1. Overview

1.1 Motivation

1.2 Structure of a Compiler

1.3 Grammars

1.4 Syntax Tree and Ambiguity

1.5 Chomsky's Classification of Grammars
1.6 The Z# Language

Short History of Compiler Construction @

Formerly "a mystery", today one of the best-known areas of computing

1957 Fortran first compilers
(arithmetic expressions, statements, procedures)
1960 Algol first formal language definition
(grammars in Backus-Naur form, block structure, recursion, ...)
1970 Pascal user-defined types, virtual machines (P-code)
1985 C++ object-orientation, exceptions, templates
1995 Java just-in-time compilation

We only look at imperative languages

Functional languages (e.g. Lisp) and logical languages (e.g. Prolog) require different
techniques.

Why should | learn about compilers?

It's part of the general background of a software engineer

* How do compilers work?

How do computers work?
(instruction set, registers, addressing modes, run-time data structures, ...)

What machine code is generated for certain language constructs?
(efficiency considerations)

What is good language design?
Opportunity for a non-trivial programming project

Also useful for general software development

 Reading syntactically structured command-line arguments
Reading structured data (e.g. XML files, part lists, image files, ...)
Searching in hierarchical namespaces

Interpretation of command codes

1. Overview

1.1 Motivation

1.2 Structure of a Compiler

1.3 Grammars

1.4 Syntax Tree and Ambiguity

1.5 Chomsky's Classification of Grammars
1.6 The Z# Language

Dynamic Structure of a Compiler @

character streem val = 10 * val +

!

lexical analysis (scanning)

J

token stream 1 3 2 4 1 5 1 «<+— token number
(ident)|| (assign)|| (number)| (times)| (ident)| (plus)|| (ident)
"val" - 10 - "val' | - "i"<«— token value

!

syntax analysis (parsing)

ll

Statement

syntax tree ! |
Expression

Term

1]

ident = number * ident + ident

Dynamic Structure of a Compiler

syntax tree

intermediate
representation

machine code

Statement
]

I
Expression

Term

1]

ident = number * ident + ident

U

semantic analysis (type checking, ..

)

U

syntax tree, symbol table, ...

U

optimization

U

code generation

g

Id.i4.s 10
Idloc.1
mul

D)

Single-Pass Compilers

Phases work in an interleaved way

scan token

!

parse token

check token

!

generate code for token

!

eof?

ly

The target program is already generated while the source program is read.

n

D)

Multi-Pass Compilers @

Phases are separate "‘programs'’, which run sequentially

sem.
— scanner —» —> parser —» — = L
analysis

characters tokens tree code

Each phase reads from a file and writes to a new file

Why multi-pass?

 if memory is scarce (irrelevant today)
o if the language is complex
o if portability is important

Today: Often Two-Pass Compilers @

@—» FrontEnd — (@D —> BackEnd —» @
of

scanning code generation
parsing intermediate
sem. analysis representation
language-dependent machine-dependent
Java Pentium
PowerPC

C
Pascal /‘< SPARC

any combination possible

Advantages Disadvantages
* better portability slower
* many combinations between front ends * needs more memory

and back ends possible
optimizations are easier on the intermediate
representation than on source code 9

Compiler versus Interpreter @

Compiler translates to machine code

Ej—' scanner —* parser —* ... —> code generator *Ej—' loader > ==

source code machine code

Interpreter executes source code "directly™

o statements in a loop are
scanned and parsed
again and again

Ej_’ scanner —* parser —*

source code interpretation

Variant: interpretation of intermediate code

Ej» compiler .. —» Ej_> * source code is translated into the
 COMPEEL - VM code of a virtual machine (VM)

source code intermediate code « VM interprets the code

(e.9. Common Intermediate simulating the physical machine
Language (CIL)) 10

Static Structure of a Compiler sSW)

"main program"
parser & directs the whole compilation
sem. analysis

/ A
» scanner / code generation —»@

A 4 v

provides tokens from generates machine code
the source code symbol table

maintains information about
declared names and types

—> USeS

—> data flow

11

1. Overview

1.1 Motivation

1.2 Structure of a Compiler

1.3 Grammars

1.4 Syntax Tree and Ambiguity

1.5 Chomsky's Classification of Grammars
1.6 The Z# Language

12

What Is a grammar?

D)

Example | statement = "if" "(" Condition ")" Statement ["else" Statement].

Four components

terminal symbols

nonterminal symbols

productions

start symbol

are atomic

are derived
into smaller units

rules how to decom-
pose nonterminals

topmost nonterminal

if", ">=", ident, number, ...

Statement, Expr, Type, ...
Statement = Designator "=" Expr ";".

Designator = ident ["." ident].

CSharp

13

EBNF Notation sSW)

Extended Backus-Naur form John Backus: developed the first Fortran compiler
Peter Naur: edited the Algol60 report

symbol meaning examples
string denotes itself "=" "while"
name denotes a T or NT symbol ident, Statement

= separates the sides of a production A=bcd.
terminates a production

| separates alternatives alblc =aorborc

(...) groups alternatives a(b|c) =ab|ac

[...] optional part [a]b =ab]|b

{.} repetitive part {a}b =bj|ab|aab|aaab]...

Conventions

 terminal symbols start with lower-case letters (e.g. ident)
» nonterminal symbols start with upper-case letters (e.g. Statement)

14

Example: Grammar for Arithmetic Expressions @

Productions F%}%_
Expr =["+"|""]Term{("+"|"-") Term }. (¥
Term = Factor { (™" |"/") Factor }. Expr f Term

Factor = ident | number | (" Expr ")". HL+C:}I

Terminal symbols F%:%_
simple TS: M e e Term —*.Factor

(just 1 instance)

ident
terminal classes: ident, number e
(multiple instances)
Factor ()

&

(L) Expr

Nonterminal symbols

Expr, Term, Factor

Start symbol
EXxpr
15

Operator Priority @

Grammars can be used to define the priority of operators

Expr =["+"|"-"]Term{("+"|"-") Term }.
Term = Factor { ("*"|"/") Factor }.
Factor = ident | number | "(" Expr ")".

input: -a*3+b/4-c

— -ident * number + ident / number - ident

—> - Factor * Factor + Factor / Factor - Factor

— ~— _J — ~— _J \ J
= - Term + Term - Term "*"and "/" have higher priority than "+" and "-"
= Expr "-" does not refer to a, but to a*3

How must the grammar be transformed, so that "-" refers to a?

16

Terminal Start Symbols of Nonterminals @

Which terminal symbols can a nonterminal start with?

Expr =["+"|"-"] Term {("+" | "-") Term}.
Term = Factor {("*" | "/") Factor}.
Factor = ident | number | "(" Expr ")".

First(Factor) = ident, number, "(*

First(Term) = First(Factor)
= ident, number, "(*

First(Expr) = "+ " First(Term)
="+","-" ident, number, "("

17

Terminal Successors of Nonterminals @

Which terminal symbols can follow after a nonterminal in the grammar?

Expr =["+"|""]Term {("+"|"-") Term }.
Term = Factor { (™" |"/") Factor }.
Factor = ident | number | "(" Expr ")".

Where does Expr occur on the
Follow(Expr) = ")", eof right-hand side of a production?
What terminal symbols can
follow there?

Follow(Term) = "+", "-", Follow(Expr)
Yt eof
Follow(Factor) = "*", "/", Follow(Term)
- "*"1 "/"1 "+"1 "_"1 ")"1 eOf

18

Some Terminology

Alphabet

The set of terminal and nonterminal symbols of a grammar

String

A finite sequence of symbols from an alphabet.

Strings are denoted by greek letters (o, B, v, ...)
e.g: a = ident + number
B = - Term + Factor * number

Empty String

The string that contains no symbol (denoted by ¢).

D)

19

Derivations and Reductions @

Derivation
'3 B
o= [3 (direct derivation) Term + Factor * Factor —> Term+ ident * Factor
NTS right-hand side of a

production of NTS

o =" (indirect derivation) DYDY = DY =B

o = 3 (left-canonical derivation) the leftmost NTS in a is derived first

o =R 3 (right-canonical derivation) the rightmost NTS in a. is derived first

Reduction

The converse of a derivation:
If the right-hand side of a production occurs in 3 it is replaced with the corresponding NTS

20

Deletability sSW)

A string o is called deletable, if it can be derived to the empty string.
o=>%*¢

Example
A=BC.

B=[b].
C=c|d].

B is deletable: B=c¢

C i1s deletable: C—o>ce

A is deletable: A=>BC=C=>c¢

21

More Terminology

Phrase

Any string that can be derived from a nonterminal symbol.

Term phrases: Factor
Factor * Factor
ident * Factor

Sentential form

Any string that can be derived from the start symbol of the grammar.

e.g.. Expr
Term + Term + Term
Term + Factor * ident + Term

Sentence

A sentential form that consists of terminal symbols only.
e.g.. ident* number + ident

Language (formal language)

The set of all sentences of a grammar (usually infinitely large).
e.g.: the C# language is the set of all valid C# programs

22

Recursion sSW)

A production is recursive if | A=* o, A o,

Can be used to represent repetitions and nested structures

Direct recursion A= o, Ao,
Left recursion A=Db|Aa. A= Aa=Aaa=Aaaa=baaaaa..
Right recursion A=b|aA. A= aA=aaA=aaaA=..aaaaab

Central recursion A=b|"C"A"". A= (A) = ((A) = ((A)) = (... (b)...)))

Indirect recursion |A=*wn, Ao,

Example

Expr =Term{"+" Term }. Expr = Term = Factor = "(" Expr ")"
Term = Factor { "*" Factor }.
Factor =id | "(" Expr ")".

23

How to Remove Left Recursion @

Left recursion cannot be handled in topdown syntax analysis

A=b|Aa. Both alternatives start with b.
The parser cannot decide which one to choose

L_eft recursion can be transformed to iteration
E=T|E"+"T.

What sentences can be derived?

T
T+T
T+T+T

From this one can deduce the iterative EBNF rule:

E=T{"+"T}

24

1. Overview

1.1 Motivation

1.2 Structure of a Compiler

1.3 Grammars

1.4 Syntax Tree and Ambiguity

1.5 Chomsky's Classification of Grammars
1.6 The Z# Language

25

Plain BNF Notation sSW)

terminal symbols are written without quotes (ident, +, -)
nonterminal symbols are written in angle brackets (<Expr>, <Term>)
sides of a production are separated by ::=

BNF grammar for arithmetic expressions

<Expr> = <Sign> <Term> » Alternatives are transformed into
<Expr> = <Expr> <Addop> <Term> separate productions

<Sign> = + » Repetition must be expressed by recursion
<Sign> = -

<Sign> =

<Addop> = +

<Addop> = - Advantages

<Term> == <Factor> « fewer meta symbols (no |, (), [I, {})
<Term> = <Term> <Mulop> <Factor> * itis easier to build a syntax tree
<Mulop> = *

<Mulop> =/ Disadvantages

<Factor> := ident * more clumsy

<Factor> = number

<Factor> = (<Expr>)

26

Syntax Tree @

Shows the structure of a particular sentence
e.g.for 10+ 3 * i

Concrete Syntax Tree (parse tree)

Expr Would not be possible with EBNF
| | | because of [...] and {...}, e.g.:
Expr Addop Term Expr =[Sign] Term { Addop Term }.
_|—'—| | | |
Slgn - Term Term Mulop. Factor Also reflects operator priorities:
Faclztor Faclztor ‘ operators further down in the tree

¢ number + number * ident have a higher priority than operators
further up in the tree.

Abstract Syntax Tree (leaves = operands, inner nodes = operators)

+ . -
/ \ often used as an internal program representation;
* used for optimizations

number ident

ident

27

Ambiguity @

A grammar is ambiguous, if more than one syntax tree can be built for a given sentence.

Example

T=F|T"™"T. sentence:. id *id *id
F=id.

Two syntax trees can be built for this sentence:

I I I I I I
id *id * id id * id * id

Ambiguous grammars cause problems in syntax analysis!

28

Removing Ambiguity

Example

T=F|T"™T.
F =id.

Only the grammar is ambiguous, not the language.

The grammar can be transformed to

T=F|T"™F.
F =id.

Even better: transformation to EBNF

T=F{"™F}
F =id.

I I I
id * id * id

I.e. T has priority over F

only this syntax tree is possible

D)

Inherent Ambiguity

There are languages which are inherently ambiguous

Example: Dangling Else

Statement = Assignment
| "if* Condition Statement
| "if* Condition Statement "else" Statement
|

Statement
|
|
‘ Statement
|
I I
Condition Condition Statement Statement
| | | |
if (a<hb) if (b<c) X =C; else x=b;
| | | |
Condition Condition Statement Statement
| | |
|
Statement
|
|
Statement

There is no unambiguous
grammar for this language!

C# solution

Always recognize the longest

possible right-hand side of a

production

= leads to the lower of the
two syntax trees

30

1. Overview

1.1 Motivation

1.2 Structure of a Compiler

1.3 Grammars

1.4 Syntax Tree and Ambiguity

1.5 Chomsky's Classification of Grammars
1.6 The Z# Language

D)

31

Classification of Grammars

Due to Noam Chomsky (1956)

Grammars are sets of productions of the form a = .

class 0 Unrestricted grammars (o and [arbitrary)
e.g: A=aAb|BcB.

D)

aBc =d. A = aAb = aBcBb = dBb = bbb

dB = bb.
Recognized by Turing machines

class1 Contex-sensitive grammars (jo < |B|)
e.g. aA=abc.
Recognized by linear bounded automata

class2 Context-free grammars (o = NT, B # ¢)
e.g: A=abec.
Recognized by push-down automata

class3 Regular grammars (o = NT,B=T|T NT)
eg. A=b|bB.
Recognized by finite automata

”

Only these two classes
are relevant in compiler
construction

32

1. Overview

1.1 Motivation

1.2 Structure of a Compiler

1.3 Grammars

1.4 Syntax Tree and Ambiguity

1.5 Chomsky's Classification of Grammars
1.6 The Z# Language

33

Sample Z# Program

class P
const int size = 10;
class Table {

}

}

int[] pos;
int[] neg;

Table val;

void Main ()

{

}

int X, I;
R initialize val ---------- */
val = new Table;
val.pos = new int[size];
val.neg = new int[size];
i =0;
while (i < size) {
val.pos][i] = 0; val.neq|i] = 0; i++;

read(x);

while (-size < x && x < size) {
if (0 <=x) { val.pos[x]++; }
else { val.neg[-x]++; }
read(x);

}

D)

main program class; no separate compilation

inner classes (without methods)

global variables

local variables

34

Lexical Structure of Z# sSW)

Names ident = letter { letter | digit | '_'}.
Numbers number = digit { digit }. all numbers are of type int
Char constants charConst ="\" char '\". all character constants are of type char
_ (may contain \r and \n)
no strings
Keywords class
if else while read write return break
void const new
Operators + - * / % ++ --
== I= > >= < <=
&& Il
() [] { }
Comments ... % may be nested
Types int char arrays classes

35

Syntactical Structure of Z# (1) @

Programs
Program = "class" ident class P
{ ConstDecl | VarDecl | ClassDecl } ... declarations ...
“{" { MethodDecl } "}". { ... methods ...
}

Declarations

ConstDecl = "const" Type ident "=" (number | charConst) ";".

VarDecl = Type ident{"," ident } ";".

MethodDecl = (Type | "void") ident "(" [FormPars] ")" Block.

Type = ident ["[""]" |. only one-dimensional arrays
FormPars = Type ident { "," Type ident }.

36

Syntactical Structure of Z# (2)

Statements

Block
Statement

ActPars

"{" {Statement} "}".

Designator ("="Expr";"
| ll(ll [ACtParS] ll)ll II;II
| II++II ll;ll

)
“if" "(" Condition ")" Block ["else" Block]

"while" "(* Condition *)" Block
"break" ";"

“return” [Expr]";"

"read" "(" Designator ")" ";"

"write" "(" Expr ["," number])" ";"

E’xpr {"," Expr }.

D)

* input from System.Console
 output to System.Console

37

Syntactical Structure of Z# (3) @

EXxpressions

Condition = CondTerm {"||" CondTerm }.
CondTerm = CondFact{"&&" CondFact }.
CondFact = Expr Relop Expr.
Relop = ==t IET ST ST et | <=
Expr = ["-"] Term { Addop Term }.
Term = Factor { Mulop Factor }.
Factor = Designator ["(" [ActPars] ")"]
| number
| charConst
| "new"ident ["[" Expr"]"] no constructors
| (" Expr ")".
Designator = ident ["[" Expr "]"]{"." ident ["[" Expr "]"] }.
Addop = "+
Mulop = "] "%

38

