
UNIVERSITÄT LINZ
JOHANNES KEPLER

JKU

Technisch-Naturwissenschaftliche

Fakultät

Dynamic Code Evolution for Java

DISSERTATION

zur Erlangung des akademischen Grades

Doktor

im Doktoratsstudium der

Technischen Wissenschaften

Eingereicht von:

Dipl.-Ing. Thomas Würthinger

Angefertigt am:

Institut für Systemsoftware

Beurteilung:

Univ.-Prof. Dipl.-Ing. Dr. Dr.h.c. Hanspeter Mössenböck (Betreuung)
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Abstract

Dynamic code evolution allows changes to the behavior of a running program. The pro-
gram is temporarily suspended, the programmer changes its code, and then the execution
continues with the new version of the program. The code of a Java program consists of
the definitions of Java classes.

This thesis describes a novel algorithm for performing unlimited dynamic class redefi-
nitions in a Java virtual machine. The supported changes include adding and removing
fields and methods as well as changes to the class hierarchy. Updates can be performed
at any point in time and old versions of currently active methods will continue running.

Type safety violations of a change are detected and cause the redefinition to fail grace-
fully. Additionally, an algorithm for calling deleted methods and accessing deleted static
fields improves the behavior in case of inconsistencies between running code and new class
definitions. The thesis also presents a programming model for safe dynamic updates and
discusses useful update limitations that allow a programmer to reason about the semantic
correctness of an update. Specifications of matching code regions between two versions of
a method reduce the time old code is running.

All algorithms are implemented in Oracle’s Java HotSpot VM. The evaluation shows
that the new features do not have a negative impact on the peak performance before or
after a dynamic change.

Kurzfassung

Dynamische Evolution ermöglicht den Eingriff in das Verhalten eines laufenden Pro-
gramms. Das Programm wird temporär angehalten, der Programmierer verändert den
Quelltext und dann wird die Ausführung mit der neuen Programm-Version fortgesetzt.
Der Quelltext von Java-Programmen besteht aus den Definitionen von Java-Klassen.

Diese Arbeit beschreibt einen neuartigen Algorithmus für die unlimitierte dynamische
Neudefinition von Java-Klassen in einer virtuellen Maschine. Die unterstützten Änderun-
gen beinhalten das Hinzufügen und Entfernen von Feldern und Methoden sowie Veränder-
ungen der Klassenhierarchie. Der Zeitpunkt der Veränderung ist nicht beschränkt und die
aktuell laufenden Ausführungen von alten Versionen einer Methode werden fortgesetzt.

Mögliche Verletzungen der Typsicherheit werden erkannt und führen zu einem Abbruch
der Neudefinition. Ein Algorithmus für das Aufrufen von gelöschten Methoden und für
den Zugriff auf gelöschte statische Felder verbessert das Verhalten im Fall von Inkonsis-
tenzen zwischen den gerade laufenden Methoden und den neuen Klassendefinitionen. Die
Arbeit präsentiert auch ein Programmiermodell für sichere dynamische Aktualisierungen
und diskutiert nützliche Limitierungen, die es dem Programmierer ermöglichen, über die
semantische Korrektheit einer Aktualisierung Schlussfolgerungen zu ziehen. Die Angabe
von gleichartigen Quelltextbereichen zwischen zwei Versionen einer Methode reduzieren
die Zeit, in der noch alte Methoden ausgeführt werden.

Alle Algorithmen sind in der Java HotSpot VM von Oracle implementiert. Die Evalu-
ierung zeigt, dass die neuen Fähigkeiten weder vor noch nach einer dynamischen Ver-
änderung einen negativen Einfluss auf die Spitzenleistung der virtuellen Maschine haben.
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Chapter 1

Introduction

1.1 Dynamic Changes to Programs

Researchers investigated the problem of updating the code of a running program early

in programming history [1]. The research focused on procedural programming languages,

where a dynamic update replaces the implementation of functions and conversion routines

update the data sections. With the advent of object-oriented languages, class member

declarations and subtype relationships became important parts of a program’s behavior.

A true dynamic code update now also has to include object layout changes and changes

to the semantics of method calls due to a new class hierarchy.

Using a virtual machine (VM) to execute programs helps solving these new challenges.

The VM increases the possibilities for dynamic code evolution because of the additional

abstraction layer between the executing program and the hardware. The main tasks of

this intermediate layer are automatic memory management, dynamic class loading, and

program verification. The algorithms for dynamic changes to class definitions presented

in this thesis make heavy use of the existing infrastructure of the VM.

In Java, dynamic changes are currently known as hotswapping, because they are re-

stricted to swapping method bodies only. The enhancement of hotswapping to allow

additional kinds of dynamic changes is however a high priority for many Java developers.

This is shown by the votes for requests for enhancements on the official Oracle website

(Bug ID: 4910812) [2], where the request for enhancing hotswapping is among the requests

with the most votes.
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class A {

protected int x;

public final int foo() {

return x;

}

}

class B {

}

class A’ {

protected int x;

public int foo() {

return x;

}

}

class B’ extends A’ {

private int y;

public int foo() {

return x + y;

}

}

1

2

3

4

5

6

7

8

9

10

11

12

13

Old Program New Program

Figure 1.1: An example for a change to an object-oriented program.

Figure 1.1 shows a motivational example of redefining two Java classes with new versions.

The new version defines a new supertype for class B. Instead of inheriting from the Object

class, B now inherits from A. Additionally, B has a new method foo that overwrites the

foo method of A. At the same time, the foo method of A is no longer declared final.

Changes to classes may depend on each other such that they have to be carried out

together. In the example, the change of B cannot be performed without the change of

A, because the new version of B overrides a method that was declared final in the old

version of A. Changing first A and then B would be a valid order. However, such an

order cannot be found in the case of cyclic dependencies where an additional change in A

depends on a change in B. Therefore, the class redefinition in Java must be performed as

an atomic replacement of a set of classes.

Changes to class definitions may have implications on already existing object instances

of those classes. In the example, the instances of B get two new fields: One field x inherited

from A and another field y that was added to class B. Therefore, the size and the object

layout of existing instances of B change.

The goal of this thesis is to explore the problem of dynamically changing definitions of

statically typed, object-oriented programs. The thesis presents an algorithm for efficient

implementation of arbitrary changes to loaded classes in a VM. Additionally, it discusses

semantic correctness of changes and presents possible applications of the new dynamic

update features. The VM for unlimited class redefinition that was developed as part of

this thesis is called Dynamic Code Evolution VM (DCE VM).
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Swap Method 

Bodies

Add Add

Remove Remove

Add

Remove

Methods Fields Supertypes

Binary compatible change Binary incompatible change

Figure 1.2: Different levels of code evolution.

1.2 Levels of Evolution

Several classifications of dynamic changes have been published [3, 4]. Based on our ex-

periences of impact on the complexity of the implementation within the VM, we propose

the distinction of four levels of code evolution as shown in Figure 1.2:

Swapping Method Bodies: Modifying only the bytecodes of a Java method without

changing other parts of the class definition is the simplest possible change. There

are no references from other classes to the actual bytecodes of a method, so the

change can be done in isolation from the rest of the system. This is the only kind of

change that is implemented in the current product version of the Java HotSpot VM.

It is known as hotswapping.

Adding or Removing Methods: The VM maintains a data structure for every class

that contains a virtual method table and an interface method table (see Section 2.3).

Changing the set of methods of a class can imply changes to the entries and the size

of those tables. Additionally, a change in a class can have an impact on the method

tables of a subclass (see Section 3.2). The table indexes of methods may change and

make machine code that contains fixed encodings of them invalid (see Section 3.6).

Machine code can also contain direct references to existing methods that must be

invalidated or recalculated.

Adding or Removing Fields: Until this level, the changes only affected the metadata

of the VM. Now the object instances need to be modified according to the changes
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in their class or superclasses. The VM may need to convert the old version of an

object to a new version that has different fields and a different size (see Section 3.4).

If object sizes increase, we use a modified version of the mark-and-compact garbage

collector (see Section 3.5). If they decrease or stay the same, no garbage collection

is necessary. Added fields need to be either initialized with default values, or by

running custom code for every existing instance of a redefined class. Similarly to

virtual method table indexes, field offsets are used in various places in the interpreter

and in the compiled machine code. They need to be correctly adjusted or invalidated.

Adding or Removing Supertypes: Changing the set of declared supertypes of a class

is the most complex dynamic code evolution change for object-oriented languages.

For a class, this can mean changes to its methods as well as its fields. Additionally,

the VM class objects need to be modified in order to reflect the new supertype

relationships. Removing a supertype requires additional type safety checks and is

not possible in all cases (see Section 4.2).

When a developer changes the signature of a method or the type or name of a field, the

VM sees the change as two operations: a member being added and another being deleted

from the class. Modifications of interfaces can be treated similarly to modifications of

classes. Adding or removing an interface method affects subinterfaces and the interface

tables of classes which implement that interface, but has no impact on instances. Changes

to the set of superinterfaces have a similar effect.

Another possible kind of change in a Java class is modifying the set of static fields or

static methods. This does not affect subclasses or instances, but can invalidate existing

machine code (e.g., when this code contains static field offsets). Additionally, a class

redefinition algorithm needs to decide how to initialize the static fields: either run the

static initializer of the new class or copy values from the static fields of the old class.

Changes to Java programs can also be classified according to whether they maintain

binary compatibility between program versions or not [5]. The light grey areas of Figure 1.2

represent binary compatible changes; the dark grey areas indicate binary incompatible

changes. With binary compatible changes, the validity of old code is not affected. We

define old code as bytecodes of methods that have either been deleted or replaced by

different methods in the new version of the program. When an update is performed

at an arbitrary point, a Java thread can be in the middle of executing such a method.

Therefore, old code can still be executed after performing the code evolution step. Binary
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incompatible changes to a Java program may break old code. Chapter 4 discusses possible

problems and the solution chosen for the DCE VM.

1.3 Applications and their Requirements

Dynamic code evolution can be used in different domains with their own sets of require-

ments. We distinguish four main applications of dynamic code evolution:

Accelerated Development. When a developer frequently makes small changes to an

application with a long startup time, dynamic code evolution significantly increases

productivity. The developer can modify and recompile the program after suspending

it at a breakpoint. Then, he can resume the program including the modifications

instead of stopping and restarting it. For example, modifying the action performed

by a button in a graphical user interface does no longer mean that the whole program

has to be closed. The main requirement is that the code evolution step can be carried

out at any time and the programmer does not need to perform additional work, e.g.,

provide transformation methods for converting between the old and the new version

of object instances or specify update points. The performance of program execution

is also important as an application could do intensive calculations before the first

breakpoint is reached or between two consecutive breakpoints.

Long-Running Server Applications. Critical server applications that must not be

shut down can only be updated using dynamic code evolution. The server appli-

cations must not be slowed down before or after performing the code evolution. The

main focus lies on safety and correctness of an update. We believe that this can

only be achieved by designing an application with code evolution in mind and by

performing the update only at certain points in time. Also, not using all possible

kinds of updates helps to obtain safety.

Dynamic Languages. There are various efforts to run dynamic languages on statically

typed VMs (see for example [6]). Dynamic code evolution is a common feature of

dynamic languages. VM support for this feature therefore simplifies the implemen-

tation of dynamic languages on statically typed VMs. The requirement here is that

small incremental changes (e.g., adding a field or method) can be carried out fast.
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Dynamic Aspect-Oriented Programming. Dynamic code evolution is also a feature

relevant for aspect-oriented programming (AOP). There are several dynamic AOP

tools that use the current limited possibilities of the Java HotSpot VM for dynamic

code evolution [7, 8, 9]. Those tools can immediately benefit from enhanced code

evolution facilities.

The focus of our implementation is on supporting accelerated development. In this the-

sis, we broaden the view by also approaching the safety challenges when updating long-

running server applications and discuss a programming model for safe updates (see Chap-

ter 5). We present a case study that combines the DCE VM with a dynamic AOP tool

(see Section 6.3). Support for small incremental changes is discussed as possible future

work (see Section 9.2).

1.4 State of the Art

This section briefly describes two commonly used approaches to dynamic class redefinition

for Java. For a detailed comparison of our work with other systems, see Chapter 8. The

two main solutions for Java available at the time of writing this thesis are:

Hotswapping. The current version of the Java HotSpot VM has the ability to swap the

definitions of method bodies at run time. This is based on the work done by Dim-

itriev [5, 10]. Many Java debuggers have a command for applying code changes made

during a debugging session that triggers hotswapping. The program will continue

running with the new method definitions. Old methods that are currently active

will continue to run the old version. The main limitation is that it is only allowed

to swap the definition of method bodies. Changing any other part of the class defi-

nition requires a restart. In particular, hotswapping does neither support adding or

removing of methods or fields nor changing the supertypes of a class.

Bytecode Rewriting. Based on the ability to swap method bodies, bytecode rewriting

techniques try to simulate more advanced class redefinition. Additional indirections

are inserted in order to intercept the normal semantics of Java bytecodes. For

example, an instance field access is replaced by a method call that looks up the field

value from a hash table. While this relaxes some of the restrictions of hotswapping,

bytecode rewriting techniques suffer from bad performance due to the additional
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indirections. Also, Java stack traces and debugger information do not reflect the

original program but contain additional entries due to introduced artificial methods.

This thesis advances the state of the art for dynamic code evolution for Java. To the

best of our knowledge, the DCE VM is the first VM for a statically typed, object-oriented

language that supports unlimited class redefinition capabilities without compromising ex-

ecution performance. For a detailed list of contributions, see Section 9.1.

1.5 Project Context and Activities

The thesis was created as part of the long-running and successful research collaboration be-

tween the Institut for System Software (formerly Institute for Practical Computer Science)

at the Johannes Kepler University Linz and Oracle (formerly Sun Microsystems). The

collaboration started in 2000 when Hanspeter Mössenböck enhanced the HotSpot client

compiler with an intermediate representation in static single assignment (SSA) form [11].

Since then, various research papers and theses have been published in the area of compiler

construction and virtual machines. Here is a list of selected publications:

• Michael Pfeiffer and Christian Wimmer implemented a linear scan register alloca-

tor [12, 13].

• Thomas Kotzmann explored an algorithm for escape analysis [14, 15].

• Christian Wimmer created a version of the VM that supports object co-location [16],

object inlining [17], and array inlining [18]. His work is summarized in a journal

publication [19].

• The author of this thesis developed an array bounds check elimination algorithm

that optimistically moves bounds checks out of loops and groups checks [20, 21].

Additionally, he created a visualization tool for the program dependence graph of

the Java HotSpot server compiler [22, 23].

• Christian Häubl published optimizations for the representation of String objects [24].

• Lukas Stadler created an experimental VM version that supports continuations and

coroutines [25, 26].
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• A visualization tool for the client compiler was developed as a combined effort of

several student projects [27].

The author’s work on dynamic code evolution started in 2008 as part of the collaboration

with Sun Microsystems. In summer 2008, the author worked as an intern at Sun Labs

as a member of the Maxine VM [28] team. He implemented a debugging client for the

Maxine VM [29]. In February 2009, the first open source version of the DCE VM was

published. In summer 2009, the author interned again at Sun Labs working on a Java

port of the HotSpot client compiler and compiler-runtime separation [30]. In September

2009, the current state of the dynamic code evolution research was presented at the JVM

Language Summit in Santa Clara, CA.

In March 2010, Guidewire (an insurance software company heavily using Java) joined

the project by funding two research assistants (Kerstin Breiteneder and Christoph Wim-

berger). They helped stabilizing the DCE VM by writing additional test scenarios and

implemented dynamic mixins for Java (see Section 6.2). In April 2010, the project was

enriched by starting a collaboration with Walter Binder and his Dynamic Analysis Group

from the University of Lugano. Their dynamic aspect-oriented programming tool HotWave

benefits from the dynamic evolution capabilities of the DCE VM and the combination of

the two tools opens up new possibilities (see Section 6.3). In June 2010, the implementa-

tion reached an important milestone by passing all of Oracle’s internal class redefinition

tests, in addition to an increasing set of self-written unit tests.

In September 2010, the dynamic code evolution project was presented for the first time

to a broader audience at the JavaOne conference in San Francisco, CA. At the same time,

the author launched a website for the DCE VM with links to the source code and binaries

for easy installation. The website immediately received significant attention in terms of

page views and binary downloads.

Several papers have been published covering different aspects of the author’s research on

dynamic code evolution. This thesis summarizes and extends the algorithms and results

presented in these publications:

• Conference paper about the class redefinition algorithm [31] (see Chapter 3), pub-

lished in the Proceedings of the 8th International Conference on the Principles and

Practice of Programming in Java (PPPJ’10).



9

• Workshop paper on the design of the dynamic aspect-oriented programming tool

built on top of the DCE VM [32], published in the Proceedings of the 7th ECOOP’10

Workshop on Reflection, AOP and Meta-Data for Software Evolution.

• Tool demonstration paper outlining two use cases of the DCE VM [33], published

in the Proceedings of the 9th International Conference on Generative Programming

and Component Engineering (GPCE’10).

• Journal paper extending the base algorithm with performance improvements and

safe binary incompatible changes [34] (see Chapter 4), currently under review for

publication in the journal Science of Computer Programming.

1.6 Structure of the Thesis

Chapter 2 gives an introduction to the Java HotSpot VM with a focus on the parts modified

for the DCE VM. Chapters 3 to 5 comprise the main body of this thesis, which is divided

into three parts: Chapter 3 describes the algorithm developed for the core functionality.

Chapter 4 discusses problems due to changes that remove class members or supertypes

and presents the solutions chosen for the DCE VM. Safe update regions are introduced in

Chapter 5. This section also presents restrictions necessary to guarantee safety properties

of a class redefinition.

Chapter 6 describes three case studies of applications of the DCE VM: A modified

NetBeans version to support on-the-fly GUI development, a prototype implementation of

dynamic mixins for Java, and a dynamic aspect-oriented programming tool. Chapter 7

gives a performance and a functional evaluation of the DCE VM. Chapter 8 discusses

related work and Chapter 9 lists the contributions, discusses future work, and concludes

the thesis.





Chapter 2

The Java HotSpot VM

The algorithms described in this thesis were being developed on top of the current pro-

duction version of Oracle’s Java HotSpot VM. This section presents the main components

of the HotSpot VM with a focus on the parts that are most relevant for class redefinition.

The HotSpot VM is an open source production-quality VM that executes Java byte-

codes. It forms part of the OpenJDK project and is actively developed by Oracle. The

name derives from its main characteristic: Instead of optimizing the whole program, it

focuses on frequently executed “hot spots” in the code. It is available for a wide variety of

operating systems (Solaris, Windows, Linux, . . . ) and for different processor architectures

(IA32, AMD64, SPARC, . . . ). The machine code examples of this section focus on the

AMD64 version of the VM.

Figure 2.1 shows the components of the VM that were adapted for dynamic code evo-

lution. The Java bytecodes (see Section 2.1) represent the executed Java program. At

first, all bytecodes are interpreted (see Section 2.5). When the invocation frequency of

a method exceeds a predefined threshold, the bytecodes of the method are compiled to

machine code. Further calls to the method then target the machine code and execute

faster. At the start of the VM, the user can choose between two compiler configura-

tions: The client compiler performs light-weight optimizations and is therefore suitable

for short-running client applications whose startup time matters. The server compiler

performs heavy-weight optimizations and is suitable for long-running server applications.

Both compilers use optimistic assumptions that may later be invalidated (e.g., by a

newly loaded class). Therefore, it is necessary that compiled code can be deoptimized [35]:

The execution of this code is resumed in the interpreter. In order to be able to opti-
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Figure 2.1: Main components of the Java HotSpot VM.

mize methods with long-running loops, the VM also supports the opposite mechanism:

Transferring execution of a method from the interpreter to the compiler, also known as

on-stack-replacement [36]. The garbage collector enables automatic memory management

(see Section 2.7). Unreachable Java objects are collected and removed from the heap.

Java classes are dynamically loaded at run time (see Section 2.2). Class loaders are

responsible for providing the bytecodes of a class, whenever it is necessary to use a class

while executing a Java program. The VM class objects are stored in the system dictionary

(see Section 2.3 and Section 2.4). The class redefinition mechanism is responsible for

replacing the definition of loaded classes (see Section 2.8). It is part of the HotSpot VM

since version 1.4, but it is limited to only change the bodies of methods. This thesis

extends the mechanism to allow arbitrary changes.

2.1 Java Bytecodes

Java source files are compiled to Java class files (e.g., with the javac command line

tool). The class files contain a compressed and platform-independent description of the

Java class. When compiling method bodies, the structured Java control flow (e.g., for,

while, or if) is converted to conditional jump bytecodes. Also, the javac compiler

transforms several Java language constructs into more low-level constructs to simplify their

implementation in the VM. Such Java language features include generics, enumerations,

the finally block, and variable length parameter lists.
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0: aload_0

1: getfield

4: iconst_2

5: imul

6: ireturn

Class

Bytecodes of get() Constant Pool

Description

“Test”Name

“x”

“I”

Name

Type

class Test {

int x;

int get() { return x * 2; }

}

Figure 2.2: A Java method and its corresponding bytecodes and referenced constant pool

entries.

A class file contains a constant pool that is organized as a symbol table of the class.

Java bytecodes reference constant pool entries when their specification requires additional

parameters (e.g., a field or a method description). A constant pool entry can be referenced

by multiple bytecodes. Also, it can reference other constant pool entries. This way the

size of the class file remains small.

Figure 2.2 shows a sample Java class with a field x and a method get. The method has

one local variable: The receiver (i.e., the this pointer) is stored at the local variable with

index 0. The bytecodes of the method operate on an execution stack where the inputs to

a bytecode are taken from the stack and the result is pushed onto the stack.

The first bytecode is aload 0 and pushes the value of the local variable with index 0

(i.e., in this case the receiver) onto the top of the stack. The getfield instruction

pops the object instance from the stack and pushes the value of the accessed field. The

specification of the field is provided as a reference to a constant pool entry. This entry

points to two other entries: One for the field holder and one for more information about

the field. The entry for the field holder finally points to a text entry containing the name

of the class. The other entry is divided into one pointer to the field name “x” and one

pointer to the field type, specified as the shortcut “I” for int.

After the execution of the iconst 2 bytecode, two values are on the stack: The value

of the field and the constant 2. Those two values form the input for the imul instruction

that pops two values from the stack and pushes the result. The ireturn instruction

finally returns the value that is on top of the stack.
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allocated loaded linked being initialized

fully initializedinitialization error

Figure 2.3: Initialization states when loading a Java class in the HotSpot VM.

2.2 Class Loading

Java classes are dynamically loaded while the program is running. When the interpreter

finds a constant pool entry referring to a class name, it asks the runtime to resolve the

name to a VM class object. The runtime delegates the task of finding the binary data of

a class to a class loader. The class loader can then either try to find a Java class file on

the local hard drive or retrieve the data from a different source (e.g., a network stream).

Class loaders form a tree hierarchy with the initial (bootstrap) class loader at the root. A

class loader first delegates the search for the class to its parent class loader. Only if the

parent class loader cannot find the class, it tries to load the class itself.

Before the class bytes are deserialized, the VM notifies any registered class file trans-

formers of the java.lang.instrument API (see Section 2.8.3). They may modify the

class bytes before the new class is loaded. Then, the VM class objects holding VM specific

data about the Java class are allocated. Figure 2.3 shows that this is the first initialization

state of a class. The VM parses the class bytes and adds the VM class object to the type

hierarchy (see Section 2.3). Now the state of the class is advanced to loaded.

In the linking phase, the methods of the class are verified. The VM must make sure

that malicious bytecodes cannot cause security problems. The Java program could be

loaded from an untrusted network source and it is therefore necessary to guarantee that

the program cannot escape the Java security model. The verifier checks that the operands

of every Java bytecode have the correct type (e.g., that a number is not misused as an

object pointer). The verifier also checks subtype relationships (e.g., in case of assigning a

value to a reference field). This subtype check can trigger loading of other classes. After

successful verification, the class is marked as linked.

The next step is that the newly loaded class is being initialized. The VM makes sure

that the superclass is initialized and then calls the static initializer. If the static initializer



15

Super

Primary super 1

Primary super ...

Primary super 8

Secondary supers

Secondary super 1

Secondary super ...

Secondary super n

Java mirror

Subclass

Next sibling

VM class object

Java fields ...

VM class object

java.lang.Class object

Object array

Virtual method table

Static fields

Instance pointer maps

Interface method table

Start of embedded tables

Points to first subclass

Points to next subclass,

forming a linked list

… single value

… embedded vector

Access modifiers

Name

Figure 2.4: VM class object with embedded tables.

runs without exception the class is fully initialized. Otherwise an initialization error is

reported.

2.3 Type Hierarchy

For every loaded class the VM maintains a class object that is linked with other class

objects forming a type hierarchy. Figure 2.4 shows the structure of a VM class object.

Most Java classes have only few supertypes, but the number of supertypes can be up to

216 implemented interfaces plus one superclass. The first supertype is stored as a direct

field, the next 8 supertypes as an embedded vector, and for classes exceeding 8 supertypes

an extra object array is allocated. The first loaded subtype of a class is referenced by a

direct pointer, additional subtypes form a linked list of siblings. The Java mirror is the

java.lang.Class instance for reflective access to the class. It contains a reference back

to the VM class object for fast access.

The class object contains four additional arrays that are embedded so that they can be

accessed without additional memory indirection:
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Virtual method table: A table with one entry for every method that can be overwrit-

ten in subclasses (i.e., for every method that is not declared private or final).

Additionally, the table starts with one entry for every virtual method table entry of

the superclass. If a class B overrides a method of a superclass A, the corresponding

method table entry in B differs from that in A, otherwise they are the same.

Interface method table: This table contains one subtable per implemented interface.

Each subtable contains one entry per interface method, which references the method

of the class that implements the interface method.

Static fields: The static fields are divided into two parts: Static pointer fields that need

to be processed for garbage collection and static primitive fields. The values of the

fields are stored directly in the VM class object thus speeding up static field accesses.

Instance pointer map: A bitmap tells the garbage collector which heap words in in-

stances of this class are pointers. Knowledge of the exact location of pointers is a

prerequisite for precise garbage collection.

2.4 System Dictionary

The system dictionary is used to store the VM class objects for all currently loaded classes.

When the compiler, the interpreter, or the verifier finds a constant pool entry with a class

name, it tries to look up the class in the system dictionary. If the class is not found, the

VM triggers class loading.

The dictionary is organized as a hash table with entries as shown in Figure 2.5. An entry

is identified by the name of the class and the class loader. The hash index is computed

using the identity hash codes of those two objects. The identity hash code of the name

can be used, because the VM always uses the same objects for two identical class names.

The entry itself contains a reference to the VM class object, a reference to the class loader,

and optionally a list of protection domains. A protection domain can be used to restrict

access to a Java class.

Java classes are loaded in parallel to the running application. Therefore, the VM needs

to prevent possible race conditions when multiple threads try to define the same class.

This is achieved by using the placeholder hash table: Before loading a new class, a thread

checks whether a placeholder entry for the given class exists. If there is no such entry,
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Figure 2.5: The system dictionary that manages all loaded Java classes.

the thread places a new entry into the placeholder hash table. If the thread finds such an

entry, it knows that another thread is currently loading the class and waits for the other

thread to finish the operation. After loading a class, the placeholder entry is removed

and a normal entry is added to the dictionary. Possibly waiting threads are notified when

the class becomes available. Before checking or modifying the placeholder table, a global

system dictionary lock is acquired.

2.5 Template Interpreter

The HotSpot VM contains two interpreter implementations: One interpreter written in

C++ and one that generates machine code templates for all Java bytecodes that can oc-

cur in Java class files. The advantage of the C++ interpreter is the better portability,

because its core part can be compiled for any platform supported by a C++ compiler.

The template interpreter however is faster, because the Java bytecodes are executed us-

ing handcrafted machine code. It is the default configuration and works on the main

architectures supported by the VM (IA32, AMD64, and SPARC).

Figure 2.6 shows the calling conventions and the stack frame layout of the interpreter.

Before invoking an interpreted method, the arguments are pushed onto the machine stack.

Executing the AMD64 call instruction automatically pushes the return address. On

method entry, the interpreter moves the return address above the area of the local vari-

ables. This is necessary, because the parameters are accessible as locals and should there-
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Figure 2.6: Interpreter calling convention, frame layout, and return convention.

fore be adjacent to any additionally reserved locals. Before returning from a method, the

return value replaces the parameters as shown on the right side of the figure.

There are two frequently accessed values cached in registers: r13 is a pointer to the

memory location of the current bytecode that is incremented as the interpreter executes

the method. r14 is a pointer to the first local variable and is used by the bytecodes that

load and store local variables. The interpreter has utility methods for storing and restoring

the values of those registers. This is necessary, when the interpreter calls runtime methods

that may destroy register values.

The interpreter frame has three pointers to method-specific objects for fast access:

A pointer to metadata about the executed method, a pointer to an object where the

interpreter should store profile information, and a pointer to the constant pool cache. The

profile information is only used in the server compiler configuration. In this configuration,

the interpreter saves branch target probabilities and dynamic types of values (e.g., for

the receiver at invocation bytecodes). The compiler can then use this information for

optimistic assumptions (e.g., that a certain code path is never executed). The constant

pool cache saves information about resolved field accesses and method invocations. An

uninitialized constant pool cache entry for a field access bytecode points to the constant

pool entry that specifies the name of the field. Looking up the field offset based on the

name is however a slow operation. Therefore, the interpreter stores the field offset directly

in the constant pool cache entry for fast subsequent field access. For method invocations,
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it caches either a direct pointer to the target method, a virtual method table index, or an

interface method table index.

The topmost element of the expression stack is the top of stack (TOS) element. The

interpreter uses TOS caching, where this element is kept in a register between bytecodes.

In case of the AMD64 template interpreter, the TOS register is xmm0 for floating point

values and rax for all other values. The TOS type specifies the type of the value that

is currently stored in the TOS register. This can either be a Java primitive type (byte,

boolean, char, short, int, long, float, or double), an object reference, or none (i.e., the TOS

register does not contain a value). A bytecode template has a TOS input type (i.e., the

type of the value that is expected in the TOS register) and a TOS output type (i.e., the

type of the value that is put into the TOS register). For every bytecode template, the VM

generates an entry for every TOS type that maps the input value to the expected TOS

input type. A separate bytecode dispatch table for every TOS type points to those typed

entries. After executing a bytecode, the interpreter creates the dispatch code using the

table corresponding to the TOS output type of the bytecode.

Figure 2.7 shows two sample bytecode templates: One for iadd and one for dup. The

iadd template has the TOS input type int and generates its value again into the TOS

register rax. The template has two entry points: One where the first input value is in

the TOS register and another one where it is on the stack. The input value must be

an int value, therefore the dispatch table for TOS=Object has no pointer to the iadd

template. The verifier guarantees that the input types for every bytecode are correct. The

second parameter is retrieved from the machine stack using a popq instruction. The next

bytecode is loaded into rbx using the bytecode address register r13. After incrementing

the bytecode address, the int dispatch table and the retrieved bytecode is used for looking

up the entry of the next template.

The dup template does not require a TOS input and also does not produce its value

into the TOS register. Its entry for TOS=none gets the input value from the stack and

pushes it again. There are entries for the different possible TOS values that translate

to the general entry by pushing the TOS register onto the stack. The dispatch after the

bytecode is then performed using the dispatch table for TOS=none.

The interpreter rewrites bytecodes when it has more specific information about them.

An example is the getfield bytecode. The general version does not know the type of

the retrieved value, but after resolving the field, the type is fixed. The bytecode is then
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Figure 2.7: Interpreter jump tables and machine code generated for the iadd and the dup

bytecode.

rewritten to a new bytecode that produces its value into the TOS cache register. An

additional optimization of the interpreter is the special handling of known math functions

(e.g., Math.min). Instead of calling the method, it calls a machine code stub that performs

the operation.

2.6 Deoptimization

Java threads can only be stopped at safepoints. Safepoints are, for example, method

call instructions as well as backward jumps (in order to avoid long-running loops without

safepoints). The number of safepoints should be small to reduce execution overhead, but

it should be high enough such that every thread can reach the next safepoint quickly.

Beside the use for deoptimization, safepoints are also used for pausing all threads before

a garbage collection. At every safepoint, the VM knows which machine code locations

contain object pointers, which is a precondition for precise garbage collection.
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At a safepoint, the VM can also change the active execution point of a compiled method

from the current machine code location to the corresponding bytecode position in the

interpreter. This change from compiled code back to interpreted code is called deopti-

mization [35]. The VM constructs a new interpreter frame and sets the values of the local

variables and the expression stack. For every safepoint, the compiler provides a mapping

from machine locations (i.e., registers and stack slots) to interpreter values. In case of

method inlining, more than one interpreter frame is constructed from one compiled frame.

A possible reason for deoptimization is that the compiled code is based on assumptions

that become invalid and therefore executing the compiled code is no longer correct. An

example is a leaf type assumption (i.e., that a certain type has no subclasses). The compiler

can use this assumption, e.g., to convert an instanceof check with the leaf type into

a simple compare instruction. Dynamic class loading could however later invalidate this

assumption by introducing a new subtype. The simple comparison is no longer sufficient

and has to be replaced by a full subtype check. The machine code must no longer be used.

Anyone currently executing the machine code needs to continue executing the method in

the interpreter.

The server compiler uses deoptimization also for placing uncommon traps in the com-

piled code. Instead of compiling a bytecode branch that is rarely or never executed, it

places a deoptimize instruction that jumps to the interpreter if this branch is reached.

The compiler makes such decisions based on branch probability information gathered by

the interpreter. Reducing the number of compiled bytecodes speeds up compilation and

in many cases also produces faster machine code, because the register allocator is not

influenced by the liveness of values in rarely executed code paths.

The assumptions about the class hierarchy and about never executed code paths are

optimistic. Therefore, a mechanism to invalidate the machine code is necessary. If the

method is later again frequently executed in the interpreter, the compiler creates new

machine code for the method.

Deoptimization is only possible for the topmost stack frame, because the interpreted

frame can require a larger stack frame than the compiled frame. Therefore, deoptimization

of a frame that calls another frame is delayed. The VM simply overwrites the machine code

after the currently executed call machine instruction with a jump to the deoptimization

code.
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2.7 Garbage Collector

The VM distinguishes between four different allocation areas: The Java heap, the native

method stack, allocation arenas, and the C heap. Every newly allocated Java object is

put onto the Java heap. Metadata objects of the VM are also allocated on the Java

heap and include a normal Java object header. They are never directly exposed to the

Java application, but they are subject to automatic memory management. Temporary

VM data structures that do not escape the current method are allocated on the native

method stack. Also, data structures that are used for scoping (e.g., for temporary thread

transitions) are allocated on the stack. The compilers use allocation arenas to be able to

deallocate all their temporary objects by freeing the whole arena after compiling a method.

The C heap is only used when all other allocation areas are not suitable. This is because

of the error-prone manual deallocation and the bad performance in case of frequent small

allocations.

Every object on the Java heap follows the layout shown in Figure 2.8. The object header

consists of two heap words: The mark word is used for storing locks on the object and

the identity hash code. If a single heap word is not sufficient, the mark word points to

an extra heap object (e.g., when an object is locked whose mark word is already used for

storing the identity hash code). The second object header word points to another heap

object describing the type of the object. The minimal description available for an object

is its size and the offsets where the object contains pointers, because the garbage collector

requires this information for every object. In case of Java objects, the type word points

to the VM class object that contains additional information (see Section 2.3). There is

one object with a type pointer that recursively points to itself as shown for the right-most

object in Figure 2.8. This object can give the description of itself to the garbage collector.

The Java heap is split into multiple generations. The idea is to separate young objects

from objects that already survived several garbage collections. The generation with young

objects can then be collected more often, thus benefitting from the observation that in
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object-oriented programs young objects often die young [37]. The HotSpot VM uses

three different generations: The young generation, the old generation, and the permanent

generation.

The young generation is divided into a new and an old space. It uses a stop-and-copy

collector where only live objects are copied from the new to the old space and then the

roles of the two spaces are swapped. When an object survives a predefined number of

such young generation collections, it is promoted to the old generation. The permanent

generation is reserved for VM-internal data structures such as the metadata objects and

class file data.

When the old generation is full, the VM triggers a full garbage collection using a mark-

and-compact algorithm. Figure 2.9 shows the four phases of the algorithm.

Mark. The goal of the first phase is to mark all live objects. The VM starts with the

objects referenced by root pointers (e.g., pointers on the execution stack or pointers

to the VM class objects in the system dictionary), marks them as live and then

recursively visits the objects referenced by the marked objects.

Forward Pointers. The VM now sweeps over the heap from the object with lowest to

the object with highest address. Whenever it reaches a live object, it calculates the

object’s destination position after the compaction. The new address of the object is

stored at the position of the object’s mark word. If the mark word of the object is

already in use (e.g., because the object is locked or its identity hash code has been

set), the mark word is backed up. The VM maintains a list of backup entries that

save a pointer to the object and its original mark word.

Adjust Pointers. The VM needs to adjust the target of every pointer on the heap. Every

pointer is updated to point to the forward location of its target. After this phase,

the heap is in an inconsistent state, because the pointers are already adjusted to the

forward location, but the objects are still at their original location.

Compact. In the last phase, the VM copies the objects from their current location to

the forward location. The objects are processed again sequentially starting with the

object with lowest to the object with highest address. Finally, the backup list with

the mark words is used to restore the mark words of the objects.
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Figure 2.9: The mark-and-compact garbage collection algorithm.

There are VM command line options to select other garbage collection strategies that

parallelize the young generation or old generation collection. The algorithms presented in

this thesis are however based on the serial garbage collection configuration that uses the

mark-and-compact garbage collector.

2.8 Triggering Class Redefinition

Since JDK 1.4, the HotSpot VM is capable of redefining classes at run time. The code

integrated into the VM is derived from the work done by Dimitriev [5, 10]. One of the

main use cases of his work is dynamic profiling. The NetBeans IDE includes a Java profiler

that is implemented using class redefinition [38, 39]. The redefinition can be triggered in

three different ways that all result in the execution of the same code within the VM: Via

the native Java Virtual Machine Tool Interface (JVMTI) [40], the Java Debug Interface

(JDI) [41], or the java.lang.instrument API [42].

All three possibilities require an additional agent running within the VM. There is no

way to directly change the definition of a class from within the Java application code. This
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restriction does not have technical reasons, but hints at the fact that class redefinition is

designed for use during debugging of Java applications.

2.8.1 JVMTI

The Java Virtual Machine Tool Interface (JVMTI) provides a native code interface into

the VM that allows developers to install an agent for monitoring and controlling the

running Java application. The agent must be written in C++ and compiled into a

dynamic shared library. It can be attached to the VM with the command line option

-agentlib:libaryname.

Listing 2.1 sketches an example agent that redefines classes. The Agent OnLoad

method is automatically called at VM startup time. An object of type jvmtiEnv is

used to access the JVMTI methods. The agent can query or change the current state of

the VM and also install callbacks for events (e.g., class loading or thread start events).

The RedefineClasses method takes the number of classes and their bytecodes (as an

array of type jvmtiClassDefinition) as arguments and immediately triggers class re-

definition. The call blocks until the redefinition is completed and returns a JVMTI error

code.

typedef struct {

jclass klass;

jint class_byte_count;

const unsigned char* class_bytes;

} jvmtiClassDefinition;

JNIEXPORT jint JNICALL Agent_OnLoad(JavaVM* jvm,

char* options,

void* reserved) {

jvmtiEnv *jvmti; jvm->GetEnv(&jvmti, JVMTI_VERSION_1_2);

// Use the JVMTI environment to redefine classes.

jint count = ...;

jvmtiClassDefinition* classes = ...;

jvmtiError result = jvmti->RedefineClasses(&count, classes);

return JNI_OK;

}

Listing 2.1: Redefining classes using a native JVMTI agent.
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2.8.2 JDI

The Java Debug Interface (JDI) provides a Java API for connecting to a remote VM.

The connection is accomplished using a network stream and the Java Debug Wire Pro-

tocol (JDWP) [43]. The remote VM must be started with the command line option

-Xrunjdwp:transport=dt socket,server=y, such that it accepts incoming client

requests. The JDI interface also allows starting the remote VM in a new process on the

same machine.

Listing 2.2 shows an example of starting a new VM instance and performing a class

redefinition using JDI. A Connector object is used to launch a VM in a new process.

A Map object specifies the classes to be redefined and their new bytecodes. The call to

redefineClasses blocks until the redefinition is complete and throws an exception if

it fails.

import com.sun.jdi.*;

// Launch and connect to the VM.

Map<String, ? extends Connector.Argument> arguments = ...

VirtualMachine vm = Bootstrap.virtualMachineManager().defaultConnector().

launch(arguments);

// Create map with classes that should be redefined.

Map<? extends ReferenceType, byte[]> classes = ...;

// Redefine classes. Throws exception on failure.

vm.redefineClasses(classes);

Listing 2.2: Redefining classes in a remote VM using the JDI interface.

2.8.3 Instrumentation API

The java.lang.instrument package contains the classes of the Instrumentation API.

To access its functionality, a Java application starts with an attached Java agent. The

command line option -javaagent:jarpath specifies the JAR file of the agent. The

manifest of the JAR file must contain an entry Premain-Class, which points to a Java

class with a static premain method as shown in Listing 2.3.

The instance of class Instrumentation provides methods for retrieving all loaded

classes and to install class file transformers. Such transformers engage in the class loading
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process as an intermediate step that can change the bytecodes of any class. Also, when

a class is redefined with new bytecodes, the VM invokes the callback of the class file

transformers. The Instrumentation instance is capable of triggering class redefinition

as described in Listing 2.3.

import java.lang.instrument.*;

class ClassDefinition {

public ClassDefinition(Class<?> theClass, byte[] theClassFile) { ... }

}

public static void premain(String agentArgs, Instrumentation instr) {

instr.redefineClasses(new ClassDefinition[] { ... });

}

Listing 2.3: Redefining classes using the java.lang.instrument API.





Chapter 3

Class Redefinition

This is the main chapter of the thesis in which we present an algorithm for unlimited

dynamic class redefinition for object-oriented programs. The supported modifications to

classes include adding and removing fields and methods as well as complex changes to the

class hierarchy.

Our algorithm is implemented as a modification to a recent version of the open source

Java HotSpot VM. However, the general concepts and algorithms presented in this thesis

apply to any VM that executes statically typed object-oriented programs. We chose a

production-quality, high-performance VM instead of a research VM to make sure that the

evaluation results are valid in a production environment. Also, the improvement of the

class redefinition capabilities in the HotSpot VM is one of the top-most voted requests for

enhancement on the official Oracle website (Bug ID: 4910812) [2].

The implementation is based on the existing mechanism for swapping method bodies

developed by Dmitriev [10] and extends it to allow arbitrary changes. Only small parts of

Dmitriev’s implementation remain unchanged (e.g., basic validity checks on the parameters

of the redefinition command or computing the differences in the declared methods between

two classes), because the task of performing arbitrary changes to classes requires a different

approach than the task of changing only method bodies (see Section 8.7). Our algorithm

has the following properties that we consider important for class redefinition:

Unlimited. The algorithm is unlimited in terms of possible changes. The supported

changes include changes to the set of declared methods, the layout of instances,

and the class hierarchy. Changes to a class that affect its subclasses are properly

propagated.
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Atomic. The redefinition of a set of classes is performed atomically. This is a require-

ment, because two changes to Java classes might depend on each other, such that

performing either change alone produces an incorrect Java program. An important

property of our algorithm is that there is a safe rollback if parts of the redefinition

are invalid. The VM always performs either all of the changes or none of the changes.

Noiseless. The additional flexibility of dynamic changes does not decrease the perfor-

mance of normal program execution. This means that the VM runs at full speed

before and after a change. A measurable performance penalty would constrain the

adoption of the new class redefinition features.

Transparent. There are no indirections visible in Java stack traces, and the Java de-

bugging experience is not affected negatively in any way. The debugger does not

notice whether the currently running program is the original program version or a

redefined program version.

Ready. The VM is ready to apply a change at any time the Java threads can be sus-

pended. There are no restrictions on the currently active methods or the currently

live heap objects. This is especially important for the use of class redefinition during

program development. When a programmer halts a program at a breakpoint and

applies a change, he wants the change to become effective immediately.

Comprehensible. The semantics of a change must be clear and comprehensible to the

programmer. The VM has a clear and simple strategy for initializing newly intro-

duced fields. More clever strategies or heuristics can always be implemented using

the Java debug interface and we do not see them as part of the core of the class

redefinition algorithm. However, our VM supports custom transformer methods for

converting between two instance versions (see Section 5.1.4).

We focus on implementing class redefinition in an existing VM while keeping the nec-

essary changes small. In particular, we do not modify any of the just-in-time compilers or

the interpreter. Our changes affect the garbage collector, the system dictionary, and the

VM metadata. These changes are small and do not influence the VM during normal pro-

gram execution. The choice of implementing our approach as a VM modification instead

of using bytecode rewriting techniques is especially beneficial for obtaining an unlimited,

noiseless, and transparent algorithm. Instead of simulating a class definition change at

the bytecode level, we directly modify the underlying VM metadata objects.
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Figure 3.1: Steps performed by the class redefinition algorithm.

3.1 Overview

Figure 3.1 gives an overview of the steps performed by our class redefinition algorithm.

The following sections describe the steps in more detail. The class redefinition is triggered

using the Java Virtual Machine Tool Interface (JVMTI), the Java Debug Interface (JDI),

or the java.lang.instrumentAPI (see Section 2.8). The parameter of the redefinition

command is an array of pairs, where each pair defines a pointer to the class that should

be redefined and a byte array with the new class file data.

First, the algorithm creates a list of all affected classes that contains the redefined classes

and their subclasses. The list is sorted topologically based on subtype relationships and

defines the order in which the new classes are processed (see Section 3.2). Then, the

new classes are loaded and added to the type universe of the VM forming a side universe

(see Section 3.3). At this point in time, the VM class objects for the new and the old

class versions coexist in the system. This is necessary, because the Java program still

runs in parallel to the class redefinition and uses the old class hierarchy. The bytecodes
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of the new classes are verified using the standard verification mechanism of the VM. If

during class loading or verification an error occurs, the class redefinition is rejected, all

modifications are undone, and an error code is returned. In this phase of the algorithm,

the Java program running in parallel can still load a new class C that has to be redefined

too, because it is a subclass of a redefined class A. In this case, the VM reloads C with the

new version of A as the superclass.

If the change is valid, all threads are suspended at the next safepoint. Additionally, we

use global locking to prohibit concurrent compilation and class loading (see Section 3.7).

A heap iteration modifies any pointers to old classes to become pointers to the new classes

(see Section 3.3.1). During the iteration, we also update those object instances whose size

decreased or remained unchanged (see Section 3.4). For objects with an increased size,

a modified full garbage collection is performed in which the instance sizes are increased

(see Section 3.5). This step is optional and is only performed if there is at least one

instance on the heap that needs a size increase. In the next step, the VM invalidates state

that is no longer consistent with the new class versions (see Section 3.6). The last step is

to release all locks and continue executing the new program version.

3.2 Affected Types

When the layout or the supertypes of a class change, other classes may be affected as well.

A field added to a class is implicitly also added to all its subclasses. Adding a method to

a class can have effects on the virtual method tables of its subclasses. Changing the set of

supertypes also affects the supertype set of subclasses. We also need to verify subclasses

again, because a change in the base class can make a subclass invalid (e.g., because the

subclass overrides a method that is now declared final in the new version). The same

rule applies when redefining an interface: All direct and indirect subinterfaces and also

all classes implementing the interface need to be redefined, because adding or removing

methods of the redefined interface changes entries of their interface method tables.

Therefore, the algorithm needs to extend the set of redefined classes by all their subtypes.

Figure 3.2 gives an example with three classes A, B, and C. Class A and C are redefined,

but this also affects class B as it is a subclass of A. Class B is added to the set of redefined

classes and is replaced by B’, which has the same class file data as B, but possibly different

properties inherited from its superclasses. We need to fully reload B, because its metadata
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Figure 3.2: Example redefinition that changes the class hierarchy.

needs to be initialized based on the new supertype. This includes its virtual method table

and its interface method table.

If a type is affected by the redefinition, but its new bytecodes are not specified in

the redefinition command, we use its original bytecodes. The VM does not store the

bytecodes of loaded classes, but it has a built-in class file reconstitutor that serializes the

loaded information about a class into a byte stream. We use this mechanism to get the

bytecodes of the affected but unmodified classes, which in turn are used to reload and

re-verify the classes with respect to the new class hierarchy.

The redefinition command does not specify an order in which the new classes must be

loaded and redefined. From the user’s perspective, the classes must be swapped atomically.

Our algorithm sorts the classes topologically based on their subtype relationships. A class

or interface always needs to be redefined before its subtypes can be redefined. The new

version of a class can be incompatible with the old version of its superclass. In that

case, class loading only succeeds if the superclass is already replaced by its new version.

The Java classes and their supertype relationships form a directed acyclic graph (DAG).

Therefore, a valid topological order is always possible.

In order to support changes to the class hierarchy, we order the types based on their

subtype relationship after the class redefinition step and do not use the information about

their current relationship. Subtype relationship information is available in the VM only

after a class has been loaded. Therefore, we parse parts of the class files prior to class

loading in order to determine the new subtype relationships. In the example shown in

Figure 3.2, we first redefine C to C’ and subsequently A to A’, because the class A is a

subclass of C in the new version of the program. Finally, we redefine B to B’.
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class A {

public final void foo() { }

public void bar() { }

}

class B extends A {

public void bar() { }

}

class A’ {

public void foo() { }

public final void bar() { }

}

class B’ extends A’ {

public void foo() { }

}

1

2

3

4

5

6

7

8

Old Program New Program

Figure 3.3: Two classes with changes that must be performed atomically.

3.3 Side Universe

We keep both the old and the new classes in the system. This is necessary to be able to

keep executing old code that depends on properties of the old class. Additionally, it is

the only way to solve the problem of cyclic dependencies between class redefinitions, e.g.,

when one change requires class A to be redefined before B, but another change requires B

to be redefined before A. Figure 3.3 shows such an example. Class A has two methods foo

and bar and B is a subclass of A. In the old version foo is declared final in A and bar

is overridden in B. In the new version, bar is declared final in A’ and foo is overriden

in B’. Therefore, A and B’ are incompatible and so are A’ and B, because in both cases a

final methods would be overridden. In order to avoid such inconsistencies when mixing

class versions, we build a separate side branch for the new classes. This way, the old class

versions and the new class versions do not affect each other.

The Java HotSpot VM maintains a system dictionary to look up classes based on their

name and class loader (see Section 2.4). We replace the entry for the old class with

the entry for the new class immediately after loading the new class. However, running

Java code still sees the old class until the class redefinition becomes effective. We use a

thread-local flag to implement these two different views of the system dictionary.

The pre-calculated order in which we redefine classes ensures that the side universe is

created correctly. When we load class A in the example of Figure 3.4, the lookup for class

C returns C’, because class C was redefined before A. The VM copies the values of static

fields of the old class to the static fields of the new class if both name and signature match.

We do not execute the static class initializer of the new class. Figure 3.4 shows the state

of the type universe after building the side universe for the new class versions.
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Figure 3.4: Building a side universe for the new version of the class hierarchy.

We maintain pointers between the old and the new VM class object. This helps nav-

igating through the versions during garbage collection and pointer updates. The system

dictionary, however, always contains just a since reference to the newest version of a class.

The side universe is only created for the VM class object and not for the Java class

object that is used for reflection. The instance of java.lang.Class exists only once

in the system. It has a field that points back to the VM class object. This field cannot

be accessed from a Java application and is used only by VM native methods for getting

reflection information. When redefining the classes, the field is changed to point to the

VM class object of the latest program version. The java.lang.Class object contains

an additional field with the current version number of the class that is increased on ev-

ery class redefinition. The Java code of java.lang.Class polls this field’s value and

automatically clears its cached information when the value has changed.

We verify the new classes before the actual redefinition changes the pointers to the

new classes in the system dictionary. This enables us to easily roll back and abort the

redefinition if the new classes cause a verification error. In order for the verifier to see

already the new class versions, we use a thread local flag. If the flag is set, instead

of returning the current class version from the system dictionary, the newest version is

returned. If verification of a new class fails, the redefinition is rolled back and a JVMTI

error code is returned.
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3.3.1 Pointer Updates

The class redefinition becomes effective when the pointers to the old VM class object are

replaced by pointers to the new VM class object. This is an irrevocable step, so all checks

whether the redefinition is valid have to be done beforehand. Additionally, this step needs

to be carried out atomically. Therefore, the VM suspends all running threads at the next

safepoint. Now only the redefinition thread is running, thus it can safely iterate over the

heap objects and update pointers. During the iteration of the heap objects, we distinguish

two types of objects:

No Change: The pointers of VM internal data structures must not be updated. For

example, old VM class objects must retain their pointers to other old VM class

objects, because updating their pointers to the new version would destroy the sanity

of the old side class hierarchy.

Header Update: We check and update the pointers in the object header of instances

of user-defined Java classes. However, such an object cannot have fields pointing to

VM class objects. Therefore, we can skip the object’s contents to speed up the heap

iteration.

During the heap iteration, the VM also collects information about objects of redefined

classes. In particular, it finds out whether there is at least one object instance that has

an increased size due to the redefinition. Additionally, it creates a list of all objects of

redefined classes. The list is allocated in a separate area and not on the heap in order to

avoid concurrent heap modifications during the iteration.

3.3.2 Class Initialization

The values of the static fields of a class are directly stored as an embedded vector in

the VM class object. During class redefinition, the static fields of the new classes are

initialized with the values of the static fields of the old classes. Immediately after the

version change, all static field accesses target the static fields of the new class version.

The static constructor of the new class is only run if the static constructor of the old class

was not run before. This can happen when the old class has been loaded and linked, but

its static constructor was not yet invoked.
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If the static constructor of an old class is currently running, then it continues running

after the redefinition with static field accesses targeting the new class. If it has already set

values to static fields of the old class in its partial execution, then those values are copied

to the new class and therefore continue to be visible to the executing initializer.

3.4 Instance Updates

For updating instances, we need a strategy of how to initialize the fields of redefined

instances. We have a simple algorithm that matches fields if their names and types are

the same. For the matching fields, we copy the values from the old instance to the new

instance. All other fields are initialized with the values 0, null, or false.

With this approach, we can efficiently encode the memory operations necessary for an

instance update (filling an area with zero or copying bytes from the old version of the

object). The information is calculated once per class and temporarily attached to the VM

class object. Figure 3.5 shows an example change that requires an instance update. The

field x is removed from class A and a new field z is added. The instance size does not

change, but the new field z must be initialized with 0. Also, the location of the field y

changes from offset 24 to offset 16.

For building the list of necessary update commands, the VM iterates over the fields of

the new version of the class. For every field, it tries to find a matching field in the old

version of the class (or one of its super classes). If such a field is found (e.g., in the case

of field y), then a copy update command is created with two parameters: The size of the

field and the original memory offset of the field in the old class. If no such field is found

(e.g., in the case of field z), then a clear command is created with the size of the field as

parameter.

Every list of update commands begins with a copy command for the object’s header.

Two subsequent commands of the same kind are coalesced if possible. The commands

are encoded into a flat integer list that ends with the value 0 and encodes the difference

between copy and clear commands using the sign bit. Therefore, the total space needed

for the update information encoding in the example of Figure 3.5 is six integer values (16,

0, 8, 24, -8, 0).

When updating an object instance, the VM reads the update commands and performs

the specified memory copy or clear operations. This makes instance updates faster com-
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class A {

long x;

long y;

}

class A’ {

long y;

long z;

}
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Figure 3.5: Encoded update commands when updating object instances.

pared to other approaches that work with custom transformation methods for converting

between the old and new version of object instances. We believe that the programmer

wants to provide as little additional input as possible during debugging and so the lost

flexibility compared to transformation methods is balanced by the ease of use. Our ap-

proach would also allow us to compile machine code snippets that perform the update.

This would improve performance if a high number of object instances participates in the

update.

The old version of an instance is overwritten with the new version, so we do not need

additional memory for co-existence of all old and new instances. We need however a

temporary storage space of the size of one object in case the target and source destination

overlap and fields are shuffled. In order not to overwrite values that are not yet copied,

the content of the object is first copied into the temporary storage space. The destination

area is then filled using the data from the temporary storage space.

If the size of an instance on the heap does not increase, then the update can be carried

out immediately, otherwise it is delayed to a subsequent full garbage collection. Because

of object alignment (two heap words), adding an instance field does not always imply that

the heap size of the class instances increases.
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If the size of an instance decreases, the remaining space at the end of the object is turned

into a filler object. The filler object is necessary in order to preserve the property that heap

objects are adjacent such that it is possible to iterate over them from lowest to highest

address. The smallest possible size decrease is two heap words, because of the alignment

of heap objects. In this case, we can put a dummy instance of class java.lang.Object

in the unused area, because such an instance fits exactly. For a decrease larger than two

heap words, we fill in a Java byte array. Such an object has at least two heap words for

the object header and one heap word for the length of the array. The length is chosen

such that the array exactly fits the gap between the old and new object size.

3.5 Garbage Collection Modification

A full garbage collection is only necessary if there is at least one object with an increased

size. Those objects cannot be updated in-place and therefore need to be updated during

a garbage collection. We modified the mark-and-compact garbage collection algorithm

(see Section 2.7) and added the capability to change object sizes during the garbage

collection. Although it would be possible to build the modification also into other garbage

collection configurations, the DCE VM currently only supports the serial garbage collector.

We adjusted the forward pointer calculation algorithm in such a way that it is able

to deal with the problem of increased object sizes. Increased object sizes mean that the

object instances are not necessarily always copied to lower addresses, which is a necessary

condition for the compaction phase of a mark-and-compact garbage collector. Therefore,

every instance whose destination area ends at a higher memory address than its source

area is first rescued to a side buffer. Otherwise the garbage collector would overwrite

objects that are not yet copied and would destroy their field values.

Listing 3.1 presents the modified forward pointer algorithm. The algorithm has a vari-

able forwardTop that is a pointer to the current end of the compacted heap. During the

heap iteration, it is increased by the size of every live object. In our algorithm, we need

to distinguish between an old object size (before class redefinition) and a new object size

(after class redefinition). The forwardTop is increased by the new size of the object after

class redefinition. An object is rescued if forwardTop plus its new size points to a higher

address than the end of the object. The forward destinations for the rescued objects are

calculated after the heap iteration such that they are placed at the very end of the new

compacted heap. Putting rescued objects at the end of the heap reduces the number of
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address forwardTop = start of heap

// Compute forward pointers.

for each live object o {

int oldSize = size of o before class redefinition

int newSize = size of o after class redefinition

if forwardTop + newSize > address(o) + oldSize {

add o to the list of rescued objects

} else {

store forwardTop in the object header of o

forwardTop += newSize

}

}

// Place rescued objects at the end of the heap.

for each rescued object o {

store forwardTop in the object header of o

forwardTop += new size of o after class redefinition

}

Listing 3.1: Modified forward pointer algorithm.

rescued objects, because it makes space for other objects to increase their size while still

being copied to lower addresses. It has however the disadvantage that the algorithm does

no longer preserve the order of objects.

We did not modify the update pointer phase of the mark-and-compact algorithm. The

subsequent compaction phase is however adjusted such that rescued objects are copied to

a side buffer. We can find out whether an object must be rescued by checking whether its

forward pointer is pointing to a higher memory address than the object’s location. At the

end of the compaction phase, the rescued objects are copied from the side buffer to their

destination location. The object layout is adjusted to the new class version as part of this

copying.

In the example shown in Figure 3.6, the size of x is increased and therefore the object

x at its destination address would overlap the object y and would therefore overwrite its

contents during the copying. Our modified forward pointer algorithm detects that x is an

instance that needs to be rescued and therefore places it at the end of the heap. This frees

space for the instances y and z such that they need not be rescued. The optimization to

place rescued objects at the end of the heap significantly reduces the number of rescued
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Figure 3.6: Increasing object sizes during a modified mark-and-compact garbage collection.

objects and therefore the necessary size of the side buffer. In the compaction phase, objects

y and z are processed normally, while the object x is copied to the side buffer. Afterwards,

the new version of x is constructed based on the data of the old version in the side buffer.

3.5.1 Permanent Generation Objects

The permanent generation contains the VM class objects and also some Java instance ob-

jects (e.g., the instances of java.lang.Class). During the compact phase, the garbage

collector finds out about the size of a Java instance object by accessing its class pointer

in the object header. Therefore, the VM class object has to be already compacted before

the garbage collector reaches an instance. Normally, this is guaranteed, because the VM

class objects are always allocated before one of their instances and thus occupy areas with
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smaller memory addresses. However, our class redefinition algorithm can violate this con-

dition, because the new version of the class is allocated at a higher memory address than

previously allocated object instances of the class.

The VM solves this by reordering the relevant objects in the permanent generation:

Permanent generation object instances of redefined classes are always copied to a rescue

buffer and inserted at the end of the heap after the compaction phase. This is necessary

to make sure that they are located at a higher memory address than the new VM class

objects of the redefined classes although they were allocated earlier. This also means

that if a class with instances in the permanent generation is redefined, the garbage collec-

tion is always necessary. Most notable examples of such classes are java.lang.Class,

java.lang.String, and java.lang.Object.

3.6 State Invalidation

The changes performed by class redefinition violate several invariants in the VM. The Java

HotSpot VM was not developed with code evolution in mind and made assumptions that

no longer hold, e.g., that a field offset never changes. In this section we outline different

subsystems of the VM that need changes in order to prevent unexpected failures due to

broken assumptions.

3.6.1 Compiled Code

Machine code generated by the just-in-time compiler before class redefinition needs to be

checked for validity. The most obvious potentially invalid information are virtual method

table indexes and field offsets. Additionally, assumptions about the class hierarchy (e.g.,

whether a class is a leaf class) or calls (e.g., whether a call can be statically bound) become

invalid.

The Java HotSpot VM has a built-in mechanism to stop executing the optimized ma-

chine code of a method, called deoptimization (see Section 2.6). If there is an activation of

the method on a stack, the stack frame is converted to an interpreter frame and execution

is continued in the interpreter. Additionally, the machine code is made non entrant by

guarding the entry point with a jump to the interpreter. We can use this to deoptimize

all compiled methods to make sure that no machine code produced with wrong assump-

tions is executed. Analyzing the assumptions made for compiled methods could reduce



43

the amount of machine code that has to be invalidated. However, the evaluation section

shows that the time necessary to recompile frequently executed methods is low.

3.6.2 Constant Pool Cache

The Java HotSpot VM maintains a cached version of the constant pool for each class. This

significantly increases the execution speed of the interpreter compared to working with the

original constant pool entries stored in the Java class files. The original entries only contain

symbolic references to fields, methods, and classes, while the cached entries contain direct

references to metadata objects. The entries relevant to class redefinition are field entries

(the offset of a field is cached) and method entries (for a statically bound call a pointer to

the method object, for a dynamically bound call the virtual method table index is cached).

We clear all constant pool cache entries. When the interpreter reaches a cleared entry,

it is resolved again. The lookup in the system dictionary automatically returns the new

version of the class and therefore the entry is reinitialized with the correct field offset or

method destination information. As a performance optimization, the VM could only clear

cache entries that refer to methods or fields of redefined classes. However, it is not clear

which entries of the new program version will need to be resolved again. Furthermore,

checking each entry whether it needs to be cleared slows down the class redefinition itself.

Therefore, we simply clear all entries. We report the combined performance penalty of

method deoptimization and constant pool clearance in Section 7.2.

3.6.3 Class Pointer Values

Several data structures in the Java HotSpot VM depend on the actual addresses of the VM

class objects, e.g., a hash table mapping from classes to JDWP objects. We need to make

sure that these data structures are reinitialized after class redefinition. While class objects

may also be moved during a normal garbage collection, our object swapping potentially

also changes the order of two class objects on the heap. The just-in-time compiler uses a

sorted array for compiler interface objects that depends on the order of the class objects

and therefore must be resorted after a class redefinition.
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3.7 Locking

At the time of actually performing the change, the class redefinition runs in a single

thread with all other threads being suspended at safepoints. During the time of loading

and verifying the new classes however, the Java application threads and the just-in-time

compiler threads run in parallel.

We need to use locking mechanisms in order to prevent parallel class redefinition. Ad-

ditionally, we need to prevent parallel compilation and parallel class loading for the main

part of the redefinition algorithm that updates the pointers and object instances. Dur-

ing the instance and pointer updates, we also need to make sure that no other thread is

running.

Figure 3.7 shows the locks and the order in which they are acquired. Immediately

after receiving the class redefinition command, a global lock makes sure that only one

thread is currently performing a class redefinition. This is a requirement, because it is

only possible to build a single side universe that links back to the current class versions.

During loading of the new classes, the callback methods of the class file transformers are

called (see Section 2.8.3). They must not trigger a new class redefinition, because this

would result in a deadlock.

Concurrently running compilations are also a problem for class redefinition. Even if the

compiler is paused during the redefinition, the continued compilation after replacing the

old class with the new class version can cause a VM crash. The compiler could access an

entry of the constant pool of the new class at an index read from the bytecodes of the old

class. Therefore, we wait for all active compilations to finish and prevent new compilations

until the end of the redefinition step. In order to stop the compiler more quickly, we set

a bailout flag that is regularly checked by the compiler. When the flag is set, the current

compilation is aborted and its results are discarded.

We acquire a class loading lock and then search the class hierarchy for new affected

classes that were loaded in parallel. If new affected classes are found, the class loading

and the compilation lock are freed and the new classes are processed. We need to release

the locks, because class loading and verification can again trigger new class loading. Also,

we must not hold a class loading lock while calling the registered class file transformers.

After building a side universe for all affected classes, we can proceed with the redefinition

by stopping all threads at the next safepoints. During the pointer and instance updates,
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Class Redefinition Lock

Compilation Lock

Class Loading Lock

Threads Suspended at Safepoint

1: Load and verify new classes and call registered class file transformers.

2: Check if there are newly loaded affected classes (in this case, go back to step 1).

3: Update pointers and instances.

Class Redefinition Command

Continued Execution of New Program

Figure 3.7: The four different locks acquired during the class redefinition.

every Java thread must be suspended. After this step, the class redefinition is completed

and the VM can release all acquired locks and continue program execution.

3.8 Limitations

The VM can perform arbitrary updates including complex changes to the class hierarchy.

However, it does not check the correctness of an update. Deleting a field or method can

lead to an exception being thrown in continued program execution as outlined in the next

chapter. In Section 4.1.1, we describe a further enhancement of the DCE VM with the

ability to call methods that have been deleted in the new classes. The most dangerous

update, however, occurs when a supertype is removed, because this can cause type safety

problems and lead to a VM crash. In Section 4.2, we discuss this problem and present a

solution in Section 4.2.1 as an extension to our base algorithm. Table 3.1 gives an overview
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Method Possible problems after resume

Swap Method Body

Add Method

Remove Method NoSuchMethodError

Add Field

Remove Field NoSuchFieldError

Add Supertype

Remove Supertype can lead to VM termination

Table 3.1: Supported code evolution changes of the base version of the DCE VM.

of the supported code evolution changes as classified in Section 1.2 and possible problems

during continued program execution.

An additional limitation is that several system classes have a special meaning to the

VM and therefore must not be redefined in arbitrary ways. The following list outlines the

most important restricted classes:

java.lang.Object: The object class has two characteristics that must also be true for

every redefined version. First, it must not have any supertype. By definition, the

object class is a supertype of any other type. Therefore, declaring a super interface

or a superclass for java.lang.Object introduces prohibited circularities in the

class hierarchy. Second, it must not have any instance field. This limitation could

be relaxed, but would require significant changes to many parts of the VM. As

every array type is also a subtype of java.lang.Object, it would affect the

layout of arrays. Also, several algorithms in the VM assume that the size of a

java.lang.Object instance is fixed to the size of the object header (i.e., two

heap words).

Adding methods and static fields is however allowed. Changing the existing methods

(e.g., hashCode or equals) is possible, but if the just-in-time compilers are en-

abled, such a change is ignored in compiled code. The compilers remove invocations

to those methods by special machine code sequences that reproduce the behavior of

the methods as specified by the JDK implementation. Therefore, a change to those

methods has no effect in compiled code. Similar restrictions apply to other methods

that are well-known to the compiler.
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java.lang.ref.Reference: The reference class and its subclasses (PhantomReference,

SoftReference, and WeakReference) are treated specially by the garbage col-

lector. They have a special field that points to the reference target. This field is not

considered a normal object pointer field. For class redefinition, the imposed restric-

tions are that the class hierarchy relationships between those four classes must not

change and it is not allowed to add an additional reference field to the classes.

java.lang.Class: The VM installs three fake pointer fields into this class immediately

after the object header. They are used for VM-internal purposes and reference the

VM class object, the VM array class object, and the default constructor of the class.

The location of those fields is fixed and therefore it is not allowed to add a superclass

that defines an instance field to java.lang.Class.

There are several additional system classes whose fields are accessed by the VM using

a field offset that is calculated at VM startup time. Therefore, changing the field layout

of system classes is discouraged as in many cases it damages the correctness of the VM.

Modifying the VM implementation to reinitialize the offset on every class redefinition is

possible but requires a significant engineering effort.





Chapter 4

Binary Incompatible Changes

This chapter discusses dynamic class redefinition in the context of binary compatibility.

A detailed formal definition of binary compatibility of Java programs can be found in

the paper of Drossopoulou et al. [44]. We present two extensions to our algorithm that

improve the support for binary incompatible changes.

For a change to be binary compatible, every class member access that was valid before a

change must still be valid after the change. Additionally, the subtype relationship between

two classes must be preserved. Binary compatible changes to a class are: Adding a field,

adding a method, or adding an interface to the set of implemented interfaces. Adding

a method to an interface or adding an abstract method to a base class is considered a

binary compatible change in the context of class redefinition, if the verification of each

subclass is still succeeding (i.e., the subclass is either abstract itself, or implements the

newly introduced method in its new version).

Binary incompatible changes to a class are: Removing a field, removing a method, or

removing a supertype. Removing a supertype can either mean changing the super class

to a class that is not a subclass of the original super class, or it can mean removing an

interface from the set of implemented interfaces.

4.1 Deleted Methods and Fields

As long as only method bodies are swapped or fields and methods are added to classes,

the old bytecodes can execute normally. However, when a field or method is deleted, old

bytecodes are possibly no longer valid. In our VM, old code continues to be executed when
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Object

A

Object

foo’()foo()

bar()

void foo() {

print("hello");

bar();

}

void foo’() {

print("hello");

print("world");

}

Point of

Redefinition

Redefine

Figure 4.1: Redefinition example that deletes a method.

old methods are active on the stack at the time of redefinition, so it can happen that old

code accesses a deleted field or calls a deleted method.

Figure 4.1 shows an example for this case. The program is paused in method foo

between the calls to print and bar. Method foo is redefined to a new version foo’

while method bar is deleted. Subsequent calls to method foo immediately target the

new code, but the old activation of foo continues to execute the old code. Therefore,

it reaches the call to the deleted method bar. The interpreter tries to resolve the ref-

erence to bar (because we cleared the constant pool cache during the redefinition step,

see Section 3.6). The resolution fails to find the method and the interpreter throws a

NoSuchMethodException.

The new version of foo is correct because it no longer calls bar, but the continued

execution of the old version of foo causes the problem. It is possible to develop heuristics

for switching from the stack values and the bytecode position in the old method to new

stack values and a new bytecode position in the new code. In the general case, however,

it is impossible to find a match that is both valid and intuitive for developers.

The following section describes a better way to handle the access to deleted class mem-

bers in the interpreter. In Chapter 5, we present a further extension to the DCE VM with

the ability to read a specification of safe update regions from the class files and then safely

switch from the old execution to the new one.
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4.1.1 Executing Multiple Versions

We distinguish four different possibilities of dealing with the problem of deleted mem-

bers. The user selects one of these behaviors on a per-class level by specifying a custom

bytecode attribute in the new version of a redefined class. A custom bytecode attribute

is a mechanism to add information to a class file while keeping backward compatibility

(see Section 4.7.1 in the Java Virtual Machine Specification [45]). A VM that does not

recognize the attribute must be able to skip its contents. It is possible to specify different

behaviors for dealing with methods, static fields, or instance fields.

Static check: A static reachability analysis checks whether the continued execution of the

program can reach an instruction referring to a deleted member. If this can happen,

then the class redefinition is rejected. The VM looks at the stacks of all threads at

the time of redefinition. If a currently executing method is being redefined, then it

performs a reachability analysis starting from the currently executed bytecode index

until the end of the method. The analysis of the bytecodes of called methods is

not necessary, because a call always targets the newest version of a method. This

behavior can block redefinition if a member is deleted that is accessed from a long-

running loop.

Dynamic check: The redefinition is always performed and the execution of old methods

resumes in the interpreter. When the interpreter reaches the bytecode for the call

to bar, the reference to bar needs to be resolved (because we cleared the constant

pool cache during the redefinition step, see Section 3.6). The resolution fails to find

the method and throws a NoSuchMethodException. This is the default behavior

of the DCE VM.

Access deleted members: This behavior avoids throwing an exception, but accesses

the old deleted member. The behavior is only supported for methods and static

fields. The access of deleted instance fields still causes an exception. This is because

we remove deleted instance fields from all active instances and therefore cannot

access their data after the redefinition step.

Access old members: Calling a new method from an old method is dangerous if the

semantics of the target method changed in the new version of the program. There-

fore, our VM also offers a behavior where a member access is always performed

from the viewpoint of the version of the executing method. An old method will
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call the old method version based on the compatible class version even if a newer

version of the method exists. This behavior can delay the redefinition to take ef-

fect, because a thread starts executing the new program version only after returning

from the methods with modified bytecodes. However, this behavior makes sure that

functional changes to a method do not cause semantic problems for the caller.

4.1.2 Old Member Access

This section describes our algorithm for accessing older versions of class members and

deleted class members. We make sure that old code always executes in the interpreter,

so we do not need to modify the compiler for this functionality. After class redefinition,

the interpreter’s constant pool cache for resolved methods and fields is cleared. When

resolving a member again, the interpreter checks the policy for accessing deleted members

of the method’s class.

If the policy is that old members should only be accessed when they do no longer exist

in the new version of the program, the interpreter first tries to resolve the member based

on the new version. Only if this fails, the interpreter tries to look up the old version of the

member. When looking for a member of an old class version, it uses the latest class version

of the target class that is compatible with the class of the executed method. Two specific

versions of two classes are compatible if they coexisted at any time as the latest version

of their class. The versions of the VM class objects are organized in a doubly-linked list

such that the VM can easily iterate over them. We also keep the constant pools of old

classes and the bytecodes of old methods in the VM.

Figure 4.2 shows an example with a source class s and a target class t. There are seven

different revisions of the program, with t being redefined five times and s being redefined

two times. The classes t
′, t′′, and t

′′′ are all compatible target classes of the source class

version s
′. The class t′ is compatible with both s and s

′ because it coexisted as the latest

version with both of them (with s in revision 2 and with s
′ in revision 3). The interpreter

looks up the latest compatible target class. If the method holder is class s′ then t
′′′ is used;

if the method holder is s then t
′ is used as the compatible target class. If the accessed

member is also not found in the compatible target class, then throwing an exception is

the correct behavior.

Listing 4.1 shows the algorithm for selecting the correct version of the target class that

should be chosen for resolving the class member. The source class is the class that defines



53

s’s s’’

t’’t’t t’’’ t’’’’

Compatible

Versions

1

t’’’’’

Source Class

Target Class

2 3 4 5 6 7Revision#

Figure 4.2: Compatible versions when a method of the source class accesses a member of

the target class.

the currently executing method. The target class is the dynamic type of the receiver in

case of virtual calls and interface calls. For static field accesses or calls, the target class

is the defining class of the accessed static member. The target class is always the newest

version of a class.

When accessing a field of class t while executing an old method of class s, an example

input for the getCompatibleClassmethod would be source=s′ and target=t′′′′′. At

first, we select the class that was used to redefine the source class. If no such class version

exists, then the source class is at the latest version and we use the latest version of the

target as the compatible target class. Otherwise, we set the variable newerSource to the

newer version of source (i.e., s′′ in our example). Now, we iterate over the versions of the

target class and stop at the first version that has been loaded before the newerSource

class (i.e., t′′′). This class is the selected compatible target class and we perform the class

member look up based on this class.

For virtual calls and interface calls, the interpreter would usually save the table index in

the constant pool cache to be faster on subsequent executions of the bytecode. However,

in this case receiver objects with different types may resolve to different table indexes.

Therefore, the table index is not constant for a certain call site and must be resolved every

time.
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Class getCompatibleClass(Class source, Class target) {

Class newerSource = newerVersion(source)

if (newerSource == null) {

// Source is at the latest version =>

// we must use the latest version of target.

return target

}

while (target is not younger than newerSource) {

target = olderVersion(target)

}

return target

}

Class newerVersion(Class c) {

if (c is the latest version of the class) {

return null

}

return the VM class object that replaced c during a class redefinition

}

Class olderVersion(Class c) {

if (c is the first loaded version of the class) {

return null

}

return the VM class object that was replaced when redefining c

}

Listing 4.1: Finding the latest compatible target class for a source class.

4.2 Removed Supertypes

When the set of all direct and indirect supertypes of a class increases, old code can execute

as normal. It does not use instances of the class as instances of their added supertypes,

but executes as before. On the other hand, when the set is narrowed, old code is possibly

no longer valid. We call such a change to be a type narrowing change.

It is a necessary invariant in a statically typed VM that at any point in time, the type

of a value is a subtype of the declared static type of the field or local variable that is

holding the value. Otherwise, the type safety can no longer be guaranteed and this will

most likely result in a VM crash when the value is used the next time.
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Figure 4.3: Example class redefinition with type narrowing.

Figure 4.3 gives an example for a type narrowing change. Class B is redefined to no

longer extend class A but directly inherit from Object. Now, instances of B must no

longer be treated as instances of A. There could already be variables of type A referencing

instances of B as shown in the code listing. After code evolution, the values of such

variables become invalid, because B is no longer a subtype of A. In the listing of Figure 4.3,

the call a.foo() no longer makes sense, because B does neither declare nor inherit a

method foo. The interpreter will try to look up the target method using the virtual

method table index of foo. The class B does however no longer contain the virtual

method table entry. This leads to a call with an undefined target address.

4.2.1 Safe Dynamic Type Narrowing

In order to allow the safe removal of a supertype, the VM needs to guarantee that the

subtype relationship between the static and the dynamic type of variables and fields is valid

right after a class redefinition. Additionally, it has to verify methods again to make sure

that the relationship is not violated in continued execution. In the example of Figure 4.3,

the assignment of the newly created instance of type B to the local variable of type A

is valid in the old version of the program. In the new version of the program, such an

assignment is however not allowed and results in a verification error.

The VM places two boolean flags on the types: A type is narrowed if one of its original

supertypes is no longer a supertype in the new version of the type. A type is relevant

with respect to the type narrowing check, if it was removed from the set of supertypes
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interface A {

}

interface B extends A {

}

class C implements B {

}

class D extends C {

}

interface A {

}

interface B extends A {

}

class C implements A {

}

class D extends C

implements B { }

Old Version New Version

narrowedrelevant

Figure 4.4: A class redefinition change that includes type narrowing with class B being

relevant and class C being narrowed.

of a narrowed type. Using this definition, the check whether a type narrowing change is

safe only has to be performed if the static type of a variable or field is a relevant type.

Additionally, the check is only necessary if the type of the value is a narrowed type. Only

if the check is necessary taking the declared type and the dynamic type into account, the

VM actually performs a costly subtype check between the two.

Figure 4.4 shows a type narrowing example with four types A, B, C, and D involved.

The classes C and D are redefined. The set of supertypes of C is narrowed, because B

is no longer a supertype of C in the new version. The set of supertypes of D, however,

remains unchanged. In both versions A, B, and C are supertypes of D. Therefore, instances

of class D can never violate the relationship between dynamic and static type after the

redefinition. For checking values, interface B is marked as relevant, because C is no longer

a subtype of B in the new version. All other types were not removed from any supertype

set.

The VM calculates a check map for each class that specifies at which field offset a

pointer needs to be checked. Only fields with a declared type that is relevant are added

to the map. A class with an empty check map means that its instances are ignored in the

heap iteration. Object arrays are processed by iterating over their elements only if their

declared element type is relevant.

For checking the local variables and the expression stack, the VM walks over the execu-

tion stacks of all active threads. Each object pointer in the stack frames is checked. If its

dynamic type is a narrowed type, the VM tries to find out the declared type of the value.
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This is only possible for local variables listed in the LocalVariablesTable attribute

in the bytecodes. If the declared type is not available, then the VM conservatively rejects

the redefinition when the value is an instance of a narrowed type.

In addition to violating values, the VM also has to make sure that loaded bytecodes

still pass verification taking the new class hierarchy into account. The verifier relies on

subtype relationships (e.g., in assignments) and therefore a change in the hierarchy can

also change the verification result. We trigger verification of all methods whose classes are

not affected by the redefinition. The methods of redefined classes are already verified when

the new class versions are loaded. The algorithm also has to verify the old methods that

are currently active on the stack, because those methods will complete their execution after

class redefinition. They also have to be correct with respect to the new class hierarchy.

In order to avoid the costly verification of all classes, we do a quick check of the constant

pool of a class. Every type that is used in a class is referenced in the constant pool of

this class (see Section 2.1). Therefore, the verification of methods can be skipped, if the

constant pool of their class does not contain a reference to a relevant type.

Only if all checks are positive, the type narrowing class redefinition is performed. Oth-

erwise, the VM rolls back any changes and aborts the class redefinition by returning an

error code. Listing 4.2 describes our algorithm in pseudo code.

check() {

// Check pointers on the heap.

for each heap object o {

if o is an object array {

if o’s element type is relevant {

for each element e in o {

subTypeCheck(e’s value, element type of o)

}

}

} else if o is an instance object {

for each field f whose type is relevant {

subTypeCheck(f’s value, f’s declared type)

}

}

}

// Check pointers on the execution stack.

for each thread {

for each stack frame s {

for each local variable l of s {
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if l has a declared object type {

subTypeCheck(l’s value, l’s declared type)

}

}

}

}

// Check bytecodes of old currently running methods.

for each thread {

for each stack frame s {

if the method m of s is the old version of a redefined method {

verify m with respect to the new class hierarchy.

if verification fails { rollback() }

}

}

}

// Check bytecodes of loaded methods.

for each loaded class c {

if c was not redefined {

if the constant pool of c references a relevant type {

for each method m of c {

verify m with respect to the new class hierarchy.

if verification fails { rollback() }

}

}

}

}

}

// Checks the validity of a value.

subTypeCheck(value, staticType) {

dynamicType = value’s dynamicType

if dynamicType’s supertype is narrowed {

if dynamicType is not a subtype of staticType { rollback() }

}

}

// Rolls back the redefinition.

void rollback() {

undo all changes made for class redefinition

return from class redefinition with error code

}

Listing 4.2: An algorithm that checks whether a type narrowing class redefinition change is

safe.
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Safe Version Change

The class redefinition techniques as outlined in Chapter 3 and Chapter 4 define changes

between two program versions at the level of fields, methods, and supertypes. In this

chapter, we take this one step further by looking at the detailed differences between two

methods at the bytecode level. In particular, we outline a new solution for the problem

of changing Java methods that are active on the stack at the time of redefinition. This

is especially helpful for updating methods with long-running or endless loops (e.g., the

message receiving loop of a server application).

We define a programming model that allows us to switch between a base program and

an extended program. The extended program must be derived from the base program

by adding fields and methods but not removing them. The extended program must not

change the type hiearchy of base program classes, but it may load new classes. The

bytecodes of previously existing methods may be modified, with some restrictions that

are explained in this chapter. First, we describe how to switch from a base program to

an extended program (see Section 5.1). Then we explain how we can switch back safely

(see Section 5.2). Finally, we show how the model can be extended to switch between two

arbitrary programs by extracting their common base program (see Section 5.3).

Our programming model describes conditions and rules for the specification of the ex-

tended programs, but the VM does not provide an algorithm for automatically deriving

the specification from the differences between two programs. The implementation of the

safe version change in the VM and how the specification of the extended program can be

added to Java class files are described in Section 5.4.
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class Receiver {

void recv(BufferedReader in) {

while(true) {

String s = in.readLine();

if (s.length() == 0)

break;

}

}

}

class Receiver {

private int count;

void recv(BufferedReader in) {

while(true) {

String s = in.readLine();

count++;

System.out.println(count);

if (s.length() == 0)

break;

}

}

}

private int count;

count++;

System.out.println(count);

1

2
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12

Base Program Extended Program

Figure 5.1: A base program that reads lines of text from an input stream and an extended

program that additionally counts the number of lines.

5.1 Changing to the Extended Program

The left part of Figure 5.1 shows an example base program implementing a receiver loop

that reads text lines from a BufferedReader object. The loop is exited when an empty

line is read. The right hand side shows a possible extension of the base program that

counts and prints the number of received text lines. It adds a field count to the class and

increases its value in the loop. Additionally, it adds a println statement.

The version of the DCE VM as presented in Chapter 3 can correctly perform the class

redefinition of the Receiver class from the base version to the extended version. The

newly introduced count field is initialized to 0 and the bytecodes of the recv method

are updated. However, currently running activations of the recv method are unaffected

and continue to execute the bytecodes of the base version.

We extended the DCE VM with the ability to switch atomically from the base program

to an extended program at any time. The switch is performed instantaneously. If a mod-

ified method is currently active on the stack, the program counter immediately switches

to the equivalent position in the new version of the method. Thus, currently executing

receiver loops are immediately affected by the change in our example program. They start

printing the number of received text lines since the redefinition.

For every position in the base program, the VM must know the corresponding position

in the extended program that should be used for continued program execution after the

redefinition. This is necessary, because all threads executing a base method at the time of
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redefinition will immediately change to executing the new extended version of the method.

Therefore, the bytecodes of a method in the base program must not be changed in arbitrary

ways. In particular, the extended program must be derived from the base program by only

adding new bytecodes to the existing bytecodes of the base program. We define a bytecode

region in the base program that matches a code region in the extended program as a base

code region. In the example of Figure 5.1, lines 4 to 5 and lines 8 to 10 form base code

regions. Newly introduced code is contained in extended code regions (e.g., lines 6 to 7 in

the example).

5.1.1 Class Definition Changes

The extended program may add class members to the base program. Also, the extended

program can refer to new classes that are not used in the base program. Changes to

the access modifiers of members are allowed as long as it does not change the outcome

of accessibility checks triggered by bytecodes in base code regions. Changing the signa-

ture of a field or method is prohibited. The same applies to changes to the modifiers

static, synchronized, and native. An abstract base method can be replaced

with a concrete implementation in the extended version, but not vice versa.

The extended program may however not override a non-abstract base method. Overrid-

ing a method changes the semantics of the dynamic dispatch at the call site. At the time

of the version change, the program could currently execute a method that was invoked

due to a dynamic dispatch in the base program, while the same dynamic dispatch in the

extended program would have led to the execution of a new method. This would invalidate

our claim of an atomic version change. The only allowed change to the class hierarchy

is to add an interface to a class. Changing the superclass of a class is also prohibited,

because it could result in new overridden methods.

5.1.2 Method Body Changes

When the bytecodes of a method are different in the base program and the extended

program, we distinguish between the base method and the extended method respectively.

We define the modifications to the Java bytecodes of the base method that are allowed

when forming the extended method as follows:
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try {

foo();

}

catch(Throwable t) {

System.out.println("handled");

}

try {

foo();

}

catch(Throwable t) {

System.out.println("handled");

}

try {

}

catch(Throwable t) {

System.out.println("intercepted");

throw t;

}
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Base Program Extended Program

Figure 5.2: An extended code region that intercepts an exception that is thrown by a base

code region.

Constant Pool References: A bytecode of the base program may be modified to con-

tain a different constant pool index as long as the referenced constant pool entry

represents the same constant. The new and old bytecode are then said to be equiv-

alent modulo constant pool [10].

Extended Code Regions: An extended code region is a sequence of n bytecodes that

is used to extend the base program. It can be inserted before any bytecode of the

base program with some index i. In the Java bytecodes of the base program, every

reference to a bytecode with an index greater than i must be adjusted by adding n.

For references to i, the adjustment by n is optional. Such references are jump or

branch targets, exception handler ranges or targets, and line number entries. The

adjustment of jump targets of the base program guarantees that the new extended

code region can only be entered at the first bytecode.

In order to avoid semantic problems when an extended program causes parts of the base

program to be skipped, we furthermore define the following restrictions on control flow

modifications:

Jumps and Branches: Jump or branch instructions in extended code regions must al-

ways target bytecodes in the same code region. Therefore, an extended code region

cannot be exited with a jump or branch instruction.
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Return: The extended code sections may contain a return instruction. This is the only

way how parts of the base program can be skipped.

Exception Handlers: An extended code region must catch any exception that it throws.

It is allowed to add exception table entries that cover a range within an extended

code region. The exception handler block must however be within the same code

region.

Exception Interception: An extended code region may intercept an exception thrown

by a base program bytecode. It must however rethrow the same exception again.

Figure 5.2 shows such a case. The try statement itself does not produce a bytecode,

therefore the extended code section that intercepts the exception is continuous to

the base code section at the bytecode level.

With the above constraints, the VM can match every bytecode position in the base

method to a corresponding bytecode position in the extended method.

The extended code regions and the base code regions are using the same execution stack.

We restrict the way the execution stack can be modified by the extended code regions in

the following way:

Expression Stack: The expression stack height upon exit of an extended code region

must be the same as the expression stack height at the entry of the region. Addi-

tionally, all expressions on the stack at the entry of an extended code region must

remain unmodified.

Local Variables: The extended code region may introduce new local variables and also

read from and write to all local variables of the base program. The Java verifier

ensures that the bytecode accesses to local variables are consistent with their types. If

a local variable is only modified by either the base program or the extended program,

then independent verification of both program versions is sufficient. Otherwise cross

verification of the two method versions is necessary as explained in the next section.

As the version change can happen at any bytecode position of the base program, the

extended code regions cannot assume that any other extended code region was executed

before them. Therefore, an extended code region must not rely on the initialization of

local variables in other extended code regions.
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Figure 5.3: Problems with verification of two versions of a Java method.

5.1.3 Cross Verification

Figure 5.3 shows an example of a base method and an extended method that both verify

correctly, but the version change would still be invalid. At line 6, the local variable with

index 1 is of type float in the extended program. This is necessary, because the extended

program performs a fload 1 instruction at this line. If the version change happens at

line 5, the type of the local variable would however be int (set by the execution of

istore 1 in the base program). The bytecodes in the middle of the figure show the

executed bytecodes sequence for this case.

In order to prevent this problem, the verifier must perform a cross verification of the

two programs, if the extended and the base code regions write to the same local variable.

It infers the possible types of local variables in the base program after every bytecode that

is followed by an extended code region (i.e., the bytecodes at line 2 and 5 in Figure 5.3).

For each of these lines, it starts a modified verification pass of the extended program: It

sets the types of the local variables to those inferred during the base program verification

and then performs a verification beginning at the corresponding extended code region (i.e.,

the regions starting at line 3 and 6). This makes sure that the bytecode sequence shown

in the center of Figure 5.3 is also subject to verification.

5.1.4 Transformer Methods

Fields added in the extended version of the program are initialized with 0, false, or

null. An extended program could however require other initialization values for its

fields. Figure 5.4 shows such an extended program. The buffer field is initialized in

the constructor of the Receiver class to a new StringBuilder object. At the time
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class Receiver {

private int count;

void recv(BufferedReader in) {

while(true){

String s = in.readLine();

count++;

if (s.length() == 0) 

break;

}

}

}

StringBuilder b;

public Receiver() { b = new StringBuilder(); }

void $transformer() { b = new StringBuilder(); }

b.append(s);

System.out.println(b);

Figure 5.4: An extended program with a transformer method.

of the version change, there can however already be Receiver objects on the heap. For

those objects, the VM offers the possibility to specify transformer methods for manually

converting between the old version and the new version of the object. For every class, the

programmer can write a transformer method with no parameters, a void return type, and

the name $transformer. This method is then called for every instance of that class that

exists on the Java heap. The example transformer method initializes the buffer variable

to an empty StringBuilder object. The initialization is guaranteed to be executed

before entering any extended code regions.

The two extended code regions in the method recv of Figure 5.4 both require that

the value of buffer is properly initialized. Therefore, it would not be possible to model

the variable as a local variable in the extended program that does not exist in the base

program. By defining buffer as a field, it is possible to write an adequate transformer

method that initializes its value.

For the purpose of static initialization, it is also possible to specify a method called

$staticTransformer in the extended program version. All transformers are executed

on the thread that triggered the version change. Static transformers are always executed

before instance transformers. All transformers are guaranteed to be executed before any

extended code region is entered. It is therefore safe to initialize new fields in transformer

methods and use them in extended code regions.
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5.2 Changing Back to the Base Program

The DCE VM is also capable of converting from the extended program back to the base

program. This is for example useful when the extended program adds logging output to

the base program that should later be disabled again.

When converting back from the extended program to the base program, the VM deletes

fields and methods that are only defined in the extended program. In order to prevent any

exceptions in continued program execution, the VM guarantees that those deleted class

members are never accessed after the change. This is achieved by applying the update

only at a point where it can immediately change all methods on the stack to their new

version. The update is delayed until the method activations of every thread are in base

code regions and not in extended code regions. Only then the update is safe, therefore we

refer to base code regions also as safe update regions. There is no guarantee that a safe

update region will be reached by all threads. Therefore, the command for changing back

to the base program has to specify a timeout. If there is a thread that does not reach a

safe update region within the given time, the operation gracefully fails.

There are two additional restrictions on the difference between the base program and the

extended program in order to make switching back to the base program a safe operation:

Verification: For a type-safe conversion back to the base method, another kind of cross

verification is necessary. The VM performs a modified verification of the base pro-

gram for each extended code region. It infers the types of local variables at the

end of every extended code region. Then, it starts the verifier at the base program

bytecode following the code region using the inferred types as the initial types of

the local variables. This makes sure that changing from the extended to the base

program is a valid operation for each base program position.

Type Narrowing: When changing from the base to the extended program, it is allowed

to add a superinterface to a class. When switching back, this would however result

in a type narrowing change. Therefore, such a change is only valid if there is no local

variable or field violating the subtype relationship between its static and dynamic

type. The VM performs a stack and heap analysis and cancels the operation if it finds

such a violation (see Section 4.2.1). The verification pass over the currently active

old methods is not necessary, because those methods will not continue to execute as

in the version of the DCE VM as presented in Chapter 3. If the added and removed
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interface is only known to the extended program, then the type narrowing change is

always safe, because the base program cannot have fields or variables of the type of

the interface.

5.2.1 Additional Restrictions

To make the change back to the base program safe, we need to make sure that the base

program is not aware that it was executed in an extended version. This imposes additional

restrictions on the kind of changes allowed to form the extended program. We suggest to

refrain from using the following actions in extended code regions to ensure correctness of

the continued base program execution after the switch back:

State: In order to sustain invariants of the base program, the extended code regions

should not write to local variables and fields known to the base program.

Return: A return statement in the extended code region may lead to base program

code with side effects not being executed. Additionally, it could violate invariants

on the return value of the modified method or just change the base program behavior

because of the different return value.

Call: Calling a base program method from an extended code region should only be allowed

if the called methods do not modify the state of the base program.

If one of those actions is used, possible negative effects on continued base program

execution have to be checked manually. If all specified restrictions are followed, then the

base program is completely unaware that it has been executed in an extended version.

Only timing differences due to the execution of extended code regions can result in a

different base program behavior.

The two extended programs presented in Figure 5.1 and Figure 5.4 both do not use any

of the problematic actions. They only access their own local variables and fields. There is

a call to the base program method println, but this method does not change the state

of the base program. Therefore, it is completely safe to switch between the base program

and any of those two extended programs.
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class Receiver {

private int count;

void recv(BufferedReader in) {

while(true) {

String l = in.readLine();

count++;

System.out.println(count);

if (l.length() == 0)

break;

}

}

}

while(true){

String s = in.readLine();
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Extended Program X

class Receiver {

StringBuilder b;

void $transformer() { b = new StringBuilder(); }

public Receiver() { b = new StringBuilder(); }

void recv(BufferedReader in) {

while(true){

String l = in.readLine();

b.append(l);

if (l.length() == 0) 

break;

}

System.out.println(buffer);

}

}

while(true){

String s = in.readLine();

if (s.length() == 0)

break;

}

if (s.length() == 0)

break;

}

Extended Program Y

… safe update regions

class Receiver {

void recv(BufferedReader in) {

while(true) {

String l = in.readLine();

if (l.length() == 0)

break;

}

}

}

Base Program B

while(true){

String s = in.readLine(); 

if (s.length() == 0)

break;

}

Figure 5.5: Changing between two program versions.

5.3 Changing between Two Arbitrary Programs

The restrictions for the differences between the base program and the extended program

that were presented in the last two sections are severe and prohibit many possible changes

if the currently running program is considered to be the base program. However, we can

define a safe update between a currently running extended program X and a new extended

program Y. This enables us to safely change between two arbitrary program versions by

defining their common base program. A safe update is possible, if a valid base program

B can be extracted from a comparison of X and Y. The safety of the transformation from

X to Y can then be evaluated based on the safety of the transformation from X to B and

from B to Y (including possible state transformers defined by Y).
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Figure 5.5 shows the two extended receiver loop programs. The program X on the

left side that counts the number of text lines and the program Y on the right side that

accumulates the text lines in a StringBuilder object. The common base program is

marked in dark gray. All of the restrictions between the extended program and the base

program as defined in Section 5.1 and Section 5.2 are followed. Therefore, we can safely

switch between the two extended program versions. The base program is never actually

executed, but only serves as a definition for the safe update regions between the two

versions.

When changing between three program versions X, Y, and Z, different base program

definitions can be used. The right side of Figure 5.6 introduces a program Z, which is a

third version of the example program. It increases the count variable by 10 instead of

1 as in program X. The common base program C between X and Z can now also include

the call to println and the field count. The common base program between Y and Z

is program B as listed in Figure 5.5.

The definition of the additional base program member count means that the value of

the counter is preserved between the two program versions. It is however a violation of

the condition that extended programs must not write to fields of the base program. The

programmer needs to be aware of this possible problem and manually decide whether the

transition between X and Z with C as the base program is semantically safe (i.e., that

the value produced by one program does not violate the invariants of the other program).

Another possibility would be to exclude count from the base program and perform the

version change without preserving the field value. The println statement can be added

safely to the base program C and has the effect that the transition between X and Z is also

possible while this statement is currently executing.

As long as two Java programs X and Y share a common main method, it is always

possible to define a common base program. The most trivial base program consists of the

main method with an empty body. However, the change between those two programs will

not succeed, unless program X has not yet entered the mainmethod. The more parts of the

two programs can be defined as a common base, the more likely a change succeeds, because

a precondition for the change to happen is that all threads of the executing program can

be gathered in base program regions. Also, every class member that is not defined in the

base program has to be initialized by program Y using transformer methods.
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class Receiver {

private int count;

void recv(BufferedReader in) {

while(true) {

String l = in.readLine();

count++;

System.out.println(count);

if (l.length() == 0)

break;

}

}

}

while(true){

String s = in.readLine();
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Extended Program X

class Receiver {

private int count;

void recv(BufferedReader in) {

while(true) {

String l = in.readLine();

count += 10;

System.out.println(count);

if (l.length() == 0)

break;

}

}

}

while(true){

String s = in.readLine();

System.out.println(count); 

if (s.length() == 0)

break;

}

Extended Program Z

… safe update regions

and base program fields

class Receiver {

void recv(BufferedReader in) {

while(true) {

String l = in.readLine();

if (l.length() == 0)

break;

}

}

}

Base Program C

while(true){

String s = in.readLine(); 

System.out.println(count);

if (s.length() == 0)

break;

}

System.out.println(count); 

if (s.length() == 0)

break;

}

private int count; private int count;

private int count;

Figure 5.6: Changing between two program versions that share an instance field.

5.4 Implementation

We implemented the functionality of switching between program versions on top of the

base algorithm for class redefinition as described in Chapter 3. The change still has no

negative effect on any of the properties of the DCE VM and using the feature is optional.

For specifying the ranges of extended code regions and base code regions, we do not

change the class file format, but use the built-in possibility to specify a new custom

bytecode attribute with the name ”CodeRegions”. The attribute specifies the extended

code regions as a list of tuples. Each tuple specifies a single extended code region with its

starting bytecode position in the extended program and its length. Every extended code

region must begin with a NOP instruction. This NOP is used as a special marker bytecode,

which enables us to perform actions at the code region entry in the interpreter, while the

code generated by the just-in-time compiler is not affected.
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Call transformers
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Notify waiting threads
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Notify waiting threads

… execute with all threads 

stopped at safepoints

Load new classes

Errors?

Forward methods

Enable JIT compiler

Enable JIT compiler

Figure 5.7: Steps performed by the class redefinition algorithm for a safe version change.

The safe version change is triggered by a standard class redefinition command that

specifies the bytecodes of all classes modified in the new version. The only difference to

a normal redefinition is the optionally specified extended code regions in the “CodeRe-

gions” bytecodes attribute. Figure 5.7 shows the steps performed in the VM for a safe

version change. The base class redefinition algorithm is extended with four parts that are

explained in detail in the following sections: Compilation prevention, update synchroniza-

tion, method forwarding, and transformer execution.
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5.4.1 Compilation Prevention

Every extended code region begins with a NOP instruction. We modified the implemen-

tation of the NOP instructions in the interpreter to enable update synchronization at the

beginning of extended code sections as explained in the next section. When a NOP instruc-

tion is executed, the interpreter can look up the extended code region that starts at the

bytecode index of the NOP instruction. The NOP instructions are ignored by the just-in-

time compilers. This guarantees that despite the presence of extended code regions, the

peak performance of the VM is not negatively affected.

We must make sure that at the time of the safe version change, the artificial NOP in-

structions are executed by the interpreter. Therefore, we deoptimize methods that contain

extended code regions after receiving the redefinition command. Also, we temporarily dis-

able the just-in-time compiler for those methods. Both steps are necessary to guarantee

that during the update synchronization, methods with extended code sections are always

executing in the interpreter. After the redefinition is complete, we enable the just-in-time

compiler again for all methods.

5.4.2 Update Synchronization

For a safe version change, we need to make sure that every thread is in a safe update

region and not in an extended code region. We do this with two mechanisms:

• If a thread is in a safe update region, it is prevented from entering an extended code

region.

• We iteratively check the threads, whether all of their activations are in safe update

regions.

The first mechanism is implemented as a modification to the NOP template of the

interpreter (see Section 2.5 for a detailed description of the interpreter and its bytecode

templates). When the global synchronizing flag is set, then the interpreter checks

whether the current NOP instruction is at the start of an extended code section. If this

is the case, it iterates over the stack frames of the currently executing thread. If there is

at least one stack frame that is currently in an extended code region, then the interpreter

continues execution. Otherwise, it suspends execution because it is now safe for the current

thread to perform the version change.
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We iteratively check whether it is safe for all threads to perform the version change. If

there is at least one stack frame that is in an extended code region, we keep on waiting.

If all of them are outside extended code regions, we can guarantee that none of them will

enter such a region before the version change. Therefore, we can guarantee that we will be

able to find a corresponding bytecode position in the new program for all methods active

on the stack and can safely perform the update.

Whether a safe update region is reached by all threads within a given time depends on

the properties of the program and therefore cannot be guaranteed. The user may specify

a timespan that the algorithm tries to wait until the version change is rejected. There is

a flag -XX:ForwardTimeout that specifies the number of milliseconds that should be

waited for the threads to reach safe update regions.

5.4.3 Method Forwarding

Now, we can perform the standard class redefinition algorithm that loads the new classes

and then updates the pointers and instances. In addition to the normal redefinition, the

algorithm iterates over all active threads and looks at the bytecode index of active methods.

If the method is a forwarding method (i.e., the old or the new method version defines an

extended code region), we check the current bytecode index. If the method is currently in

a base program region, we immediately perform the forwarding by changing the current

bytecode index and the current method of the interpreter frame. We can safely do this,

because it is guaranteed that the new bytecode is equivalent to the currently executing

bytecode (i.e., even if the interpreter has already executed parts of the bytecode, continued

execution is safe). If the execution of the method is currently halted at the NOP instruction

at the entry to an extended code region, the forwarding will happen after we wake up the

thread.

The calculation of the new bytecode index is done in a two step process: First, we

calculate the base program index based on the current bytecode index. Second, we can

translate the base program index to an index in the new version of the method.

5.4.4 Transformer Execution

After the redefinition, threads waiting at normal safepoints immediately start running

(they will however not be able to enter extended code regions), while threads waiting
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at extended code regions are still blocked. It is therefore still guaranteed that no thread

executes an extended code region. At this time, we execute the static transformer methods

and the instance transformer methods for all active instances of classes.

After executing the transformers, we notify the threads that are waiting at extended

code region entries. They will immediately recognize that they need to transfer the current

execution point to the appropriate bytecode index in the new version of the method. Also,

we enable the just-in-time compiler again for all methods.



Chapter 6

Case Studies

This section presents three case studies of tools built on top of the DCE VM with enhanced

dynamic code evolution features. First, we present a solution for live modifications to the

GUI of an active Swing dialog using a modified version of the NetBeans IDE. Second,

we discuss how to implement dynamic mixins for Java. Finally, we describe a tool that

combines AspectJ and the DCE VM to provide dynamic aspect-oriented programming

features.

6.1 Modified NetBeans

Redefining classes changes the behavior of a program, but it does not change its state.

This is especially problematic in case of changes to the configuration of a program that is

read at startup. The application would have to modify its state based on the changes to

the configuration in order to apply the change without a restart.

The following example motivates the difference between changes to the behavior of a

program and changes to its configuration. Listing 6.1 shows a class representing a global

buffer using the singleton pattern. The buffer is represented by a byte array of fixed size.

The size is specified in the static final field BUFFER SIZE. When the programmer changes

the value of the field (e.g., because he wants to increase the buffer size), the effects on the

running application are not immediately clear. If the singleton instance already exists, the

change has no effect to the running application. Only a restart would make the change

effective, because the part of the program that is influenced by the change can only be

executed once. If the instance was not yet created, the change is immediately valid. A
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class GlobalBuffer {

public static final int BUFFER_SIZE = 100;

private static GlobalBuffer instance;

public static GlobalBuffer getInstance() {

if (instance == null) {

instance = new GlobalBuffer();

}

return instance;

}

private byte[] buffer = new byte[BUFFER_SIZE];

public void write(byte[] data) {

...

}

}

Listing 6.1: Problems with changes to declarative program specifications.

manually written transformer method is necessary to ensure that the change to the size

of the buffer becomes effective in both cases. A change to the behavior of the buffer by

modifying the write method will however affect the program immediately.

6.1.1 Mantisse GUI Builder

The Mantisse GUI builder generates code that initializes the state of a Swing dialog.

Similar to the example with the singleton pattern, this code is supposed to run only once

before displaying the dialog. Therefore, any changes to the dialog (e.g., changing its title

or moving a button), only take effect after restarting the dialog.

Listing 6.2 shows the code that is generated by the Mantisse GUI builder for the dia-

log with a button and a text box that is shown in Figure 6.1. The dialog is represented

by the NewJFrame class that extends JFrame and has one field for the button and

one field for the text box. The constructor calls the automatically generated method

initComponents() that creates the frame contents (i.e., the button and the text box)

and adds them to the frame layout. In order to support action events, the dialog imple-

ments the ActionListener interface to handle a button click. The addActionListener
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Figure 6.1: Example dialog with a button and a text box.

public class NewJFrame extends JFrame implements ActionListener {

private JButton button;

private JTextField textField;

public NewJFrame() { initComponents(); }

// Code for dispatching events from components to event handlers.

public void actionPerformed(ActionEvent evt) {

if (evt.getSource() == button) { buttonActionPerformed(evt); }

}

private void initComponents() {

button = new javax.swing.JButton();

button.setText("Test");

button.addActionListener(this);

textField = new javax.swing.JTextField();

// ... add button and textField to layout ...

}

private void buttonActionPerformed(ActionEvent evt) {

System.out.println("Hello world");

}

}

Listing 6.2: Code generated by the Mantisse GUI builder for an example Swing dialog.

statement in the initComponents method is also automatically generated by the GUI

builder. The only line of the code that is manually written by the programmer is the

println statement in the buttonActionPerformed method.

When the user changes the dialog in the GUI builder (e.g., moves a component to

a different place), the initComponents method is regenerated and the Java source

file is recompiled. The class redefinition mechanism can then load the new version of

the dialog. However, the change only affects new instances of the dialog, because the

initComponents method is not called again for existing dialogs.
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6.1.2 Modified GUI Builder

To overcome the limitation that a class redefinition does not affect active instances of

a dialog, we modified the code that is generated by the GUI builder [33]. Our system

allows us to apply changes to a Swing dialog while it is running. We preserve the state

of the dialog components (e.g., the content of a text area or a list view). Therefore, the

programmer can enhance an existing dialog without the need to reinitialize its state, which

is especially beneficial for complex dialogs.

Listing 6.3 shows the code that is generated by the modified GUI builder for the example

dialog. The differences to the standard GUI builder code as presented in the previous

listing are highlighted. The change is still triggered by NetBeans using the standard class

redefinition mechanism, but the modified generated code makes sure that any change to

the dialog immediately takes effect. To make this possible, the generated code includes

an instance transformer method that clears the contents of the dialog and then calls

the initComponents method. This transformer method recomputes the layout and

reinitialize the GUI components using the initComponentsmethod after modifications

to the dialog class.

We also changed the code generated for the initComponentsmethod, such that it can

be called more than once. In the changed version, a new instance of a Swing component is

only created when it is added to the dialog for the first time. If an instance of a component

already exists (i.e., the field generated for the component is not null), then the existing

instance is used. This makes sure that the components preserve their states (e.g., the text

in a JTextField component remains unmodified after class redefinition).

Another change to the generated code is necessary to ensure the correct semantics of

registering listeners. The registered listeners of a component are first removed before

adding new listeners based on the current dialog specification. This ensures that listeners

are not registered multiple times for one component when the initComponentsmethod

is executed more than once. The listeners are always implemented by the main dialog

class. Because type narrowing changes are problematic, we make sure that the set of

listeners implemented by the dialog class only expands. Adding a new interface to the

class always succeeds with the DCE VM.

Figure 6.2 demonstrates how NetBeans and the DCE VM can be used to modify a Java

GUI application without a restart. The Java application is running all the time and need

not be manually suspended by the debugger. The programmer has three different views on
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public class NewJFrame extends JFrame implements ActionListener {

private JButton button;

private JTextField textField;

public NewJFrame() { initComponents(); }

void $transformer() {

getContentPane().removeAll();

initComponents();

}

// Code for dispatching events from components to event handlers.

public void actionPerformed(ActionEvent evt) {

if (evt.getSource() == button) { buttonActionPerformed(evt); }

}

private void initComponents() {

if (button == null) button = new javax.swing.JButton();

button.setText("Test");

button.removeActionListener(this);

button.addActionListener(this);

if (textField == null) textField = new javax.swing.JTextField();

textField.removeActionListener(this);

// ... add button and textField to layout ...

}

private void buttonActionPerformed(ActionEvent evt) {

System.out.println("Hello world");

}

}

Listing 6.3: Code generated by the modified GUI builder with additionally introduced code

regions highlighted.

the dialog: The running dialog where he can interact with the components on the left side,

the Java source code of the frame class in the middle, and the edit mode representation

of the frame in the Mantisse GUI builder on the right side. When the dialog is changed

in either the source code window or the GUI builder window, a toolbar button is enabled

to apply the code changes directly to the running application. The modified version of

the program is loaded and the instance transformer method ensures that the layout of the

components is recomputed and the components are reinitialized.

In contrast to the DCE VM, the current version of the Java HotSpot VM would not

allow us to implement the described extension of the Mantisse GUI builder, because there

is neither support for adding fields or methods at run time nor for transformer methods.

However, these features are essential, since the Mantisse GUI builder often creates new
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Figure 6.2: Screen shot that shows a running Java GUI application that can be modified

using the DCE VM and the “Apply Code Changes” feature of the NetBeans debugger.

fields (e.g., for new components) or new methods (e.g., an action handler for a button).

Additionally, the transformer method is necessary to re-layout the frame.

6.2 Dynamic Mixins

Bracha and Cook presented mixins as a new inheritance mechanism [46]. A mixin is a

class that can be added to target classes in order to extend their functionality. A mixin

adds new fields, methods, and supertypes directly to the target class and therefore changes

the layout and behavior of all target class instances and all instances of subclasses of the

target class. In contrast to subclassing, however, target class instances cannot be used as

mixin class instances.

A mixin that is added to a target class at compile time is a static mixin. Static mixins

for Java can be supported by either inserting their fields and methods into the bytecodes

of the target class or by weaving them into the class using aspect-oriented programming

techniques. The DCE VM allows to dynamically apply such changes to the bytecodes of

the target class. Therefore, the DCE VM supports dynamic mixins that are added to

target classes at run time.

Kerstin Breiteneder and Christoph Wimberger implemented a mechanism that merges

the bytecodes of the mixin class and the target class [47]. The result of this merge is a

new class definition for the target class. The DCE VM is then used to swap the target

class definition and update its instances.
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interface Z {

public int getZ();

public void setZ(int z);

}

public class MixinZ implements Z {

private int z;

public int getZ() { return z; }

public void setZ(int z) { this.z = z; }

}

Listing 6.4: Mixin example that adds a new field to a target class.

Listing 6.4 shows an example definition of a mixin class that defines an integer field z.

It also defines an interface with methods to access the field. The mixin implements this

interface. Due to limitations of the Java type system (i.e., it is not possible to have more

than one superclass), instances of the target class cannot be used as instances of the mixin

class. Therefore, the additional interface declaration is necessary to expose the mixin

methods. All interfaces of the mixin class are automatically added to the target class.

Listing 6.5 defines a target class Point2D. At any time while the program is running,

the mixin class can be added to the target class using the Mixin.addMixin method.

After this call, all instances of Point2D have an additional field z. Additionally, they

can now be safely cast to the Z interface.

By merging mixins with their target class and by using dynamic code evolution we obtain

a mixin approach that is both fast and memory efficient. In order to simulate the behavior

of adding additional fields to existing instances, a hash table would be necessary in which

the keys are the object instances and the values are the additional fields. Then, accessing

the additional data would always need a lookup in the hash table. In our example, the

newly introduced z field is accessed as efficiently as any other field of the Point2D class.

The call to the interface method setZ can be inlined by the just-in-time compiler, thus

eliminating any overhead. Also, the hash table workaround needs more memory due to

the hash table data structure. Finally, our solution to dynamic mixins does only change

the target class bytecodes and does not require any changes to classes except the target

class.
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public class Point2D {

public int x;

public int y;

}

Point2D p = new Point2D();

// Add the mixin class to the target class.

Mixin.addMixin(Point2D.class, MixinZ.class);

// Set a new value for the z coordinate using the

// interface implemented by the mixin class.

((Z)p).setZ(10);

System.out.println("Z coordinate is: " + ((Z)p).getZ());

Listing 6.5: Adding a mixin to a class that is modeling 2-dimensional points.

6.3 Dynamic Aspect-Oriented Programming

The new features of the DCE VM open up new possibilities in the area of dynamic aspect-

oriented programming (AOP) [48] for Java. Previously, AOP for Java was either severely

limited in the type of supported aspects or could only be applied at load time or compile

time. The most commonly used Java AOP framework is AspectJ [49]. It comes with an

aspect language based on Java.

HotWave is an aspect-oriented programming tool developed by Villazón et al. [9] that

uses AspectJ and the current class redefinition capabilities of the Java VM (see Section 2.8)

to provide dynamic aspect-oriented programming features. Figure 6.3 gives an architec-

tural overview of HotWave. The tool is implemented as a Java agent that is attached

to the VM (see Section 2.8.3). On VM startup, it registers a class file transformer that

intercepts any class loading or class redefinition. HotWave maintains a set of currently

active aspects. A command line console allows the user to change this set of aspects while

the application is running. When the user requests a change, the tool sends a request

to retransform all currently loaded classes to the VM. This causes the VM to reload all

classes with their current bytecodes.

The registered class file transformer is called before each redefined class is loaded, such

that HotWave can apply the currently active aspects to the bytecodes. By using the class

file transformer instead of calling redefineClasses directly, the tool can make sure that
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Figure 6.3: Interaction of HotWave with the Java VM and with AspectJ.

any newly loaded class is affected immediately, because the loading is also intercepted by

the class file transformer. The class file transformer of HotWave uses AspectJ to weave

the currently activated aspects into the bytecodes of the class and returns the result to

the VM. The VM then performs the redefinition of the classes with the weaved bytecodes.

HotWave has several restrictions that are caused by the limitations of the class redefi-

nition capabilities of the Java HotSpot VM. Therefore, we worked on the design of a new

version of HotWave that is using the new features of the DCE VM [32, 33].

The DCE VM helps dynamic AOP tools such as HotWave in two ways: First, it removes

the need for workarounds in case AspectJ requires the introduction of a new static field or a

new method for an aspect-oriented programming construct. Second, it enables advanced

AOP techniques that require explicit structural transformations on classes, such as the

insertion of fields or methods (e.g., static cross-cutting). The DCE VM provides the ad-

vanced class redefinition features via the Java Platform Debugger Architecture (JPDA) [50]

implementation of the HotSpot VM. Therefore, a dynamic AOP tool that is based on the

DCE VM does not need to use additional or modified APIs.





Chapter 7

Evaluation

All algorithms described in this thesis are implemented in the Dynamic Code Evolution

VM (DCE VM) that is based on a recent version of the Java HotSpot VM. Binaries and

source code of the DCE VM can be downloaded from http://ssw.jku.at/dcevm/.

The sections of this chapter evaluate the DCE VM from three perspectives:

Functional Evaluation: We list the class redefinition changes that are supported by the

DCE VM and describe possible problems when dealing with complex changes.

Long-Term Execution Performance: One of the key features of the DCE VM is that

its class redefinition capabilities do not decrease performance. In order to support

that claim, we show the results of two benchmarks from the DaCapo benchmark

suite [51].

Micro Benchmarks: We report on the performance of our instance update algorithm

using micro benchmarks that add, remove, and reorder the fields of a class.

All timing measurements in this chapter were performed on an Intel Core i5-750 CPU

running at 2.67GHz with 4 cores. The operating system was a 64-bit version of Windows 7.

The results were obtained when running a 32-bit VM using the client compiler configura-

tion. For comparisons with a baseline, we ran an unmodified build of the HotSpot VM

using the version tagged as hs21-02, which is part of the JDK build jdk7-b131. At

the time of writing this thesis, the source code of the DCE VM was based on the source

code of this HotSpot VM version that was published in February 2011.

http://ssw.jku.at/dcevm/
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7.1 Functional Evaluation

Table 7.1 gives an overview of the supported class redefinition changes classified as dis-

cussed in Section 1.2. The DCE VM supports arbitrary changes to a set of classes, with

two restrictions: When a deleted instance field is accessed by old code, an exception is

thrown. Additionally, a type narrowing change is not carried out if the dynamic type of a

variable would no longer match its static type after redefinition. In all cases, the continued

execution of the Java program is fully compliant with standard Java semantics.

Method Restrictions

Swap Method Body

Add Method

Remove Method

Add Field

Remove Field NoSuchFieldError when accessing a deleted instance field

Add Supertype

Remove Supertype only allowed when dynamic type safety verification succeeds

Table 7.1: Supported code evolution changes of the DCE VM.

The base version of the DCE VM (as presented in Chapter 3) was significantly improved

with the techniques for accessing deleted class members and safe dynamic type narrowing

(see Chapter 4). The programmer can specify the desired behavior for accessing deleted

class members (see Section 4.1.1). Therefore, removing a method or a static field from a

class can be made completely safe by configuring the VM to access the old version of the

class member if it is not present in the current version. Additionally, the VM now checks

at class redefinition time whether removing a supertype can cause a problem in continued

execution. This is a significant enhancement compared to the earlier VM version that was

not able to guarantee continued execution without a VM crash in case of type narrowing

changes.

The two remaining limitations of the DCE VM are that deleting an instance field can

cause an exception in continued execution (e.g., because an old method still accesses the

field) and type narrowing changes are not always allowed (i.e., because a variable would

contain an invalid value). It would be possible to use the algorithm for accessing deleted
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class members (described in Section 4.1.2) for deleted instance fields too. However, the

VM would have to keep the values of deleted fields for all active objects, thus increasing

memory usage. The type narrowing changes could be handled by enclosing values violating

the type system in proxy objects that contain a single field pointing to the value and act

like the expected static type. It is however unclear what the semantics for method calls

and field accesses on those proxy objects would be. Therefore, we believe that this would

make predicting the program behavior after such a dynamic change overly complex. Both

cases are rare when updating a running program to a new version, therefore we believe

that those two restrictions are acceptable and do not impact the usability of the DCE

VM.

Since version 1.4 of Java, the JPDA (Java Platform Debugger Architecture) defines

commands for class redefinition (see Section 2.8). A VM specifies three flags to inform

the debugger about the code evolution capabilities: The flag canRedefineClasses if

class redefinition is possible at all, the flag canAddMethod if methods can be added to

classes, and the flag canUnrestrictedlyRedefineClasses if arbitrary changes to

classes are possible. To the best of our knowledge, DCE VM is the first Java VM that

returns true for all three flags. We propose a more fine-grained distinction between

different levels of code evolution based on our classification in Section 1.2 that takes the

implementation complexity in the VM into account. The step between adding methods

and allowing arbitrary changes is too large.

The DCE VM does not specify additional APIs for class redefinition, but works with

the standard API as defined by the JPDA. This means that every standard Java debugger

that uses the JPDA can immediately use the advanced class redefinition features of the

DCE VM. The VM is already tested to work with the three major Java IDEs NetBeans,

Eclipse, and IntelliJ IDEA. A debugger can treat a redefined program in the same manner

as the original program and does not have to hide artificially introduced methods or proxy

objects from the programmer. The DCE VM transfers field watch points of the debugger

from the old to the new program if a matching field can be found in the new program.

Also, method breakpoints are preserved if the body of a method does not change during

a class redefinition.

It is difficult to measure the usage characteristics of code evolution, because it heavily

depends on the application domain and also on the developer behavior. Gustavsson [4]

published a case study in which the updates to a web server between different versions

are examined. The result is that 37% of the modifications only redefine method bodies,
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16% only add or remove methods, 33% are arbitrary code evolution changes, and 14% are

changes that cannot be performed, e.g., because of code that never becomes inactive or

a need to change things outside the VM. Our implementation can therefore increase the

percentage of possible changes in this case study from 37% to 86%. For the last 14%, the

DCE VM would at least be capable of executing manually written transformer methods.

We believe that supporting a high percentage of changes is especially important so that

developers adopt the technology.

At the time of writing this thesis, the implementation of our class redefinition algorithms

in the DCE VM has already reached a high stability level. The VM passes 100% of Oracle’s

internal class redefinition test suite, which is used for HotSpot development. This means

that the DCE VM also correctly handles the effects of class redefinition on JVMTI objects

(e.g., when the debugger holds a JVMTI reference to a method or class that is replaced

with a new version). We also developed a new test suite for the changes that are not tested

by Oracle’s class redefinition tests because the HotSpot VM does not support them. Our

test suite is available from http://ssw.jku.at/dcevm/tests.

When debugging an application, possible problems after resuming the program are

more acceptable than when updating a server application. The worst case scenario is

that the developer needs to restart the application, which would have been necessary

anyway without code evolution. Therefore, we strongly recommend using the DCE VM

for increasing development speed, but still advise against using the VM for updating

critical server applications.

7.2 Long-Term Execution Performance

In order to show that our modifications to the VM have no negative performance im-

pact on normal program execution, we compare the DCE VM with the unmodified Java

HotSpot VM that the DCE VM is based on. Both VMs execute the benchmarks using the

same JDK version (jdk7-b131). We demonstrate that the DCE VM performs equally

well during normal program execution. Additionally, we show that while the DCE VM is

slightly slowed down after a class redefinition, it reaches peak performance again as the

program continues to execute.

We selected two benchmarks from the latest version (9.12) of the DaCapo benchmark

suite [51]: The fop benchmark that reads XML files to generate PDF files and the jython

http://ssw.jku.at/dcevm/tests
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benchmark that runs a Python interpreter executing a Python program. We measure the

times of 20 subsequent runs of each benchmark within the same VM. A garbage collection

between two subsequent runs is performed in order to reduce the random noise introduced

by the garbage collector.

The heap size is specified with 1 GByte, the permanent generation size is set to 200 MByte,

and the client compiler is used as the just-in-time compiler. Additionally, we use the fol-

lowing command line flag:

-Xrunjdwp:transport=dt socket,

server=y,address=4000,suspend=n

This starts a JDWP agent for receiving JDWP commands. The agent is used for de-

bugging the Java program running in the VM. When starting the DaCapo benchmarks,

we register a callback class that can execute Java code between two subsequent bench-

mark runs. This callback class connects to the JDWP agent and sends the command for

redefining classes.

The callback class triggers class redefintion between the 10th and 11th run of a bench-

mark. It is only performed in the DCE VM and not when the benchmark is executed in

the unmodified HotSpot VM that serves as the baseline. We redefine a class from the Da-

Capo benchmark runner (org.dacapo.harness.TestHarness) with a new version

that has a new public method. This kind of change is not supported in the HotSpot VM.

The class redefinition causes the DCE VM to discard previously compiled machine code

and constant pool cache entries as described in Section 3.6.

We executed the test setup 10 times and calculated the mean. Figure 7.1 shows the

results for the unmodified reference HotSpot VM and our DCE VM when executing the

two DaCapo benchmarks. The first ten runs of each benchmark show that the VMs run

the benchmark at the same speed.

The performance characteristics after a code evolution step between the 10th and the

11th run are similar to the warm-up phase. The first run after the code evolution is sig-

nificantly slower, because the compiled code is deoptimized and the constant pool cache

entries are cleared. For both benchmarks, the number of cleared methods is more than

2000. However, the VM quickly resolves the constant pool cache entries and recompiles

the frequently executed methods again. In the second run after the code evolution, the
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Figure 7.1: Executing 20 runs of the fop and the jython DaCapo benchmark with a class

redefinition after 10 runs.

performance difference is hardly measurable and subsequent runs do not show any differ-

ence. As the profiling information is reused, the first run after code evolution is faster

than the first run overall.

Figure 7.2 reports the relative slow-down between the best run of a benchmark (first

bar) and the first run after redefinition (second bar). Additionally, the relative slow-down

of the first run of a benchmark is shown (third bar). In both benchmarks, the first run

is also the slowest. The fop benchmark has a smaller difference between the best run

and the first run (3.0x) than the jython benchmark (4.0x). Therefore, the first run after

class redefinition is also less affected for the fop benchmark (1.7x) than for the jython

benchmark (1.9x).

The class redefinition does not involve a garbage collection, because we do not increase

the size of object instances. The average time for performing the class redefinition is 18ms

for the fop benchmark and 35ms for jython. The jython benchmark loads more classes
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Figure 7.2: Slow-down of the first run after class redefinition and the first run of the bench-

mark versus the best run.

than fop and the additional metadata heap objects cause the heap iteration for updating

pointers to take more time.

7.3 Micro Benchmarks

To measure the performance of instance updates and our garbage collector adjustments,

we use three micro benchmarks in which we increase and decrease the field counts, reorder

the fields of a class, and update all instances of this class to the new version. We compare

the performance of this redefinition to the performance of a normal garbage collection run.

Table 7.2 shows the different class versions used for the benchmarks. The leftmost column

contains the initial version of the class. It has three int fields and three Object fields

resulting in a total object size of 32 bytes (including 8 bytes object header). All three

modifications are applied to the initial version, i.e., they are not consecutive. The three

benchmark configurations are:

Increase: An object field is added to the class resulting in an increased instance size

of 40 bytes (because the size of an object is rounded up to a multiple of 8 bytes).

Therefore, the changed objects need 25% more heap area.

Decrease: Two object fields are removed resulting in a decreased instance size of 24

bytes. Therefore, the changed objects need 25% less heap area.
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Initial Increase Decrease Reorder

class C { class C’ { class C’ { class C’ {

int i1; int i1; int i1; int i3;

int i2; int i2; int i2; int i1;

int i3; int i3; int i3; int i2;

Object o1; Object o1; Object o1; Object o3;

Object o2; Object o2; } Object o1;

Object o3; Object o3; Object o2;

} Object o4; }

}

32 bytes 40 bytes 24 bytes 32 bytes

Table 7.2: The initial and the three redefined versions of the class C that are used for the

micro benchmarks.

Reorder: All fields of the object are reordered to be in a different position than before.

The size of the heap area of updated objects remains unchanged.

We create a total of 4,000,000 objects, resulting in an approximate size in memory of

128 MByte. For our benchmarks, we create fractions between 0% and 100% of the objects

as instances of the redefined class. The rest of the objects are created as instances of

another class with the same fields, but this class is kept unmodified. For comparison, we

also provide the time for a full garbage collection without code evolution. As there are no

dead objects on the heap, this garbage collection run only marks all objects, but does not

need to copy memory in the compaction phase. We execute each configuration 10 times

and report the mean of the runs. Figure 7.3 shows the results.

When no objects are affected, the cost of a class redefinition is about a third of the cost

of a full garbage collection run. Most of the cost comes from the heap iteration to update

pointers and the check for instances of redefined classes. The time also includes issuing

the JDWP command and loading the new classes.

Increasing the size of all objects on the heap needs close to three times more time than

the no-load garbage collection run. Our improved forward pointer calculation makes sure

that not all of the objects, but only 20% of them need to be copied to a rescue buffer.

One rescued object (32 bytes) makes room for four objects to increase their size by 8



93

0 

100 

200 

300 

400 

500 

600 

700 

800 

M
il

li
se

co
n

d
s

Fraction of Changed Objects

GC Only

Increase

Decrease

Reorder

Figure 7.3: Timing results for changing the fields of a class compared against a garbage

collection run.

bytes each while still being copied to lower memory addresses. The performance of this

benchmark is additionally improved when there are dead objects at the beginning of the

heap. The dead objects provide space for instances to increase their size and lead to less

objects being copied to the rescue buffer.

Reordering the fields of all objects (and therefore copying the objects field by field

instead of as a whole) is comparable to a full garbage collection run if all objects are

affected. As the size of the objects does not change for this micro benchmark, the objects

are updated in-place during the heap iteration and so the modified garbage collection run

is not necessary. We need to make a copy of each object and then copy the field values

one-by-one.

Redefining a class such that all object sizes decrease is also slightly faster than a full

garbage collection run. Decreasing the sizes can be done during the heap iteration using

filler objects to fill the deprecated heap areas (see Section 3.4). This is significantly faster

than adjusting the object sizes in a full garbage collection run like in the case where object

sizes are increased. The filler objects are automatically removed by the garbage collector

in subsequent garbage collection runs, because there are no pointers to them.





Chapter 8

Related Work

This chapter compares our work with other research in the same domain. We describe

systems that implement dynamic code evolution for procedural languages, for dynamically-

typed languages, and for C++. Additionally, we discuss other implementations of dynamic

code evolution for Java. At the end of the chapter, we present a table that gives an overview

of the features supported by the DCE VM in comparison to other systems.

8.1 General Discussions

Several classifications of runtime changes of programs have been published [3, 4]. Ebraert

et al. presented a general discussion on the problems and pitfalls of software evolution [52]

and examined dynamic changes from the user’s point of view [53]. Additionally, they

discussed how changes to the component structure of a software system can help future

dynamic software evolution [54]. Our classification of changes looks at dynamic changes

from the point of view of the implementation complexity in the VM (see Section 1.2). The

programming model for safe dynamic version changes approaches the problem at the Java

bytecode level (see Chapter 5) and not at the level of whole software components. This

allows us to update components and even methods although they are currently executing.

Kramer and Magee investigated the problem of how to design applications to allow

a consistent state transfer between new and old programs [55, 56]. Vandewoude et al.

extended their work and introduced the notion of tranquillity [57]. Gupta developed a

formal framework for program evolution [58]. Different formalizations of dynamic software
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updates were published by Bierman et al. [59] and Stoyle et al. [60]. Run time evolution

in the context of aspect-oriented programming was discussed by Gustavsson et al. [61].

8.2 Procedural Languages

Early work on dynamic code evolution was done by Fabry [1]. The ability to change

method implementations at run time is achieved by jump indirections to procedures. Data

conversion routines can be specified and the old and new version of a module can execute

in parallel.

Lee and Cook implemented a dynamic modification system for the StarMod language,

which is an extension of Modula-2. Their system is called DYMOS [62]. It includes a

command interpreter that can perform update actions based on certain conditions, e.g.,

when certain procedures are inactive.

Frieder and Segal developed a procedural dynamic updating system called PODUS [63,

64]. They require a binding table for methods that is updated accordingly. An update is

prohibited if one of the updated methods is currently executing. Additionally, PODUS

prohibits an update if there is a method currently executing that can call one of the

updated methods. In case of Java, such a rule would be impractical due to virtual method

dispatch and the possibility to invoke methods via reflection.

Gupta implemented a hot code replacement mechanism for C programs on a Sun work-

station based on state transfer [65, 66]. The system supports adding and deleting of

functions. For adding global data, extra pointers must be declared in advance. So-called

interprocedures are installed in case the return value or parameters of a method change.

Those interprocedures map between a call from a method of the old program version to a

new method of the new version.

Hicks et al. presented a dynamic modification system for C-like languages called Pop-

corn [67]. They apply patches to the running program that are mostly automatically

generated and can contain verification code. The patches contain the new code as well as

the code needed to do the state transformation from the old to the new program.

Later, they built a new system on top of it, called Ginseng that brings significant

improvements [68]. They need to compile the programs in a different way and report a

performance overhead of up to 32% if several updates are applied. Safe update points

have to be specified in the original program as calls into the runtime system. Therefore,
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the user has to anticipate all possible update points in the original program version. For

each update point, Ginseng performs an analysis on the update constraints (e.g., which

types may be changed at that point). Procedures can only be updated as a whole unit.

Later, the authors of Ginseng presented Proteus, a calculus for automatically inferring the

update constraints [60].

In contrast to the work described in this section, our algorithm targets the challenges

of code evolution for object-oriented languages. We support an atomic change of a set

of class definitions and can guarantee type safety even for complex changes to the class

hierarchy. Also, we leverage the advantages of dynamic compilation in a VM and therefore

do not need to insert hooks into a statically compiled program. This enables us to add

the dynamic class redefinition capabilities to the VM without imposing a performance

penalty for normal program execution. The modification of the garbage collector gives

our algorithm the possibility to increase the size of an object without the need of pointer

indirections.

8.3 C++, CLOS, and Smalltalk

Hjalmtysson et al. [69] presented an approach for dynamically changing the implementation

of classes in C++. They use the C++ template mechanism and proxy classes to realize

the dynamic code evolution aspect. There has to be an interface definition for every

dynamic class and it is only possible to change the implementation behind this interface.

Therefore, it is not possible to add or remove any public members of a class or change the

class hierarchy.

The Common Lisp Object System (CLOS) [70, 71] and Smalltalk [72] both allow class re-

definition in a dynamically-typed system. Both systems allow the definition of metaclasses

that describe the behavior of other classes. This contrasts the design of the HotSpot VM

where the VM class objects implement a fixed behavior that cannot be redefined by the

user. While user defined metaclasses allow maximal flexibilty for changing the behavior

of method calls, they constrain many compiler optimizations.

A conceptual difference to our class redefinition approach is that in CLOS and Smalltalk

the classes can only be redefined one-by-one, while we can atomically redefine a set of

classes. In the former case, the programmer is responsible for performing the redefinitions

in the correct order. Additionally, the programmer needs to manually avoid concurrency
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problems in multi-threaded applications when one thread redefines classes while another

thread uses it. The DCE VM automatically calculates the correct order for class redefini-

tion and performs the change atomically from the point of view of the program. Further-

more, the DCE VM finds out about classes that are affected by the current redefinition

command.

In case of deleted methods, CLOS and Smalltalk offer the possibility to implement

a method that is called when a method is not found. In CLOS, this method is called

NO-APPLICABLE-METHOD, in Smalltalk, it is called doesNotUnderstand. The default

implementation of this method throws an exception. The programmer can either catch

this exception or provide a different implementation. Our algorithm to access old deleted

class members resolves the problem of deleted methods without manual intervention from

the programmer and introduces a modified dynamic dispatch mechanism that takes the

version of the executing method into account (see Section 4.1.2). Also, we provide the

possibility of a static check at the time of the redefinition whether the call of a deleted

method can occur in continued program execution.

Our algorithm for checking the type safety of a type narrowing change is not necessary

for dynamically-typed languages, because variables in such languages do not have static

types that might become inconsistent with the dynamic types of the referenced objects.

Also, the verification of the new methods that they comply with the new type hierarchy

is not required for CLOS or Smalltalk, because silently converting between two types is

always valid for dynamically-typed languages. The definition of transformer methods that

update the instances from the old to the new version is possible in CLOS and Smalltalk

as well as in the DCE VM. We believe that parts of our algorithm (e.g., the garbage col-

lection modifications) can be used for efficiently implementing the CLOS class redefinition

mechanism. Both CLOS and Smalltalk do not offer the possibility to change the execution

point of a currently executing method during a redefinition.

8.4 Java Bytecode Rewriting and Proxification

Iguana/J [73] is a system that allows the definition of metaclasses in Java code similar to

the metaclasses in Smalltalk or CLOS. The system offers a high flexibility but its authors

report a slowdown factor of about 25 for object creation, method calls, and method returns.
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There are various implementations of class redefinition for Java based on proxy objects

and bytecode rewriting [74, 75, 76]. The main advantage of this approach is that it re-

quires no change of the runtime system and can therefore be applied to any Java VM

that supports the JVMTI class redefinition command. However, this advantage is small

given that the DCE VM is available for many different platforms and operating systems.

Disadvantages are the significant performance penalty introduced by the indirection and

the limitations of flexibility, e.g., changes of the class hierarchy are not supported. Addi-

tionally, support for triggering the code evolution using development environments is not

available or requires special plugins. Furthermore, the reflection facilities of the VM are

affected (e.g. stack traces are obscure because they contain also generated proxy methods).

Techniques that are based on object wrappers require that every changeable class im-

plements an interface that specifies its public API [74, 75]. While the implementation of a

class can be redefined, this interface must remain unmodified. Additionally, the declared

type of object variables and fields that can hold instances of changeable classes must be

defined as such an interface type. The additional indirection incurs a performance penalty

on normal program execution and hinders the use of the Java Reflection API.

Gregersen and Jørgensen presented a system that uses bytecode rewriting techniques [76].

Their system performs the updates at the granularity of NetBeans components. They use

proxification techniques to be able to change the implementation behind the well-defined

API of a NetBeans module. They report an increased startup time due to the bytecode

rewriting and normal program execution is slowed down by 89.4%. Later, Gregersen et al.

advocated the idea of having a dynamic-update-enabled virtual machine and outline its

advantages [77].

We showed that our implementation does not slow down normal program execution at

all (see Section 7.2). Also, the use of the Reflection API or the JVMTI debugging interface

is not negatively affected. The direct modification of the internal data structures of the

VM keeps the class redefinition transparent in contrast to the techniques presented in this

section.
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8.5 Java Virtual Machines

The project JDrums [78] is an implementation of a dynamic Java VM based on JDK 1.2.

Its main limitations are that the just-in-time compiler must be disabled, active methods

cannot be updated, and superclasses cannot be changed.

Malabarba et al. [79] presented an implementation of code evolution based on JDK 1.2

called DVM. They require that only the interpreter is used and cannot handle code evolu-

tion in the context of just-in-time compilation. In case of instance changes, they perform

a global update using a mark-and-sweep algorithm during which all old version objects are

converted to new version objects. In contrast to our solution, their modifications to version

1.2 of the JDK impose a significant performance penalty on normal program execution.

Their main performance loss comes from acquiring a global lock at every bytecode that

involves an object reference or a method invocation. Additionally, they allow only binary

compatible changes, their VM uses object handles instead of direct object references, and

they have to disable the just-in-time compiler.

Subramanian et al. [80] implemented code evolution for the Jikes RVM. They support

adding and removing methods and fields, but do not support changes to the class hierarchy.

A special tool is used to generate update specification files. A transformation method is

executed every time an object is converted between two versions. In contrast to our

algorithm, their implementation is not focused on code evolution for debugging and thus

cannot be used by standard Java development environments. Additionally, they cannot

perform an update while an updated method is currently executing.

Dimitriev et al. [81] presented a class evolution algorithm for the persistent object system

for the Java programming language called PJama [82]. They introduced transformer

methods for updating the stored objects. While some principles of class evolution also

apply when updating the schema of an object-oriented data store, our main contribution

is to perform dynamic class evolution and update heap objects while the user application

is running.

To the best of our knowledge, the DCE VM is the first Java VM that allows arbitrary

changes to its classes including changes to the class hierarchy. Further distinguishing

characteristics of our VM are that there is no performance penalty on normal program

execution and that the update can be performed at any point the Java program can be

suspended even if redefined methods are currently active.
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8.6 Stack Updates

All dynamic update systems described so far are not capable of updating the implemen-

tation of currently executing methods. Therefore, they are not suitable for updating

long-running loops or the main method of a program.

The authors of Ginseng proposed a technique called loop extraction to reduce this draw-

back [68]. The body of the loop is extracted into a newly generated method such that it

can be updated. The user has to manually select loops that should be extracted and the

extraction implies a performance overhead.

Upstare is a dynamic update system for C developed by Makris and Bazzi that allows

replacing active executions [83]. They perform a full stack unrolling and allow the user

to specify continuation mappings between old and new method versions. Update points

are automatically inserted at the beginning of loops and methods. Due to the additional

indirections and update point checks, they report an overhead of up to 38.5% for their

benchmarks. The update model of Upstare offers high flexibility, because the new method

can effectively run completely different code starting from the current execution point in

the old method. It is however not possible to switch back to the old version, and the user

is responsible for checking the semantic correctness of a continuation mapping. Every

specified update point has to provide a valid mapping to the new version, it is therefore

not possible to delay an update.

Our programming model for safe version change is specified at the Java bytecodes level.

We do not allow manual mappings between the stack of the old method and the stack

of the new method. However, we define constraints such that an automatic mapping is

possible and also verify that the change between the two method versions is correct. We

can switch between two versions not only at update points, but at safe update regions that

cover a range of bytecode positions. Additionally, the update regions do not have to be

specified before starting the program but can be changed while the program is running.

8.7 Hotswapping

The work most closely related to ours was done in an attempt to apply PJama principles

to run-time evolution of Java applications by Dmitriev [5, 10]. His implementation is

part of the Java HotSpot VM since JDK 1.4 and is widely known as hotswapping due
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HotSpot VM and the DCE VM.

to its capability of swapping method bodies at run time. The DCE VM is based on this

implementation and enhances it to allow arbitrary changes. To achieve this, we changed

the way how new classes are loaded and how new classes replace old classes.

Figure 8.1 shows the conceptual difference between Dmitriev’s algorithm and our al-

gorithm with respect to replacing the VM metadata. Dmitriev’s implementation in the

HotSpot VM first loads the new VM class object C’, its method objects M’, and its con-

stant pool P’. Then, it merges the old constant pool P and the new constant pool P’

into a newly allocated constant pool P*. The goal of this merge is that the old methods

M and the new methods M’ can share a single constant pool. At first, the entries from P

are copied into P*. Then, for every entry in P’ either an existing entry in P* is found or

a new entry is appended to P*. The constant pool entries of P’ have a different index in
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P*, therefore constant pool references in M’ must be rewritten such that M’ can use P* as

the constant pool. The maximum size of the merged constant pool P* is the sum of the

sizes of P and P’. However, in many cases the size is significantly less, because of the two

class versions sharing common constant pool entries. After the constant pool merge, the

old VM class object C is connected with the new methods M’. The new VM class object

C’ and the two constant pools P and P’ are disconnected from the object graph and will

be removed in a subsequent garbage collection run.

Dmitriev also describes how binary compatible changes can be performed using a cus-

tom class loader. A new VM class object is first linked to the old class hierarchy and

later reconnected with the newest version of its superclasses. In contrast, the DCE VM

loads the new classes such that they are immediately connected with the new version of

their superclasses by ordering the classes before redefinition (see Section 3.3). Also, we

duplicate affected classes in the class hierarchy such that the set of new classes forms a

side universe. This enables us to reuse the standard class verification mechanisms and it

is also a precondition for performing complex class hierarchy changes (e.g., when A was a

superclass of B in the old version, but A’ is a subclass of B’ in the new version).

The DCE VM does not merge the old and the new constant pool but instead keeps both

constant pools in the system. This is less memory efficient but makes the class redefinition

simpler and faster. We believe that the approach of merging the two constant pools was

chosen for the HotSpot VM to prevent problems with the concurrently running just-in-

time compiler that could save an index of an old constant pool entry. The DCE VM skips

all active compilations anyway and prohibits concurrent compilation.

Our VM performs a heap iteration that swaps pointers to the VM class objects in a

heap iteration and then performs the instance updates that are necessary for changes to

fields. The garbage collection for the instance updates can significantly slow down the class

redefinition in the DCE VM, however such a garbage collection is skipped if there are no

instances with an increased size. The final state of the class hierarchy with the different

class versions in a doubly-linked list uses more memory than the class redefinition in the

Java HotSpot VM, but enables us to access old class members (see Section 4.1.2). Our

algorithms on safe type narrowing (see Section 4.2.1) and safe version change (see Chap-

ter 5) further extend the class redefinition capabilities of the DCE VM compared to the

Java HotSpot VM.
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8.8 Comparison Table

Table 8.1 compares the features of various dynamic code evolution systems with the fea-

tures of the DCE VM. Most of the systems allow changes to the methods and fields of

a program. In case of procedural systems like DYMOS, there are no fields of classes but

global data sections that can be modified during a dynamic change.

Class hierarchy changes are only supported in the systems that support metaclass def-

initions (i.e., CLOS and Smalltalk). However, those systems cannot atomically redefine

a set of classes like the DCE VM. The ability to update active methods is available in

Ginseng. While their system is more flexible than ours, they cannot reason about the

semantic correctness of an update and do not support safe update regions.

Dynamic code evolution comes without a performance penalty only when the program

is executed in a VM (e.g., CLOS, Smalltalk, JVolve, Hotswap, and DCE VM). Other

techniques often report significant performance losses (e.g., 38.5% for Ginseng). The

possibility to call deleted virtual methods based on the version of the currently executing

method and the type of the receiver is only available in the DCE VM.
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Table 8.1: Feature comparison of systems that allow dynamic changes to running programs.



Chapter 9

Summary

This chapter summarizes the contributions, outlines possible areas for future work, and

finally concludes the thesis.

9.1 Contributions

The main contribution of this thesis is the Dynamic Code Evolution VM (DCE VM),

a modification of the Java HotSpot VM. To the best of our knowledge, the DCE VM

is the first VM for a statically typed object-oriented language that offers unlimited sup-

port for class redefinition (see Section 7.1) without compromising execution performance

(see Section 7.2). Here is a detailed list of contributions of this thesis:

• We describe a new algorithm for class redefinition in a Java VM (see Chapter 3).

• We allow adding and removing fields and methods at run time and also support

changes to the type hierarchy (see Chapter 3).

• We discuss possible problems caused by binary incompatible changes (see Chapter 4).

• We describe a solution for the problem of deleted class members (see Section 4.1.1).

• We propose an algorithm for checking type safety in case of removed supertypes (see Sec-

tion 4.2.1).

• We present a restricted programming model for safe dynamic updates to Java pro-

grams (see Chapter 5).
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• We describe three different case studies to outline possible usages of our VM (see Chap-

ter 6).

• We show that our approach does not imply any performance penalty before a class

redefinition and reaches peak performance again after a change (see Section 7.2).

• We evaluate the performance of our instance update algorithm on selected micro

benchmarks (see Section 7.3).

• We implemented our algorithms as a modification of the production-quality Java

HotSpot VM and made the source code and binaries of the modified VM available

for download.

9.2 Future Work

The new functionalities of the DCE VM form a basis for further research in the area of

dynamic code evolution. We propose possible future work in the following areas:

IDE support: When the developer changes an application, the IDE often has additional

information about the change that is not transmitted in the redefinition command.

An example would be a refactoring that renames a field: For the VM, the two

versions of the changed field are unrelated, because they have different names. The

IDE however knows that they are related and could automatically create the correct

transformer method that copies the value from the old to the new field.

A different example for IDE support is the use case of the modified GUI builder

(see Section 6.1). This work could be further improved by incorporating the differ-

ence of the NetBeans form description between the two versions (e.g., only reinitial-

izing components with modified properties).

Additionally, the separation between the running dialog and the GUI builder view

of the dialog could be removed. This could be done by changing the base classes

of Swing components (e.g., JFrame, JLabel or JButton) to add GUI builder

functionality (e.g., the renaming of a label).

Automatically generated code regions: The programming model introduced in Chap-

ter 5 requires the specification of safe update regions. Automatic specification of safe
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update regions could be added to an aspect-oriented programming framework in or-

der to safely weave an aspect into a running application.

For the case of updating a normal Java program, those code regions would have to be

generated by a general-purpose bytecode comparison. Also, a semi-automatic user

assisted process to specify the safe update regions could help updating long-running

server applications.

Redefinition of resources: The work in this thesis is about the redefinition of Java

classes only. However, updating Java programs can also mean updating of resources

(e.g., XML configuration files or localization files). This requires a different approach

where the main problem is the reinitialization of the Java data structures that are

built from the resource files.

Incremental updates: A possible functional enhancement to the VM would be the sup-

port of fast and small incremental updates. This requires a different API where the

redefinition command specifies the change (e.g., adding a field to the class) instead

of a whole new class definition. Additionally, the need for the GC run would have

to be completely removed even for increased instance sizes. This could either be

achieved by splitting objects into multiple parts on the heap or by adding read bar-

riers to fields and updating the instances lazily (i.e., only at the first field access).

Both techniques would require significant changes to both the interpreter and the

just-in-time compiler.

9.3 Conclusions

We discussed dynamic code evolution in the context of statically typed, object-oriented

languages and implemented the DCE VM that allows unlimited class redefinitions at run

time. The redefinition can happen at any point during program execution. Old and new

code may co-exist in the VM, and therefore our approach allows redefining methods that

are currently active. Our VM works with the debuggers of standard Java development

environments and can be used to avoid restarts during program development.

We showed that the flexibility of dynamic updates does not impose any performance

penalty on the system, even when the system is a production-quality, high performance

VM. Although the dynamic update itself can temporarily slow down the system, it quickly

reaches peak performance again. We believe that this is an important characteristic of our
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approach, because it brings the new possibilities without drawbacks for normal program

execution. The flexibility of dynamic updates is currently considered one of the advantages

of languages with dynamic typing, compared to languages with static typing. Our VM

brings this flexibility to the statically typed Java language.

We implemented improvements to the DCE VM to support binary incompatible changes.

First, we described a solution to the problem of calling a deleted method or accessing a

deleted static field. We keep the old and the new class version in the system to be

able to select appropriate class versions in continued execution. Second, we showed how

to guarantee type safety for changes that remove a supertype using a heap and stack

iteration.

We presented a restricted programming model that allows us to reason about the se-

mantic correctness of an update. Our approach to dynamically changing between two

program versions does not require manual specification of safe update points. We believe

that safe dynamic updates can only be adopted for common use if an automatic algorithm

checks the semantic correctness of an update and manual specifications are unnecessary.

Our programming model can form a basis for IDE support of safe dynamic updates as

suggested in the future work section.

The DCE VM has already attracted significant interest from the developer commu-

nity. There are plans to integrate our VM modifications back into the main OpenJDK

source code repository in order to support unlimited class redefinition for the standard

HotSpot VM. The DCE VM is currently based on the repository that is tagged with

jdk7-b131 and we want to carry on updating the DCE VM in regular intervals such

that it keeps being based on a recent version of the HotSpot VM repository. Binaries and

source code of the DCE VM can be downloaded from http://ssw.jku.at/dcevm/.

http://ssw.jku.at/dcevm/
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