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Abstract

Truffle is a novel framework for the implementation of programming languages, and allows to model
interpreters based on an abstract syntax trees (AST). However, until now, this language had only
been facilitated by dynamic languages, which highly profit from the run-time specialization offered by
the Truffle concept.

The Truffle/C project aims to explore, how a statically typed language such as C, that has traditionally
been compiled to machine code for execution, can be implemented using the Truffle framework, and
how its implementation performs compared to the compiled approach taken by GCC.

This thesis presents an overview of the Truffle/C implementation and concepts. It explains, how
Truffle/C uses a modification of Clang, to generate a Truffle/C file with a custom format and platform
independent content from a C source file. The thesis also explains, how the Java side of Truffle/C
reads this file and generates an executable Truffle AST from it.

The thesis shows how data types and data can be mapped from C to Java. This includes how unsigned
primitives or structures can be implemented, that do not exist in Java. It presents, how Truffle/C
implements the various operations, including the goto operation, that Java also does not support on
the language level.

This thesis concludes with an evaluation on three parts. It consists of the evaluations of the per-
formance on common benchmarks, the completeness with GCC test cases, and a comparison of the
implementation of Truffle/C to the Truffle implementations for dynamic languages.
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Kurzfassung

Truffle ist eine neuartige Sprache, mit der Programmiersprachen als ausführbare Abstrakte Syn-
taxbäume (ASTs) modelliert werden können. Implementierungen zielten bis jetzt darauf hin ab,
dynamisch typisierte Sprachen ausführbar zu machen. Diese Sprachen profitieren nämlich zusätzlich
von der Laufzeitspezialisierung, die Truffle mit sich bringt.

Mit dem Truffle/C Projekt versuchen wir C als erste statische typisierte Truffle Sprache zu evaluieren.
Mit Truffle/C soll evaluiert werden, wie ein dynamischer Ansatz im Vergleich zu Compilern wie GCC
abschneidet. Traditionell wird die Sprache vor der Ausführung zu Maschinencode übersetzt.

Diese Masterarbeit gibt einen Überblick über das Truffle/C Projekt. Die Arbeit zeigt, wie Truffle/C
eine Modifizierung von Clang verwendet, um eine C-Datei in ein eigens dafür entworfenes Truffle/C-
Format zu konvertieren. Weiters präsentiert sie, wie die Java Seite der Implementierung die Datei
liest und daraus einen ausführbaren AST produziert.

Diese Arbeit stellt außerdem vor, wie Truffle/C die C-Datentypen und Datenstrukturen in Java nach-
bildet. Damit präsentiert sie auch, wie das Projekt die in Java nicht vorhandenen vorzeichenlosen
numerischen Datentypen und Strukturen realisiert. Schließlich zeigt sie, wie Truffle/C die C Opera-
tionen und damit das in Java ebenfalls nicht vorhandene Goto implementiert.

Schlussendlich präsentiert die Masterarbeit, wie Truffle/C bei Geschwindigkeits-Benchmarks abschnei-
det, wie viele und welche der GCC Testfälle unterstützt werden und wie sich Truffle/C von den Truffle
Implementierungen für dynamische Sprachen unterscheidet.
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Chapter 1

Introduction

This chapter introduces basic vocabulary, to explain the motivation for implementing a C
interpreter in Truffle. It gives an introduction to C and Java as the most relevant languages
for Truffle/C. The chapter also delimits the scope and structure of the thesis.

“C is quirky, flawed, and an enormous success.” [34]

Dennis Ritchie

1.1 Motivation

Since Dennis Ritchie first implemented C in the 1970s [34], researchers published numerous papers
regarding different aspects of the C language and language implementers developed many C compilers
until today.

However, like most prevalent language implementations, the optimizations for the construction of high
quality code or fast execution are deeply rooted within the compiler or interpreter of the language. The
language framework Truffle with the Graal compiler addresses this issue and enforces a separation of
the implementation of the language semantics and the optimizations performed on it. The framework
allows an implementation of a fast C interpreter, that does not have to be concerned with efficient
code generation, intermediate representations, or optimizations.

Truffle allows to model a language implementation as an Abstract Syntax Tree (AST). An AST
interpreter is an intuitive way to implement a language, since a language implementer can always
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concentrate on implementing one specific operation as a node. Truffle is written in Java, hence allowing
all the features Java offers. A language implementer can use the high level language constructs and
libraries from Java to implement language semantics. She does not have to regard garbage collection
since this is automatically performed by the JVM. It is easy to debug a language implementation,
since programmers can use the debug infrastructure of Java. More generally, a language implementer
can use all the mature productivity tools that are available for the Java language.

Truffle has been only evaluated on script languages so far [40], where languages can additionally profit
from type specialization mechanisms. The goal of the implementation of Truffle/C is to evaluate
Truffle as a framework for statically typed languages, specifically for C. Experimentation on a static
language provides the Graal developers with feedback on the applicability of the optimizations on
C.

1.2 Goals and Scope

The goal of this project is to implement a C interpreter that is written in Java and builds on the Truffle
framework. For preprocessing the C code the project should use the Clang parser written in C++ to
generate a simplified representation of a C source file. The interpreter should be capable to execute
established C benchmarks, mainly from the “The Computer Language Benchmarks Game”1.

Besides implementing the language, the thesis should identify which constructs of C can be modeled
in Java.

Explicit non goals are completeness with respect to the C specification. Reaching completeness requires
a development effort which exceeds the scope of a Master’s thesis. However, this thesis shows that
Truffle/C already supports a major subset of C. Another non goal is peak performance of executed
code. Performance relies on the one hand on using Truffle in the intended way, on the other hand
on the optimizations, that Graal performs. The benchmark results in the evaluation also show a
comparable peak performance to GCC in some of the benchmarks.

1.3 From C to Java

C is a language that Dennies Ritchie first implemented in the 1970s as a system implementation
language which is close to the machine [34]. While it is generally possible to write platform independent
1 The Computer Language Benchmarks Game: http://benchmarksgame.alioth.debian.org/

http://benchmarksgame.alioth.debian.org/
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C code, there are still platform dependent details. One example is the data types, which vary in
C depending on the platform. Additionally, compilers usually first compile C code to assembler
code, which is then platform specific. Java is more strictly specified and the language is platform
independent, i.e., it can run on any platform where a JVM is supported. While Java follows the
“Write once, run anywhere” paradigm, one can attribute “Write once, compile anywhere” to C, if the
program only uses platform independent features. In contrast to C, the data types have a fixed bit
width in Java and do not contain unsigned types. Java is a high level, object-oriented language, which
was introduced by Sun Microsystems in 1995.

C does not have a strict type system. It is possible, to interpret any memory area as a value of a certain
type, belonging to the program space. This is not the exception, but C programmers commonly use
it to emulate subtyping [37]. In contrast, Java has a strict type system. An access in Java is always
“safe”; the program theoretically cannot crash the JVM through illegal memory accesses [20] (which
is not true for Truffle/C, since it uses the restricted Unsafe API).

C is usually first compiled to assembler code, which is then executed. Because of the simplicity of
C and the operations which are close to the machine, compilers for the language can be very simple.
However, C programs can be hard to optimize, since pointer analysis has to be used to determine
aliasing. In contrast to Java, every pointer can theoretically point to any value. Without this analysis,
many optimizations cannot be performed and the compiler has to place conservative assumptions [39].
Memory addresses can be computed, which complicates this problem. Java has different challenges
of optimization which are not covered here. In contrast to C, Java programs usually run on a virtual
machine. When the interpreter executes code paths often enough, the virtual machine lets parts of
the program compile.

Since C is an old programming language and developers and standardization organizations tried to
keep backwards compatibility throughout its existence, it has many deficiencies. In contrast to Java,
C for example still supports the goto statement, which allows the program to arbitrarily jump to a
location in the code. This statement is considered deprecated [14] in most code, however, a Java
interpreter in C also has to support it.

The XJ311 committee released the first standard specification in 1983 [34] for ANSI C. Before that,
only an informal book known as K&R served language implementers as a source. The next standard
C99 in 1999 introduced new features and also made C stricter in some aspects. The newest standard
since 2007 is C11.

An industrial quality interpreter or compiler cannot only target the latest standard. Compilers like
GCC even support syntax and semantics of language features, that were supported in the K&R C
time. Listing 1.1 shows an old function notation, which exists since K&R and which compilers such
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as GCC still support until today.

int func(a)

int a;

{

return a + 1;

}

Listing 1.1: Valid K&C Notation for Function Parameters

Additionally, the C specification allows freedom in some decisions. For example, the order of evaluation
of subexpressions and the order of side effects are often unspecified [23, 6.5.3]. Listing 1.2 shows an
example, where the industry quality compilers GCC and Clang differ. Clang outputs the value 2 for
this example, while GCC outputs 1.

int main() {

int a = 0;

int res = a++ | ++a;

printf("%d", res); // 1 or 2?

}

Listing 1.2: Function With Different Result in GCC and Clang

Truffle/C does hence not follow a standard but tries to support the test cases of GCC. Since Truffle/C
supports features up to standard C99, this thesis uses the C99 standard to quote less ambiguous
details.

1.4 Structure of the Thesis

Truffle/C is an on-going effort. Active developers on the Truffle/C project are my colleague Matthias
Grimmer and me. We split our theses describing Truffle/C into two parts, as shown by Figure 1.1:
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Figure 1.1: Split of the Work on Truffle/C

My colleague explains in his thesis [21] the runtime environment, shown in the lower half of the
image. He explains the native function interface for Graal, which allows for efficient calls to functions
from native C libraries from Java. Connected with that, he explains how we model functions in
Java for calling Truffle/C and native functions. He also explains the memory model which we use in
Truffle/C.

My part targets the interpreter and compile-time environment, shown in the upper half of the image.
This thesis hence talks about how we generate Truffle/C files using Clang. It also presents how the
parser processes the file to generate the Truffle/C AST. It explains the general architecture of Truffle/C
and the nodes that implement the operations.

Some parts of the theses are overlapping. For example, this thesis cannot explain the construction of
the nodes concerning the memory, without shortly talking about the memory concept. However, both
theses tried to avoid explanations of overlapping details, where possible.

After the introduction in this chapter, Chapter 2 explain the major components that are involved in
the development and during the execution of Truffle/C. Then, Chapter 3 briefly present the high level
architecture of Truffle/C and also explain the roles of the components of the previous chapter related
to Truffle/C. Chapter 4 to Chapter 8 give a more detailed view on Truffle/C. Chapter 4 deals with
the Clang modification and the Truffle/C file, that it produces from the C file. Chapter 5 shows the
implementation of the data types in Truffle/C. Chapter 6 bases on the previous chapter and explains
the implementation of structures, unions, arrays, enumerations, literals and where and how the runtime
stores them. Chapter 7 demonstrates, how Truffle/C builds nodes for binary and unary operations.
Chapter 8 shows the approach, that Truffle/C takes for control structures and includes optimizations
and branch probability profiling. Chapter 9 presents the components of Truffle/C again in a bigger
picture, by revising some of the concepts in an example program. Chapter 10 presents the result of
a performance, completeness, and an evaluation of Truffle/C as a Truffle language. Chapter 11 and
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Chapter 12 present future work and related research. The thesis concludes with the findings of the
project in Chapter 13.
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Chapter 2

State of the Art

This chapter presents the main components, that are relevant for Truffle/C. It talks about
the compiler Graal, the concept of the Truffle framework, as well as the compiler front end
Clang.

2.1 Graal

Graal is a just in time (JIT) optimizing compiler written in Java. One possibility to facilitate it is
through the Graal VM, which is a modification of the Java HotSpot VM, in which Graal is available
as a compiler alongside client and server compiler.

Its intermediate representation (IR) is a graphed-based IR with the Java objects as graph nodes.
A programmer represents the control-flow and data-flow dependencies between the nodes via Java
annotations on fields of node classes.

Graal uses aggressive and speculative optimizations. For example, it cuts of cold branches that likely
do not appear in the execution. When a speculative assumption is invalidated, a deoptimization
returns control to the interpreter. To be able to do so, Graal saves information on where to return
the execution and how to reconstruct the variables. [15, 16]
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2.2 Truffle

Truffle is essentially a language for modeling and implementing languages using Java as a base. This
means that a programmer can use the existing Java’s standard libraries, debug infrastructure, memory
management, and productivity tools to implement an own language. A programmer uses the Truffle
framework to implement an executable abstract syntax tree (AST). This AST consists of nodes which
have execute methods, that locally implement the operations. For a double addition in C, the imple-
mentation merely has to offer a simple addition node as Listing 2.1 shows. While AST interpreters
are intuitive to implement, they have a high performance overhead because of the virtual method
dispatches between the nodes [43]. Programmer should implement Truffle nodes in a specific way, so
that they avoid boxing, record execution statistics and adapt to the execution state of the program.
This not only allows more efficient interpreter performance, but improves later compilation, which
Graal handles for Truffle in a special way.

@NodeChildren(value = {@NodeChild("leftNode"), @NodeChild("rightNode")})

public abstract class DoubleAddNode extends DoubleNode {

@Specialization

public double executeDouble(double left, double right) {

return left + right;

}

}

}

Listing 2.1: Truffle/C Node with Truffle DSL Usage

2.2.1 Rewriting and Specialization

Truffle AST nodes have a reference to their parent nodes and offer a replace method, with which
a node can replace itself at its parent. This mechanism allows the AST to specialize on the current
execution state. Generally, it allows the node to specialize on a subset of the semantics of an operation,
that the node should handle. Dynamic languages use this mechanism heavily, as a variable can take
on any type. This also implies, that an add operation for a dynamic language has be able to handle
differently typed input operands and produce outputs of different types. Instead of handling all the
different possible operations in one node, an AST node is expected to only handle those, which occur
during the execution. An add node for a dynamic language might start as an uninitialized node, that
can handle no case. If the node receives two integer operands, it would replace itself with a node,
which only handles integer operands. Every execution it first has to check if the assumption, that
both operands are integer, is still valid. If it is not valid any more, e.g., because the add operation
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suddenly receives two string operands, it replaces itself with a more generic node, that can handle
both or all cases. The goal is, that before compilation the AST becomes stable, i.e., stops performing
rewrites, but at the same time contains only nodes that handle the semantic subsets for the current
execution.

Another concept of specialization are polymorphic inline caches: Polymorphic inline caches are for
example useful for virtual function calls and follow a similar concept as type decision chains for field
accesses in dynamic languages. For a function call, a node starts again in an uninitialized state. When
the node calls a function the first time, the node saves a function identifier as target. Upon the next
call, it directly checks if the target is still this function. If this is the case, it saves a lookup. Otherwise,
it would additionally save the second function to perform a chain of checks upon the next executions.
The node extends the inline cache, until the checks are too many, i.e., the call is too polymorphic -
and rewrites to a generic node that always performs a lookup.

For local variables, Truffle provides a Frame in which a guest language can save local variables. The
language implementation addresses the Frame with a FrameSlot, through which the language can also
specialize on reads and writes on the Frame. A language typically creates a Frame on every function
call.

Truffle nodes usually avoid boxing in their execute method. While for the generic case, an operation
might return an Object, specialized nodes for integer can directly return a Java int and thus avoid
the boxing. To do so, a parent node expects the specialized version, e.g., an int, by executing the
specialized method that returns an int. If the child node cannot return an int, e.g. because the
operand types change, it throws an UnexpectedResultException, that the parent node catches to
rewrite to the new data type, that the child node specifies.

2.2.2 Truffle DSL

Truffle DSL uses annotations on classes, fields, and methods, from which an annotation processor infers
further classes. It relieves the programmer from having to write the boiler plate code, and allows her
to concentrate on implementing the semantics. Since C is statically typed, it does not need some of
the features like rewriting for type specialization. Thus, Listing 2.1 only has a single specialization
for the double type, as the annotation tag @Specialization specifies. Apart from that, the two node
children @NodeChild("leftNode") and @NodeChild("rightNode") produce DoubleNode classes.

In the Truffle/C project, the code generated by the annotation processor amounts to over 50,000 lines
of code, while the code written by a programmer only makes up 24,000.
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2.2.3 Control Flow

While Truffle/C often represents local control flow like loops or if statements directly using Java
equivalents (see Chapter 8), a programmer should implement non-local control flow such as function
returns or breaks as Java exceptions that inherit from ControlFlowException. Graal acknowledges
this exceptions as normal control flow, and not as deoptimization points [42].

2.2.4 Profiling and Inlining

The Truffle AST can collect profiling information and should record, e.g., how often a loop inside a node
executes or what branch probability a conditional statement has. This helps the Truffle framework to
guide when it should inline a function and also helps Graal in generating optimized code [42].

Truffle performs inlining already on the AST level, to be able to react to profiling pollution. For
dynamical or object-oriented languages, the arguments of a call can be polymorphic. If there are for
example two call sites, where one of the callers always passes a string and the other always an int, the
call would be polymorphic. However, when the code surrounding these function calls gets hot, Truffle
clones and inlines the functions, which makes the call site monomorphic.

2.2.5 Partial Evaluation and Compilation

When the compilation eventually triggers, the Graal compiler will assume that the target AST is
constant and performs no rewrites any more. It inlines all the execute methods of the target AST,
replaces the rewrite logic with deoptimization points, and optimizes and compiles the code under this
assumption. This inlining step could be considered to be a form of partial evaluation.

After partial evaluation, Graal processes the AST interpreter in its IR and performs additional opti-
mizations such as inlining and in particular global optimizations. While the AST nodes only perform
local optimizations, Graal can apply optimizations over whole ASTs [42].

Graal employs Escape Analysis to optimize away the allocation of the Frame, that the host language can
use for storing its local variables, and connects the read of a variable to its last write. Thus, the array
for storing this variables only exists virtually in the compiled code and produces no overhead [42].

If an assumption is invalidated, i.e., a node rewrite happens, a deoptimization point causes the compiled
code to go back to interpreted mode, rewrite the node, and continue profiling until the AST is stable
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again.

2.3 Clang

Clang is a front-end for the LLVM compiler and supports C, C++, Objective C, and Objective C++.
It provides useful error messages, is fast and has a low memory usage. It targets to be compatible with
GCC - also with its undocumented features - and hence fits well for Truffle/C’s quest to be compatible
with GCC [3].
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Chapter 3

Architecture

This chapter provides a rough sketch of how the components of Truffle/C work together.
It explains, how the Clang modification produces a Truffle/C file, and how the Java side
processes it, to eventually generate the Truffle/C AST to be executed.

Figure 3.1: Truffle/C Architecture Overview

Figure 3.1 shows the workflow with the most important architectural components and artifacts of
and around Truffle/C. The Clang modification first parses one or more C source or header files and
generates an AST out of them. It writes this AST to a binary file with a custom Truffle/C format.

On the Java side, the parser reads one or more Truffle/C files and translates them into executable
Truffle ASTs. When Truffle decides, that parts of an AST have been executed often enough, it lets
Graal optimize and compile these ASTs.
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3.1 From Clang to Java

Figure 3.2: From the Truffle/C File to the Truffle/C AST

The previous Figure 3.1 suggests, that the parser at the Java part of Truffle/C directly produces the
Truffle AST from the Truffle/C file. However, the implementation actually requires another temporary
structure. As Figure 3.2 shows, the parser uses the Truffle/C file to produce an intermediate AST,
that is conceptually equivalent to the AST present in the file. At the same time the parser builds up
symbol tables, with information about types and data structures. Finally, the AstConverterVisitor

traverses the intermediate AST to build the Truffle/C AST.

Figure 3.3: Important Classes for the Truffle/C Node Construction

Figure 3.3 shows the main classes, that the process of reading the Clang file requires. The
TruffleFileParser parses the Truffle/C file and builds up the symbol tables. The GlobalSymbolTable
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contains several instances of UnitSymbolTable. A unit refers to a single output file by the Clang
modification, which can again consist of several C files. The GlobalSymbolTable itself helps to locate
extern variables, which do not necessarily have to lie inside the same unit. The UnitSymbolTable con-
tains the other “global” information such as global variable declarations, extern variable declarations,
enumerations, records, and type definitions, as well as the necessary mapping of data to memory. The
UnitSymbolTable also contains multiple instances of FunctionSymbolTable. A FunctionSymbolTable

exists for every function and contains the static and non-static local variables, the compound literals,
as well as other information that is local to the function. The Clang modification uses the custom
Clang way to output types as strings. On the Java side, a TypeParser processes these type strings
which are used for almost every node in the Truffle/C file.

3.2 Node Construction

Only after the parser constructed the intermediate format and the symbol tables, the
AstConverterVisitor in Figure 3.3 can process the intermediate AST. The visitor processes the AST
in a single pass and produces the nodes from the bottom to the top. Both the AstGlobalInitConverter
and AstFunctionConverter use the symbol tables and the AstConverterVisitor, to build the Truffle
nodes. The AstGlobalInitConverter builds those nodes, that Truffle/C needs to execute before calling
the main function. The AstFunctionConverter constructs the nodes for the name of the function, that
the linker passes. This split design allows lazy construction of functions: As long as the execution does
not need a function, the AstFunctionConverter does not have to construct nodes for it. This design is
also applicable for the construction of the intermediate format, since we designed the Truffle/C format
to support lazy loading of functions (see Chapter 4). Since peak performance is the main goal and
not start up time or memory efficiency, the TruffleFileParser does not yet support to lazily read the
Truffle/C file.

3.3 Runtime

During run-time, Truffle/C informs the Truffle framework about execution statistics and branch prob-
abilities (see Section 8.4). Truffle/C also guides and implements inlining. When a function gets hot,
Truffle uses Graal to partial evaluate, optimize, and compile the AST.
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Chapter 4

The Truffle/C File

This chapter explains the Truffle/C file format and what considerations determined its
design. It also compares the Truffle/C file format to related formats such as ELF and Java
class files.

4.1 Truffle/C File Format Goals

In order to comprehend the design of the file format, it is useful to first understand the requirements
on this format:

• 1 Platform Independence: Platform independence of the format and its content is the most
important property. The Truffle/C file should be platform agnostic and not specify alignments
or bit widths of data types. Instead, the interpreter should decide platform dependent details
before execution.

• 2 High Level Information: The file format is expected to contain all the high level information,
that the C file contains. This high level information is needed as debug information, as well
as to construct nodes directly corresponding to the high level statements in the code. Thus, it
would for example not be preferable to lower a loop to a conditional backjump, as a conditional
goto with a label might have the same lowered representation, thus shadowing the programmer’s
original intention.

• 3 Lazy Parseable: The file format should not restrict that functions can be parsed lazily. This
also means that, e.g., global variables referenced by functions should be parseable without having
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to construct the AST of other functions not yet needed.

• 4 Extensible: The format should be future proof and backward compatible. It should be possible
to include optional information, that cannot be interpreted by all versions and is thus ignored.

• 5 Debug Information: It should be possible, to append optional debug information such as line
numbers for statements from the source file.

• 6 Compactness: The format should be reasonable compact to ensure a fast start-up time.

• 7 Comprehensibility: The format should be easy comprehensible by an interpreter. The inter-
preter should not have to infer types or implicit conversions, to fully benefit from the Clang
front end.

• 8 Low Coupling: There should be a high level of independence between the Clang and Java
layer. The Clang layer should simplify the presentation and make operations explicit. The Java
layer has to determine the platform dependent properties and then construct the fitting nodes
for it.

While 4 - 7 are generic requirements, which apply for most file formats and architectures, 1 - 3 are
uniquely connected to Truffle/C: Object files like ELF do not usually account for this requirements,
which made the introduction of the Truffle/C format necessary. Some of these requirements also
contradict each other, like 6 and 7 . Providing more explicit information in 7 will increase the size of
the format in 6 . The design of the format tries to make a compromise between all these demands.
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4.2 Truffle/C File Format 1

Figure 4.1: Truffle/C File Format 1

The file format is identified by the first four bytes of the file. ThisMagic Number as shown in Figure 4.1
should be equal to 0xDEADFACE. Then a Version ID follows, which helps the versioning of Truffle/C.

4.2.1 Constant Pool

The next two items require prior explanation: Truffle/C uses a Constant Pool to store content like
strings or numbers in it. The actual information like function data only references entries in the
Constant Pool. If for example a string occurs several times in the original content, the Constant Pool
only stores it one time and contributes to the compactness as stated in 6 . The Pool Size stores the
byte size of the Constant Pool, while the Pool Count stores the number of entries. Since a string or
other entries can have a variable number of bytes, it is not possible to directly infer the Pool Size from
the Pool Count. Taking into account consideration 3 , the file format also includes Pool Size to be
able to jump over that part in the file, while at the same time being able to allocate an array of Pool
Size for the mapping of the Constant Pool indices to the content.

The Constant Pool supports at its current states the Java types byte, char, short, int, double, long,
and String. These type-value pairs, as shown in Figure 4.2, are put into the Constant Pool as items of
Pool Entry, with a Type Tag and content[], which has a constant size for number types but a variable
size for String.
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4.2.2 Function Table

The file contains a field Function Count for the number of C functions in the file, as seen in Figure 4.1.
Then, the functions are not sequentially aligned but a Function Table follows. This again helps to
jump over the file content to support consideration 3 , without having to process the function data
to determine the end of a function. The Function Table consists of multiple items of Function Ref.
To fully identify the function, the Function Name, containing the name of the function as a string,
is sufficient, since C does not support function overloading. To be able to non-sequentially read a
function from the file, the Function Ref contains the Offset for the offset of the function data starting
from the Function Table and the Data Length for the function data size in byte.

4.2.3 Functions and Attributes

Eventually, the function information is present in Functions which consists of multiple Function.
These functions, which correspond to actual C functions, are shown in Figure 4.2. Each Function is
represented as an AST and consists of multiple Function Data. Each Function Data corresponds to
one node in the AST and has a Node Name, that denotes the name of the node. Then a data[] item
with a fixed length which is dependent on the Node Name follows. This data[] could for example be
an integer value for an integer literal or for a statement block the number of children. Since not all
possible instances for Node Name are implemented yet, a full list is not given here.

At the end of each Node Data, there is an optional sequence of Attribute, accounting for extensibility
and thus consideration 4 . An Attribute Tag identifies what kind of attribute is attached. Then, the
Attribute Size denotes the length in byte of the content in data[]. The important characteristic while
handling an Attribute is, that an interpreter has to ignore unknown attributes and use the Attribute
Size item to jump over the unknown content. Thus, later implementations of Truffle/C can for example
attach line numbers as attributes to provide debug information such as stated in 5 .
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Figure 4.2: Truffle/C File Format 2

4.3 Truffle/C File Considerations and Comparison

4.3.1 Java Class File and Truffle/C File

The Truffle/C file format bears a strong resemblance to the Java class file format. The first Truffle/C
prototype even directly generated Java class files, since a prototype Truffle/Java implementation
already provided the necessary infrastructure for reading such a class file with an attached Truffle
AST. This approach enabled a compact implementation, since there was no redundancy like there is
in the implementation now, where essentially a simplified representation of the internal Clang AST
is rebuilt on the Java side. However, there was also a strong coupling between the two layers, since
the Clang modification already had to know the name and structure of the classes. Due the high
maintenance effort, we decided for the present solution with an independent Truffle/C format, which
also fits to consideration 8 .

The constant pool [29, JVM 4.4] is essentially a residual from this first implementation. It is now
also used for the node data in the Function items. The Truffle/C format also incorporates the Java
attributes [29, JVM 4.7] to guarantee extensibility. Also Java specifies, that for unknown attributes,
the parser has to “silently ignore those attributes” [29, JVM 4.7]. Such as the initial implementation
could use a custom attribute to attach the node AST in the Java class file format, future extension
can make use of this attribute architecture in Truffle/C.

Truffle/C uses an indirection for the functions in form of a Function Table and Functions to support
lazy construction of nodes for functions as in consideration 3 . The Java class file format, however, was
designed to be processed at once, because “the Java Virtual Machine needs to verify for itself that the
desired constraints are satisfied by the class files it attempts to incorporate. A Java Virtual Machine
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implementation verifies that each class file satisfies the necessary constraints at linking time” [29, JVM
4.10]. The Java class file thus lacks a lookup similar to the Function Table and has its method aligned
sequentially in a method_info structure, with the code attached as an attribute [29, JVM 4.7.3].
Truffle/C specifies no such check at the moment, and thus fails at execution time, when a function
contains wrong content.

Regarding other aspects, the Truffle/C also follows a similar design philosophy as the Java class file
format: Such as the bytecodes, the Function Data items are platform independent and contain no
platform dependent nodes as expressed in consideration 1 . Its design also incorporates that the names
of identifiers are included per default, so they can be used as debug information as in consideration 2

and 5 .

4.3.2 ELF and Truffle/C File

On Linux, the ELF format is the prevalent choice for generating binary files for C programs and is
also the output format of GCC. Most distinctively, the format does not comply with consideration 1 ,
the platform independence. ELF uses flags to indicates whether the code uses a 32 or 64 bit format,
if the data had been saved in little or big endianness, and targets a certain ABI and instruction set
architecture [1]. The code in an ELF file is (after linking) already machine code and contains all the
alignments. In contrast, Truffle/C computes these alignments before the execution of the function,
and not already after compiling.

Generally, the code in the ELF file specifies exactly what to execute. The content in the Truffle/C
format in the functions is rather a description of the statements contained in the file. For example,
when an ELF file contains code to initialize a struct, the Truffle/C file highlights information of the
struct fields, including the value to which they have to be initialized.

One feature of reading ELF files similar to Truffle/C is when using shared libraries, where the Proce-
dure Linkage Table (PLT) adds an indirection for function calls. The first time a function is called,
the linker is called instead to look up and bind the function [28]. This lazy mechanism is comparable
to the Truffle/C format, where function calls denote the function as a String, that essentially point
to the Function Table.
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4.4 Clang Modification Truffle/C File

One of the additional challenges when implementing the Clang modification, was the complex API of
the internal AST: Clang is not only designed for C, but also for other languages of the C family C++,
Objective C, and Objective C++. Thus, some of the API functionality is not applicable for C, and
calling the “wrong methods” can result in wrong results, crashes, or unexpected behavior.

The Truffle/C Clang modification uses the internal tree of Clang which is subject to modification and
not clearly documented. In particular, it is hard to see, what combinations of nodes can occur in C,
and which cannot. The Clang modification is essentially a modification of a debug output tool (class
ASTDumper), which is sometimes incomplete or does not output the desired result from the perspective
of Truffle/C. One main effort is to keep the changes as minimal as possible, since it seems likely, that
the output mechanism has to be updated with major Clang versions, as we already had to do once.

int sum(int arr[], int n) {

int sum = 0;

int i;

for (i = 0; i < n; i++) {

sum += arr[i];

}

return sum;

}

Listing 4.1: Simple C Function with Corresponding Truffle/C File in Listing 4.2

FunctionDecl 93105984 sum E int (int *, int) 2 impl

ParmVarDecl 93105664 arr int * nonstatic nonextern 0

ParmVarDecl 93105776 n int nonstatic nonextern 0

CompoundStmt 4

DeclStmt 1

A VarDecl 93106176 sum int nonstatic nonextern 1

C IntegerLiteral int 0

DeclStmt 1

A VarDecl 93106336 i int nonstatic nonextern 0

ForStmt 4

BinaryOperator int ’=’ 2

DeclRefExpr Var 93106336 i 0

C IntegerLiteral int 0

BinaryOperator int ’<’ 2

D ImplicitCastExpr int 1

B DeclRefExpr Var 93106336 i 0

D ImplicitCastExpr int 1

B DeclRefExpr ParmVar 93105776 n 0

UnaryOperator int postfix ++ 1

B DeclRefExpr Var 93106336 i 0
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CompoundStmt 1

CompoundAssignOperator int += 2

B DeclRefExpr Var 93106176 sum 0

D ImplicitCastExpr int 1

ArraySubscriptExpr int 2

D ImplicitCastExpr int * 1

DeclRefExpr ParmVar 93105664 arr 0

D ImplicitCastExpr int 1

DeclRefExpr Var 93106336 i 0

ReturnStmt 1

D ImplicitCastExpr int 1

DeclRefExpr Var 93106176 sum 0

Listing 4.2: Truffle/C File of Listing 4.1

For the C code in Listing 4.1, the Clang modification produces a binary file with a structure equivalent
to Listing 4.2. As I explained before, the file uses a very expressive format and the strings in this
listing are actually present in the binary file. All the variable declarations include an ID as shown
in A . If a node later on references this variable such as in B , the ID helps to identify the variable
again. All nodes have as list element an int value, that tells the number of children. This is often
redundant, such as for the int literals in C , which cannot have a child. The Clang modification helps
to identify all implicit conversions such as in D , which Truffle/C uses to generate Casts, as Chapter 5
explains. The notation that the TypeParser has to parse is, e.g., visible in the function signature of
E . The function with signature int (int *, int) expects an int* and an int also returns an int.
Section 6.3.2 explains, why the first parameter does not have type int[].
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Chapter 5

Truffle/C Data Types

In the implementation of Truffle/C, the mapping between the data types of C and Java
constitute the basic Truffle/C node classes. This chapter introduces two approaches for
such a mapping.

An important architectural part in Truffle/C is the mapping of data types from C to Java. The C
standard offers a distinction between the rank of a data type, i.e., the type specified on the language
level and the representation of this data type in the implementation [23, C99 6.3.3.1]. When imple-
menting a C interpreter in Java, it is essential to consider how to map the rank of the language data
type to the Java (primitive) type and how to perform conversions between them.

In terms of conversion, the implementation specifically has to support both implicit casts and explicit
casts. Listing 5.2 shows an explicit cast. An explicit cast is directly specified in the program code.
Listing 5.1 shows an implicit cast. An implicit cast is not directly specified in the program code, but
by the implicit type conversion rules of the programming language.

C, as well as Java, only defines implicit upcasts and no implicit downcasts [23, C99 6.3.1.8.1] [19, JLS
5]. However, in C, many compilers perform type conversions implicitly for mismatching types, as
long as a common type can be found. This implies, that Truffle/C also needs to support implicit
downcasts. Figure 5.1 shows the conceptual AST of Listing 5.1 where C compilers have to perform
both an implicit conversion to a higher and a lower rank: Since the plus operation requires at least an
int rank, the specification requires the conversion of the short and char variables to a higher-ranked
int. Common C compiler then assign the int result of the addition to a lower-ranked char. The data
type is truncated, thus transgressing the C specification, which is what many compilers support.
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short var_a;

char var_b;

char res = var_a + var_b;

Listing 5.1: Implicit Upcasts and Downcast

int var = (int) 1.3f;

Listing 5.2: Explicit Downcast

Since Clang’s AST already contains nodes for implicit casts, the parser does not need to find out,
where implicit casts occur. Truffle/C hence can treat implicit and explicit casts in the same way.

Figure 5.1: Clang AST of Listing 5.1 with Explicit Nodes for the Casts

The implementation should support all primitive and non-primitive types. A challenge regarding
primitive types is, that C supports signed as well as unsigned types. However, Java only supports
signed types. Truffle/C needs to perform unsigned operations and should exhibit the correct sign
extension behavior. A problem with non-primitive types such as arrays, union, structs and others
is, that these types can be reinterpreted as other non-primitive types through casts, since they are
essentially just memory regions. Truffle/C also needs to support these arbitrary casts between complex
types.
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5.1 Data Type Hierarchy: Boxing, Upcasts and Downcasts

One of the goals when implementing nodes is that they are compact and only contain the code for the
specific case of execution. As a concrete example, let us consider the plus operation: Plus is defined
for many data types, so a node could contain methods for all the possible data types. But this would
make the compilation slower and would produce suboptimal code. To be as compact as possible, we
split these methods in separate nodes, so that for every data type a special version of plus exists. A
generic execute method that returns an Object is also not applicable, since we want to avoid boxing
in our interpreter, as Section 2.2 explains.

The following section presents two different approaches on how to implement a data type hierarchy,
which avoids boxing and is as minimal as possible regarding the cases, which it has to handle. It also
explains, how Truffle/C implements conversion between the types. Listing 5.1 serves as an example
to explain the architecture.

5.1.1 The Implicit Approach

One approach is to implement a hierarchical type system. This approach can use the implicit widening
primitive mechanisms [19, JLS 5.1] in Java. An example for this widening conversion is, that Java
allows a substitution of an int in a context where a long is expected. Since the numeric value is
preserved in an upcast (this does not necessarily hold from float to double [19, JLS 5.1.2]), Java
performs an implicit conversion. We can facilitate this by arranging the node hierarchy according to
the implicit widening conversion in Java.

This approach is shown in Figure 5.2. The left side shows an excerpt of the Java class hierarchy, and
the right side the nodes Truffle/C would construct for the example in Listing 5.1.
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Figure 5.2: Truffle/C Nodes from the Implicit Approach for Listing 5.1

Truffle/C can treat the CharNode as a ShortNode, since the Java widening conversions can implicitly
convert a byte (a byte in Java has eight bit and hence better represents the C char than the Java
char with sixteen bit) to short. The same relationship holds between the ShortNode and IntegerNode.
Since the relationship is transitive, the byte can be upcasted to int.

When the int addition expects its left and right side to be of the result type int, it can just call the
executeInt of its children. For the left child, the executeInt will propagate to executeShort. For the
right child, the executeInt will propagate to executeShort and then to executeChar.

However, this approach still needs an explicit node, which handles downcasts. Thus, the
CharFromIntDownCastNode converts the int Java type to a byte Java type during execution by trun-
cation.

This approach has the advantage that it facilitates a subset of implicit conversions both common
to Java and C. This allows to omit the nodes in the AST for arithmetic upcasts, keeping the AST
compact. However, this approach makes it hard to find errors: When debugging, the programmer
has to keep in mind the implicit conversions performed during execution. Also, the debugging depth
in terms of methods is higher, when converting from a low ranked data type to a high ranked data
type. While the conversion from ShortNode to IntegerNode requires only one method to be called, the
conversion from CharNode to IntegerNode requires two method calls. However, since of the transitivity
of upcast conversions, we could reimplement all execution methods of the superclasses in the lower
ones to avoid this problem. Another problem is, that the implementation is more error prone, than
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the second approach in the next section. When constructing nodes in the parser, Java allows any
subclass like CharNode or ShortNode, where an IntegerNode is expected. In the initial implementation
it happened, that Truffle/C did not create necessary cast nodes, but the node construction did not
fail since inheritance allowed the substitution with a subtype. Because of the disadvantages described
here, Truffle/C uses the “Explicit Approach” instead of the “Implicit Approach” described here.

5.1.2 The Explicit Approach

Figure 5.3 shows the Java classes for Listing 5.1 on the left side, the nodes Truffle/C constructs on
the right side.

Figure 5.3: Truffle/C Nodes from the Explicit Approach for Listing 5.1

The “Explicit Approach” has nodes for each conversion. Whenever an explicit or implicit cast to
another type should be performed, Truffle/C inserts a cast node into the AST, that performs the
conversion. For upcasts, the cast nodes can return the value directly, facilitating again the implicit
upcast semantics of Java. The downcasts are implemented in the same way as in the “Implicit
Approach”.

The advantage of this approach is, that each conversion is expressed explicitly in the Truffle/C AST.
This improves the debuggability but makes the AST less compact. A major advantage is, that it is
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easier to find errors during node construction, since a wrong node type results in a ClassCastException,
where before, the execution silently failed with a wrong result. In the following, the thesis assumes
the implementation of the “Explicit Approach”.

5.2 Signed and Unsigned

Besides signed data types, C also supports unsigned integer data types. Unsigned data types have
the same amount of storage and the same alignment requirements [23, C99 6.2.5.6]. However, the
interpretation of the bit values in this storage with bit width N differs: C interprets unsigned values
reaching from 0 to 2N − 1. Signed values divide the space into negative and positive numbers from
−1 ∗ 2N−1 to 2N−1 − 1. Arithmetic operations on unsigned types differ from operations on signed
types. Also, the sign extension of unsigned types differs from signed semantics.

Truffle/C handles unsigned types by differentiating the operations between signed and unsigned types,
thus constructing different operation nodes. Both unsigned and signed integer type operations of the
same type inherit from a common node. A common node implies, that Truffle/C uses the same Java
type to represent the unsigned and signed values. However, Truffle/C constructs different arithmetic
nodes, depending on whether the C type is signed or unsigned.

Figure 5.4: Signed and Unsigned Integer Right Shift Class Diagram

Figure 5.4 shows this concept on the int right shift operator: Both UnsignedIntegerShiftRightNode

and SignedIntegerShiftRightNode inherit from IntegerNode. The executeInt method returns a Java
int for both nodes. However, the implementation of the method differs, to produce the right result
for the unsigned, respective the signed type.
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Type s to s s to u u to u u to s
upcast 3 1 3 1 7 2 7 2

same type 3 3 3 3 3

downcast 4 3 3 3 3

Table 5.1: Case Distinction for Conversion between Types

A special case is the conversion between signed and unsigned. Table 5.1 shows the possible cases. The
conversion can either be an upcast, downcast or a conversion within the same type. The table also
specifies whether the conversion is from signed to signed, unsigned to unsigned, signed to unsigned or
unsigned to signed. Truffle/C does not have to handle case 1 specially, since Java automatically sign
extends for upcasts. Listing 5.3 illustrates case 1 , where C has to perform a sign extension, when
upcasting from a signed variable.

short var_a = -1;

unsigned int var_b = var_a;

printf("%d", var_b); // -1

Listing 5.3: Upcast from Signed with Sign
Extension

unsigned short var_a = -1;

unsigned int var_b = var_a;

printf("%d", var_b); // 65535

Listing 5.4: Upcast from Unsigned without
Sign Extension

However, for case 2 , Java also sign extends, which is the incorrect semantics for upcasts from unsigned.
Listing 5.4 shows, that C performs no sign extension, when upcasting from an unsigned variable.
However, when assigning a short to an int in Java, the short is sign extended, which results in a
wrong result for a negative value.

Case 3 does not require special treatment, since a conversion between the same type is just a reinter-
pretation of the bit content. Also, Java already handles case 4 in the same way as C does, because
they both truncate the value on a downcast.

To correctly implement an upcast from unsigned in Java, we need to truncate the sign extension that
Java implicitly performs. For converting a value from a source type with bit width N to the target
type, we mask it with 2N − 1. This means, that the target type value is the same, as if we copied the
bits from the source type to the target type, without sign extending them.

Figure 5.5 shows the truncation as nodes for the example in Listing 5.4: ShortFrameReadNode reads
the value of the variable as a short. Then, the IntegerFromShortCastNode uses the implicit Java
arithmetic widening conversion to automatically upcast it to an int. However, because sign extension
can occur, the parent node masks an eventual sign extension.
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Figure 5.5: Truffle/C Nodes for the Truncation for Unsigned Upcasts of Listing 5.4

5.3 C Data Types and Truffle/C Base Nodes

For mapping the data types from Java to C, the bit width should be the same as on the platform, to
support interoperability between native functions and Truffle/C. Table 5.2 shows the mapping between
the standard data types and the assigned nodes with return value type of their execute method in
Java.

All these nodes except ConditionNode inherit from RawDataNode, whose executeRaw method returns a
long value. Since it is possible to represent all the values within the bits of a long, having a method
like this is useful for passing arguments to functions. When a function is called, this method can
execute each node argument and the calling node can pass the arguments to the callee as a Java long

value.

5.3.1 Primitive Types

The base nodes include the representations of C primitives which are CharNode, ShortNode, LongNode,
FloatNode, and DoubleNode, such as shown in Figure 5.6. They simply map to the corresponding C
type, and use the same bit width in their execute method as the corresponding C type.
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Figure 5.6: Truffle/C Base Nodes Class Diagram

5.3.2 Condition Type

Truffle/C maps conditions of loops or other conditional control flow statements to a ConditionNode.
In C, a bool data type exists since C99 in stdbool.h [23, C99 7.16]. However, since the condition can
be any data type, e.g., also a long, Truffle/C uses an artificial data type to represent a condition in
control statements. For every C data type, a subclass of ConditionNode converts a value of the given
data type into a boolean value. The artificial data type prevents a combinatorial explosion of nodes,
where every control statement (and every specialization of it) would require a node for every possible
data type of the condition.

5.3.3 Pointer Type

Besides the common primitive types, there is also an AddressNode as shown in Figure 5.6. The LongNode
as well as the AddressNode both return a Java long value in their execute method. Truffle/C uses
LongNode to represent C long variables. In contrast, it uses AddressNode in a context, where an
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C Type Canonical Type GCC
AMD64
Bitsize

Truffle/C Node Java
prim-
itive

char signed char 8 CharNode bytesigned char

unsigned char unsigned char
short

signed short
16 ShortNode short

short int

signed short

signed short int

unsigned short unsigned short
unsigned short int

int signed int
32 IntegerNode int

signed int

unsigned unsigned int
unsigned int

long

signed long

64 LongNode long

long int

signed long

signed long int

unsigned long unsigned long
unsigned long int

long long

signed longlong long int

signed long long

signed long long int

unsigned long long unsigned long
unsigned long long int

float float 32 FloatNode float

double double 64
DoubleNode double

long double long double 128

Table 5.2: Mapping of C Data Types to Platform Dependent GCC Bit Widths and Truffle/C Nodes

address is expected. Examples for such contexts are pointer arithmetic or pointer variables. The
pointer addresses are not virtual, since the Memory implementation returns the “real” addresses of the
data objects.

5.3.4 Other Data Types

All data types exhibit the same semantics as the GCC AMD 64 implementation, except for long

double. Representing long double as a double with half the bit width does not contradict the C
standard. However, interoperability with native libraries is not given regarding this data type.
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Apart from the data types shown in the table, Truffle/C also partially supports specific type extensions
in header files of the platform. This includes for example the long128 data type [5, GCC 6.8], which
is preliminarily only supported by a 64 bit long instead of a 128 bit type. Additionally, the C99
standard introduced a bool data type which Truffle/C treats as a type definition for int. Besides the
arithmetic primitives, Truffle/C also supports pointers as described before and the “void data type”
(it is not actually a data type [23, C99 6.3.2.2, 6.2.5.19]).

5.3.5 Type Definitions

Truffle/C supports type definitions, by explicitly outputting them in the Clang AST. During construc-
tion of the nodes, Truffle/C resolves references to types, that refer to a type definition. The advantage
of not directly outputting the original type already in the Clang AST is, that Truffle/C can print
informative error messages.
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Chapter 6

Data and Data Structures

Basing on the previous chapter, this chapter explains the different kind of variable types, and how
Truffle/C handles compound objects. Also, it shows how Truffle/C handles strings and literals.

Truffle/C supports most of the data structures of C, such as different kinds of literals, compound
objects such as structures, unions, and arrays, as well as enumerations. Truffle/C has a relatively
complex memory management to allow for an efficient handling of addresses and pointers, as well as
easy interoperability to native functions.

6.1 Frame and Memory

The assigned storage of a variable can either be in the Frame or in the Memory.

The frame concept is part of the Truffle API and ensures a fast access to variables in compiled code.
It contains the type specialized variable values of local variables. In interpreted mode, the variable
values lie in an array, whereas this array does not exist in compiled code. Graal eliminates the array
by performing an Escape Analysis after partial evaluation and connecting each read on the array with
the last write [38,42].

The memory concept is part of Truffle/C and is described in more detail by my colleague [21]. In the
memory concept, local or global variables are stored in the native heap. Because of the optimized
frame accesses, as many variables as possible should be in the Frame. However, there are two exceptions
where this is not possible or desirable:
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• An address-of operator & is used to obtain the address of a variable.

• The variable is a composite and a caller passes it to a native function.

In the first case, Truffle/C has no other choice than to put the variable into the Memory. Truffle/C
cannot put it into the Frame, because it needs a memory address to refer to it. The programmer might
use its address to perform pointer arithmetic or pass it to a native library.

Regarding the second case, Truffle/C always places composites such as structures, arrays and unions
into the Memory. This allows a simple implementation and enables interoperability between Truffle/C
and native libraries via the native function interface [22]. If Truffle/C would not place composites into
the Memory, nodes would have to convert them whenever calling a native function.

6.2 Variables

Truffle/C represents variables by a location identifier, that other nodes can use to read the value from
the Memory or Frame. Thus, different read and write nodes are needed depending on whether the
location identifier is an address or a FrameSlot. A location identifier can be produced by one of the
three following nodes:

• GlobalMemoryAddressNode: Truffle/C uses this node to represent globally allocated storage,
where the interpreter allocates the Memory already during node construction. The address is
hence constant during the run-time of the program.

• LocalMemoryAddressNode: This kind of node is used for compounds and for non-static function
variables, when an address-of operator occurs inside the function and targets the variable. The
Memory allocates the variable once per function call. Instead of an absolute address, it contains
a relative offset from which it computes the absolute address during run-time.

• FrameSlotNode: This node returns the same FrameSlot. A FrameSlot is an identifier for the
Frame provided by the Truffle API. Every function call allocates a new Frame.

For global and static variables, Truffle/C always uses the GlobalMemoryAddressNode. When the linker
loads a function it executes its static initialization block. A global block executes its initializations
once before executing the main function.
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6.3 Compound Objects

6.3.1 Structures and Unions

Structures are objects with members that are aligned in a sequence, while the members of an union
overlap [23, C99 6.7.2.1]. While Truffle/C needs to align the members of a structure according to the
ABI, it can assign the union members to an offset of zero (but potentially has to align members of its
members).

There are several ways to initialize structures and unions as shown by Listing 6.1. For the initializa-
tion of t1 and t2, Truffle/C takes each subobject of the initialization list to assign it consecutively
to the members of the structure. As a structure can again contain compound objects like the ar-
ray c, Truffle/C has to perform assignments recursively while following the different alignment re-
quirements [23, C99 6.7.8.(17,20)]. The listing shows that for t2 and t4 only some members have
assigned initializations. The standard specifies implicit initializations which are zeros for these mem-
bers [23, 6.7.8.(19,20)]. This also applies for the t4 initialization, where the identifiers explicitly denote
their member targets. The initialization value can also come from an arbitrary expression, such as
from a function call, a compound literal, a primitive value, or another structure. In the case of t3,
the initializer copies the Memory content with the size of the structure from the expression. In other
cases, such as for a compound literal, it is sufficient to copy the pointer.

struct data {

long a;

int b;

char c[10];

int d;

};

struct data2 {

int a;

} t1 = {1};

int main() {

struct data t2 = {1, 2, {1, 2, 3}};

struct data t3 = t1;

struct data t4 = {.b = 5, .c = {4, 5, 6}};

}

Listing 6.1: Different Kinds of Initializations for Structures

For passing structures by value, Truffle/C recursively extracts the members of a structure (e.g., also
all members of an array) and passes them via the Frame to the receiving function. In the function,
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initialization nodes copy the values from the Frame to the Memory. On first glance this seems to be a
high overhead, but after compilation putting a value into the Frame is “free” and the compiled code
copies the values without writing them to the Frame. Truffle/C must copy the values in each case,
since writes on one structure should not change the values in the other. This implementation eases
the handling of the native side, since the ABI also requires that the caller passes the members of the
structure sequentially.

For returning structures per value, the caller allocates storage to hold the structure and then passes
the pointer to the structure callee. When the callee wants to return a structure, a node inside the
callee copies the structure to the address the caller previously passed. This also conforms to the
concept that the ABI specifies.

Bit fields are a feature that requires more implementation effort. Bit fields allow to read and store
numerical values in a more fine grained and compact manner. In practice, a programmer can use all
the numerical data types (the standard just defines three [23, C99 6.7.2.1.4]) in signed and unsigned
variants to qualify them as a bit-field. The compiler is then expected to fill the according data type
with the consecutive bit fields up until the next value does not fit any more into the variable of the
specific data type. Most other alignment decisions are implementation dependent [23, 6.7.2.1.(4-13)]
and Truffle/C implements them in the same manner as GCC. Bit fields can be mixed with non bit
field members, and together with the ABI for non bit field structure member, compiler implementers
have to take special care regarding the alignments.

When reading or writing a bit field, the Truffle/C nodes require a bit offset and bit length. Bit field
nodes also require the address of the structure member, which can be the same for multiple bit fields.
The nodes use the bit offset and bit length to form a bit mask to read or write the individual bits.
When reading from a bit field Truffle/C also constructs special casts. If the bit field is signed, the
leading bit has to be used for sign extension.

Listing 6.2 shows an example use of bit fields. The variables from a to d have the bit widths of five,
one, three, and seven respectively. The unnamed field with a bit width of zero indicates, that for a
possibly following bit field, the compiler should start the allocation in a new memory area according
to the data type that the programmer specified [23, C99 6.7.2.1.11]. Thus, the first variable a resides
alone in the first char Memory area. The variable b together with c consecutively occupy the bits in
the second char. Since the seven bits do not have enough space in the second char, Truffle/C places
them in the third char. Although the initialization assigns the values thirty, one, eight, and three, the
output values differ from the ones the programmer assigned to them. Table 6.1 helps to explain this
behavior: The two’s complement bit representation of 30 with five available bits is the negative value
-2. When Truffle/C reads the value, it sign extends the int with the leading bit, which is 1. Since
variable b only has one bit to store values, its value range reaches from -1 to 0. Thus, also here the
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0 1 2 3 4 5 6 7
a

1 1 1 1 0 7 7 7

b c
1 0 0 0 7 7 7 7

d
0 0 0 0 0 1 1 7

Table 6.1: Memory Content Table for the Bit Field Structure in Listing 6.2

value of 1 overflows to -1 and Truffle/C sign extends the number to an int of value -1, as mentioned
in the previous paragraph. For c, Truffle/C writes 0. The value 8 occupies four bits and Truffle/C has
to perform bit masking to ensure that it does not overwrite neighboring bits. Only variable d does
not overflow its value range and hence stores and outputs 3.

struct data {

char a : 5;

char : 0;

char b : 1;

char c : 3;

char d : 7;

};

int main() {

struct data t1 = {30, 1, 8, 3};

printf("%d %d %d %d", t1.a, t1.b, t1.c, t1.d); // -2 -1 0 3

}

Listing 6.2: Structure with Bit Field Members
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Figure 6.1: Truffle/C Nodes for a Read on Bit Field c of Listing 6.2

Figure 6.1 shows the nodes Truffle/C constructs when producing a read on the bit field c of the
previous example. A LocalMemoryAddressNode points to the beginning of the structure. From there,
we have to select the correct byte which is the second one and thus has an offset of one. Next, the
correct bits are selected by a bit offset of one and a bit length of three. Truffle/C reads the whole
byte, and then uses a bit mask to extract the right bits. The last step that Truffle/C has to do is to
perform the sign extension, which first uses a left shift and then a right shift of a factor of twenty-nine
in the previous example.

6.3.2 Arrays

Truffle/C performs the initialization of arrays by providing a node to initialize a certain Memory area.
It executes the children and then consecutively stores the results in the memory area. Truffle/C
supports both one and multi-dimensional arrays, as well as variable length and known constant size
arrays. For known constant size arrays the size is a constant integer expression, while for variable
length arrays it is not. Listing 6.3 shows the two kinds of arrays: arr1 receives its size argument per
function parameter and is thus a variable length array, and arr2 has a constant integer expression
and is thus a constant size array. Truffle/C notes for constant size arrays such as arr2 that the
function has to allocate additional Memory every call during the construction of the nodes. However,
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for arr1, Truffle/C assumes only the space of a pointer during construction time. During runtime, a
node initializes this pointer with the variable size storage, which is essentially a call to malloc. All
accesses to the variable size array first dereference the pointer, so that the behavior is transparent to
the program. It is important that a node frees this dynamically allocated space again after leaving
the scope of its declaration [23, C99 6.2.4.6].

int func(int n) {

int arr1[n];

int arr2[10];

}

Listing 6.3: Function with a Variable Length Array

A special case of arrays is when they are function parameters or return values from functions. Although
the function signature might suggest that a caller can pass or return them by value, an array as a
function parameter is always a pointer [23, C99 6.7.5.3.7]. The different signatures in Listing 6.4 are
thus all pointers to arrays. Clang, and thus also Truffle/C, treat parameter arrays as pointer.

void func(int arr[10]);

void func(int arr[]);

void func(int *arr)

Listing 6.4: Function Signatures with Arrays as Expected Parameters

Another special case since C99 are flexible array members. A flexible array member can only occur
in a structure and has an incomplete array type. Truffle/C basically ignores this field by giving it
an address with storage size of zero. Its purpose is to have a variable size object in the structure. A
programmer can reserve space for this object while allocating the structure by malloc. When space
additional to the size of the structure is allocated, then the flexible array member behaves as if the
space would belong to it [23, C99 6.7.2.1.16]. However, Truffle/C does not support passing structures
with flexible array members per values to functions. To implement this, it essential to follow the ABI
implementation for native compatibility.

Listing 6.5 shows how a programmer can use a flexible array member: The structure packet actually
has a size of four, thus only including the int field. When the programmer allocates a structure
by malloc and adds additional storage, this storage belongs to the data array. In the example, the
program can use the array simply as char data[5] in most of the cases. Since the allocated storage
exists anyway, the flexible array member essentially only needs to provide an address to access this
memory, as long as no caller passes it to another function by value.
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struct packet {

int length;

char data[];

};

int main() {

printf("%d", sizeof(struct packet)); // 4

struct packet *p = malloc(sizeof(struct packet) + sizeof(char[5]));

}

Listing 6.5: Usage of Flexible Array Member

6.4 Literals and Enumeration

6.4.1 Number Literals and Enumerations

For numeric literals, the value of the respective number is stored and directly returned upon execution.
Such a node exists for every numeric primitive type.

Enumeration constants, the member of enumerations, are simply named int constants [23, C99
6.2.5.16]. A programmer can also assign int values to enumeration members, in which case the fol-
lowing members obtain their constant by consecutively adding one to the previous constant [23, C99
6.7.2.2]. Listing 6.6 shows the declaration and usage of an unnamed and named enumeration. The
first value of both enumerations is zero. The named enumeration then specifies the second member
to be zero, thus having the same value as the first member.
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enum kind {

_int, // 0

_double = 0,

_short, // 1

_float // 2

};

enum {

ok, // 0

invalid // 1

};

int main() {

enum kind type = _short;

int code = ok;

}

Listing 6.6: Manually and Automatically Assigned Enumeration Constants

Truffle/C stores the constants for each enumeration member. When the program references an enu-
meration member, it instead constructs an int constant node with the respective value.

6.4.2 String Literals

String literals require a more complex implementation: Truffle/C, as well as C [23, C99 5.2.1.2], treat
strings not as high level objects but as arrays of char. Truffle/C also has to add a zero byte to
char arrays, since they are by convention terminated by ’\0’ [23, C99 5.2.1.2]. Truffle/C has to
discern whether the left side of a string literal assignment is an char array or a pointer to char. The
initialization of the array arr3 in Listing 6.7 uses the string literal to “initialize the elements of the
array” [23, C99 6.7.8.14], hence leaving the content modifiable. On the other hand, the interpreter
initializes arr1 and arr2 to point to an object with the char[] value. The specification defines that
modifying such an array is undefined [23, C99 6.4.5].

int main() {

char *arr1 = "abc";

char *arr2 = "abc";

char arr3[] = "321";

}

Listing 6.7: Mutable and Immutable String Constants
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Accordingly, Truffle/C handles the two cases differently: For string literals assigned to pointer, Truf-
fle/C reserves and assigns static space during the construction of the nodes. Truffle/C only allocates
a string literal once and assigns the same address on consecutive allocations. Thus arr1 and arr2 are
pointing to the same address. On the other hand, Truffle/C constructs a node for arr3, that copies
the four characters (including ’\0’) to the Memory space starting from arr3. The actual assignment
copies the string at runtime and hence stays modifiable.

C also supports wide chars that are not implemented yet in Truffle/C. However, wide chars follow the
same concept as chars and thus would mainly differ in the usage of the Java data type to represent
them.

6.4.3 Compound Literals

Compound Literals are initializer lists preceded by a cast. They can be used, e.g., for constructing
array, structure and union literals. According to the standard, they either have static or automatic
storage lifetime, depending on whether they are global or local. Truffle/C respectively constructs
either a local or global Memory node, and allocates the Memory once global or per function call. A
CompoundLiteralNode has a block of values and uses the address of the allocation block as an offset,
to write the content of the values to the Memory location. To conform to the native ABI, it is essential
that these values have the correct alignment. As Listing 6.8 shows, the implementation thus has to
regard the type of the compound literal. While both assignments have the same initializer list, the
first compound literal is a structure, while the second one is array. The ABI requires that the structure
values are aligned at offsets 0, 8, and 16, while the int array must be aligned sequentially (at offset
0, 4, and 8).

struct test {

int a;

long b;

int c;

};

int main() {

struct test t = (struct test) {1, 2, 3};

int *p = (int[]) {1, 2, 3};

}

Listing 6.8: Compound Literal Assignment to a Structure and an Array
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Chapter 7

Operations

This chapter introduces how Truffle/C implements operators. A short presentation of the
different kinds of reads and writes that Truffle/C has to produce is followed by the common
arithmetic, logical, and bitwise unary and binary operators. The chapter also shows the
implementation of the member access operators.

7.1 Reads and Writes

Since C includes the dereference and address-of operator, it raises the question at which point in time
during the construction of the nodes Truffle/C can produce a node to read a value. A first approach
might be to immediately read the value when it sees a dereference operator and otherwise return
the address without reading. Figure 7.1 shows that this approach does not work for the expression
&(*result). The expression &(*result) where result is of type int * first dereferences the pointer
and then takes the address again, resulting in the same address value as if not applying the operators at
all. When Truffle/C encounters the variable, it would first construct a node for the memory location.
After seeing the dereference operator, it would follow with a node for reading the value from the
respective location. However, when it processes the address-of operator, it should again go one step
back to just get the address and not read the value. At this time, it already set up the Truffle/C node
and just deleting it would not be a clean solution.
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Figure 7.1: Naive Approach for Reading Values (Not Working)

One working approach is to always read “one level higher”, i.e., when we know if we need an address
or a value. This way, we also solve the issue of whether we want to receive a lvalue or an rvalue. When
referencing a variable, Truffle/C cannot determine at the processing level of the variable in the AST,
if it should construct a node to read the value or return the address: When the variable occurs at
the left side of an assignment it should return the address, and if it occurs on the right side it should
return the value. A simpler approach might also be to save reads symbolically and construct all the
reads in the end. However, since in Truffle/C the location of data does not necessarily have to be the
same for all reads, Truffle/C implements an approach, where a single location field for the next level
is sufficient.

When processing the previous expression &(*result) Truffle/C first encounters the dereference oper-
ator and notes the potential read, but ignores it after seeing the address-of operator. Truffle/C thus
prevents removing a node as the previous strategy would have required.

Figure 7.2 with Listing 7.1 shows an extensive example for the read strategy that Truffle/C employs:
When Truffle/C encounters the pointer variable p, it first constructs only a FrameSlot as identifier,
but does not read the address yet. On the next level, Truffle/C knows that it should construct a node
for a pointer addition. Only then, Truffle/C creates the node for reading the address from the Frame

and another one for adding the offset to the pointer (both displayed in one node). When Truffle/C
encounters the first dereference operator, it notes that it potentially should read the value, but only
reads when it encounters the second dereference operator. Truffle/C creates this second dereference
operation when it knows that the expression is a rvalue, which is at the point when it should construct
the int addition with 2. If Truffle/C would already construct the read one level before at *(*(p+1)),
it would fail when the expression occurs at the left side of an assignment, as then the address and not
the value would be needed.
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Figure 7.2: Truffle/C Approach for Reading Values Applied on Listing 7.1

int **p;

*(*(p + 1)) + 2;

Listing 7.1: Reading a Value from an int **p

As Section 6.2 explains, Truffle/C uses three different kinds of variable types for which the runtime
uses different storage concepts. Figure 7.2 shows, for example, that the address of the pointer is in
the Frame, while the dereference operation reads the value from the Memory.

Figure 7.3 shows the different storage locations for the primitive type variables in Listing 7.2. The
nodes depicted are the read nodes that the function call to printf receives. Truffle/C reserves space
for variable a at the node construction time. For the initialization, a global block for the program
initializes global variables before the execution of the main function starts. Since Truffle/C stores
globals in the Memory, the read first produces a GlobalMemoryAddressNode that contains the absolute
address and is accordingly read by a memory read node, which is specialized to Integer. Truffle/C
reads the static variable b in the same way. However, the linker initializes the variable when it loads
the function for the first time. Variable c is never the target of an address-of operator and hence
Truffle/C assigns it to the Frame. A FrameSlotNode returns a FrameSlot upon execution, which the
IntegerFrameReadNode uses to read the value from the Frame. The next variable d is the target of
an address-of operator and Truffle/C thus stores it in the Memory. However, the LocalMemoryNode

remembers the address as an offset inside the memory allocated per function call and not as a global
address. Truffle/C reads the pointer address for variable e from the Frame, since the pointer variable
itself is never target of the address-of operator. However, the IntegerMemoryReadNode then reads the
value from the Memory.
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int a = 3;

int main() {

static int b = 4;

int c = 5;

int d = 6;

int *e = &d;

printf("%d %d %d %d %d", a, b, c, d, *e);

}

Listing 7.2: Function with Writes and Reads with Different Truffle/C Memory Types

Figure 7.3: Different Truffle/C Read Nodes for the Variables in Listing 7.2

Structures, unions and arrays are stored in the same ways as the primitives, except that they are never
put into the Frame.

7.2 Signed and Unsigned Operators

Truffle/C does not only have to provide all kinds of reads and writes for Frame and Memory, but
also for the different data types, as well as for signed and unsigned. This also includes augmented
assignments and unary increments and decrements. This means that Truffle/C has to provide nodes
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for the augmented operators +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, as well as the post and pre
increments for all the data types, for both Memory and Frame. Division, modulo and right shift need
augmented assignment nodes in signed and unsigned versions. The signed variant of the right-shift
is simply the same Java operator, while in Java >>> performs the unsigned right shift operation. For
the unsigned division and modulo, Truffle/C casts up to the next higher data type to perform the
operation. For unsigned long a node implements the binary version of the long division algorithm.
The JDK 8 will allow an easier implementation with its new unsigned API which also provides an
unsigned long division1.

Additionally, bit fields require their own nodes for augmented assignments and unary increments
and decrements. Although it results in a high number of nodes, this approach is clean and effi-
cient, and all nodes contain short and non-complex code. Listing 7.3 shows the execute method of a
SignedLongDivFrameAssignNode node, i.e., the signed version of the /= operator that Truffle/C uses
on the Frame. Truffle DSL provides val2 as the the result value of the node of the right side of the
assignment. For a Memory node, the second argument would not be a FrameSlot, but a long with an
address, that the node would use to read and store the value from the Memory. A bit field additionally
has bitSize and bitOffset arguments, to selectively write certain bits.

public final long executeLong(final VirtualFrame frame, FrameSlot slot, long val2)

{

final long val = frame.getLong(slot);

long result = val / val2;

frame.setLong(slot, result);

return result;

}

Listing 7.3: SignedLongDivFrameAssignNode Execute Method

Truffle/C implements the arithmetic and bitwise operators using the same principles as for the aug-
mented assignments.

7.3 Pointer Arithmetic

For the additive operators plus and minus, not both operands are necessarily numeric types. In this
case, the standard expects, that an addition of a pointer p, pointing to an int i produces a result,
where the result of the addition points to the i th element of where p points to [23, 6.5.6.8]. Truffle/C
thus calculates the result by taking the pointee type size and multiplying it with i, and then adding
it to the address of p. Figure 7.4 shows the pointer addition (casts omitted for simplicity’s sake) of
1 docs.oracle.com/javase/8/docs/api/java/lang/Long.html#divideUnsigned-long-long-

docs.oracle.com/javase/8/docs/api/java/lang/Long.html#divideUnsigned-long-long-
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p + 3, where p is a short. Since the pointer addition specifies to take the third element of a short

array, Truffle/C computes the offset from the pointer p as the multiplication of 3*2.

Figure 7.4: Truffle/C Nodes for a Pointer Addition

7.4 Comparison and Logical Operators

The comparison operators are ==, =!, >, <, >=, and <=. The result type of a comparison is an int

and returns one, if the condition is true and zero, if the condition is false [23, C99 6.5.8.6]. If the
comparison value is inside a condition of a control statement, Truffle/C wraps it - in the same way as
for non comparison operators - in a ConditionNode that produces a boolean value.

For the unsigned comparisons greater than, greater than or equal to, less than, and less than or equal
to, the Java comparison operators are not directly applicable. Instead, a case distinction first has to
determine the sign. If the sign is equal, Truffle/C can perform a normal comparison, and otherwise
has to decide on the basis of the sign. The operators !, ==, and =! have a common version that is
applicable for both signed and unsigned.

The logical operators && and || perform a short-circuit evaluation where the node only executes the
right expression, if the left expression is true in the && case or false in the || case.
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7.5 Member and Array Operators

For accessing members of a structure or union, Truffle/C has to handle two cases: The target can be
either a structure or a pointer to a structure. Listing 7.4 shows these two cases. The programmer has
to use a different syntax, namely a -> if the left side is a pointer and . otherwise.

struct test {

int a;

int b;

};

int main() {

struct test t;

struct test *t1;

int val1 = t.b;

int val2 = t1->b;

}

Listing 7.4: Two Ways for Accessing a Member in a Structure or Union

Figure 7.5 shows the nodes that Truffle/C constructs for these cases. For the case without pointer Truf-
fle/C directly takes the LocalMemoryNode, adds the offset to the address with the
StructElementMemoryAddressNode and then reads the int. For the pointer case, an additional read is
necessary: The AddressFrameReadNode first reads the pointer from the Frame, before adding the offset
and proceeding as before.

Figure 7.5: Truffle/C Read Nodes for Accessing the Members in Listing 7.4
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For reading arrays, a similar concept as for the additive pointer nodes applies: Truffle/C multiplies the
value of a subscript with the stride and adds it to the address. Truffle/C processes pointer subscripts
from left to right, i.e., the less frequently varying subscripts when sequentially iterating through an
array first. Listing 7.5 shows an example of an array read. Truffle/C first assigns values from the
one-dimensional initialization list to the two-dimensional array. Then, Truffle/C reads from this array
to print the value.

int main() {

int arr[5][2] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int val = arr[3][1];

printf("%d", val); // 7

}

Listing 7.5: Subscript Expression for Array Access

Figure 7.6 shows the nodes that Truffle/C constructs for Listing 7.5. It first constructs the inner
subscript for arr[3]. On this level, we can see that we have an array that contains five elements which
in turn contain arrays with two elements. The result of the first subscript is hence an array of two
elements. To select the element from the array, another ArrayElementAddressNode is required.

Figure 7.6: Array Access Example
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7.6 Other Operators

C also supports other operators or operations such as sizeof, alignof, and the comma operator.

The sizeof operator yields the size of its operand in bytes. Truffle/C constructs a node that returns
a literal with the memory size of the type. Truffle/C currently fails for variable length arrays, where
it would have to evaluate the operand during run-time [23, 6.5.3.4]. The alignof operator returns the
platform-dependent alignment of a type.

A less well known operator is the comma operator which first executes its left operand as a void

expression, and returns the right side of the expression. Listing 7.6 shows an example of its usage.
Truffle/C produces a node which executes the two expressions and returns the second one.

int main() {

int t;

return t = 2, 3;

}

Listing 7.6: Usage of the Comma Operator
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Chapter 8

Control Structures

This chapter introduces the implementation of common control structures, such as while
and for loops, switch, and if operators. Also, it presents how Truffle/C handles goto, which
Java does not support at the language level. The last part of this chapter discusses how
Truffle/C uses the Truffle API to communicate branch probabilities to Graal.

Many control structures of C can be directly mapped to Java control structures such as for loops, if-else
statements, break and continue. The Truffle/C interpreter also has to support the goto statement,
which is not implemented in Java. Truffle/C can partially support goto by its implementation that
uses Java exceptions.

8.1 If-Else, Ternaries, and Switch

Listing 8.1 shows a very straightforward implementation of an if-else statement in Truffle/C. If the
condition is true, the node has to execute the if case and otherwise the else case.

@Override

public void executeWithoutLabel(VirtualFrame frame) throws ControlFlowException {

if (condition.executeCondition(frame)) {

thenPart.executeWithoutLabel(frame);

} else {

elsePart.executeWithoutLabel(frame);

}

}

Listing 8.1: Simple Truffle/C Implementation for If-Else
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However, this approach does not benefit from the profiling feedback an interpreter could gather.

int func(int a) {

if (a % 2) {

return 1;

} else {

return 0;

}

}

Listing 8.2: C Function Consisting of an If-Else Statement

Listing 8.2 shows a simple function. If a caller passes random values to this function, then Truffle/C
executes both branches. However, if the function always receives even or uneven numbers, then
Truffle/C either only executes the then or the else case. Truffle/C exploits this by constructing an
uninitialized case and rewriting it on the first execution: If the then branch is executed, the node
rewrites to only execute the then case and deoptimize and rewrite to a generic case that handles then
and else, if the else branch is executed at a later time. The same logic applies when the else branch
is executed first. Figure 8.1 shows the corresponding state diagram.

Figure 8.1: State Diagram for the Truffle/C If-Else Specialization

For the function in Listing 8.2, this will only eliminate an additional movq instruction and replace
it with a deoptimization call. However, in less trivial cases, the machine code can for example do
without bigger portions of code for handling error cases or eliminate dead code.
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The same logic can be applied for the ternary nodes. The only difference is that ternary nodes return
a result and if nodes do not. Switches are implemented in a similar way, so that they only include
code for branches that were executed before. Careful tuning is necessary in order to only perform this
optimization when it is beneficial.

8.2 Loops

The implementation of loops is similarly straightforward in Truffle/C: We can again map the semantics
to the loop statements in Java. However, break and continue statements need to be modeled that
interrupt the normal flow in a loop. These two statements are modeled with Java exceptions: A break
inside a loop throws a BreakException and continue a ContinueException. As Listing 8.3 shows, the
WhileNode has to catch these exception. The continue statement is equivalent to jumping to the end
of the enclosing loop [23, C99 6.8.6.2]. The break statement terminates the execution of the enclosing
loop (or switch). Thus, the WhileNode catches the ContinueException inside the end of the loop and
the BreakException after the loop.

try {

while (condition.executeCondition(frame)) {

try {

body.executeWithoutLabel(frame);

} catch (ContinueException ex) {

}

}

} catch (BreakException ex) {

}

Listing 8.3: Simple Truffle/C Implementation for the While Loop

An optimization Truffle/C performs, is to specialize on whether a break or continue can occur inside
the current loop, because Graal cannot necessarily optimize such a case. If one of the exceptions does
not occur, Truffle/C can construct a node, which does not handle the respective exception. After
compilation, the machine code thus also does not need code to handle the exception.

8.3 Goto

In C, goto allows unconditional jumps to a label in the enclosing function. Java does not support
the goto statement. The goal of our implementation is to show that goto can be implemented with



Control Structures 58

modest effort and without impacting the performance of other statements. This requirement bases on
the assumption that goto is seldom used, after having been discussed and criticized in the past [14].
Today, goto is mainly used for error handling as C provides no other exception handling mechanism.
Such an approach is, e.g., recommended for error handling code in the Linux kernel [7, 36]. We did
not decide for an approach where goto is transformed to structured control flow [17] but an exception
based approach in order to preserve the high level information in the AST.

In the implementation each statement node has an executeWithLabel and executeWithoutLabel

method as shown in Listing 8.4. The execution of a function starts with executeWithoutLabel as
shown in the first AST (from top to down, left to right) in Figure 8.2. When execution reaches a
goto as in the second AST, the node throws a Java GotoException which contains an identifier for the
target label, that the enclosing function catches as seen in the third AST. The function then rewrites
itself to start further executions with executeWithLabel. After the rewrite, the labelId argument
is set to the identifier indicated by the GotoException as target and the execution continues with
executeWithLabel as displayed in the fourth AST, starting from the first statement of the function.
Every statement checks if the passed labelId allows execution. Since the statements are not allowed
to execute, they return the unchanged label as a return result. After a GotoExeception, only the label
can resume execution and sets the label to an EXECUTE label as shown in the fifth AST. Consecutive
statements then continue their normal flow when they see the EXECUTE label and resume their execu-
tion as displayed in the sixth AST. When the function executes the next time, execution immediately
starts with executeWithLabel with the identifier set to the EXECUTE label.

public abstract int executeWithLabel(VirtualFrame frame, int labelId) throws

ControlFlowException;

public abstract void executeWithoutLabel(VirtualFrame frame) throws

ControlFlowException;

Listing 8.4: Signatures of the Two Execute Methods for Statements
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Figure 8.2: Goto Concept Depicted on an Execution in Truffle/C

The statements in the C program are guarded by subclasses of StatementNode in the AST. These
statement nodes are specialized, to minimize checks and improve performance. One limitation of the
goto implementation is, that it only works on the statement level. If an expression contains a goto, it
produces a value and hence cannot return a labelId. Truffle/C neglects this case.

Listing 8.5 shows an example of the goto mechanism. The top level node A speculates on not having
to execute goto, although providing a try-catch block to catch a potential GotoException. In case
valid arguments are supplied and enough memory is available, the goto will never execute and thus
the execution will never have to perform additional operations.

The execution starts thus with executeWithoutLabel. In case of an error one of the two gotos C

is invoked and throws a GotoException. A catches the exception and rewrites itself to a node that
expects from then on that further gotos occur. The execution starts again with executeWithLabel

with the labelId targeting the label error in D . Since the whole block from B to D does not contain
a label, a single check for the EXECUTE label is sufficient. As the labelId is not EXECUTE, Truffle/C
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executes the next check at D which is the target label. The target label matches and Truffle/C can
continue normal execution. It does not need to check the statements after E because after the last
label in a function structured control flow will continue.

On the next function call execution starts with executeWithLabel and a labelId with EXECUTE. The
check at B succeeds and the statements are executed. Another check has to be performed at D which
again succeeds.

A

int* allocateField(int n, int m) {

B if (n <= 0 || m <= 0) {

C goto error;

}

int size = n * m;

int* alloc = malloc(size * sizeof(int));

if (alloc == 0) {

C goto error;

}

return alloc;

D error:

E fprintf(stderr, "field %d %d could not be allocated!", n, m);

return 0;

}

Listing 8.5: Goto and Labels in a Function

8.4 Branch Probability Injection and Feedback

To supply profiling information for Graal, the Truffle API offers an interface to inject branch proba-
bilities. Truffle/C uses these branch probabilities for if nodes, ternaries, and gotos. Listing 8.6 shows
the injection of branch probabilities for the generic case of the if node. The if node and others capture
only in interpreter mode how often if and else execute. This is achieved by using the isInterpreter

compiler directive. Graal can use this information to, e.g., move a cold branch to better facilitate the
cache.
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if (CompilerDirectives.injectBranchProbability(thenCount / (double) (thenCount +

elseCount), /* execute condition */)) {

if (CompilerDirectives.inInterpreter()) {

thenCount++;

}

// execute if case

} else {

if (CompilerDirectives.inInterpreter()) {

elseCount++;

}

// execute else case

}

Listing 8.6: Injection of Branch Probabilities

To guide the decision when to inline and compile, loop nodes and gotos report how often they have
been executed as shown in Listing 8.7. Also this is only performed in the interpreter. The two
variables incCounter and reportLoopCounter are instances of Runnable which implement a method
run with which they respectively increment an internal counter and report the counter to the Truffle
run-time.

try {

while (/* execute condition*/) {

try {

CompilerDirectives.interpreterOnly(incCounter); // thread to increment

counter

// execute body

} catch (ContinueException ex) {

}

}

} catch (BreakException ex) {

} finally {

CompilerDirectives.interpreterOnly(reportLoopCounter); // thread to report loop

iterations

}

Listing 8.7: Report of Loop Iterations



Case Study 62

Chapter 9

Case Study

To recap some of the concepts and present them in a bigger picture, this chapter presents
a small example program. It explains again how the Clang modification generates the
Truffle/C file, how the Java side generates the nodes, and how the nodes specialize during
execution.

The program in Listing 9.1 sums up fibonacci numbers, stores them in an array, and eventually prints
their square root.

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

E enum {

OK,

NEGATIVE_ARGUMENT,

NO_ARGUMENT

};

C int returnCode = E OK;

int fib( A int n) {

if (n <= 1)

return n;

return fib(n-1) + fib(n-2);

}

int main(int argc, char *argv[]) {

A int *arr = 0;
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if (argc <= 1) {

printf( D "no argument provided!\n");

returnCode = E NO_ARGUMENT;

goto exit;

}

A int n = atoi(argv[1]);

if (n <= 0) {

printf( D "%d is not a positive number!\n", n);

returnCode = E NEGATIVE_ARGUMENT;

goto exit;

}

A arr = B malloc(n * F sizeof(int));

A int result = 0;

A int i;

for (i = 0; i < n; i++) {

arr[i] = fib(i + 1);

}

for (i = 0; i < n; i++) {

A int printValue;

if (arr[i] == 0) {

printValue = 0;

} else {

printValue = pow(arr[i], 2);

}

printf( D "values[%d] ^ 2 = %d\n", i, printValue);

}

exit:

free(arr);

return returnCode;

}

Listing 9.1: Case Study Complete Program

9.1 Truffle/C File

The first step that Truffle/C performs is a call to the Clang modification with the path to the C file.
Clang reads the three included standard headers, and resolves all the macros they contain. Then, the
Clang modification traverses the internal Clang AST and writes the AST representation to a single
Truffle/C file (see Chapter 4). As Listing 9.2 shows, the type and function definitions from the header
files usually constitute the biggest section within the Truffle/C file.
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...

FunctionDecl 93962912 malloc void *(unsigned long) 1 decl

ParmVarDecl 93963072 unsigned long nonstatic 0

FunctionDecl 93963168 malloc void *(unsigned long) 1 decl

ParmVarDecl 93962656 __size unsigned long nonstatic 0

FunctionDecl 93963840 calloc void *(unsigned long, unsigned long) 2 decl

ParmVarDecl 93964000 unsigned long nonstatic 0

ParmVarDecl 93964096 unsigned long nonstatic 0

...

Listing 9.2: Truffle/C File Header Includes Excerpt for Listing 9.1

The Truffle/C file that the Clang modification produces contains all the information for the node
construction. Listing 9.3 shows for example the declaration of the pointer variable with its initializer,
which is the result of the malloc call.

DeclStmt 1

VarDecl 94039392 ptr struct element * nonstatic 1

CStyleCastExpr struct element * 1

CallExpr void * 2

ImplicitCastExpr void *(*)(unsigned long) 1

DeclRefExpr Function 93963168 malloc void *(unsigned long) 0

UnaryExprOrTypeTraitExpr unsigned long sizeof struct element 0

Listing 9.3: Truffle/C File Malloc Call for Listing 9.1

9.2 Node Construction

During the construction of the nodes, Truffle/C can see that the variables marked with A are not target
of an address-of operator. Hence, Truffle/C puts them into the Frame and produces the corresponding
read and write nodes, as explained in Section 7.1. Truffle/C always assumes that structures, unions,
and arrays B are in the Memory. The content of variable arr, i.e., the address of the pointee, is in
the Frame, whereas the pointee itself (the array allocated in B ) lies in the Memory. Also, the global
variable in C lies in the Memory.

Truffle/C also allocates the string literals in D already during the construction of the nodes, as
Section 6.4.2 explains.

Truffle/C stores the unnamed enumeration as constant definitions as Section 6.4.1 explains and replaces
the assignments of enumeration members with assignments of literals as in E . The same happens
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with the F sizeof operator, as Section 7.6 explains. The literal four serves as replacement for the
sizeof.

9.3 Execution

The execution of the program assumes an input parameter of 7 and a repeated execution of main,
that would trigger compilation of the Truffle/C AST.

int main(int argc, char *argv[]) {

int *arr = 0;

if (argc <= 1) {

A // deoptimize and replace node

}

int n = C atoi(argv[1]);

if (n <= 0) {

A // deoptimize and replace node

}

arr = malloc(n * sizeof(int));

int result = 0;

int i;

for (i = 0; i < n; i++) {

arr[i] = D fib(i + 1);

}

for (i = 0; i < n; i++) {

int printValue;

if (arr[i] == 0) {

B // deoptimize and replace node

} else {

printValue = pow(arr[i], 2);

}

C printf("values[%d] ^ 2 = %d\n", i, printValue);

}

exit:

free(arr);

return returnCode;

}

Listing 9.4: Run-Time Version of Listing 9.1 with Deoptimization Points
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Truffle/C starts the execution of the main function with executeWithoutLabel as Section 8.3 de-
scribes. Since the gotos for the error handling never execute, the function never has to invoke
executeWithLabel. In the compiled code, there is only an exception handler left, to handle a po-
tential GotoException, which never occurs for the input argument of 7. Since furthermore the if
statements for the error handling are not invoked, the whole block in A (including the gotos) is also
not contained in the compiled code. Instead, the if node performs the condition and would rewrite
if the condition were true. In compiled code, the rewrite triggers a deoptimization and return to the
interpreter to perform the replacement. Since the function logic does not allow that arr[i] is zero
in B Truffle/C can ensure that the if branch is never part of the compiled code. As before, not a
static analysis determines this, but the fact that the if branch is only included if it was encountered
before.

The linker loads the functions lazily, as soon as the function node executes for the first time. As
Chapter 4 presents, the format and architecture support and partly implement lazy reading of the file
and lazy construction of nodes. If the linker can find the function in the Truffle/C file, it returns this
function, as for example for the fib function in D . If it cannot find a function, it assumes that the
function is native and invokes the native function interface as for C with functions atoi and printf.
However, Truffle/C provides intrinsics for the standard library math and memory functions. Instead
of a native call, a specially implemented Truffle/C node serves as a replacement. This often makes the
execution faster, since Graal can optimize (or apply again intrinsics to) these Java nodes. Figure 9.1
shows this concept, where the specially implemented Truffle/C node does not have to call a native
function in order to execute pow, malloc, or free. The only native calls that remain are atoi and
printf. The compiled code can perform these calls by a direct call to the functions, and hence without
additional overhead [22].

Figure 9.1: Truffle/C Intrinsics
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Chapter 10

Evaluation

This chapter evaluates the Truffle/C implementation in three aspects. The first is peak
performance on benchmarks, the second one completeness on GCC test cases, and the
third one is Truffle/C as a Truffle language.

The benchmarks and test cases were executed by a Lenovo ThinkPad T430s with the CPU Intel(R)
Core(TM) i5-3320M CPU @ 2.60GHz and 8 GB of memory. It used an 64 Bit Ubuntu 12.04.2 LTS
with an 3.2.0-40-generic kernel version. Truffle/C is of the revision 0c60f3798289 which is not publicly
available and Graal version with revision 895f31682b88, which is available from the official OpenJDK
Graal repository1.

10.1 Peak Performance

The performance measurements use different configurations of Truffle/C to show the impact of different
optimizations. Figure 10.1 shows the performance of these different configurations on five benchmarks
of the Computer Language Benchmarks Game2.

Our baseline is the configuration where all optimizations are enabled, and in addition to that we also
measured the following configurations:

• All optimizations are disabled.

• Only memory intrinsics are enabled.
1 Graal Mercurial repository: http://hg.openjdk.java.net/graal/graal
2 The Computer Language Benchmarks Game: http://benchmarksgame.alioth.debian.org/

http://hg.openjdk.java.net/graal/graal
http://benchmarksgame.alioth.debian.org/


Evaluation 68

• Only math intrinsics are enabled.

• Only control optimizations (branch profiling, control node specializations) are enabled.

The performance is given as a score, computed by the execution time relative to the baseline. Thus,
a lower bar means a faster execution time.
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Figure 10.1: Performance Comparison of Different Truffle/C Optimizations on Six Benchmarks

The first observation in Figure 10.1 is that, for most benchmarks, the optimizations do not contribute
to a significant performance gain. The two benchmarks meteor − contest and spectral − norm do not
even show any change in the different configurations.

Since benchmarks likely contain little or no dead code, or code which executes only in exceptional cases
like error handlers, the control optimizations seem to not significantly contribute to the performance.
However, the absence of any gain for some benchmarks seems surprising. For example, the benchmark
meteor − contest contains seventy-six if-else constructs. While forty-two if-else nodes contain and
execute both if and else, Truffle/C constructs for thirty-two only the if path (i.e. the if also does
not have an else branch in the source). The latter one is an optimization, which only gives a speedup
in the interpreter and hence not for the peak performance. However, for two if-else, the benchmark
actually never executes the else branch (i.e. for those which contain an if and else branch in the
source). Truffle/C thus does not let Graal compile these else branches. Truffle/C is also able to
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construct thirty-eight while or for nodes that do not need the code for handling a break or continue
and one for node that handles continue but not break.

The benchmark that gains the most from the control optimizations is the mandelbrot benchmark with
a speedup of 5%. The benchmark contains five for-nodes which handle neither break nor continue.
The benchmark that shows a small benefit from the control optimizations is fannkuch − redux. For
nine out of the ten while or for loops in fannkuch − redux, Truffle/C constructs a version that does
not handle break or continue, while for one case a node is applicable, that only handles a break.

Regarding the math intrinsics, only the benchmarks binary − tree and spectral − norm contain one
math intrinsic each which replaces the native call to the standard library. They seem to not influence
the performance results. Mini benchmarks, that just execute math functions, show that some math
intrinsics can give a high speedup but can also negatively influence the performance, depending on
the substituted math function.

Only the memory intrinsics seem to highly influence the performance, namely in the benchmark
binary − tree. This benchmark frequently calls malloc (and free), where the intrinsics pay off. Not
using the intrinsic makes the execution 13% slower.
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Figure 10.2: Performance Comparison of Truffle/C with GCC on Six Benchmarks

Figure 10.2 shows a performance comparison between Truffle/C and GCC. At the moment, most of the
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performance depends on the Memory implementation, the fine-tuning of Truffle, and the quality of the
compiled code that Graal produces. Since all the components are in active development, sometimes
performance regression can occur. The thesis hence refrains from a detailed analysis of the benchmarks
at this point. A more detailed analysis of the mandelbrot, fannkuch − redux and spectral − norm

benchmarks can be found in the thesis of my colleague [21].

The performance of Truffle/C on the benchmarks thus ranges from 1.77 times as fast as unoptimized
GCC code for mandelbrot − redux to 5.26 as slow as highly optimized GCC code for binary-tree.

10.2 Completeness

The evaluation of Truffle/C’s completeness uses the 1200 test cases from gcc.c − torture/execute, a
part of GCC’s testsuite. This test suite consists of “particular code fragments which have historically
broken easily” [6, GCC 7.4].

As the directory name suggests, these test cases have to be executed to get a test result, thus differ-
entiating themselves from GCC test that only have to be preprocessed, compiled, or linked. Since
executing involves all the steps, and preprocessing as well as compiling bases on Clang’s capabilities
on a big part, this test suite is expected to produce representative results of Truffle/C capabilities and
limits.

As Figure 10.3 shows in the left pie chart, Truffle/C successfully runs 841 out of the 1200 tests (70.08%).
The analysis of the 359 (29.92%) remaining tests is divided into three parts, which correspond to three
categories. The first group are Truffle/C errors with 186 failing test cases (51.81% of the failing tests).
The second group are test cases that exercise the GNU extensions with 116 failing test cases (32.31%
of the failing test cases). The third group of test cases can either not be compiled by GCC or Clang
and make up 57 test cases (15.88% of the failing tests).

The three groups are test cases, that fail because of Truffle/C errors, that cannot be executed because
of built-in functionality, and ones that fail either on GCC or on Clang. Taking only into account the
test cases, that Truffle/C should be able to execute (i.e., only taking into account the Truffle/C failures)
in its fully implemented state, Truffle/C executes 841 out of 1027 test cases (81.89%) successfully.

The finer categorization is not completely accurate, since many test cases fit into multiple categories.
One example would be a test, that uses the not yet implemented complex numbers, relies on built-in
functions and calculates the wrong result. The decision, to which category a test best fits, was thus
sometimes a subjective one.
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Working and Failing GCC Tests

Working GCC Tests

Failing GCC Tests

Failing GCC Tests

GCC or Clang Errors

GCC Builtin Functionality

Truffle/C Errors

70.0%

30.0%
15.9%

32.3%
51.8%

Figure 10.3: Working and Failing GCC Tests

10.2.1 Failing GCC or Clang Tests

First of all, 57 test cases (15.88% of the failing tests) can either not be compiled by GCC or by Clang.
While GCC accounts for 9 (15.79%) failing test cases, Clang accounts for 48 (84.21%). These test
cases seem to expose “real” bugs, e.g., assertion errors or crashes, and do not indicate trivial errors
such as missing includes. To fix this problem, is in the scope of the Clang or GCC developers.

10.2.2 Truffle/C Failures

The test cases of this category should all be executable by Truffle/C in the future. Most “low hanging
fruits” have already been fixed. Now, still 186 failing test cases (51.81% of the failing tests) remain.
The remaining test cases are often specific problems, that are only exhibited in a special context.
They are often not hard to find, but trying to fix them often results in regressions. Figure 10.4 shows
the categories of the failing test cases.

28 test cases (15.05%) fail, because of the interface between Clang and the parser of Truffle/C. As
Clang developers have not documented the constraints of the internal Clang AST for C, it is difficult
to see which nodes and combination of nodes can occur, as well as what information is persistent in
each node and which of it is optional. Thus, fixing bugs in this category requires a detailed review of
individual test cases and usually needs a change of the Clang modification, as well as the Java parser.
An example which occurs multiple times is a K&C notation for function parameters (see Listing 1.1),
where Clang does not provide the types.
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Figure 10.4: Truffle/C Failure Categories

35 test cases (18.82%) fail because of exceptions or failing assertions while constructing the nodes.
Additionally, this category also includes some test cases with ASTs that can be constructed, but then
fail during execution. These test cases mostly expose, that node constructions methods are not general
enough to handle all the cases. Examples are multiple nested composite initializations or not handling
function pointers sufficiently in the context of functions.

45 test cases (24.19%) crash the JVM. Crashes in the JVM can occur through the use of Unsafe,
which Truffle/C uses to implement the Memory. This category contains test cases which use arrays,
structures, and pointers. Bugs in this category have received little attention, since they are not always
deterministic and the ones in other categories are usually easier to find and debug. Fixing bugs in
other categories also from time to time resolves bugs in this category. w.

22 test cases (11.83%) compute an unexpected result, but do not crash. Previously, bugs in this cat-
egory were mostly related to wrong or missing sign extensions for function calls, unsigned operations,
bit fields or conversion between signed and unsigned data types. Also, using a wrong Java data type
with Truffle DSL resulted in some bugs in this category.

33 test cases (17.74%) account for test cases which use not yet implemented features in Truffle/C. 15
test cases of this category exercise varargs for structures. 11 test cases use complex numbers, and 4
test cases use stdout.

23 failing test cases (12.37%) are related to various issues: For 11 test cases, Truffle/C cannot find the
type of a variable. In another 7 cases Truffle/C does not free the memory for variable length arrays,
e.g., in combination with gotos. In the remaining 5 cases, the linker fails.
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Figure 10.5: GNU Extension Failures Categories

In the test cases, sometimes the keyword volatile occurs. This type specifier enforces that reads
to a variable are not “optimized away”, e.g., for memory-mapped input or output, as well as for
asynchronously interrupting functions [23, GCC 6.7.3]. This keyword is just ignored in Truffle/C.

Overall, these test cases do not exhibit essential limitations of Truffle/C. Only 33 test cases exercise not
yet implemented features, which are not hard to implement in Truffle/C. However, since Truffle/C is a
research prototype we try to keep the implementation simple and not introduce support for language
features that are not yet needed. The other test cases relate to bugs which need to be fixed on a case
per case basis.

10.2.3 Builtin GCC Functionality

A significant proportion of 116 failing test cases (32.31% of the failing test cases) go onto the account
of the GNU extensions [6, GCC 6]. Truffle/C supports some of the GNU extensions, where they could
be implemented easily. For example, built-in functions with prefix __builtin_ often correspond to
library functions with their name without the prefix [6, GCC 6.57]. Truffle/C thus maps them to
the same non-builtin functions without prefix. Among other extensions, Truffle/C supports empty
structures, expression statements, non-constant initializers, and the offsetof operator.

For a mature C interpreter or compiler, it is desirable to also be able to provide the GNU extensions,
such as Clang does to a large degree [4]. For example, the standard C library on many Linux systems
is the GNU C Library. The GNU C Library provides header files that test via feature test macros



Evaluation 74

which standards and extensions the programmer wants to enable. If the compiler can support these
extensions, the programmer can use a wider range of the standard library [30, GLIBC 1.3.4]. The
implementation of the GCC extensions is not within the scope of the thesis, and the test suite does
not exercise all these features. Thus, the thesis only provides a sketch on how the implementation of
this extensions could look.

37 failing tests (31.90%) rely on the asm statement. This statement is an extension and allows to
execute assembler instructions in C. It is possible to implement direct support for such assembler
instructions in Graal, by implementing a Graal capability, in a similar spirit as the native function
interface [22]. The programmer has to specify the operands as C variables, instead of guessing the
location of the data [6, GCC 6.41]. This makes an implementation for Graal sensible.

16 tests (13.79%) rely on nested functions. Nested functions are not only local to the block where
they are defined, but can also access the variables of the outer frame [6, GCC 6.4]. This requires a
change of the Truffle/C API for the Memory and Frame, to allow access to variables in the outer scope.
In case of the Frame, Truffle/C needs to save a reference to the outer Frame, to be able to traverse the
enclosing frames. Truffle implementations for dynamic languages already implement this [33, 41] and
we thus expect a small effort to implement nested functions.

8 tests (6.90%) fail because they exercise computed gotos in combination with getting the address of
a label [6, GCC 6.3]. Implementing this imposes no problem, since the value of a label is a constant
that can be computed during node construction and given as an ID to the GotoNode. The computed
goto then throws a GotoException with this constant value as target. This is an example where the
structure of Truffle allows to implement a new feature with minimal effort.

16 tests (13.79%) fail because Truffle/C only partially supports attributes. With GNU C programmers
can define attributes on functions [6, GCC 6.30], variables [6, GCC 6.36], and types [6, GCC 6.37],
to guide the compiler. Examples of such attributes are inlining hints, specifications of alignments for
variables, or the visibility of certain types. Most of these attributes are currently ignored, and Truffle/C
prints a warning when encountering them. Some of these attributes are specific low level mechanisms,
such as disabling interrupts for special targets in a function. While theoretically, Graal capabilities
could provide such support, the implementation of these attributes does not seem feasible. High-level
attributes are easier to implement. Some of them can be used for specialized node construction. One
example is an attribute which specifies that a function does not return. In this case, a function call
node can be constructed which does not handle a ReturnException, and results in more compact
machine code upon compilation.

39 failing tests (33.62%) use other built-in operators, functions, or types. Examples for operators are
offsetof [6, GCC 6.50] to obtain the offset of a field in a structure, or the __real [6, GCC 6.10] operator
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to extract the real part of a complex number. One of the builtin-functions that does not directly map
to standard library function is __builtin_prefetch [6, GCC 6.57], to move data into the cache before
the program accesses it. Like for attributes, these built-ins would have to be hard-coded in Truffle/C,
or implemented in Graal.

Overall, the GNU C extensions did not highlight any significant problems of Truffle or Truffle/C.
Some parts cannot directly expressed in Java, like the assembler statements, and thus would require
machine code support that would have to be generated by Graal. However, some built-ins are not
likely to occur in real world code, thus making an implementation in the near future infeasible. In
other cases, the programmer can use built-ins to help constructing specialized nodes for Truffle, while
other optimization targeted attributes can be ignored, since programmers often have a poor insight
on how their program actually performs.

10.3 Evaluation as a Truffle Language

10.3.1 Truffle/C and Previous Implementations

The first implementation of a Truffle language was TruffleJS for JavaScript, and serves as the first
prototype for dynamic languages [43]. Efforts have been set to use Truffle for implementing other
languages: The author of this thesis previously built an interpreter for Python using Truffle [33].
The Python implementation for Truffle exhibits similar characteristics as the JavaScript one and
uses similar techniques for property access, type and operation optimization. Since then, additional
implementations for Python, Ruby, R, and J have become available [40]. All these languages are
dynamically typed. Truffle/C is the first major effort to evaluate Truffle on a static language.

JavaScript, as well as other dynamic languages, can extensively apply rewriting: Since data is not
statically typed in these languages, the nodes start with an uninitialized state and later rewrite
themselves to the actual types encountered.

In contrast, the node types for C are statically known. Instead of starting with an uninitialized
state, Truffle/C constructs the nodes according to the static types already when parsing the program.
Accordingly, Truffle/C also does not rewrite any nodes because of type mismatches and does not use
type decision chains [43]. Truffle/C also does not use polymorphic inline caches, since functions as
the only applicable case in C are statically known most of the time. Exceptions are function pointers
that can have multiple, compile time unknown targets. However, this was not a concern yet, since our
target benchmarks do not exercise this feature.
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The only case where Truffle/C uses rewrites is for control structures and when calling functions:
A function call node first starts with an uninitialized state and rewrites itself once the function is
actually executed. The file format of Truffle/C supports this by allowing an easy implementation of
lazy resolving. If a function is never called in Truffle/C, the interpreter does not have to construct the
AST for this function. Also, only at this point in time, the execution decides whether the function is
a Truffle/C or a native function.

C cannot refer to outer stack frames, since standard C does not support nested functions (except in
the GNU C extensions [6, GCC 6.4]) and the compiler can determine references to variables statically.
This facts keeps references to the Truffle API small and the nodes very simple. Use of the Truffle
DSL [42] allow the nodes to be minimal in terms of implementation code.

Similar to other Truffle implementations, Truffle/C uses the API to communicate the branch prob-
abilities of loops and branches to Graal [42]. Also, control flow exceptions like break, continue and
goto are implemented with Java Exceptions, same as in other Truffle implementations. Truffle/C
also facilitates the API to guide function calls and inlining. Truffle/C uses the Frame to store local
variables wherever possible. Since C has to interact with native libraries and refer to addresses, this
is not always possible.

Overall, using the Truffle API also proved to be useful for the static language C. Truffle/C could facil-
itate code generation and basic API functionality from Truffle. In comparison to dynamic languages,
Truffle/C did not use the Truffle facilities for type specialization and other more sophisticated opti-
mizations. But even without that, the format of the interpreter allows Graal to perform optimizations
to gain a peak performance that is not far behind long-standing industrial compilers.

10.3.2 Platform Dependence

A major advantage of using Java as a host language is that it is platform independent. Any platform
which has Java installed can execute the Truffle/C interpreter. However, there are some parts of the
project which restrict the platform independence or the correct execution on different platforms.

The first part of platform dependency is Clang. We modified the Clang parser, in order to write a
representation of its internal AST to a file. Clang is a cross-platform project. However, the project has
to be compiled for different platforms before its execution. To support several platforms, Truffle/C
has to offer the modified Clang binaries for different platforms.

The Truffle/C interpreter is self sufficient and thus not platform dependent. However, for real world
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applications, it is important to be able to include precompiled libraries. Thus, Truffle/C relies on a
native function interface in this part [22]. Additionally, a preferable property is to obtain equal results
between executed code compiled by different compilers and Truffle/C.

To address the issue of platform dependency Truffle/C has to determine the following properties in a
platform specific way:

• The bit width of primitives and composites

• The alignment for composites

• Function calling convention

C only specifies minimum sizes and relationships between data types and not the exact size [23, C99
5.2.4.2]. However, the most useful behavior for Truffle/C is to use the same configuration as native
compilers such as GCC. Since we used Linux AMD 64 as underlying platform, we followed the bit
width and alignment of GCC for this platform. To guarantee interoperability between Truffle/C and
native functions for other platforms, an additional configuration for the platform specific as mentioned
above have to be provided.

The bit width of primitives is only a minor problem. C exposes these platform dependent bit width for
integer types in limits.h and for float types in float.h [23, C99 5.2.4.2]. Truffle/C could either parse
these files and accordingly generate files during compile time of the Java project or read them during
construction of the Java nodes during run-time. Using the same ranks guarantees the same precision
of the results as other execution environments on the platform. Currently, the mapping between C
data type and Java data type is hard-coded.

The alignment of composites and function calling convention is mainly related to the native function
interface presented in the thesis of my colleague. While the alignment of composites have to be
considered for every platform, the function calling convention is a concern of Graal, since the function
interface is a capability of Graal [21,22].

The Clang modification consists of 1,500 lines of code (LOC). Out of the 24,000 LOC of the Java side
of Truffle/C, only 2,1% are platform dependent, namely 200 for the composite alignments, 100 for the
bit sizes and decision which Java data type to use to represent C data types, and 200 LOC for varargs
in function. While the interoperability to the native side is not yet complete, this number is especially
small. In comparison, the Portable C Compiler contains 25% platform dependent code, although the
compiler targets to keep the amount as small as possible [24]. In contrast to traditional compilers,
Truffle/C does not have to produce machine code by itself but can use Graal to do so.
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Chapter 11

Future Work

Completeness: The Truffle/C implementation already supports the basic language features of C,
many “new” features of C99, as well as some of the GNU extensions. However, the implementation
is still incapable of executing large real world programs. To be able to execute these programs,
Truffle/C requires a higher degree of completeness. Hence not only ANSI C can be considered, but
an implementation of the GNU extensions would be useful.

Security: Buffer overflows are one of the most serious security problems [13]. While static analyzes
have to place pessimistic assumptions of whether a buffer overflow can occur or not, Truffle/C could
(partly) check this during run-time depending on the input values. Truffle/C could put as much data as
possible in the Frame where, e.g., a an invalid access to an array would cause a NullPointerException

which can be handled gracefully. Also, Truffle/C could save additional run-time information through
which checks could ensure data validity.

Portability: While Truffle/C is already portable to a high degree, there is still room for improvement.
It would be preferable that Truffle/C could operate entirely without having to implement platform
dependent logic. This could be achieved by extracting information from the header files as mentioned
before, but also by extending Graal’s native function interface by the necessary capabilities or bundling
according libraries.

Performance Optimization: Truffle/C does not yet target runtime performance, but a clean design
and no conceptional performance overhead. Truffle/C allows to experiment with optimizations that
use profiling feedback that have not yet been explored for C because they are hard to implement in
traditional compilers. Function inlining [10,11] is an important optimization because it enhances the
effect of other optimizations [8]. Truffle/C allows to implement heuristics that not only depend on
static metrics but, e.g., depend on the call count of a function. Also, Truffle/C could assume that
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compound objects or primitives are never referenced or passed to native functions, and put them into
the Frame so Graal can better optimize such usages. Only if the assumption is invalidated, Truffle/C
would have to write them into the Memory. To make these assumptions more reliable it would be useful
to combine traditional static analyzes with the dynamic assumptions.
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Chapter 12

Related Work

12.1 Optimizations Methods Similar to Truffle

Efficient interpreter implementations usually produce bytecodes. The cost of interpreting these byte-
codes depends on on the branch prediction cost and accuracy [18].

Bytecode is usually hard and inflexible to replace once a compiler generates it. However, one technique
is to use superoperators [31], to combine frequently executed groups of bytecode in one bytecode.
Combining bytecodes reduces the number of bytecode reads, as well as pushes and pops in a stack-
operating interpreter. In this approach, the interpreter can be generated on a per program basis, to
adopt to the bytecodes present in the program. These replacements of bytecode are comparable to
rewriting in Truffle. But in contrast to Truffle, this optimization is performed not at the language,
but at the level of the bytecodes used to represent a program. Also, this method only increases the
performance in interpreter mode, which the paper demonstrates for an ANSI C interpreter, while the
Truffle nodes are subject to further optimization by Graal.

12.2 Platform Independence and Portability

One approach to reach the same degree of portability as Truffle/C is to use LLVM1 with a front end
such as Clang2. LLVM is a program analysis and transformation framework that retains its internal
SSA form representation, enriched by high level information, throughout the program phases. It
allows optimization and analysis at link-time, install time, runtime and between program runs. LLVM
1 The LLVM Compiler Infrastructure: http://llvm.org/
2 clang: a C language family frontend for LLVM: http://clang.llvm.org/

http://llvm.org/
http://clang.llvm.org/


Related Work 81

needs a front end such as Clang for C [26], which has to generate a representation of the program for
LLVM. While the output of the front end is platform independent (but already contains the composite
alignments), the platform dependent code is produced only before execution. In this respect, it is
similar to Java and JVM or CLI, although its goals are different. It also allows run-time profiling, and
to optimize and re-compile the native code. LLVM can also run in interpreter mode, when no native
code generator is available [27]. The main difference in eyes of language developers of this approach
compared to Truffle and Graal is that they can express the semantics of a language for Truffle in
high level Java code, while for LLVM they have to express the semantics with LLVM bytecode. Since
this language is close to RISC assembly, it takes more effort to map high level constructs for LLVM.
Additionally, language developers for Graal do not need any knowledge about Graal itself, but only
have to follow the Truffle API.

To the best of my knowledge, no C CLI language has been implemented so far. However, there
exist efforts to implement a CLI C language [35]. For the JVM, some indirect approaches that base
on translation to bytecode exist. One such approach is LLJVM3, which uses a LLVM front end to
compile a C program to LLVM IR, which it then translates to Jasmin assembly code and finally uses
the assembly code to construct the JVM bytecode. NestedVM [9] either directly translates C source
code or MIPS binaries to Java source code including a MIPS interpreter with the MIPS machine
code or Java bytecode. For facilitating precompiled libraries, it assumes that they already have MIPS
format to translate them to Java. When NestedVM directly generates JVM bytecodes it can use the
goto specified by the Java Virtual Machine Specification [29, JVM 6.5]. Otherwise, a jump is the
change of the pc variable which results in that the interpreter will fetch the instruction from another
position in the array that NestedVM uses to store the instructions. A similar effort is Cibyl [25], that
uses GCC to again translate the C program to MIPS. The presented tool then translates this MIPS
code to Java bytecode. To obtain an executable class file, the project uses the Jasmin assembler. From
the MIPS code, Cibyl also generates Java wrappers for system calls. In contrast to NestedVM, Cibyl
targets Java J2ME devices.

There are several efforts to keep large portions of C compilers platform independent. One such example
is the Portable C Compiler, which keeps 75% [24] of its code machine independent.

12.3 C Interpreter

One widespread C interpreter is CINT, which uses an incremental bytecode compiler [2]. It was
developed for the object oriented data analysis framework ROOT. CINT4 supports about 95% of
3 LLJVM: http://da.vidr.cc/projects/lljvm/
4 CINT: http://root.cern.ch/drupal/content/cint

http://da.vidr.cc/projects/lljvm/
http://root.cern.ch/drupal/content/cint
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ANSI C and 85% of C++ and is written in ANSI C itself [32]. The philosophy behind the language
is to implement a useful script language combination of both C and C++.

Another prevalent C interpreter is Ch5 which targets cross-plattform scripting. It supports the lan-
guage features and libraries from the ISO C90 standard and most features of the ISO 99 standard. Its
design goal is to provide a learning and testing environment. Ch provides useful features like array
bounds checking but recommends to use a C compiler for final production. The website offers a free
standard version, while a version with more features is commercial [12]. Both CINT and Ch can be
used in a read-eval-print-loop.

There are several special purpose or hobby-project C interpreters. PicoC6 is a C interpreter originally
written for the on-board flight system of UAV’s. CINLA7 is a C interpreter specialized on linear
algebra. There are also wrappers for compilers, that allow a read-eval-print-loop execution such as
igcc8 for GCC and ccons9 for clang and LLVM. EiC10 is another small C interpreter.

All these interpreters do not focus on performance but fill gaps on niches such as embedding C into
applications, for learning purposes or hobby projects. Since the language is close to the machine level
and compilers can easily map the concepts of C to machine code, it is hard to implement a competitive
interpreter. Industrial quality interpreters often target dynamic languages, where compilers face the
challenge of having to map the dynamic type system and operations to machine code. For dynamic
languages, interpreter can thus easier gain a performance advantage. Another reason why up to today
no industry-strength C interpreters exist is that when C came up interpreters were not fast enough to
execute C. Nowadays, C compilers exist for almost every platform, diminishing the value of platform
independent interpreters.

5 Ch: http://www.softintegration.com/
6 picoc. A very small C interpreter: https://code.google.com/p/picoc/
7 CINLA: http://www.pliatech.com/CInterpreter.aspx
8 Interactive GCC: http://www.artificialworlds.net/wiki/IGCC/IGCC
9 ccons. Interactive Console for the C Programming Language: https://code.google.com/p/ccons/
10 EiC: http://sourceforge.net/p/eic/wiki/Home/

http://www.softintegration.com/
https://code.google.com/p/picoc/
http://www.pliatech.com/CInterpreter.aspx
http://www.artificialworlds.net/wiki/IGCC/IGCC
https://code.google.com/p/ccons/
http://sourceforge.net/p/eic/wiki/Home/
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Chapter 13

Conclusions

This thesis describes the Truffle/C project, which implements an interpreter based on Truffle for the
execution of C programs. It shows that an implementation of C in Truffle is not only feasible, but also
has a small and simple implementation compared to the traditional approaches such as with a compiler
like GCC. While Truffle/C contains many nodes, all these nodes contain simple implementations for
their execute methods, that are often not longer than a single line. Truffle/C can exploit the Truffle
DSL, to automatically generate a major portion of the code. Truffle/C also shows that concepts not
present in Java can be feasibly implemented, such as unsigned data types.

The evaluation shows that Truffle/C already has a high degree of completeness. The performance of
the interpreter on benchmarks is not slower than 5.26 times compared to the execution of highly opti-
mized GCC code. In contrast to dynamically implemented languages, Truffle/C has less specialization
potential. However, there is still significant potential for performance improvements.
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