
1

2. Lexical Analysis
2.1 Tasks of a Scanner
2.2 Regular Grammars and Finite Automata
2.3 Scanner Implementation

2

Tasks of a Scanner
1. Delivers terminal symbols (tokens)

i f (x = 3)=

character stream

scanner IF, LPAR, IDENT, EQ, NUMBER, RPAR, ..., EOF

token stream
(must end with EOF)

Tokens have a syntactical structure, e.g.

ident = letter { letter | digit }.
number = digit { digit }.
if = "i" "f".
eql = "=" "=".
...

Why is scanning not part of parsing?

2. Skips meaningless characters
• blanks
• tabulator characters
• end-of-line characters (CR, LF)
• comments

3

Why is Scanning not Part of Parsing?
It would make parsing more complicated
(e.g. difficult distinction between keywords and names)

Statement = ident "=" Expr ";"
| "if" "(" Expr ")"

One would have to write this as follows:
Statement = "i" ("f" "(" Expr ")" ...

| notF {letter | digit} "=" Expr ";"
)

| notI {letter | digit} "=" Expr ";".

The scanner must eliminate blanks, tabs, end-of-line characters and comments
(these characters can occur anywhere => would lead to very complex grammars)

Statement = "if" {Blank} "(" {Blank} Expr {Blank} ")" {Blank}
Blank = " " | "\r" | "\n" | "\t" | Comment.

Tokens can be described with regular grammars
(simpler and more efficient than context-free grammars)

4

2. Lexical Analysis
2.1 Tasks of a Scanner
2.2 Regular Grammars and Finite Automata
2.3 Scanner Implementation

5

Regular Grammars
Definition
A grammar is called regular if it can be described by productions of the form:

A = a.
A = b B.

a, b ∈ TS
A, B ∈ NTS

Example Grammar for names

Ident = letter
| letter Rest.

Rest = letter
| digit
| letter Rest
| digit Rest.

e.g., derivation of the name xy3

Ident ⇒ letter Rest ⇒ letter letter Rest ⇒ letter letter digit

Alternative definition
A grammar is called regular if it can be described by a single non-recursive EBNF production.

Example Grammar for names

Ident = letter { letter | digit }.

6

Examples

Can we transform the following grammar into a regular grammar?

E = T { "+" T }.
T = F { "*" F }.
F = id.

After substitution of F in T
T = id { "*" id }.

Can we transform the following grammar into a regular grammar?

E = F { "*" F }.
F = id | "(" E ")".

After substitution of F in E
E = (id | "(" E ")") { "*" (id | "(" E ")") }.

Substituting E in E does not help any more.
Central recursion cannot be eliminated.
The grammar is not regular.

After substitution of T in E
E = id { "*" id } { "+" id { "*" id } }.

The grammar is regular

7

Limitations of Regular Grammars
Regular grammars cannot deal with nested structures
because they cannot handle central recursion!

But central recursion is important in most programming languages.

Class ⇒ "class" "{" ... Class ... "}"

• nested expressions
• nested statements
• nested classes

Expr ⇒ ... "(" Expr ")" ...

Statement ⇒ "do" Statement "while" "(" Expr ")"

For productions like these we need context-free grammars.

But most lexical structures are regular
names letter { letter | digit }
numbers digit { digit }
strings "\"" { noQuote } "\""
keywords letter { letter }
operators ">" "="

Exception: nested comments
/* /* ... */ */

The scanner must treat them in
a special way

8

Regular Expressions
Alternative notation for regular grammars

Definition

1. ε (the empty string) is a regular expression

2. A terminal symbol is a regular expression

3. If α and β are regular expressions the following expressions are also regular:

α β
(α | β)
(α)? ε | α
(α)* ε | α | αα | ααα | ...
(α)+ α | αα | ααα | ...

Examples

"w" "h" "i" "l" "e" while
letter (letter | digit)* names
digit+ numbers

9

Deterministic Finite Automaton (DFA)
Can be used to analyze regular languages

Example

0 1
final state

digit

letter
letter

start state is always
state 0 by convention

State transition function as a table

letter digit

s0
s1

δ

s1 error
s1 s1

"finite", because δ
can be written down
explicitly

Definition
A deterministic finite automaton is a 5 tuple (S, I, δ, s0, F)
• S set of states
• I set of input symbols
• δ: S x I → S state transition function
• s0 start state
• F set of final states

A DFA has recognized a sentence
• if it is in a final state
• and if the input is totally consumed or there is no possible transition with the next input symbol

The language recognized by a DFA is
the set of all symbol sequences that lead
from the start state into one of the
final states

10

The Scanner as a DFA
The scanner can be viewed as a big DFA

0

" "

1letter
letter

digit

2digit digit

3
(

4
>

5
=

...

Example
input: max >= 30

s0 s1m a x • no transition with " " in s1
• ident recognized

> =s0 s5 • skips blanks at the beginning
• does not stop in s4
• no transition with " " in s5
• geq recognized

s0 s23 0 • skips blanks at the beginning
• no transition with " " in s2
• number recognized

After every recognized token the scanner starts in s0 again

ident

number

lpar

gtr geq

11

Transformation: reg. grammar ↔ DFA

A reg. grammar can be transformed into a DFA according to the following scheme

A = b C. ⇔ A Cb

A = d. ⇔ A d stop

Example

grammar

A = a B | b C | c.
B = b B | c.
C = a C | c.

automaton

A Ba

Cb

stopc

a
c

b
c

12

Nondeterministic Finite Automaton (NDFA)

Example

0 1digit

2digit

digit

hex

H 3

intNum

hexNum

intNum = digit { digit }.
hexNum = digit { hex } "H".
digit = "0" | "1" | ... | "9".
hex = digit | "A" | ... | "F".

nondeterministic because
there are 2 possible transitions
with digit in s0

Every NDFA can be transformed into an equivalent DFA
(algorithm see for example: Aho, Sethi, Ullman: Compilers)

0 1digit 2A,B,C,D,E,F

digit hex

H 3

intNum

hexNum

H

13

Implementation of a DFA (Variant 1)

Implementation of δ as a matrix

int[,] delta = new int[maxStates, maxSymbols];
int lastState, state = 0; // DFA starts in state 0
do {

int sym = next symbol;
lastState = state;
state = delta[state, sym];

} while (state != undefined);
assert(lastState ∈ F); // F is set of final states
return recognizedToken[lastState];

This is an example of a universal
table-driven algorithm

Example for δ

0 2a 1 c

b

A = a { b } c.

A

δ a b c

0 1 - -
1 - 1 2
2 - - - F

int[,] delta = { {1, -1, -1}, {-1, 1, 2}, {-1, -1, -1} };

This implementation would be too inefficient for a real scanner.

14

Implementation of a DFA (Variant 2)

0 2a 1 c

b A

Hard-coding the states in source code

int state = 0;
loop:

for (;;) {
char ch = read();
switch (state) {

case 0: if (ch == 'a') { state = 1; break; }
else break loop;

case 1: if (ch == 'b') { state = 1; break; }
else if (ch == 'c') { state = 2; break; }
else break loop;

case 2: return A;
}

}
return errorToken;

In Java this is more tedious:

char ch = read();
s0: if (ch == 'a') { ch = read(); goto s1; }

else goto err;
s1: if (ch == 'b') { ch = read(); goto s1; }

else if (ch == 'c') { ch = read(); goto s2; }
else goto err;

s2: return A;
err: return errorToken;

15

2. Lexical Analysis
2.1 Tasks of a Scanner
2.2 Regular Grammars and Finite Automata
2.3 Scanner Implementation

16

Scanner Interface

class Scanner {
static void Init (TextReader r) {...}
static Token Next () {...}

}

For efficiency reasons methods are static
(there is just one scanner per compiler)

Scanner.Init(new StreamReader("myProg.zs"));

Initializing the scanner

Token t;
for (;;) {

t = Scanner.Next();
...

}

Reading the token stream

17

Tokens
class Token {

int kind; // token code
int line; // token line (for error messages)
int col; // token column (for error messages)
int val; // token value (for number and charCon)
string str; // token string (for numbers and identifiers)

}

PLUS = 4, /* + */
MINUS = 5, /* - */
TIMES = 6, /* * */
SLASH = 7, /* / */
REM = 8, /* % */
EQ = 9, /* == */
GE = 10, /* >= */
GT = 11, /* > */
LE = 12, /* <= */
LT = 13, /* < */
NE = 14, /* != */
AND = 15,/* && */
OR = 16,/* || */

Token codes for Z#

const int
NONE = 0, IDENT = 1,

NUMBER = 2,
CHARCONST = 3,

ASSIGN = 17,/* = */
PPLUS = 18,/* ++ */
MMINUS = 19,/* -- */
SEMICOLON = 20,/* ; */
COMMA = 21,/* , */
PERIOD = 22,/* . */
LPAR = 23,/* (*/
RPAR = 24,/*) */
LBRACK = 25,/* [*/
RBRACK = 26,/*] */
LBRACE = 27,/* { */
RBRACE = 28,/* } */

BREAK = 29,
CLASS = 30,
CONST = 31,
ELSE = 32,
IF = 33,
NEW = 34,
READ = 35,
RETURN = 36,
VOID = 37,
WHILE = 38,
WRITE = 39,

EOF = 40;

error token token classes operators and special characters keywords end of file

18

Scanner Implementation
Static variables in the scanner

static TextReader input; // input stream
static char ch; // next input character (still unprocessed)
static int line, col; // line and column number of the character ch
const int EOF = '\u0080'; // character that is returned at the end of the file

Init()
public static void Init (TextReader r) {

input = r;
line = 1; col = 0;
NextCh(); // reads the first character into ch and increments col to 1

}

NextCh()
static void NextCh() {

try {
ch = (char) input.Read(); col++;
if (ch == '\n') { line++; col = 0; }
else if (ch == '\uffff') ch = EOF;

} catch (IOException e) { ch = EOF; }
}

• ch = next input character
• returns EOF at the end of the file
• increments line and col

19

Method Next()
public static Token Next () {

while (ch <= ' ') NextCh(); // skip blanks, tabs, eols
Token t = new Token(); t.line = line, t.col = col;
switch (ch) {

case 'a': ... case 'z': case 'A': ... case 'Z': ReadName(t); break;
case '0': case '1': ... case '9': ReadNumber(t); break;
case ';': NextCh(); t.kind = Token.SEMICOLON; break;
case '.': NextCh(); t.kind = Token.PERIOD; break;
case EOF: t.kind = Token.EOF; break; // no NextCh() any more
...
case '=': NextCh();

if (ch == '=') { NextCh(); t.kind = Token.EQ; }
else t.kind = Token.ASSIGN;
break;

case '&': NextCh();
if (ch == '&') { NextCh(); t.kind = Token.AND; }
else t.kind = NONE;
break;

...
case '/': NextCh();

if (ch == '/') {
do NextCh(); while (ch != '\n' && ch != EOF);
t = Next(); // call scanner recursively

} else t.kind = Token.SLASH;
break;

default: NextCh(); t.kind = Token.NONE; break;
}
return t;

} // ch holds the next character that is still unprocessed

names, keywords
numbers

simple tokens

composite tokens

comments

invalid character

20

Further Methods

static void ReadName (Token t)

• At the beginning ch holds the first letter of the name
• Reads further letters, digits and '_' and stores them in t.str
• Looks up the name in a keyword table (using hashing or binary search)

if found: t.kind = token number of the keyword;
otherwise: t.kind = Token.IDENT;

• At the end ch holds the first character after the name

static void ReadNumber (Token t)

• At the beginning ch holds the first digit of the number
• Reads further digits, storing them in t.str; then converts the digit string into a number and stores

the value in t.val.
if overflow: report an error

• t.kind = Token.NUMBER;

• At the end ch holds the first character after the number

21

Efficiency Considerations

Typical program size

about 1000 statements
⇒ about 6000 tokens
⇒ about 60000 characters

Scanning is one of the most time-consuming phases of a compiler
(takes about 20-30% of the compilation time)

Touch every character as seldom as possible
therefore ch is global and not a parameter of NextCh()

For large input files it is a good idea to use buffered reading

Stream file = new FileStream("MyProg.zs");
Stream buf = new BufferedStream(file);
TextReader r = new StreamReader(buf);
Scanner.Init(r);

Does not pay off for small input files

