2. Lexical Analysis

2.1 Tasks of a Scanner
2.2 Regular Grammars and Finite Automata

2.3 Scanner Implementation

D)

Tasks of a Scanner @

1. Delivers terminal symbols (tokens)

il fl | x=[=3]) —| scanner |— |F, LPAR, IDENT, EQ, NUMBER, RPAR, ..., EOF

character stream token stream
(must end with EOF)

2. Skips meaningless characters
blanks
tabulator characters

end-of-line characters (CR, LF)
comments

Tokens have a syntactical structure, e.g.

ident = letter { letter | digit }.
number = digit { digit }.

if = A i

eql = HS=T

Why is scanning not part of parsing?

Why Is Scanning not Part of Parsing? @

It would make parsing more complicated
(e.g. difficult distinction between keywords and names)

Statement = ident "=" Expr ";"
| "if* (" Expr")"

One would have to write this as follows:

Statement = "i"("f""(" Expr")" ...
| notF {letter | digit} "=" Expr ;"

)
| notl {letter | digit} "=" Expr ";".

The scanner must eliminate blanks, tabs, end-of-line characters and comments
(these characters can occur anywhere => would lead to very complex grammars)

Statement = "if" {Blank} "(" {Blank} Expr {Blank} ")" {Blank}
Blank ="" | "\r" | "\n" | "\t" | Comment.

Tokens can be described with regular grammars
(simpler and more efficient than context-free grammars)

2. Lexical Analysis

2.1 Tasks of a Scanner
2.2 Regular Grammars and Finite Automata

2.3 Scanner Implementation

D)

Regular Grammars @

Definition

A grammar is called regular if it can be described by productions of the form:
A= a. a,beTS
A =DbB. A, B € NTS

Example Grammar for names

Ident |= :ggg: Rest e.g., derivation of the name xy3

Rest = letter .
| digit Ident = letter Rest = letter letter Rest = letter letter digit

| letter Rest
| digit Rest.

Alternative definition
A grammar is called regular if it can be described by a single non-recursive EBNF production.

Example Grammar for names
Ident = letter { letter | digit }.

Examples @

Can we transform the following grammar into a regular grammar?

Can we transform the following grammar into a regular grammar?

E=F{™F}.
F=id|"("E")"

Limitations of Regular Grammars @

Regular grammars cannot deal with nested structures
because they cannot handle central recursion!

But central recursion is important in most programming languages.

 nested expressions Expr = ... "(" Expr")" ...
* nested statements Statement = "do" Statement "while" "(" Expr ")"
 nested classes Class = "class" "{" ... Class ... "}"

For productions like these we need context-free grammars.

But most lexical structures are regular Exception: nested comments
names letter { letter | digit } I* ... * .. % */
numbers digit { digit :
; " g tdgt} The scanner must treat them in
strings \"" { noQuote } "\ ial
keywords letter { letter } a special way
operators >

Regular Expressions @

Alternative notation for regular grammars

Definition
1. & (the empty string) is a regular expression
2. A terminal symbol is a regular expression

3. If o and 3 are regular expressions the following expressions are also regular:

af

(o B)

(a)? e|a

(a)* ela|aa|aoal...

(a)+ o | aa | oo | ...

Examples

"w" Uh" i e while
letter (letter | digit)* names
digit+ numbers

Deterministic Finite Automaton (DFA) @

Can be used to analyze regular languages

Example
State transition function as a table

letter final state
@ O | letter digit "finite", because &

letter
@ diait start state Is always sO sl error can be written down
g state O by convention | o explicitly

Definition
A deterministic finite automaton is a 5 tuple (S, I, 9, sO, F)
: IS zg: 81]: isr:atefs mbols The language recognized by a DFA is
. 5 Sx|S statet pu_t_y functi the set of all symbol sequences that lead
-9 X 1= o Statetransition tunction from the start state into one of the
* s0 start state final states
e F set of final states

A DFA has recognized a sentence
« ifitisin a final state
 and if the input is totally consumed or there is no possible transition with the next input symbol

The Scanner as a DFA @

The scanner can be viewed as a big DFA

| letter Example
0 etter) . _
iden |nput max >= 30
digit
m a X Y B s m o o3
digit ‘@ digit sO ———— s1 e no transition with " " in sl
g « ident recognized
number
(Ve sO —==—» s5 skips blanks at the beginning
'Q * does not stop in s4
par * no transition with " " in s5
> = * Qeq recognized
D@ . ST
gtr geq sO ———> s2 « skips blanks at the beginning

e no transition with in s2

* number recognized

After every recognized token the scanner starts in sO again

10

Transformation: reg. grammar «» DFA @

A reg. grammar can be transformed into a DFA according to the following scheme

Example

grammar automaton

A=aB|bC]|c.
B=bB]|c.
C=acC]c.

11

Nondeterministic Finite Automaton (NDFA) @

Example
N INtNum
intNum = digit { digit }. (0) digit @, digit nondeterministic because
hexNum = digit { hex } "H". there are 2 possible transitions
digit=" "0"["1"[...]"9" _ digit H with digit in sO
hex= digit|"A"]| ... | "F". @um |
hex

Every NDFA can be transformed into an equivalent DFA
(algorithm see for example: Aho, Sethi, Ullman: Compilers)

intNum

hexNum

12

Implementation of a DFA (Variant 1) @

Implementation of § as a matrix

int[,] delta = new intfmaxStates, maxSymbols];

int lastState, state = 0; // DFA starts in state O .. :
do { This is an example of a universal

int sym = next symbol; table-driven algorithm

lastState = state;

state = delta[state, sym];
} while (state != undefined);
assert(lastState € F); // F is set of final states
return recognizedToken[lastState];

Example for 6

A=a{b}c. ° | abec |
o} 1 - -
11 - 1 2
a C 21 - - -IF
)@
b A int[,] delta = { {1, -1, -1}, {-1, 1, 2}, {-1, -1, -1} };

This implementation would be too inefficient for a real scanner.

13

Implementation of a DFA (Variant 2) @

b A

Hard-coding the states in source code |, java this is more tedious:

char ch = read(); int state = 0;
s0: if (ch=="a") { ch =read(); goto s1; } loop:
else goto err; for (;;) {
sl: if (ch=="b") { ch =read(); goto s1; } char ch = read();
else if (ch =='c) { ch =read(); goto s2; } switch (state) {
else goto err; case 0: if (ch =='a’) { state = 1; break; }
s2: return A; else break loop;
err: return errorToken; case 1: if (ch =='b") { state = 1; break; }

else if (ch =="'c") { state = 2; break; }
else break loop;
case 2: return A;

}
}

return errorToken:;

14

2. Lexical Analysis

2.1 Tasks of a Scanner
2.2 Regular Grammars and Finite Automata

2.3 Scanner Implementation

15

Scanner Interface @

class Scanner { For efficiency reasons methods are static

static void Init (TextReaderr) {..} (there is just one scanner per compiler)
static Token Next () {...}

}

Initializing the scanner

Scanner.Init(hew StreamReader("myProg.zs"));

Reading the token stream
Token t;
for (;;) {

t = Scanner.Next();

16

Tokens

class Token {
int kind;
int line;
int col;
int val;
string str;

Token codes for Z#

error token
const int
NONE =0,

token classes

IDENT =1,
NUMBER = 2,
CHARCONST = 3,

I/ token code
I/ token line (for error messages)

Il token column (for error messages)
// token value (for number and charCon)

I/ token string (for numbers and identifiers)

PLUS =4, /*+* ASSIGN = 17,/x =%
MINUS =5, /*-* PPLUS = 18, /* ++ ¥/
TIMES =6, /*** MMINUS =19,/* %
SLASH=7, /*/* SEMICOLON = 20,/* ; */
REM =8, /*%* COMMA =21, /%, %
EQ =9, /*==* PERIOD =22, [. %
GE =10,/ >=* LPAR =23,/ (¥
GT =11,/>* RPAR = 24,/*) %
LE =12,/*<=* LBRACK =25/*[%
LT =13,/*<* RBRACK =26,/*]*
NE =14,/%1=% LBRACE =27,/*{%
AND =15,/ &&* RBRACE =28,/*}%
OR =16,/*|*

operators and special characters

keywords end of file
BREAK =29, EOF =40;
CLASS =30,

CONST =31,

ELSE = 32,

IF = 33,

NEW = 34,

READ = 35,

RETURN = 36,

VOID = 37,

WHILE =38,

WRITE =39,

17

Scanner Implementation

Static variables in the scanner

static TextReader input; // input stream
static char ch; I/ next input character (still unprocessed)
static int line, col; /I line and column number of the character ch
const int EOF = "\u0080; /I character that is returned at the end of the file
Init()
public static void Init (TextReader r) {
input =,

line = 1; col = 0;
NextCh(); // reads the first character into ch and increments col to 1

}

NextCh()
static void NextCh() { » ch = next input character
try { - returns EOF at the end of the file
ch = (char) input.Read(); col++; increments line and col

if (ch =="\n") { line++; col = 0; }
else if (ch =="\uffff') ch = EOF;
} catch (IOException €) { ch = EOF; }
}

18

Method Next()

public static Token Next () {
while (ch <="") NextCh(); // skip blanks, tabs, eols

Token t = new Token(); t.line = line, t.col = col;
switch (ch) {

case 'a’. ... case 'z case 'A'". ... case 'Z": ReadName(t); break;
case '0": case '1" ... case '9". ReadNumber(t); break;

case ;. NextCh(); t.kind = Token.SEMICOLON; break;
case ".". NextCh(); t.kind = Token.PERIOD; break;
case EOF: t.kind = Token.EOF; break; // no NextCh() any more

case '=". NextCh();
if (ch =="'=") { NextCh(); t.kind = Token.EQ); }
else t.kind = Token.ASSIGN;
break;

case '&" NextCh();
if (ch =="'&") { NextCh(); t.kind = Token.AND,; }
else t.kind = NONE;
break;

case 'l NextCh();
if (ch=="){
do NextCh(); while (ch '="\n' && ch != EOF);
t = Next(); // call scanner recursively
} else t.kind = Token.SLASH,;
break;

default: NextCh(); t.kind = Token.NONE; break;
}

return t;
} // ch holds the next character that is still unprocessed

D

names, keywords
numbers

¢ simple tokens

.

+ composite tokens

N

> comments

J

} invalid character

19

Further Methods @

static void ReadName (Token t)

At the beginning ch holds the first letter of the name
» Reads further letters, digits and ' ' and stores them in t.str

» Looks up the name in a keyword table (using hashing or binary search)
if found: t.kind = token number of the keyword,;
otherwise: t.kind = Token.IDENT;

» At the end ch holds the first character after the name

static void ReadNumber (Token t)

At the beginning ch holds the first digit of the number

» Reads further digits, storing them in t.str; then converts the digit string into a number and stores
the value in t.val.

if overflow: report an error
 t.kind = Token.NUMBER,;

» At the end ch holds the first character after the number

20

Efficiency Considerations

Typical program size

about 1000 statements
— about 6000 tokens
— about 60000 characters

Scanning is one of the most time-consuming phases of a compiler
(takes about 20-30% of the compilation time)

Touch every character as seldom as possible

therefore ch is global and not a parameter of NextCh()

For large input files it is a good idea to use buffered reading

Stream file = new FileStream("MyProg.zs");
Stream buf = new BufferedStream(file);
TextReader r = new StreamReader(buf);
Scanner.Init(r);

Does not pay off for small input files

D)

21

