure 4.2 shows the editor window of an example graph and the corresponding
Properties and ControlFlow Window.

Key-Value

Pairs

Backward

Edge

Search

Panel

Selected

Node
Control Flow

Figure 4.2: Viewing a graph using the Java application.

Right-clicking on an edge shows a context menu with its source and destination nodes. This is
especially useful for edges that are only partially visible. When an edge would be so long that it

30

User Guide Navigating within the Graph

disturbs the drawing, it is cut and only its beginning and ending is drawn. By default, the nodes
are drawn grouped into clusters. This can be turned off and onusing a toolbar button .

Rolling the mouse wheel zooms in and out, there are also toolbar buttons available for this
purpose . The currently shown extract of the graph is changed by holding the middle
mouse button pressed and dragging around. A detailed description of how to navigate through
the graph is given in the next section. The current graph can be exported to an SVG file using
theFile->Export menu item.

When a graph is currently opened, the difference to a second graph can be calculated: Right-
clicking on another graph and selecting the optionDifference to current graph
opens a new window with an approximation of a difference between the two graphs.

4.3 Navigating within the Graph

As in most cases only a particular part of a graph is of interest, navigation possibilities are
mandatory. When a graph is opened for the first time, all nodesare visible and the root node is
shown horizontally centered on the screen. Selected nodes can be hidden from the view using
the context menu or a toolbar button . There is a button to show again all nodes. In the
context menu of a node, two submenus allow to navigate to one of its immediate predecessors
or successors.

Nodes that are not marked as fully visible can be either semi-transparent or invisible: Not fully
visible nodes are semi-transparent when they are connectedto a node that is fully visible, oth-
erwise they are invisible. When such semi-transparent nodes are double clicked, they become
fully visible. On the other hand, fully visible nodes becomesemi-transparent or invisible when
they are double clicked. This allows fast expanding and shrinking of the current set of visible
nodes without using the context menu. There is one exceptionof the double click semantics:
When all nodes are fully visible, then double clicking on a node does not hide this node, but
hides all other nodes of the graph.

So the standard use when analyzing a specific node is to first search for the node in the full
graph. Then show only this node by double clicking it and afterwards expand the predecessors
and successors of the node as needed. When the selection of the target node set is done, the
semi-transparent nodes are more disturbing than helpful inmost cases. Therefore they can be
completely hidden using the toolbar button .

Another way of navigating through a large graph and nevertheless keeping overview is to use
the satellite view. It can be enabled by holding the key ’s’ pressed or using the toolbar button

. It displays a zoomed out view of the whole graph that exactlyfits into the editor window
and draws a rectangle that indicates the part that was currently shown. This viewport can be
moved around using the mouse. When the satellite view is exited either by releasing the key
or deselecting the toolbar button, the new extract of the graph is shown. Figure 4.3 shows the
satellite window of an example graph and the corresponding extract of the graph that is shown
in the editor window.

31

User Guide Control Flow Window

Satellite ViewCurrent Extract

press key “s”

release key “s”

Figure 4.3: The satellite view gives an overview of a graph.

4.4 Control Flow Window

To increase the overview in large methods, an approximationof the control flow graph is avail-
able. Every node is assigned abasic block, i.e. a set of instructions that are executed consecu-
tively without any branches. The Control Flow Window shows agraph with a node for every
block that is connected to the block’s predecessors and successors. Note that this is only an
approximation as the real control flow information is only available in a late stage during com-
pilation. Every node is put in the latest possible block fulfilling the condition that it must be
evaluated before all its successors. Selecting a block selects all nodes that are assigned to this
block in the full graph and centers them in the view. Invisible nodes of the block get automati-
cally visible.

4.5 Filters

The graph coming from the server compiler does not contain any display information. The only
additional information available beside the graph description are key-value pairs for the nodes
of the graph. Filters change the representation of the graphbased on node properties. There

32

User Guide Filters

are filters for changing the color of nodes and edges, for removing nodes and also two special
filters for combining and splitting nodes.

In the Filter Window, all currently available filters are listed in their processing order. Filters
can be activated and deactivated using the checkbox left to their name. The toolbar buttons on
the right allow adding , removing , and moving filters . The current set of
selected filters can be saved as a profile and is then recallable using the combobox on the
left.

The following list explains the standard filters that are available when first installing the tool.
They all use selection rules based on key-value pairs and canbe customized.

Basic Coloring: Color filter that should be enabled by default. It sets a standard color and
special colors for control flow specific nodes.

Matcher Flags Coloring: Before converting the ideal graph to aMachNode graph, the two
flagsis_shared andis_dontcare are calculated. This filter visualizes the flags
when their value is available.

Register Coloring: Colors the nodes according to the selected register. The register allocator
information is available at a late stage during compilation.

Extended Coloring: Gives a color to constant nodes, projection nodes, and nodesthat have a
bci property, i.e. nodes that are safepoints.

Line Coloring: Colors the connections according to the type of the source node. Differentiates
between integer values, control flow, memory dependencies,tuple values, and the special
typebottom.

Difference Coloring: In a difference graph all nodes have a state expressed as a property that
can be either same, changed, new or deleted. According to this state, the filter sets a node
color. When the nodes do not have a state property, the graph remains unchanged.

Only Control Flow: This filter is useful when the full graph is too complex and oneonly wants
to focus on the control flow. It removes all nodes that do not produce a control flow value
and are not immediate successors of a node that produces a control flow value.

Remove FramePtr, I_O, and ReturnAddress: Removes the three nodes FramePtr, I_O, and
ReturnAddress from the graph as they normally are not of interest and disturb the view of
the graph. They are connected to all safepoint nodes.

Remove Memory: Removes any node that produces a memory dependence as its value.

Remove Root Inputs: Every possible end of a method has a backward edge going to theroot
node. So for large graphs the number of inputs into the root node can be high, which
disturbs the drawing. Therefore this option should be enabled as the root inputs are not
of interest in most cases.

33

User Guide Filters

Remove Safepoint Inputs: The inputs of a safepoint specify the values of the expression stack
and local variables at the safepoint’s bci. This is interesting when the graph is built from
the bytecodes, but not very important afterwards. Removingthe inputs improves the
overview and the drawing performance.

Combine: When a node produces more than one output value, it produces atuple and the
specific values must be selected using projection nodes. This filter combines such a node
with all its projection nodes and creates a single node with multiple output slots.

Split: Constants are shared among all nodes. So when a constant is used multiple times, all
usages refer to a single node representing the constant. This is reasonable to save memory
capacity but is impractical for displaying the graph. This filter removes constant nodes
and writes their value directly to all slots where they were used.

Filters are written in JavaScript using Java objects and shortcut functions. Double clicking on
a filter opens a dialog that allows editing its name and its code. Filters are programmed based
on selection rules applied to the graph. There exist some predefined functions that cover most
filtering tasks. They are listed in the following table:

colorize(name, regexp, color)

Colors all nodes whose propertyname
matches the regular expressionregexp.
Predefined color variables are:black,
blue, cyan, darkGray, gray, green,
lightGray, magenta, orange, pink,
red, white, andyellow.

remove(name, regexp)
Removes the matching nodes from the
graph.

removeInputs(name, regexp,
start, end)

Removes all inputs from the matching
nodes from the indexstart to the index
end.

split(name, regexp) Splits the matching nodes.

regexp stands for a string representing the regular expression that the value of the property
with the specified name must fulfill. The syntax corresponds to the standard Java regular ex-
pression syntax used by the classes in thejava.util.regex package. Amongst others, the
following rules are defined: "." stands for any character, "*" means that the preceding element
is repeated zero or more times, and "|" expresses alternatives.

Figure 4.4 shows each of the predefined functions applied to an example graph. The plain graph
without any filters applied is displayed top left. Then the graph is colored using thecolorize
function and regular expressions. Afterwards thePhi node is removed. The functionsplit
removes theConI node from the graph and displays the short name for the node atevery use.
So "0" is drawn at the third input of theCmpI node. The last applied step removes the second
input of theStart node.

34

User Guide Filters

The search panel in the toolbar of the center window works in asimilar way to a filter. A
property name can be selected in the combobox, and a regular expression that this property of
the target nodes must fulfill can be entered in the textfield. After pressing enter in the textfield
or the search toolbar button , all matching nodes are selected.

Start graph colorize(“name”, “.*I”, green)

remove(“idx”, “38”) split(“name”, “Con.*”) removeInputs(“idx”, “3”, 1, 1)

colorize(“name”, “Root”, orange)

Figure 4.4: Four functions applied to an example graph.

35

User Guide Bytecode Window

4.6 Bytecode Window

The Bytecode Window shows the Java bytecodes of the method from which the currently
opened graph was generated. Bytecodes that are referenced from nodes through the bci prop-
erty are shown with a special icon. Double clicking on such a bytecode will select all nodes that
have a reference to it. These are mainly safepoint nodes.

The server compiler inlines small methods to avoid the overhead of calling them. The bytecodes
of inlined methods are shown as child elements of a node beneath the bytecode that would
invoke the method. Figure 4.5 shows the bytecode view for an example method. The bytecode
with the index 3 is a call to another method, which the server compiler decided to inline. The
bytecodes of the inlined method are all shown in the sublist.There are two safepoint nodes in
the graph that reference the bytecode indices 13 and 25 of theinlined method. Therefore, those
bytecodes have a special icon and by double clicking on them, the corresponding nodes in
the graph are selected.

Inlined Method

Connected

with Nodes

Figure 4.5: Bytecode Window showing the Java bytecodes in tree-form.

36

Chapter 5

Visulializer Architecture

In this chapter, the architecture of the visualization application that is based on the NetBeans
platform is explained. Additionally, it contains a description of the algorithm for finding the dif-
ferences between two graphs. The layout algorithms and the code added to the server compiler
are presented in two subsequent chapters.

5.1 Module Structure

The NetBeans application is split into several modules represented by NetBeans projects. For
a discussion of modular programming see Section 2.3. Figure5.1 shows the modules and their
dependencies. Transitive dependencies are omitted for simplicity. Two modules represent third
party libraries: RhinoScripting for the execution of JavaScript code and BatikSVG for the export
of SVG files. There are three top-level modules: Bytecodes, ControlFlow, and Coordinator.
Here is a list of all modules in alphabetical order:

BatikSVG: The Batik SVG Toolkit is part of the Apache XML Graphics Project. SVG stands
for Scalable Vector Graphics and is a vector-based standardized graphics format. The
Batik SVG library allows to create a JavaGraphics object that writes into an SVG file
instead of painting on the screen. The visualization tool uses this functionality to export
the currently selected graph into an SVG file.

Bytecodes: A top-level module that is responsible for the bytecode viewof the method of the
current active graph. It listens to the lookup of the window with focus and displays the
tree of bytecodes of the current graph’s method.

ControlFlow: Contributes the control flow view of the currently active graph and listens to the
lookup of the current active window similar to the Bytecodesmodule. It is also a top-
level module and uses the NetBeans visual library for displaying the control flow graph.
It forwards the changes of the block selection to the active graph editor window.

37

Visulializer Architecture Module Structure

BatikSVG

Bytecodes

ControlFlow

RhinoScripting

Coordinator

Data

Difference Filter

Graph

Layout

HierarchicalLayout Settings

Util

View

Top-Level Modules

Th
ird

-P
ar
ty
 L
ib
ra
rie

s

Figure 5.1: Dependencies of the NetBeans modules.

Coordinator: Top-level module that contains the code for the outline and the filter window.
All predefined filters are defined in this module. It is responsible for opening new graph
editors in the center area. The task of actually creating thewindow and displaying the
graph is forwarded to the View module.

Data: Contains the data model used to transfer data between the server compiler and the tool.
It parses the XML data coming from the server compiler and converts it to an internal
data structure. It uses a SAX XML parser. For a detailed description of the data model
see Section 5.2.1.

Difference: Used to create a difference graph of two input graphs. It depends only on the Data
module and the Util module. The difference algorithm is explained in Section 5.5.

Filter: Contains the filters that can be applied to the graph model andthe dialog to edit a filter.
It depends on the Graph module and the RhinoScripting modulefor executing JavaScript
code. Section 5.4 contains a description of the filter architecture.

Graph: The data model used internally for the graphically enrichedgraph. In comparison to
the data model defined in the Data module, it adds display information to the nodes and
edges of the graph. For a detailed description see Section 5.2.2. Additionally, it contains
the graph selectors that are used by the filters and are explained in Section 5.4.

38

Visulializer Architecture Graph Models

Layout: Defines an API for layouting a graph which is explained in Section 5.2.3. It contains
the interface definitions for the nodes and edges of the graphand also an interface for
clusters of nodes.

HierarchicalLayout: Actual implementation of a graph layouter as defined in the Layout mod-
ule. It also contains a hierarchical layouter that can handle clustering. The layout algo-
rithms are explained in Chapter 6.

RhinoScripting: Rhino is an open source implementation of a JavaScript engine and is part of
the Mozilla project. It contains all features of JavaScript1.5. The visualization tool uses
the library to allow the user to write filters in JavaScript code.

Settings: Module that is responsible for loading and storing settingsthat should be persistent.
It also contains the code for displaying the settings dialog.

Util: Contains some utility classes that are used by other modules. It contains the definitions
for the properties mechanism described in Section 5.3.

View: Responsible for displaying the graph in a new editor window.It uses the NetBeans
visual library to render the graph. For a description of the visual library see Section 2.6.

5.2 Graph Models

The application uses three different models for the graph: The data modelfor the transfer of
the data from the server compiler to the Java application, the display modelfor displaying and
filtering the graph, and thelayout modelfor layouting the graph. Working with different models
comes with the cost of converting between them. The data model is converted to the display
model whenever a graph is opened in a new editor window. The layout model is a submodel of
the display model, so no conversion is needed there. An advantage of using different models is
the avoidance of unused fields. For example, all fields containing display information such as
the color of the nodes would be undefined for all loaded graphsand would only get a meaning
after a graph is opened.

The application saves for every node of the display graph model the corresponding nodes in the
data model. When the graph of the display graph model is created for the first time, every new
node represents exactly one node of the data model. Through filters, however, a node of the
display model may represent several nodes of the data model.

Figure 5.2 shows the lifecycle of a graph and how it is converted between the models. For
transmitting the data from the server compiler to the Java application and for storing it on the
hard disk, an XML structure based on the data model is used. The Java application reads the
data and builds a memory representation of it. When a graph isopened in a new editor window,
the data model representation of the graph is converted to a display model representation. The
application applies all activated filters on the graph and invokes the layout manager. The layout

39

Visulializer Architecture Graph Models

manager works on the layout model, which is a submodel of the display model. The editor
windows use the NetBeans visual library to show the display model representation of the graph
on the screen. The following three sections describe the three models in detail.

Server Compiler

Outline Window

Layout Manager
XML file

Editor WindowApply Filter

Layout Model

Display ModelData Model

Figure 5.2: Lifecycle of the graph data.

5.2.1 XML File Structure

The data transferred from the server compiler to the visualization tool is represented in XML.
The main advantage of using XML instead of a custom binary format is better changeability.
When new XML elements are introduced, it is simple to maintain backward and forward com-
patibility: On the one hand, the old application can read thenew XML data because it ignores
the new elements. On the other hand, the new application can read the old XML data by ignor-
ing the elements that are no longer valid. The main disadvantage of using XML is the higher
storage requirement compared to a binary format.

One of the goals when designing the data model was that it should be generally usable for
describing directed graphs. This is an important design decision that opens the possibility that
the visualization tool is used to analyze graph-like data structures of a completely different
application.

Another concept of the data model are properties based on key-value pairs. All descriptive
information about an entity is stored uniformly as a list of key-value pairs, instead of introducing
XML attributes for the properties of Java methods, graphs, and nodes. This concept is used
throughout the application and is explained more detailed in Section 5.3.

Figure 5.3 shows the XML elements and their relations. AgraphDocument is the top-level
element and can containgroup child elements. The server compiler creates agroup ele-
ment for every traced method. Agroup element has exactly onemethod child element that
describes the bytecodes and inlining of the method. Agroup element can have an arbitrary
number ofgraph child elements that describe the traced states of the graph during compilation
of the method. Agraph element has onenodes, oneedges, and onecontrolFlow child
element.

Concerning the nodes and edges, only the difference to the previous graph of the method is
saved. Therefore, thenodes element can contain definitions of nodes asnode elements or

40

Visulializer Architecture Graph Models

removeNode elements, which state that a certain node of the previous graph is no longer
present. A similar mechanism is used for the edges. Succeeding graphs of a method often
have similar nodes and edges. The number of equal nodes and edges depends on the number of
traced intermediate steps. Using a difference-based storage format highly reduces the necessary
storage space.

Every node has a unique identifier that is referenced from theedges and the control flow blocks.
An edge is defined by the identifiers of its source and destination node and the index at which
the edge ends at the destination node. ThecontrolFlow element contains the information
necessary to cluster the nodes into blocks. For each block, its successor blocks and the nodes
that are related to that block are specified. The nodes are referenced via their unique id.

A method element contains two child elements: Theinlined element can have method
child elements expressing inlining. The bytecodes of a method are stored in the textual format
that is used to trace the bytecodes in the server compiler.

graphDocument

group

method
name

shortName graph
name

inlined bytecodes

nodes edges controlFlow

node

id

removeNode

id

edge
index

from

to

removeEdge
index

from

to

block
name

dom

successors nodes

node

id

successor

name

properties

p

name

TEXT

TEXT

zero or one child

zero or more children

Figure 5.3: XML file structure.

The elementsgraphDocument, group, method, andnode can have aproperties
subelement that specifies key-value pairs via its child elements. The concept of properties is
also present in the data and the display model and is described in detail in Section 5.3.

The XML data is read using a parser that processes the elements while reading it. Reading
from the network stream and reading from a file is treated in a uniform manner. The network

41

Visulializer Architecture Graph Models

communication between the server compiler and the visualization tool is interactive: After the
server compiler has sent agroup element and its properties, the client compiler writes the
character ’y’ if it wants to receive that group of graphs or ’n’ otherwise.

From the XML data, the data model memory representation is built. Figure 5.4 shows the
classes that represent the data model. The structure is similar to the XML structure. The nodes
and edges are however no longer represented as the difference to the previous graph. The parser
resolves this differences without any additional memory requirements by sharing theInput-
Node objects. If a node does not change between two graphs of a method, then both graphs
contain a memory pointer to that node.

GraphDocument

Group

InputBlock

InputBlockEdge

InputBytecode

InputMethodInputGraph

int from

int to

int index

InputEdge

int id

InputNode

*

*

*

*

2

**

*

0..1

PropertyObject

Properties API

Figure 5.4: Data module class diagram.

5.2.2 Display Model

The display model is similar to the data model, but contains display information for the nodes
and edges of the graph. When a new editor window is opened, theapplication first creates a
new display graph based on the data model graph. Then the filters are applied to the display
graph and it is drawn on the screen.

There is a semantic difference concerning the graph betweenthe data and the display model: In
the data model every node produces exactly one output, so it has exactly one output slot. This
is due to the structure of the ideal graph in the server compiler. It is however possible that a
filter combines several nodes into a single one with more thanone output slot. Therefore, this
can be expressed in the display model, but cannot be expressed in the data model. Additionally,
slots can have a shortcut that is displayed on the screen and ashort description that is shown as
a tooltip.

Figure 5.5 shows the classes of the display model. The classDiagram corresponds to the
classInputGraph in the data model. A diagram can contain any number ofFigure objects.

42

Visulializer Architecture Graph Models

Figures can have any number of input and output slots. A connection is always between exactly
oneInputSlot object and oneOutputSlot object.

A figure has aSource object that points to one or moreInputNode objects of the data model
that this figure represents. When the display model representation is constructed from the data
model representation, everyFigure object has exactly oneSource object pointing to one
InputNode object. Filters may alter the graph and are responsible to keep the pointers to the
data model up-to-date. The filter that combines multipleFigure objects into a single one sets
the node pointers of theSource object of the new figure to the union of the node pointers of
theSource objects of the original figures.

Diagram

Figure

Slot

InputSlot OutputSlot

Source

InputGraph

InputNode

Data Model

Connection

*
+

*

*

*

PropertyObject

Properties API

*

Figure 5.5: Display model class diagram.

5.2.3 Layout Model

The layout algorithm should be commonly usable, so a dependency on the display model should
be avoided. Converting the graph in the display model representation to another data structure
is however computationally intensive. So the layout model is a submodel of the display model.
This is implemented using the Java interface mechanism. Figure 5.6 shows a class diagram of
the layout model.

In the layout model, a graph consists ofVertex objects that have a size and a position.Port
objects are assigned to aVertex object and have a position relative to theVertex object.
A Link object represents an edge between twoPort objects. EachLink object has a list of
points in which the first and last are the start and end points of the edge. The other points are
interpolation points. The valuenull in the point list is valid and means that the edge should
be cut off at the previous point and resumed at the next point in the list.

43

Visulializer Architecture Graph Models

There is an additional aspect in the layout model that is relevant to layout algorithms that allow
clustering of nodes. Each vertex is assigned to aCluster object. ACluster object itself
can have a parentCluster object and preceding and succeedingCluster objects.

LayoutGraph is a concrete class that represents a layout graph consisting of Link objects.
The Port objects andVertex objects are implicit defined by theLink objects as uncon-
nected vertices are not interesting for layouting. ALayoutManager is capable of layouting
the graph by setting the positions of theVertex objects, the point lists of theLink objects
and the bounds of theCluster objects.

TheFigure class of the display model implements theVertex interface. TheSlot class
implements thePort interface and theConnection class implements theLink interface.
The cluster information is only available in the data model and is not converted to the display
model. The block of aFigure object is retrieved by getting the block of theInputNode
objects the figure was created from. When theInputNode objects of a figure are in different
blocks, an arbitrary block is chosen.

A diagram can be given to aLayoutManager object by creating a newLayoutGraph
object and adding allConnection objects of the diagram to theLayoutGraph. There is no
need to reconstruct the graph.

Diagram

Figure

Slot

ConnectionLayoutGraph
Port getFrom()

Port getTo()

void setControlPoints(List<Point>)

List<Point> getControlPoints()

Link

Vertex getVertex()

Point getRelativePosition()

Port

Cluster getCluster()

Dimension getSize()

Point getPosition()

void setPosition(Point p)

Vertex

Display Model

Cluster getOuter()

void setBounds(Rectangle r)

Set<? extends Cluster> getSuccessors()

Set<? extends Cluster> getPredecessors()

Cluster
Data Model

InputBlock

*

2

*

void doLayout(LayoutGraph)

LayoutManager

processes

*

*

*

*

2

Figure 5.6: Layout model class diagram.

44

Visulializer Architecture Properties and Selectors

5.3 Properties and Selectors

The mechanism for handling properties is uniform throughout the application. This makes the
application more robust against modifications and increases coding efficiency. Properties are
stored in the most general form as key-value pairs where the key and the value are both Java
String objects.

Figure 5.7 shows parts of the architecture that are related to properties and how they interact.
The Properties API defines the basic classes for property handling. The classProperty con-
sists of twoString fields representing the name and the value of a property. AProperties
object is a collection ofProperty objects.Provider is an interface for objects that offer
aProperties object.PropertyObject is a simple implementation of the interface. By
subclassing fromPropertyObject instead ofObject, a class can define that its objects
have attributes specified as key-value string pairs.

The Properties Window is implemented using the NetBeans lookup mechanism (see Section 2.5).
It listens forProvider objects in the lookup of the current active window. When suchob-
jects are available, it updates its view to show their properties. Therefore, there is no difference
for the Properties Window if a user selects an item in the Outline Window or a node in an
editor window. In both cases, it retrievesProvider objects and displays the corresponding
key-value string pairs.

Other parts of the application that make use of properties are the search panel and the filters.
In both cases, a set of nodes of the graph need to be selected. For this purpose there exists
an interfacePropertyMatcher, which can match string key-value pairs. Objects of type
PropertyMatcher specify the name of the property they are matching and have a function
match. For checking whether aPropertyObjectmatches or not, the value of the property
with the name associated with thePropertyMatcher object is given to thematch function
as an argument. ThePropertyMatcher object returnstrue or false.

There are two different implementations of thePropertyMatcher interface available: The
StringPropertyMatcher checks whether the value equals a given string value. The more
complex classRegexpPropertyMatcher allows regular expressions for the value. The
matching ofFigure objects is possible, becauseFigure subclassesPropertyObject.

The Selector API defines aSelector interface with a single method that returns a list of
figures of a diagram. TheMatcherSelector has an associatedPropertyMatcher and
returns all figures of the diagram for which thematch function returnstrue. The subclass
OrSelector returns the union of the result of two selectors. TheAndSelector returns the
conjunction of the result of two selectors. TheNotSelector returns the inverse of the result
of its inner selector.TheSuccessorSelector returns the immediate successors of the result
of its inner selector, and thePredecessorSelector returns the immediate predecessors of
the result of its inner selector.

45

Visulializer Architecture Filters

Properties getProperties()

Provider

PropertyObject

Properties

String name

String value

Property

provides

String getName()

boolean match(String)

PropertyMatcher

StringPropertyMatcher

RegexpPropertyMatcher

List<Figure> selected(Diagram d)

Selector

MatcherSelector

*

Figure

matches

selects

Diagram

Display Model

Properties API

Property Matcher API

SuccessorSelector OrSelector

AndSelectorPredecessorSelector

Selector API

*

2

NotSelector

Figure 5.7: Properties and selectors class diagram.

5.4 Filters

When designing the architecture of the filters, the main goalwas to make them highly customiz-
able. The application should easily adapt to changes in the server compiler and even be able to
display and filter completely different graph data. The basis for this goal is the properties mech-
anism explained in Section 5.3. The attributes of the nodes in the graph are not hard-coded as
Java fields, but represented by key-value string pairs. Filters define rules that apply a certain
function on a set of nodes. The set of nodes is selected using aSelector object. A filter takes
aDiagram object and modifies it based on the rules.

Predefined filters are available for coloring nodes, coloring edges, splitting nodes, combining
nodes, removing input edges and removing self edges. TheCustomFilter is a special filter
that carries out the changes of the graph based on JavaScriptcode. The available JavaScript
functions and their effects are explained in Section 4.5.

The order in which the application applies the filters is important. For example, if the affected
sets of nodes of two color filters intersect, the order in which they are applied changes the
appearance of the graph. So the Filter Window lets the user not only activate and deactivate
the available filters, but also change their processing order. A FilterChain object contains
a list of orderedFilter objects. The filter chain can apply its filters in the specifiedorder to

46

Visulializer Architecture Filters

a diagram. TheEditFilterCookie class is used to add an edit action to the filters that is
available via the context menu or via double clicking on a list entry.

The Java 6 scripting mechanisms are used to execute the JavaScript code of the custom filters.
The Rhino Scripting Library registers a JavaScript scripting engine. The custom filter uses
theScriptEngineManager class to retrieve the registeredScriptEngine object that is
capable of executing the code. The application provides several JavaScript functions that apply
filters to the graph. The functions are explained in the user guide in Section 4.5.

The listener pattern is frequently used in the tool. Interested listeners register themselves at
some object to be notified when the object changes. In Java this is often implemented by adding
addListener, removeListener, andnotifyListener methods and a list that stores
the listeners to a class. TheChangedProvider<T> class can be used to avoid to program
the three methods over and over again. It is also not necessary to define new interfaces for every
listener. TheFilter class, for example, has a field of typeChangedProvider<Filter>
that is accessible via a method. Objects that implement theChangedListener<Filter>
interface can register at theChangedProvider<Filter> object and are then informed of
changes by theFilter object.

String getName()

void apply(Diagram)

EditFilterCookie getEditor()

ChangedProvider<Filter> getChangedProvider()

FilterChangedProvider<T>

T

void changed(T)

ChangedListener<T>
*

Event API

provides

Diagram

Display Model

modifi
es

Selector

Selector API

uses

boolean edit()

EditFilterCookie

provides

FilterChain

*

SplitFilter

ColorFilter

RemoveFilter

CustomFilter

CombineFilter

ScriptEngine

ScriptEngineManager

provides

registers

Package javax.script

uses

Rhino Scripting Library

Filter API

prov
ides

Figure 5.8: Filters class diagram.

47

Visulializer Architecture Difference Algorithm

5.5 Difference Algorithm

The displayed graphs are snapshots of the data structure of the server compiler during the com-
pilation of a method. The difference algorithm takes two graphs as the input and outputs a
difference graph. The nodes of a difference graph have a special state property for every node.
This property can be eithersame, changed, new or deleted. The Difference Coloring
filter (see Section 4.5) can be used to color the nodes according to their state. Additionally,
each edge gets either the statesame, new, ordeleted. The algorithm is invoked on the input
graph coming from the server compiler, before it is converted to the display model.

Optimal graph matching is an NP-complete problem, so for thelarge graphs of the application
it is only reasonable to solve it using heuristics. Creatinga difference graph means choosing
related pairs of nodes (u, v) where u is a node from the first graph and v a node from the second
graph. Every node may occur in at most one such relation. All nodes in the first graph that do
not appear in a relation are marked as deleted. All nodes in the second graph that do not appear
in a relation are marked as new. Nodes that appear in a relation are either marked assame if
they do not differ in important properties or otherwise aschanged.

Two edges starting at nodes (n1, n2) and ending at nodes (m1, m2) are marked assame if the
pairs (n1, n2) and (m1, m2) appear in the matching relation calculated for the nodes and their
end slot index is equal. All other edges of the first graph are marked asdeleted, those of the
second graph are marked asnew.

The difficult task is to select pairs of nodes to be related. When the two input graphs are both
snapshots of the same method, this is straightforward. In the server compiler, the nodes are
allocated on the heap and therefore have a unique memory address throughout their lifetime.
This address is used as a unique identifier for the nodes. The difference algorithm adds a pair
of nodes (u, v) to the matching relation if their unique identifier is equal.

For two arbitrary graphs, the task of choosing "good" pairs to be matched becomes more diffi-
cult. The implemented algorithm is based on a cost function for matching a pair of nodes (u, v).
The cost is calculated by comparing their properties, predecessors, and successors. First, the
set of possible matches is built by adding all theoretic possibilities. To reduce the total number
of inserted pairs, nodes that differ in the important property "name" are not added, so they will
never be matched.

Then the algorithm selects the pair (u, v) with the least costfrom the set of possible matches.
The selected pair (u, v) is added to the set of matching nodes.Afterwards, all pairs containing
either the node u or v are removed from the set of possible matches. Then the algorithm con-
tinues by choosing the next pair (u, v) with the least cost. Ifthe least cost for matching a pair
of nodes exceeds a predefined threshold or the set of possiblematches is empty, it is no longer
reasonable to match nodes and the algorithm terminates.

Listing 5.1 shows the difference algorithm for two arbitrary graphs in pseudo-code. The most
difficult part of the implementation is to find a "good" function that computes the penalty for
matching two nodes. The quality of this function determinesthe result of the matching.

48

Visulializer Architecture Difference Algorithm

Listing 5.1 Algorithm for calculating the difference between two graphs.
Difference: graph a, graph b
s = set of possible node pairs
result = empty set of node pairs
while s not empty do

(n, m) = best matching pair of s
if penalty of (n, m) > THRESHOLD then
return result

end if
add (n, m) to result
remove all tuples (n, ?) and (?, n) from s
remove all tuples (m, ?) and (?, m) from s

end while
return result

Figure 5.9 displays the difference graph for two graph snapshots of an example method. The
Root node has changed and theIf, Region andPhi node were replaced by theCMoveI
node. New edges are drawn as thick lines, while deleted edgesare drawn as dashed lines.

Deleted

Changed

New

Unchanged

Figure 5.9: The difference algorithm applied on two examplegraphs.

49

Chapter 6

Hierarchical Graph Layout

This chapter describes a hierarchical layout algorithm andtwo different approaches for the
assignment of x-coordinates. The data model used as input for the algorithm are presented in
Section 5.2.3. The layout algorithm assigns a position to each node and a list of control points
to each edge.

6.1 Why Hierarchical?

Most layout algorithms are either tree-based, hierarchical, force-directed, or planar. Choosing
the type of layout algorithm has a high impact on the understandability of a graph. Additionally,
some algorithms require a graph to be in a certain form: Tree-based layouting can only be
applied on trees, hierarchical layouting on directed acyclic graphs, and a planar layout algorithm
only works when the graph is planar. Preprocessing steps canchange a graph such that it fulfills
the requirements of the layout algorithm. In a postprocessing step, the results must then be
mapped back to the original graph.

The graph that is displayed by the visualization tool is a directed graph, which has cycles in
most cases. The tool uses a hierarchical layout algorithm, as it fits best for the visualization of
a program dependence graph. The advantage of using a hierarchical algorithm is that there is a
natural flow of data and control in one direction. The only preprocessing needed is to remove
directed cycles. The tool layouts the nodes from top to bottom. Nodes that were generated from
a bytecode with a low index are likely to be in the top section,those that were generated from a
bytecode with a high index are likely to be in the bottom section of the graph. So there is a local
coherence between the position of a node and the Java bytecode that it was generated from.
The root node is always at the top. Edges that must be revertedto create a cycle-free graph are
called backward edges and are drawn in a special way. They arise mostly due to variables that
are changed in a loop.

A negative aspect of using a hierarchical layout is that the total length of the edges is higher
compared to a force-directed approach. This is especially critical for large graphs, because

50

Hierarchical Graph Layout Processed Steps

some of the edges nearly span from the top to the bottom of the graph. Section 6.11 describes a
solution for this problem.

6.2 Processed Steps

The layout algorithm performed by the visualization tool isan adaptation of the algorithm de-
scribed in [11][12]. The algorithm performs the steps shownin Figure 6.1. These steps are
common to most hierarchical layout algorithms. There are however differences in how the
steps are performed, especially the crossing reduction andthe x-coordinate assignment are var-
ied. The sections in this chapter explain the steps in detailand present two different algorithms
for assigning x-coordinates. The following list introduces the steps applied by the algorithm:

Input Graph: First, a copy of the input graph is constructed. This is necessary as the algorithm
alters the graph and needs a lightweight graph data structure for fast processing. There is
always a mapping back to the original graph to be able to writethe result back in the last
step.

Remove Cycles: The only condition for the graph to apply a hierarchical layout is that it does
not contain any directed cycles. Edges in the intern graph are reversed to make the graph
cycle-free. In Figure 6.1, the three nodes B, D, and F form a cycle. The algorithm selects
one of the edges involved in the cycle, e.g. the edge from B to F, and reverses it. In the
last step, this is taken into account and the result edge goesin the correct direction.

Assign Layers: This step assigns a number to each node, indicating thelayer to which it be-
longs. A layer consists of a set of nodes that are placed in thesame row. The postcondition
of this step is that each edge ends at a node whose layer numberis higher than the layer
number of the start node. All edges point in one direction.

Insert Dummy Nodes: The crossing reduction and x-coordinate assignment steps require that
an edge only connects nodes of adjacent layers. Therefore, intermediate nodes are in-
serted when an edge is longer. The position of these nodes in the final layout form inter-
polation points for the corresponding edge. In the example graph, the edge from B to F
spans across two layers, so one intermediate dummy node is inserted.

Assign Y-Coordinates: Assigning an y-coordinate to a node basically means to multiply the
layer number with the size of a layer. For a good layout, it is also reasonable to center the
nodes within a layer and to allow variable layer heights.

Reduce Crossings: The number of crossings in the final drawing can be reduced by reordering
the nodes within their layers. After this step, the order of the nodes within a layer is not
changed any more. The initial ordering in the example graph had three crossings while
there are no crossings at all after reordering the nodes in the third layer.

51

Hierarchical Graph Layout Processed Steps

Assign X-Coordinates: Retaining the ordering constraints given by the crossing reduction,
this step assigns x-coordinates to the nodes. The goal of this step is to minimize the total
length of all edges and producing a symmetric layout.

Result: After all steps are applied, the result calculated for the intern graph is written back to
the original graph. The algorithm flips again all edges reversed in the cycle-removal step,
i.e. the edge from B to F, and converts dummy nodes to interpolation points.

A

B

C

D

E

F

A

B

C

D

E

F

A

B C

D

E

F

A

B C

D

E

F

A

B C

DE

F

A

B C

D E

F

A

B C

D E

F

A

B C

D E

F

Input Graph Remove Cycles Assign Layers Insert Dummy Nodes

Assign Y-Coordinates Reduce Crossings Assign X-Coordinates Result

Figure 6.1: Steps of a hierarchical layout algorithm.

52

Hierarchical Graph Layout Breaking Cycles

6.3 Breaking Cycles

The hierarchical layout algorithm can only process cycle-free graphs, because it is impossible
that all edges point in one direction when a graph contains cycles. There are usually different
sets of edges that can be reversed to make the graph cycle-free. When deciding between two
different sets, either the total number of reversed edges orthe length of all edges could be a
good criteria.

The algorithm used by the tool does not use any sophisticatedselection strategy for the reversed
edges, but performs a simple depth first search. This is appropriate for program dependence
graphs, because reversed control flow edges usually are due to jumps back to the loop header.
The algorithm runs in linear time to the number of edges.

Listing 6.1 shows the pseudo-code of the cycle-removal algorithm. A depth-first search is
started at every node without an incoming edge. When there isno such node, the depth-first
search is started at the node specified by theroot parameter. This guarantees that every node is
reached. Thevisited flag of a node ensures that a node is visited at most once. The currently
active nodes form a path from the start node without input edges to the current node.

When the algorithm finds an edge between the current node and an active node, it knows that
this edge is part of a directed cycle and reverses it. Such edges are calledbackedges.

Edges between the current node and a visited node, which is not active, are no problem as these
edges would only be part of cycles if the edges of the graph were undirected. Such edges are
calledcrossedges.

Listing 6.1 Algorithm for breaking cycles in a directed acyclic graph.
BreakCycles: directed graph g, node root
for each node n without any incoming edge of g do

BreakCyclesRecursive(n)
end for
if root was not visited then

BreakCyclesRecursive(root)
end if

BreakCyclesRecursive: node n
mark n as visited
mark n as active
for each outgoing edge e of n

t = target node of e
if t is active then
reverse edge e

else if t was not visited then
BreakCyclesRecursive(t)

end if
end for
unmark n as active

53

Hierarchical Graph Layout Breaking Cycles

Figure 6.2 shows the cycle-removal algorithm applied step-by-step to the example graph. The
algorithm starts with the node A, because this node has no input edges. Afterwards B, D, and F
are visited and also marked as active. The edge between F and Bnow connects two active nodes.
Therefore, it is a backedge and needs to be reversed. As all inputs of F have been processed,
the active flag is cleared and the algorithm continues by processing D. This node also has no
unvisited outgoing edges, so its active flag is cleared too. When processing B, the edge between
B and F forms a crossedge and is therefore ignored. Nodes C andE are processed in a similar
matter, the crossedge between C and D is ignored again.

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

Backedge => reverse

A

B

C

D

E

F

A

B

C

D

E

F

Crossedge => ignore

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

1 2 3 4

5 6 7 8

9 10 11 12

Crossedge => ignore

visited and activevisitednormal

Figure 6.2: Breaking cycles of an example graph.

54

Hierarchical Graph Layout Assign Layers

Reversed edges possibly need additional interpolation points. The tool always draws the edges
such that they start at the bottom of a node and end at the top ofa node. Therefore backedges
need a special treatment, which is described in Section 6.10. Additional problems arise when
the graph containsself-loops, i.e. nodes that are connected with themselves. It makes no sense
to reverse a self-loop edge because it would not break any cycle. Therefore, self-loops must be
deleted from the graph before the cycle-removal step. The visualization tool currently does not
draw self-loops at all.

6.4 Assign Layers

After preprocessing the graph such that it is free of cycles,all nodes are assigned to layers.
Layers are numbered starting with one. The postcondition ofthis step is that for any edge going
from noden to nodet, the layer of noden has a lower number than the layer of nodet.

A subgoal of layer assignment is to minimize the total numberof layers. The length of the
longest directed path through the graph without visiting a node twice plus one is a minimum
bound for the number of necessary layers. Every edge in the path must go from a node in layer
i to a node in layeri+1. So we need at least one layer for every end of an edge and one
additional layer for the start node.

Listing 6.2 Algorithm for assigning layers.
AssignLayers: graph g
s = new empty set of nodes

for each node n without any incoming edge of g do
layer of n = 1
add n to s

end for

i = 1
while s is not empty do

t = new empty set of nodes

for each node p in s do
for each node n in successors of p do

if all predecessors of n are already assigned to a layer then
add n to t

end if
end for

end for

assign layer i to all nodes in t
s = t
i = i + 1

end while

55

Hierarchical Graph Layout Insert Dummy Nodes

Listing 6.2 presents a simple layer assignment algorithm inpseudo-code. First, it assigns all
nodes without input to the first layer. In each loop iteration, it assigns nodes whose predecessors
have all been processed before to a new layer. This way, the postcondition is guaranteed. Any
incoming edge of a node starts at one of its predecessors. When all the predecessors have been
processed before, they all are assigned to layers with a lower number fulfilling the condition.
The algorithm terminates when there are no more unassigned nodes left.

All nodes are processed by the algorithm. Nodes without an incoming edge are automatically
assigned to the first layer. For all other nodes, there must bea last predecessor that is assigned
to a layer as the graph is cycle-free. One iteration after thelast predecessor is assigned to a
layer, the node itself gets assigned to a layer.

Figure 6.3 shows the layer assignment algorithm applied to the example graph. Node A is
assigned to the first layer. In the next step, the graph without the already processed nodes is
shown. In the second graph, the two nodes B and C have no unprocessed predecessor and are
therefore assigned to layer two. E and D are assigned to the third layer and node F is assigned
to the last layer.

A

B

C

D

E

F

1 2 3 4

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

A

Figure 6.3: Assigning layers for the nodes of the example graph.

6.5 Insert Dummy Nodes

For the crossing reduction and x-coordinate assignment steps to work properly, a stronger con-
dition for all edges must be met: Every edge must go from a nodeof layeri to a node of layer
i+1. This is done by insertingdummy nodesto the graph. These node have no corresponding
node in the input graph, but are later converted to interpolation points of the original edge. Their
height and width is set to 0. The algorithm is presented in Listing 6.3. Every edge is checked
and intermediate nodes and intermediate edges are insertedwhenever necessary. In the example
graph, only one dummy node must be inserted between the nodesB and F.

56

Hierarchical Graph Layout Assign Y-Coordinates

The tool has an additional ability that tries to layout edgescoming from the same node as long
as possibly as a single edge. The dummy insertion step is responsible for this behavior. When
there is already a dummy node for an edge coming from the same node and the same port in the
current layer, this dummy node is shared among the two edges.

Listing 6.3 Algorithm for creating dummy nodes.
CreateDummyNodes: graph g

for each edge e of g do

s = source node of e
t = target node of e

i = layer of s plus 1
last = s

while i not equal to layer of t do
d = new dummy node in layer i
remove connection between last and t
add connection between last and d
add connection between d and t
last = d
i = i + 1

end while

end for

6.6 Assign Y-Coordinates

The assignment of y-coordinates benefits from assignment ofnodes to layers. All nodes of the
same layer should lie on a horizontal line. Nodes can have different height, so they are centered
within the rectangular space of their layer.

Listing 6.4 shows the pseudo-code of the algorithm. The maximum height of a node within a
layer is calculated. All nodes are aligned according to thisheight.

57

Hierarchical Graph Layout Crossing Reduction

Listing 6.4 Algorithm for assigning y-coordinates.
SetYCoordinate: graph g
base = 0
for each layer l of g do

max = maximum height of a node in layer l
for each node n of layer l do
y coordinate of n = base + (max - height of n)/2

end if
base = base + max + vertical node offset

end for

Figure 6.4 shows the values calculated by the algorithm whenaligning a node. The node D of
the example graph is centered. In its layer, the node E is the node with maximum height.

DEmax

base

height

(max – height)/2

Figure 6.4: Calculations when assigning y-coordinates.

This simple y-coordinate assignment step can be enhanced byallowing a variable vertical offset
between the layers. When the edges between two layers connect nodes that have a high hori-
zontal offset, it is reasonable to increase the vertical offset to avoid sharp bends. In this case,
the y-coordinate assignment step must be applied after the x-coordinate assignment.

6.7 Crossing Reduction

Until now the order of the nodes within their layer was arbitrary and did not affect any of the
processing steps. The crossing reduction step tries to find an order that minimizes the edge
crossings of the graph.

Let n1 and m1 be two nodes in the first layer and n2 and m2 be two nodes in the second layer.
Two edges (from n1 to n2 and from m1 to m2) cross if and only if the order between n1 and
m1 in the first layer is opposite to the order between n2 and m2 in the second layer. To simplify
the analysis, the crossing reduction algorithms often optimize the crossings locally between
two layers. Finding an optimal solution that minimizes the crossings is NP-complete even for
graphs that have only two layers. Therefore, heuristics need to be applied that give good results
in the normal case.

The algorithm iteratively sweeps down and up the layers. When sweeping down, the nodes of
layer i+1 are reordered by looking at the edges from layer i tolayer i+1. When sweeping up, the

58

Hierarchical Graph Layout Crossing Reduction

nodes of layer i are reordered by looking at the edges from layer i to layer i+1. Listing 6.5 shows
the pseudocode for a single downsweep. The new relative position of a node is calculated by
forming the mean of the positions of its predecessor nodes. When sweeping up, the successor
nodes are used respectively. After calculating the relative position for all nodes in a layer, they
are reordered according to that position. The number of iterations is arbitrary, acceptable results
can be achieved with only one or two iterations.

Listing 6.5 Crossing reduction algorithm.
DownSweep: graph g
for the second to the last layer of g do

for each node n in layer i of g do
sum = sum of the position of all predecessors of n
crossing number of n = sum / number of predecessors

end for
resort the nodes in the list of layer i according to crossing number

end for

Figure 6.5 shows the downsweep step at layer 2 and 3 of the example graph. B and C are
numbered 1 and 2 according to their position within their layer. The only predecessor of E is
C, so E gets a relative position of 2. D has two predecessors, so the mean of the position of its
predecessors is calculated and D gets a relative position of1.5. The dummy node has only one
predecessor, so it gets the relative position its only predecessor.

After reordering the nodes, the dummy node becomes the new first node, D stays in the middle
and E becomes the new last node of layer three. When calculating the relative positions for the
nodes in the next layer, the new positions 1, 2 and 3 are used.

B C

DE

1 2

2

B C

DE

1 2

2
(1+2)/2 = 1.5

B C

DE

1 2

2
1.5

1

B C

D E

1 2

3 (2)
2 (1.5)

1 (1)

Process E Process D Process dummy node Reorder

Figure 6.5: Crossing reduction applied on a layer of the example graph.

59

Hierarchical Graph Layout Assign X-Coordinates

6.8 Assign X-Coordinates

In this section, two different approaches for assigning x-coordinates to the nodes are presented.
The inputs to these algorithms are a graph that fulfills the postconditions of the dummy insertion
step, the widths of the nodes, and the horizontal space requirements between nodes.

The goal of x-coordinate assignment is to find an x-coordinate for every node meeting the space
requirements of the nodes. A subgoal is to minimize the totalhorizontal length of all edges.
Another consideration is that the graph should look symmetric.

Both methods iteratively improve the layout of the graph, the number of iterations influences
the layout quality. The order of the nodes within a layer is taken unchanged from the crossing
reduction step.

6.8.1 DAG Method

After the initial layouting, the algorithm sweeps iteratively up and down the graph. In the
remaining section only the downsweep is described. The upsweep works in a similar manner,
but the outgoing instead of the incoming edges of a node are processed and the successors are
used instead of the predecessors.

The initial positioning is arbitrary, however less iterations are needed if the first positioning
is reasonable. One possibility is to align all nodes as left-most as possible meeting the space
requirements of the nodes.

All nodes of a layer are repositioned in a special sequence: Nodes with less incoming edges are
processed first. A node with a low degree in a bad position catches someone’s eye more than
a node with a high degree in a bad position. Additionally, alledges between dummy nodes are
processed first. This way long edges, which are split across several edges connecting dummy
nodes, are drawn as straight lines.

Then, the optimal position of a node is calculated as the median of the positions of its pre-
decessors. This minimizes the horizontal length of the incoming edges. If the node has an
even number of predecessors, the mean of the two median predecessors is taken to increase the
symmetry of the drawing.

Listing 6.6 presents the pseudo-code for the downsweep partalgorithm. After the optimal x-
coordinate was calculated, positioning a node works exactly the same way for both up- and
downsweep.

The final position of a node must take the layout constraints into account. If no other node
on that layer is already positioned, we can just set the x-coordinate of the node to the optimal
position. Otherwise there is a range of legal positions thatmust be considered.

60

Hierarchical Graph Layout Assign X-Coordinates

Listing 6.6 Algorithm for assigning x-coordinates.
DownSweep: graph g
for i from 2 to layer count of g do

l = all nodes in layer i
sort l in increasing order of predecessor count
for each node n in l do
pos = median of predecessor positions
AddNode(n, pos)

end for
end for

AddNode: node n, optimal position p
left = nearest already positioned node to the left of n
right = nearest already positioned node to the right of n
minX = position of left + width of left + horizontal node offset
maxX = position of right minus width of right
increase minX by width and offset of all nodes between left and n
decrease maxX by width and offset of all nodes between n and right
if pos < minX then

pos = minX
else if pos > maxX then

pos = maxX
end if
position of n = pos

In the code listing, the methodAddNode gives a pseudo-code representation of how the final
position is calculated. Figure 6.6 shows graphically the allowed range for an example node X,
that should be placed. Nodes L and R are the first nodes to the left and the right of X that are
already positioned.left_offset is the minimum space required for all nodes between L
and X.right_offset is the minimum space required for all nodes between X and R plus
the width of X itself.

So the x-coordinate of X must be in the range betweenminX andmaxX. When the optimal
position lies outside this range, then the x-coordinate is either set tominX andmaxX, whichever
is closer to the optimal position.

Finding the nearest already positioned nodesleft andright can be done in O(log(n)) time,
where n denotes the total number of nodes, using a balanced binary tree. The number of neces-
sary iterations to get an acceptable result is low, a value oftwo is used by the tool. Therefore,
the total time complexity of the algorithm is O(n*log(n)).

61

Hierarchical Graph Layout Assign X-Coordinates

L R

XL R

left right

minX maxX

left_offset right_offsetallowed range for X

Figure 6.6: X-coordinate assignment example.

6.8.2 Rubber Band Method

Another way to assign x-coordinates to the nodes uses a physical model and is called rubber
band method. The algorithm presented in this section was developed by Georg Sander [25][26].
The nodes of the graph are regarded as balls and the edges are rubber bands affecting the nodes.
The vertical position of the nodes is fixed, so they can only move horizontally. Long edges
represented by dummy nodes would be skewed, so their x-coordinates are fixed to a single
value. They can be regarded as sticks.

Listing 6.7 presents the rubber band algorithm in pseudo-code. First, segments are formed
out of nodes. A segment is regarded by the layout algorithm asa rectangular entity that can
span across several layers. Each segment will get a single x-coordinate assigned. Basically, a
segment is represented by exactly one node. Only dummy nodesrepresenting the same edge
are merged into a single segment to assure that the edge is drawn as a straight line.

The algorithm constructs a graph with the segments as nodes and an edge between two segments
(s and t) if and only if s contains a node that is the immediate left neighbor of a node of t.
Based on this graph, a topological ordering of the segments is calculated. Afterwards, they
are positioned as left as possible. Segments without predecessors in the intermediate graph
are positioned at the minimum x-coordinate. The leftmost possible x-coordinate for the other
segments is calculated by taking the maximum of the right boundary of all its predecessors. The
topological sorting ensures that the predecessors of a segment are processed before the segment
itself is processed.

On this initial ordering, the physical model is now applied iteratively. The algorithm usually
produces a reasonable layout faster when in a downsweep onlythe predecessors of a node and
in an upsweep only the successors of a node are taken into account. It is however also possible
to incorporate both predecessors and successors in the calculations, in the code listing this way
to calculate the forces is used.

Two segments that touch and whose forces cross are combined to a single region to conform
better to the physical reality. So the algorithm starts by putting every segment into a single

62

Hierarchical Graph Layout Assign X-Coordinates

region. When two such interacting regions are found, they are removed from the set of regions
and the combined region is added.

The desired position for a region is its old position plus theforce on the region. The region is
moved to this position, however stopping when touching any other region. There is no specific
processing order of the regions, and the result can vary according to this order. A high number
of iterations should however balance this.

Listing 6.7 Rubber-band algorithm for assigning x-coordinates.
RubberBand: graph g
generate segments
sort segments topologically
set initial positions
for i from 1 to MAX_ITERATIONS do

Process(g)
end for

Process: graph g
for each segment s of g do

force on s = mean of predecessors and successors horizontal offsets
end for

regions of g = new set of regions with one region for each segment
for each region r of g do

for each region t contacting r on the right do
if force on r > force on t then

combine the regions of r and t
end if

end for
end for

for each region r of g do
position p = old position of r + force on r
move r to p stopping when hitting another region

end for

Figure 6.7 shows the main parts of the algorithm. In a preprocessing step, the nodes are grouped
into segments. In this example, the two dummy nodes are grouped into a single segment. The
third graph shows the edges of the graph used for topologicalsorting and one legal topological
sorting expressed by the numbers of the nodes. It also shows the initial positioning. The fourth
graph shows the regions created when performing a downsweep. The segments 2, 3, and 4 have
only node 1 as their predecessor. If there were no other segments, the rubber band would move
them exactly under the segment 1. But in the example, the three segments would hit another and
move together such that they are all three side by side centered under node 1. So the algorithm
combines the three segments to a single region. Nodes 6 and 7 represent a similar case. The
fifth graph shows the segments with the x-coordinates assigned after the first downsweep.

63

Hierarchical Graph Layout Cluster Layout

When continuing with an upsweep, the regions must be recalculated. Now only the two seg-
ments 3 and 4 are interacting. After a few iterations, the positions of the segments are translated
to positions of the nodes of the original graph.

4

5

6 7

3

2

1

4

5

6 7

3

2

1

4

5

6 7

3

2

1

4

5

6 7

3

2

1

4

5

6 7

3

2

1

Input Graph Segments Topological Sorting Regions at Downsweep

After Downsweep Regions at Upsweep After Upsweep Result

Figure 6.7: X-coordinate assignment using the rubber band method.

6.9 Cluster Layout

The general goal of clustering is to layout nodes of the same cluster close together. The visu-
alization application draws a rectangle around nodes belonging to the same cluster. Therefore,
the nodes need to be positioned in rectangular regions, suchthat the application can draw the
cluster rectangles without intersections. This is achieved by first layouting each cluster sepa-
rately and then performing the hierarchical layout recursively by treating the cluster rectangles
as nodes.

64

Hierarchical Graph Layout Drawing of Backedges

Figure 6.8 shows a simple clustered graph with two nodes. Node A is assigned to cluster 1, node
B is assigned to cluster 2. There is a connection between A andB. First, the connection is split
into three parts by inserting two intermediate nodes. The leftmost graph shows the resulting
structure. The connection between A and B is split into an edge going from A to a dummy
node, an edge to another dummy node, and a third edge going to B. The dummy nodes have
a dual function: When performing the separate layout of the clusters, they are treated just like
dummy nodes. However, when performing the global layout, they are slots of the nodes that
represent the rectangular cluster areas.

First, the application performs the layout algorithm on thetwo blocks separately. The dummy
node, which is a successor of node A, is always put in the last layer. The dummy node, which is
a predecessor of node B, is put in the first layer. After the layout for the two blocks is calculated,
the width and height of the rectangle encapsulating all nodes of a cluster is known. Then, an
artificial graph is built: The cluster rectangles form the nodes and the two dummy nodes form
slots. The hierarchical layout algorithm is applied again on the artificial cluster graph.

C1

C2

A

Output Slot

Input Slot

Edge

Last Layer Dummy Node

B

First Layer Dummy Node

Layout Cluster 2

Layout Cluster 1 Global Layout

C1

C2

Clustered Input Graph

A

B

Figure 6.8: Recursive cluster layout.

6.10 Drawing of Backedges

In Section 6.3, an algorithm for reversing edges to make the input graph free of cycles was
presented. The visualization tool always paints edges suchthat they start at the bottom of a
node and end at a top of a node. For backedges, a special routing for adding interpolation point
is needed.

All backedges are processed in a right-to-left order. The additional interpolation points and the
port are calculated as shown in Figure 6.9. A node with backedges will not only get new ports,
but also change its size. The horizontal and vertical space needed for the backedges are added
to the size of the node.

65

Hierarchical Graph Layout Optimization for Large Graphs

Additional Ports

Interpolation Points

Figure 6.9: Example for the routing of a backedge.

6.11 Optimization for Large Graphs

When the server compiler processes long Java methods, the resulting graph is so large that
the time for performing the layout is annoying for the user. The graph of the server compiler
contains a high number of edges, which leads to some edges nearly spanning over the whole
graph. Long edges are a problem for two reasons: First, a lot of dummy nodes need to be
created and later processed by the coordinate assignment and the crossing reduction. Second,
they disturb the drawing, because they are represented by long straight lines and the nodes along
their way are either drawn on the right or on the left.

The benefit of drawing the long edges is not high, because mostly only a small part of them is
visible. An edge that starts and ends outside of the current screen extract is not informative.
Therefore, the visualization application cuts long edges and draws only their beginning and
ending. This way, the drawing performance as well as the quality of the drawing is improved.

66

Chapter 7

Compiler Instrumentation

This chapter describes the coded added to the Java HotSpotTM server compiler. The current
version is based on JDK 7 build 13 [16]. The design goal for theinstrumentation was to change
as little code of the server compiler as possible and to encapsulate the added code.

7.1 Overview

Figure 7.1 shows the classes added to the server compiler andhow they are connected to already
existing classes.IdealGraphPrinter is the main class that manages the tracing of the
graphs. As explained in Section 5.2.1, a graph is serializedas the difference to the previous
graph. The server compiler does not store old versions of thegraph, so the graph printer object
must handle this.Description objects are used for this purpose.

When printing a graph, first theDescription objects of the previous graph are marked as
invalid. Description objects of the new graph start with the statenew. If the new object
equals an old one, then the new one replaces the old one and gets the statevalid. For an
invalid Description object, only a mark that it has been removed is stored. A validDes-
cription object needs no storage space at all, as it was serialized with the previous graph.
Only for newDescription objects, the graph printer outputs the full data.

Description has two subclasses:EdgeDescription andNodeDescription. An
object of classEdgeDescription has a reference to the start and end node of the edge. It
stores the input index at which the edge enters the end node. The server compiler works with
an object of classCompile, which consists ofNode objects. ANodeDescription object
stores a reference to the describedNode object. It is an object that has properties represented by
string key-value pairs. The C++ memory address of aNode object forms the unique identifier
of a node.

The scheduler constructs a control flow graph by grouping thenodes into blocks (see Sec-
tion 7.2). This process is repeated for every graph. The control flow graph is not stored

67

Compiler Instrumentation Identifying Blocks

difference-based like the normal graph, because a small change in the normal graph can cause
a big change in the control flow graph.

EveryCompileThread object has its ownIdealGraphPrinter object to avoid multi-
threading conflicts. The graph printer uses thePhaseChaitin class to get information about
the selected registers and life ranges of the nodes (for details on the register allocation see Sec-
tion 3.6). TheMatcher class is used to retrieve the matcher flags that identify the subtrees of
the graph, which are converted toMachNode objects (see Section 3.5).

For actually outputting the data, the printer either uses the fileStream class of the server
compiler or thenetworkStream class. They are both subclasses ofoutputStream.

networkStream IdealGraphPrinter

Property

Properties

state: invalid, valid or new

Description

NodeDescription

Block

EdgeDescription

*

outputStream

CompilerThreadfileStream

Compile

Node

Server Compiler

*

PhaseChaitin

Matcher

0..1

0..1 *

Ideal Graph Printer

is
as
sig
ne
d t
o

Figure 7.1: Compiler instrumentation class diagram.

7.2 Identifying Blocks

The nodes of the ideal graph are ungrouped. The control flow isonly expressed as control
dependence edges. The printer schedules the nodes into blocks to allow the visualization appli-
cation to group the nodes. This increases the overview of thegraph and is essential for large
methods.

68

Compiler Instrumentation Identifying Blocks

In a first step, all nodes that are related to control flow, i.e.either have a control dependence
input or output edge, are assigned to blocks. The control dependencies link the control flow
related nodes of a block together in a linear list. This ensures that there are no branches in a
block. The start node is either a node that joins several control flow dependencies, e.g. aRe-
gion node, or a node that represents a successor of a node that splits control flow, e.g. anIf
node. The end node of a block is either a node that is the predecessor of a node that joins control
flow or a node that splits control flow.

The algorithm processes the graph in reversed order, starting at theRoot node. Figure 7.2
shows the steps applied for each node that is popped from the stack. When the node was not
visited before, it forms the end of a new basic block. The algorithm walks up the graph along
the control dependence edges and adds the nodes to the same block. The end of the walk is
reached when the algorithm either finds a node marked as blockprojection, i.e. a successor
node of a node that splits control flow, or a node marked asblock_start, e.g. aRegion
node. This last node is the start node of the block and its predecessors are pushed onto the stack.
Listing 7.1 presents the pseudo-code for identifying basicblocks.

Listing 7.1 Algorithm for identifying blocks
FindBlocks: graph g
push root node of g onto stack

while stack not empty do
node n = pop from stack
if n not visited then

mark n as visited
create new block b
add n to b

while n not block_proj and n not block_start do
n = control dependence predecessor of p
add n to b

end while

for each node p in predecessors of n do
push p onto stack

end for
end if

end for

69

Compiler Instrumentation Building Dominator Tree

... ...

Node popped from stack

End node of block

Intermediate nodes

Start node of block

Block Projection Region Node

New nodes pushed onto stack

Figure 7.2: Steps applied for identifying a block.

7.3 Building Dominator Tree

A block is the dominator of another block if it is always executed before the other block is
executed. Knowing the dominators is essential for scheduling the nodes, because the arguments
of an operation must be executed in all control paths. Therefore, the operands of an operation
must be either in the same block or in one of the dominators of the block of the operation itself.
A block a is the immediate dominatorof another blockb, if all other dominators of blockb
dominate blocka. The dominator tree consists of the blocks as nodes and edgesbetween a
block and its immediate dominator. The immediate dominatorof a block is the parent of the
block in the dominator tree. The start block of a method dominates all other blocks. Therefore,
it is the root of the dominator tree.

There is an iterative O(n2) solution for calculating the dominators of all nodes of a graph.
It starts by initializing the set of dominators of each node to the full set of all nodes. Then
the algorithm reduces the dominator set of the root node to only the root node itself. The
algorithm uses the following rule to iteratively update thedominator sets of the other nodes: The
dominator set of a node is the conjunction of the dominator sets of its predecessors. If a node
dominates all predecessors of another node, it must also dominate that node too. Additionally,

70

Compiler Instrumentation Building Dominator Tree

the node itself is always kept in its the dominator set. The algorithm iteratively updates the
dominator sets until a full iteration over all nodes brings no further changes.

Lengauer and Tarjan [19] present a faster algorithm for calculating the immediate dominators,
which runs in O(n*log(n)) time. First, the algorithm numbers the nodes of the graph based on
a depth-first search traversal and stores the parents of a node in the depth-first search tree. The
depth first tree has some special properties that are useful when calculating the dominators. A
parent node in the depth-first tree has a lower number than allits children. As the dominator of
a node is always reached on any path from the root to the node, it must also be reached by the
depth-first search algorithm before the node itself is reached. There cannot be another way to
reach the node. Therefore, the dominator of a node is an ancestor of the node in the depth-first
search tree.

The second step of the algorithm is to calculatesemi-dominators, i.e. approximate dominators
that are later used to calculate the immediate dominators. Dominator candidates for a node are
all nodes that are ancestors of the node in the depth-first search tree. Another node cannot be the
dominator of that node, because there would be another path from the root to that node using
the ancestors of the depth-first tree. When a node has only onepredecessor, this predecessor
must be the dominator of that node. There cannot be a path thatreaches that node without using
the edge from its predecessor to the node.

When there are two possible paths from node a to node b, then the depth-first search numbers of
the second path are all higher than the numbers of node b. The semi-dominator of a node is the
node closest to the root that is the start of two possible paths to that node. Figure 7.3 shows the
relations between a node, its semi-dominator and the root node. The nodes between the node
and its semi-dominator in the depth-first search tree cannotbe dominators of the node, because
there exists an alternative path from the root to the node.

...

Node

Semi-Dominator

...Path in DFS tree
Any path, all nodes with

higher DFS numbers

Root Node

...

Figure 7.3: Calculation of the semi-dominators.

The semi-dominator is not necessarily the real immediate dominator of a node, because there
might exist a path from the root node to one of the nodes between the node and the semi-
dominator, which does not contain the semi-dominator. The dominator is always the semi-
dominator, the root, or it lies between the semi-dominator and the root in the depth-first search
tree.

71

Compiler Instrumentation Building Dominator Tree

Node

Semi-Dominator

Root Node

...

Node with minimum

semi-dominator

...

...

Case 1: Minimum semi-dominator = semi-dominator

Case 2: Minimum semi-dominator < semi-dominator

Figure 7.4: Calculation of the dominators.

Figure 7.4 shows the two cases that arise when calculating the immediate dominator of a node.
First, the algorithm runs through the nodes between the nodeand its semi-dominator in the
depth-first search tree. It selects the node that has the semi-dominator with the minimum depth-
first search number. If this minimum semi-dominator is equalto the node’s semi-dominator,
then the node’s dominator is equal to the node’s semi-dominator. Otherwise, the node’s domi-
nator is equal to the dominator of the node with the minimum semi-dominator.

1

6 2

3

4

1 / 1

5 / 1 2 / 1

3 / 1

4 / 25 5 / 3

1 / 1 / 1

5 / 1 / 1 2 / 1 / 1

3 / 1 / 1

4 / 2 / 15 / 3 / 3

Initial Graph Assigning DFS Number Semi-Dominators Dominators

Figure 7.5: Algorithm for finding dominators applied on an example graph.

Figure 7.5 gives an example of a dominator calculation. First, the nodes are traversed in depth-
first order and get a number assigned. The thick lines represent edges that are also present in
the depth-first search tree. Next, the semi-dominators are calculated. For example, the semi-
dominator of node 3 is the node 1 as there exists a path (1 - 5 - 3)that visits only nodes with a
higher depth-first search number. The last step is the calculation of the immediate dominators
based on the semi-dominators. Node 4 represents a case in which the semi-dominator and the
dominator differs. This is because the node 3 is between the node 4 and its semi-dominator, and
the semi-dominator of node 3 is the node 1, which has a lower number than the semi-dominator

72

Compiler Instrumentation Scheduling

of node 4. There exists an alternative path from the root to node 3 (1 - 5 - 3) that does not use
the semi-dominator node 2. Therefore, the dominator of node4 is equal to the dominator of
node 3, which is the root node 1.

7.4 Scheduling

When scheduling nodes, the dominator tree plays a main role.A node has several input nodes
that form parameters and the result of a node is used by other nodes. Before a node itself is
scheduled, all input nodes need to be evaluated. On the otherhand, a node must be scheduled
before its result is used for the first time. Therefore, it must be scheduled in a block that
dominates all the blocks in which the node is used.

The graph printer uses a scheduling strategy that puts a nodein the latest possible block, i.e. in
the block that dominates all blocks in which the result of thenode is used. First, the dominator
tree is constructed from the dominator information calculated by the algorithm of Lengauer and
Tarjan (see Section 7.3).

Figure 7.6 explains how the common dominator of two blocks iscalculated. First, the dominator
tree is constructed. In this tree, each block is the child of its immediate dominator. Finding the
common dominator of two blocks corresponds to finding the first ancestor of two blocks in the
dominator tree. For example, the common dominator of F and E is the block B. The algorithm
goes from the block F upwards to the root and marks each visited block with a flag. Then, it
goes from the block E up to the root and the first block which hasthe flag set is the common
dominator of the two blocks.

A

B G

C

ED

Initial Graph

H

Dominator Tree

A

B G

CD H

E

F

F

Common Dominator of E and F

A

B G

CD H

E

F

Figure 7.6: Finding common dominators.

The control flow related nodes are already scheduled (see Section 7.2). Now, the other nodes
are scheduled iteratively: Whenever all successors of a node have been assigned to certain
blocks, the node is put into the common dominator of the blocks of its successors. The common
dominator of n blocks is equal to the common dominator of the last block and the common
dominator of the first n-1 blocks.

73

Compiler Instrumentation Adding States

7.5 Adding States

Additional states of the graph can be traced by calling theprintmethod of the printer object of
the current thread. A call to the static methodIdealGraphPrinter::printer() returns
the current printer object orNULL if printing is disabled. Figure 7.7 explains the sequence,
in which calls to the public methods of a graph printer objectare valid. The compiler threads
automatically call the constructor and destructor of theirprinter objects at startup and shutdown
of the VM. For every method, thenew_method function must be called before any graphs are
printed, and theend_method function must be called afterwards. In between, any number of
calls to theprint method are allowed.

Start

constructor
new_method

End

desctructor
end_methodprint

Compile &c char *name

int level

Figure 7.7: Life cycle of anIdealGraphPrinter object.

When calling theprint method, the name and the level of the state must be specified. The
call toprint is ignored when the level set by the user is lower than the level of the state.

Listing 7.2 lists the code necessary to add a new state. TheIdealGraphPrinter object
is obtained by a call to a static function. This function automatically returns the graph printer
object of the current compiler thread. It returnsNULL when printing graphs is disabled. In this
example, the level of the new state is set to 2.

Listing 7.2 Code for adding a state.
IdealGraphPrinter *printer = IdealGraphPrinter::printer();
if (printer != NULL) {
printer->print("New State", 2);

}

74

Chapter 8

Conclusions

In this thesis, a tool for the visualization of the graph datastructure of the Java HotSpotTM

server compiler was presented. It assists at debugging the server compiler and at understanding
optimization steps. The tool allows the analysis of large graphs and has built-in navigation and
filtering possibilities. It clusters the nodes of the graph based on control flow and displays the
graph using a hierarchical layout algorithm. Code in the server compiler allows the user to
generate data for the visualization tool by using a compilerflag.

One of the most challenging problems during the developmentof the tool was to understand
the graph of the server compiler. Its mixture of a control flowand a data dependence graph is
less intuitive than the graph of the client compiler, which clearly separates these two concepts.
The high number of edges of the graph in comparison to the nodecount is prejudicial to a clear
drawing. Difficult to handle are nodes that resemble shared variables such as the node for the
frame pointer and the return address. They are defined in one place, but used very often in the
graph. The visualization tool uses a splitting filter for such nodes.

The first attempts to draw the graph ended up in a confusing scribble, even for small methods.
A lot of time was necessary for incrementally increasing thedrawing by filters and better layout
algorithms. Each of the optimizations contributes a littleto the clarity of the graph. Applying
all of them finally gives an acceptable drawing. The performance was also a big issue, because
the graph of a large Java method can have a high number of nodesand edges. For such a graph,
not only efficient layout algorithms are necessary, but alsoa user interface that allows to focus
on specific parts of the graph.

One of the planned improvements is the enhancement of the drawing performance of the user
interface. Drawing performance is a critical issue, because the graph can contain a few thousand
nodes with multiple slots and more than ten thousand edges with multiple interpolation points.

The Java HotSpotTM compiler group of Sun Microsystems is currently testing thetool on real-
world examples. Based on these testing experiences, the tool will be further enhanced. Con-
cerning the hierarchical layout algorithm, there are plansto integrate it into the official version
of the NetBeans visual library.

75

List of Figures

1.1 Conventions used in the class diagrams. 2
2.1 Screenshot of Xelfi, the ancestor of NetBeans, running with JDK 1.1. 6
2.2 Using lookup, there is no dependency between service user and service provider. 8
2.3 Class diagram of the NetBeans visual library. 10
2.4 Screenshot of the visual library example program duringexecution. 10
3.1 Architecture of the Java HotSpotTM Virtual Machine. 13
3.2 States during the execution of an example method. 14
3.3 Architecture of the Java HotSpotTM server compiler of Sun Microsystems. . . . 16
3.4 Program dependence graph when processingp*100+1. 17
3.5 Graph when processing an empty method. 18
3.6 Graph when processing anif statement. 19
3.7 SafePoint node after parsing 5+x+7. 20
3.8 Identity optimization:(x+0) is transformed tox. 21
3.9 Constant folding:(5+p+7) is transformed to(p+12). 22
3.10 Global value numbering:(x+1)*(x+1) is transformed to(x+1)2. 23
3.11 Nodes that define a counted loop. 24
3.12 Matching and register allocation example. 25
4.1 Architectural overview. 28
4.2 Viewing a graph using the Java application. 30
4.3 The satellite view gives an overview of a graph. 32
4.4 Four functions applied to an example graph. 35
4.5 Bytecode Window showing the Java bytecodes in tree-form. 36
5.1 Dependencies of the NetBeans modules. 38
5.2 Lifecycle of the graph data. 40
5.3 XML file structure. .41
5.4 Data module class diagram. 42
5.5 Display model class diagram. 43
5.6 Layout model class diagram. 44
5.7 Properties and selectors class diagram. 46
5.8 Filters class diagram. 47
5.9 The difference algorithm applied on two example graphs.. 49
6.1 Steps of a hierarchical layout algorithm. 52
6.2 Breaking cycles of an example graph. 54

76

6.3 Assigning layers for the nodes of the example graph. 56
6.4 Calculations when assigning y-coordinates. 58
6.5 Crossing reduction applied on a layer of the example graph. 59
6.6 X-coordinate assignment example. 62
6.7 X-coordinate assignment using the rubber band method. 64
6.8 Recursive cluster layout. 65
6.9 Example for the routing of a backedge. 66
7.1 Compiler instrumentation class diagram. 68
7.2 Steps applied for identifying a block. 70
7.3 Calculation of the semi-dominators. 71
7.4 Calculation of the dominators. 72
7.5 Algorithm for finding dominators applied on an example graph. 72
7.6 Finding common dominators. 73
7.7 Life cycle of anIdealGraphPrinter object. 74

77

Code Listings

2.1 An XML layer file defining an action and hiding a menu item. 7
2.2 Java source code of a visual library program with a label widget and an action. . 11
3.1 Architecture description file extract. 26
5.1 Algorithm for calculating the difference between two graphs. 49
6.1 Algorithm for breaking cycles in a directed acyclic graph. 53
6.2 Algorithm for assigning layers. 55
6.3 Algorithm for creating dummy nodes. 57
6.4 Algorithm for assigning y-coordinates. 58
6.5 Crossing reduction algorithm. 59
6.6 Algorithm for assigning x-coordinates. 61
6.7 Rubber-band algorithm for assigning x-coordinates. 63
7.1 Algorithm for identifying blocks 69
7.2 Code for adding a state. .. . 74

78

Bibliography

[1] A Brief History of NetBeans, URL: http://www.netbeans.org/about/history.html, 2007.

[2] Tim Boudreau, Jaroslav Tulach, and Geertjan Wielenga,Rich Client Programming: Plug-
ging into the NetBeans Platform, Prentice Hall, 2007.

[3] Preston Briggs, Keith D. Cooper, and Linda Torczon,Improvements to Graph Color-
ing Register Allocation, In ACM Transactions on Programming Languages and Systems,
ACM Press, 16, 428-455, 1994.

[4] Preston Briggs, Keith D. Cooper, and L. Taylor Simpson,Value Numbering, Software:
Practice and Experience 27, 6, 701-724, 1997.

[5] Gregory Chaitin,Register Allocation and Spilling via Graph Coloring, In Proceedings of
the 1982 SIGPLAN Symposium on Compiler Construction, ACM Press, 98-105, 1982.

[6] Cliff Click, Global Code Motion/Global Value Numbering, In Proceedings of the ACM
SIGPLAN 1995 Conference on Programming Language Design andImplementation,
ACM Press, 246-257, 1995.

[7] Cliff Click and Keith D. Cooper,Combining Analyses, Combining Optimizations, In ACM
Transactions on Programming Languages and Systems, ACM Press, 17, 181-196, 1995.

[8] Cliff Click and Michael Paleczny,A Simple Graph-Based Intermediate Representation, In
ACM SIGPLAN Workshop on Intermediate Representations, ACMPress , 1995.

[9] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck,
Efficiently Computing Static Single Assignment Form and theControl Dependence Graph,
In ACM Transactions on Programming Languages and Systems, ACM Press, 451-490,
1991.

[10] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren,The Program Dependence Graph
and its Use in Optimization, In ACM Transactions on Programming Languages and Sys-
tems, ACM Press, 9, 319-349, 1987.

[11] Emden R. Gansner, Stephen C. North, and Kiem-Phong Vo,DAG - A Program that Draws
Directed Graphs, In Software, Practice and Experience 18, John Wiley & Sons,11, 1047-
1062, 1988.

79

[12] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-Phong Vo,A
Technique for Drawing Directed Graphs, In IEEE Transactions on Software Engineering
19, 214-230, 1993.

[13] Graph Visualization Software (GraphViz), URL: http://www.graphviz.org, 2007.

[14] Graph Layout Software aiSee, URL: http://www.aisee.com, 2007.

[15] Robert Griesemer and Srdjan Mitrovic,A Compiler for the Java HotSpot Virtual Machine,
In The School of Niklaus Wirth, "The Art of Simplicity", dpunkt.verlag, 133-152, 2000.

[16] Java Platform Standard Edition 7 Source, URL: http://jdk7.dev.java.net, 2007.

[17] Java HotSpot Client Compiler Visualizer, https://c1visualizer.dev.java.net, 2007.

[18] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez, Ken-
neth Russell, and David Cox,Design of the Java HotSpot Client Compiler for Java 6,
Technical Report, 2007.

[19] Thomas Lengauer and Robert E. Tarjan,A Fast Algorithm for Finding Dominators in a
Flowgraph, In ACM Transactions on Programming Languages and Systems,ACM Press,
121-141, 1979.

[20] Stefan Loidl,Compiler Data Flow Visualization, Master’s Thesis at the Johannes Kepler
University Linz, 2007.

[21] Adam Myatt,Pro NetBeans IDE 5.5 Enterprise Edition, Apress, 2007.

[22] NetBeans, URL: http://www.netbeans.org, 2007.

[23] Michael Paleczny, Christopher Vick, and Cliff Click,The Java HotSpot Server Compiler,
In Proceedings of the Java Virtual Machine Research and Technology Symposium, 1-12,
USENIX, 2001.

[24] Eduardo Pelegrí-Llopart and Susan L. Graham,Optimal Code Generation for Expression
Trees: an Application BURS Theory, In Proceedings of the 15th ACM Symposium on
Principles of Programming Languages, ACM Press, 294-308, 1988.

[25] Georg Sander,Graph Layout Through the VCG Tool, In Proceedings of the DIMACS
International Workshop on Graph Drawing, Springer-Verlag, 194-205, 1994.

[26] Georg Sander,A Fast Heuristic for Hierarchical Manhattan Layout, In Proceedings of the
Symposium on Graph Drawing, Springer, 447-458, 1996.

[27] Georg Sander,Visualization of Compiler Graphs (VCG), URL: http://rw4.cs.uni-
sb.de/~sander/html/ gsvcg1.html, 2007.

[28] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha,The Java(TM) Language Specifi-
cation (Third Edition), Prentice Hall, 2005.

80

[29] Tim Lindholm and Frank Yellin,The Java(TM) Virtual Machine Specification (Second
Edition), Prentice Hall, 2007.

[30] uDraw(Graph), URL: http://www.informatik.uni-bremen.de/uDrawGraph, 2007.

[31] Christian Wimmer and Hanspeter Mössenböck,Optimized Interval Splitting in a Linear
Scan Register Allocator, In Proceedings of the ACM/USENIX International Conference
on Virtual Execution Environments, ACM Press, 132-141, 2005.

[32] Thomas Würthinger,Visualization of Java Control Flow Graphs, Bachelor’s Thesis at the
Johannes Kepler University Linz, 2006.

[33] Xelfi, URL: http://tecfa.unige.ch/pub/software/win95/langages/java/xelfi, 2007.

81

	Deckblatt_english.pdf
	masterthesis.pdf
	Introduction
	Class Diagram Legend
	Related Work

	NetBeans
	Why NetBeans?
	History
	Modular Design
	Filesystem
	Lookup
	Visual Library

	Server Compiler
	The Java HotSpotTM VM
	Client versus Server Compiler
	Java Execution Model

	Architecture of the Server Compiler
	Ideal Graph
	Data Dependence
	Empty Method
	Phi and Region Nodes
	Safepoint Nodes

	Optimizations
	Identity Optimization
	Constant Folding
	Global Value Numbering
	Loop Transformations

	MachNode Graph
	Register Allocation

	User Guide
	Generating Data
	Viewing the Graph
	Navigating within the Graph
	Control Flow Window
	Filters
	Bytecode Window

	Visulializer Architecture
	Module Structure
	Graph Models
	XML File Structure
	Display Model
	Layout Model

	Properties and Selectors
	Filters
	Difference Algorithm

	Hierarchical Graph Layout
	Why Hierarchical?
	Processed Steps
	Breaking Cycles
	Assign Layers
	Insert Dummy Nodes
	Assign Y-Coordinates
	Crossing Reduction
	Assign X-Coordinates
	DAG Method
	Rubber Band Method

	Cluster Layout
	Drawing of Backedges
	Optimization for Large Graphs

	Compiler Instrumentation
	Overview
	Identifying Blocks
	Building Dominator Tree
	Scheduling
	Adding States

	Conclusions

