
JOHANNES KEPLER
UN IVERS I T ÄT L INZ

Ne t zw e r k f ü r F o r s c h u n g , L e h r e u n d P r a x i s

Augmenting GCSpy with Scripting
Functionality

Bakkalaureatsarbeit
(Projektpraktikum)

zur Erlangung des akademischen Grades

Bakkalaureus der Technischen Wissenschaften

in der Studienrichtung

Informatik

Angefertigt am Institut für Systemsoftware

Betreuung:

o.Univ.-Prof. Dr. Dr. h.c. Hanspeter Mössenböck

Dipl.-Ing. Thomas Schatzl

Eingereicht von:

Benjamin Dallinger

Linz, 25. 01. 2011
Johannes Kepler Universität

A-4040 Linz · Altenbergerstraße 69 · Internet: http://www.uni-linz.ac.at · DVR 0093696

Abstract i

Abstract

GCSpy is a powerful heap visualization tool which alleviates the observation and analy-

sis of memory managed systems during the development process. Because of its flexible

and loosely coupled architecture the application can be easily integrated into various

environments without much effort. Furthermore the implementation of the visualizer

in Java ensures high portability and robustness. For this reason GCSpy is a useful

instrument especially for developers working on efficient garbage collection algorithms

in virtual machines.

Goal of this project is the integration of a scripting engine and the development of

an efficient interface that allows script-based access to all important functionality in

GCSpy. This enables developers to adapt the displayed information to their individual

preferences by loading and running scripts in the visualizer. In addition, this enhance-

ment provides script-based control of the visualization process which allows users to

utilize GCSpy like a classical debugger. For example, this allows the use of breakpoints

to e.g. stop the visualization when specific conditions are met.

Kurzfassung

GCSpy ist ein mächtiges Werkzeug zur Heap-Visualisierung, welches die Beobachtung

und Analyse von speicherverwalteten Systemen während des Entwicklungsprozesses

erleichtert. Dank seiner flexiblen und lose gekoppelten Architektur kann die Applika-

tion ohne großen Aufwand in unterschiedliche Umgebungen integriert werden. Die

Implementierung der Visualisierung in Java garantiert außerdem hohe Portabilität und

Robustheit. Aus diesen Gründen ist GCSpy ein nützliches Instrument speziell für En-

twickler, welche an effizienten Garbage Collection Algorithmen für virtuelle Maschinen

arbeiten.

Ziel dieses Projekts ist die Integration einer Scripting Engine und die Entwicklung

einer effizienten Schnittstelle, welche einen skriptbasierten Zugriff auf sämtliche wichti-

gen Funktionen in GCSpy gestattet. Dies ermöglicht Entwicklern die Anpassung der

angezeigten Informationen nach ihren individuellen Bedürfnissen, indem Skripte in der

Visualisierung geladen und ausgeführt werden. Außerdem erlaubt diese Erweiterung die

skriptgesteuerte Kontrolle des Visualisierungsprozesses, was Benutzern erlaubt, GCSpy

wie einen klassischen Debugger zu verwenden und z.B. die Visualisierung unter Ver-

wendung von Haltepunkten zu szoppen, sobald bestimmte Bedingungen eintreten.

Acknowledgment ii

Acknowledgment

At this point I want to offer my regards and blessings to all of those who supported

me in any respect during the completion of this bachelor project. Especially I am

thankful to my supervisor, DI Thomas Schatzl, whose encouragement, guidance and

support from the initial to the final level enabled me to develop an understanding of

the subject.

Lastly, I want to dedicate this work to my family who supports me as good as possible

and always conveys great interest in my work. Without their patience, understanding,

and most of all love, the completion of this work would not have been possible.

Danksagung

An dieser Stelle möchte ich mich bei all jenen bedanken, die mir während der Anferti-

gung dieser Bakkalaureatsarbeit zur Seite gestanden haben. Ein besonders Dankeschön

geht an meinen Betreuer DI Thomas Schatzl, der mir durch seine Anregungen half, ein

Verständnis für die Problemstellung zu entwickeln und mich während des gesamten

Projektverlaufes tatkräftig unterstützte.

Zuletzt möchte ich dieses Arbeit meiner Familie widmen, welche mich nicht nur so gut

es geht unterstützt, sondern auch ständig großes Interesse an meiner Arbeit zeigt. Ohne

ihre Geduld, Verständnis und vor allem Liebe wäre die Fertigstellung dieses Projektes

nicht möglich gewesen.

Contents iii

Contents

1 Approach and motivation 1

1.1 What is GCSpy? . 1

1.2 Idea and task description . 1

1.3 Further structure of this thesis . 2

2 Introduction to GCSpy 3

2.1 Overview . 3

2.2 GUI and visualization . 4

2.3 Previous work . 8

2.4 Comparison with related applications . 9

3 Design 11

3.1 Requirements . 11

3.1.1 Script management . 11

3.1.2 Navigation . 12

3.1.3 Spaces and streams . 12

3.1.4 Markers and cursor . 13

3.1.5 Control information . 13

3.1.6 Event and timing information . 13

3.1.7 Logging . 13

3.1.8 External libraries . 13

3.2 Scripting language . 14

3.3 GUI . 14

3.4 Scripting interface . 17

3.5 Example Scripts . 18

3.5.1 Breakpoint . 18

3.5.2 Virtual Spaces . 19

3.5.3 Markers . 20

3.5.4 Event Filters . 21

3.5.5 Logging . 22

4 Implementation 23

4.1 Analysis of the visualization process . 23

4.2 Required changes on the system architecture 26

Contents iv

5 Conclusion and future work 31

A Use-cases I

A.1 Script management . I

A.2 Script utilization . IV

B API VII

B.1 Navigation . VII

B.2 Spaces and streams . VIII

B.3 Markers and cursor . IX

B.4 Control information . X

B.5 Event information . X

B.6 Event filters . XI

B.7 Utilities . XII

Bibliography XV

Approach and motivation 1

Chapter 1

Approach and motivation

1.1 What is GCSpy?

GCSpy is a powerful heap visualization tool which alleviates the observation and analy-

sis of memory managed systems during the development process. It provides functional-

ity for collection, transmission, storage and replay of memory management information.

Because of its flexible and loosely coupled architecture the application can be easily

integrated into various environments without much effort. Furthermore the implemen-

tation of the visualizer in Java ensures high portability and robustness. For this reason

GCSpy is an important instrument especially for developers working on garbage collec-

tion algorithms in virtual machines.

1.2 Idea and task description

During development of memory managed systems and especially garbage collection

algorithms it is a big advantage to have a graphical representation of the heap state

instead of pure numerical data. Due the facts that every developer has individual

preferences and each development task has distinct requirements, it is important that

a visualization tool like GCSpy offers large range of flexibility.

The main task of this thesis is to improve GCSpy’s capabilities by making the current

data and views available to small scripts that augment and control the visualization

during tracing. Interesting new example applications may provide new views derived

from existing data (e.g. provide summaries etc), enable the user to quickly find inter-

esting data (e.g. breakpoints conditional on particular values, or value highlighting in

the views based on thresholds) and other interesting ways of helping to understand (i.e.

debug) the traced data.

So the goal is the integration of a scripting engine into the visualizer and the develop-

ment of an efficient interface that allows script-based access to all important function-

ality in GCSpy.

Approach and motivation 2

1.3 Further structure of this thesis

The next chapter takes a closer look on GCspy with a focus on the visualizer, sum-

marizes the previous work on the application and compares it with some related tools.

Chapter 3 defines the requirements for the implementation and documents some design

decisions. Moreover it contains some example scripts for common use-cases. Chapter 4

analyzes the visualization process and describes the implementation details. The final

chapter 5 contains a reflection about the result of this project and some ideas for future

work on GCSpy with a focus on scripting tasks. The appendix specifies the fundamen-

tal use-cases for script administration and utilization, as well as the detailed scripting

interface.

Introduction to GCSpy 3

Chapter 2

Introduction to GCSpy

This chapter describes GCspy in more detail and takes a closer look at the current im-

plementation of the visualizer and its actual functionality, followed by a short overview

of the previous work on the application and a comparison with some related tools.

2.1 Overview

The framework gathers the heap and memory management information from the ob-

served system and transforms it into a visual representation for better perception and

understanding. The developer is able to analyze dynamic memory behavior and profile

system performance based on graphical information instead of numerical data. This can

be done efficiently under realistic conditions when running real programs resulting in

large heaps, because the cost of storage, transmission and visualization is independent

of the heap size. [Printezis02]

In order to maximize flexibility and keep the influence on the observed system as small

as possible, the application is divided into two parts and implemented as a server-client

architecture communicating over TCP/IP as shown in figure 2.1. This technique allows

a minimal impact remote observation and also eases the adaption for other environments

because changes only have to be applied to the server module. Furthermore this method

enables the visualizer to connect to and disconnect from a running system at any time.

[Printezis02]

Introduction to GCSpy 4

Figure 2.1: GCSpy’s architecture [Printezis02]

The memory management information on the host runtime system is gathered by in-

dividual drivers for every single aspect that should be considered in the observation.

Outside the gathering period the runtime costs are negligible. The server collects the

heap information from the drivers and serializes it for transmission over TCP/IP. Cur-

rently the server module is available in Java, C and C++. On the client side, which

is exclusively responsible for the data visualization, the received data is de-serialized

and transformed into in a object oriented data structure which gets processed by the

visualizer. The client application is completely implemented in Java using Swing for

the GUI, which ensures high portability, reusability and robustness. In addition to the

stream data GCSpy supports the transmission of special commands which allow the

control of the visualization process, i.e. stop and resume the playback. [Printezis02]

2.2 GUI and visualization

This section provides an overview of GCSpy’s GUI and the visualization part of the

application. It also gives a short description of the basic components and their func-

tionality to get a fundamental knowledge for further analysis and discussions. Figure

2.2 below shows GCSpy running with a loaded trace file and all relevant dockable win-

dows open. The connection dialog, the display style dialog and the event filter settings

are implemented as independent frames as shown in figures 2.3, 2.4 and 2.5.

Introduction to GCSpy 5

Figure 2.2: GCSpy’s visualizer

1. Connection dialog

At application start or after pressing the Connect button the user is requested

to choose either a server socket for connection or a stored trace file as shown in

figure 2.3. If the user opens a trace file, the application invokes a pseudo server

that processes the stored trace data from the file and provides it to the visualizer.

In addition the user can decide if the visualization should start immediately after

connection or if the process should pause until pressing the Play button.

Figure 2.3: Connection dialog

Introduction to GCSpy 6

2. Space Manager

A Space Manager is a graphical representation of a space in GCSpy’s user interface

which contains a constant number of tiles showing the data values for the currently

selected stream. The number of spaces, streams and tiles is given from the actual

trace data. Depending on the type of the selected stream the tiles appear as

colored rectangle for enumerations or vertical chart bars for value-based streams.

The actual stream can be selected from pop-up list in the lower left corner. It is

also possible to display multiple streams at the same time by selecting the option

<Show multiple streams> from the stream menu.

In order to gather information about the meaning of particular tile colors, every

Space Manager provides a Legend button, which opens a dockable window that

shows the tile colors and the corresponding enumeration name (2b). Further

every Space Manager offers a Summary window (2a). If the stream currently

selected in the Space Manager is a enumeration the summary shows the sum of

the particular tile types. The chart bars are named and have the same color as

the corresponding enumeration type which spares a look on the legend.

Every Space Manager enables the user to individually set markers on single or

multiple tiles by right-clicking them. The marked tiles are highlighted with a

border whose color can be set in the Display Style dialog of the particular Space

Manager. A right click on a marked tile removes the marker. The Clear Markers

button removes all markers in a Space Manager.

Also every Space Managers provides the possibility to zoom in and out or enlarge

a small section of the tile space. The Display Style dialog provides several settings

tho customize the appearance and the colors.

Figure 2.4: Display style dialog

Introduction to GCSpy 7

3. Properties

If a tile is selected in the space manager by left click, the Properties window

shows some information like name, index and block size, as well as the actual

values for each stream in the space. Values in enumeration type streams are

displayed with their name while percentage type streams show the numerical

value in combination with a horizontal chart bar.

4. General Info

This window contains a simple text area that shows some general information of

the given trace data noted by the implementer. In this example this data field is

empty.

5. Event Counters

The Event Counters window shows the actual number of the particular event

types. In this example there are two types of GC activities called major and

minor events. Further the application differentiates between the start and the end

of every GC activity. This results in the four event types GC start (minor), GC

start (major), GC end (minor) and GC end (major) which may differ depending

on the actual use-case.

6. Timers

The Timers utility displays the elapsed time between the events and the amount

of time used for compensation. This two values are provided from the Client

Interpreter at every event, the difference between them is calculated at display

time.

7. Event Filters

In order to reject event information which is uninteresting for the user and control

the visualization process based on event properties, GCSpy provides an event filter

mechanism implemented in the server module. All filtered information does not

get collected and transmitted by the server, so that the filters achieve a smaller

impact on the performance of the target system. The Event Filters dialog shown

in figure 2.5 allows the manipulation of the filter settings.

• Enabled: Only enabled event types are collected and transmitted by the

server.

• Delay: Server delays for a given period after transmissions of specific event

types, allowing the user to slow down the visualization process.

• Pause: Server pauses after transmission of specific types of events, which

results in a primitive breakpoint functionality.

Introduction to GCSpy 8

• Period: Transmission of specific event types happens only every n times to

reduce the transmission rate.

Figure 2.5: Event filters dialog

8. Navigation

The visualization process can be controlled in the bottom navigation area. The

panel provides functions to pause and restart the visualization, walk through the

event history in single steps or navigate to specific event using the event slider.

Furthermore the panel displays information about the current connection state,

the actual trace data and some event informations.

9. Plug-ins

The actual implementation of GCSpy offers a plug-in management framework

in order to include further functionalities. Unfortunately this plug-ins are hard

coded within the application code which causes a lack of flexibility and maintain-

ability. During the build process every plug-in gets compiled which results in one

Java JAR file for every plug-in. The plug-in manager searches a defined directory

for JAR files and loads every found plug-in at application start. Currently GCSpy

includes plug-ins for histogram visualization and textual representation.

2.3 Previous work

Initially GCSpy was incorporated into Sun’s RJVM, Sun’s HotSpot and IBM’s

JikesRVM as described in [Printezis02]. In [Printezis01] Printezis and Jones

adapted the framework for observation of the Train Garbage Collector. In

[Singh07] Singh and Ranu created a server implementation for the JikesRVM.

A previous bachelor project focused on bringing the code and the visualization

up to current standards, visualization and replay of the available data work very

well now. For example, similar to a debugger, the user can interactively step back

and forth between heap states, can set breakpoints in a limited way, can watch

heap information and more. [Hofer10]

Introduction to GCSpy 9

The latest enhancements on the framework primarily covered actions on cleaning

up the code, make it more efficient and add functionality. The coupling between

the server side data collection and the client visualization application was loos-

ened by establishing an indexing component, storing the incoming trace data into

a file so that it is possible to pause the visualization process and explore the event

history without influencing the data transmission between server and client. In

addition the illustration of tiles showing percental values was improved by chang-

ing the visualization method from variable color intensity to vertical bars with

variable filling degree. [Hofer10]

2.4 Comparison with related applications

Main goal of the project is to get more comfortable debugging functionality into

GCSpy. In order to get information about the abilities of actual debuggers and

tracing tool we will compare GCSpy with some related applications and summa-

rize the functionality which is interesting for GCSpy. Furthermore we think about

if and how particular functions can be applied to a tracing tool like GCSpy using

the possibilities of this project.

• Eclipse Debugger

The Eclipse IDE includes a debugging function which allows the user to

set an arbitrary number of breakpoints inside the code. Eclipse stops the

program execution at this positions and allows a stepwise continuation. The

actual code line is highlighted in the editor before execution. It is possible

to step over methods and functions or resume the execution until the next

breakpoint is reached. At the same time the debugger grants value access

for all currently active variables. [Eclipse]

In the figurative sense this breakpoint functionality can be adopted into GC-

Spy by giving playback control access to the scripting engine. If a certain

condition is reached in the trace data the visualization stops and the user

is enabled to walk forward or backward event by event. The corresponding

tile gets highlighted using GCSpy’s marker function which is already im-

plemented. Value information can be obtained from the Properties window

which can be automatically actualized providing script-based access to the

cursor.

• HPROF Heap / CPU Profiling Tool

HPROF is a simple command line profiling tool which comes with the J2SE

platform. It is a JVM native agent library which is dynamically loaded

through a command line option at startup and becomes part of the JVM

process. Users can request various types of profiling features like CPU usage,

Introduction to GCSpy 10

heap allocation statistics, complete heap dumps, as well as states of all mon-

itors and threads to track down and isolate performance problems involving

memory usage. The tool generates textual or binary data which can be used

with tools like HAT (Heap Analysis Tool) to browse the allocated objects by

running queries against a heap dump. [HPROF]

Currently GCSpy is a pure heap visualization tool which eases the inspection

of the heap structure, but not able to gather information about allocated

objects. Such functionality might be also interesting for GCSpy but requires

changes also on the server side of the application. Because this thesis only

considers a scripting extension for the visualizer this would be a topic for

another project.

• Heapviz

Heapviz is a tool for observation of runtime behavior of complex systems

which involves algorithms for aggregating and abstracting individual objects

to create a more succinct summary of the heap using single representative

elements for large containers and provide interactive query and navigation

methods to expand or collapse regions of the heap, inspect individual objects

and field values, search for objects or classes based on type and explore the

connectivity of the object graph. [Aftandilia10]

Such techniques to explore the object structure of the heap would also be an

interesting functions for GCSpy, especially when debugging complex applica-

tions. As already mentioned in the previous bullet such actions would exceed

the possibilities of this project but are considerable for further improvements

on the application.

Design 11

Chapter 3

Design

Now that we have seen some related applications and got an idea about the approach

of the thesis, we define the detailed requirements, as well as some design decisions for

the implementation. Therefore we must find a capable and highly expressive scripting

language and an appropriate interpreter implementation that can be utilized in GCSpy’s

visualizer. Then the layout and the appearance of the new GUI components for script

management and debugging have to be defined. Finally we determine some design

directives for the software architecture and the scripting interface.

3.1 Requirements

This section defines the requirements for the implemetation and discusses the new func-

tionality that GCSpy should obtain by the integration of a scripting engine. The first

part lists the common functionality for comfortable script management. The following

subsections describe the functionality that should be provided through the scripting

interface. For the list of corresponding use-cases see appendix A.

3.1.1 Script management

In order to make script administration tasks as easy as possible, it is important to

provide a practical and comfortable script management interface. This requires a clearly

arranged layout and a manageable number of control elements. To achieve uniformity

the interface should be implemented as a GUI element that matches the design of

existing utility components in GCSpy. It has to offer fundamental functionality that is

necessary for efficient script handling:

• Provide an overview of all registered scripts

• Create new scripts

• Load scripts from the file system

Design 12

• Remove scripts from the visualizer

• Edit scripts using the systems default editor if supported, or allow the definition

of a alternative command line

• Change script’s execution state (enable/disable)

• Give information if scripts have been modified

• Allow the user to comment scripts

• Allow direct interaction between user and scripting engine (debugging console)

• Provide efficient error handling (automatically disable and mark faulty scripts

and show error information)

3.1.2 Navigation

In some situations it might be useful to have the ability to control the visualization

process via script command. Especially a breakpoint function which stops the visual-

ization if a specific condition is fulfilled, i.e. a specific data field reaches a threshold,

is one of the most requested features. For the sake of completeness the API should

provide access to all relevant control functions available in the existing user interface.

• Pause the visualization

• Resume the visualization

• Navigate one single event forward or backward

• Set the current event

3.1.3 Spaces and streams

The current implementation of GCSpy is only able to handle a fixed number of spaces

defined in the server-side data collection part of the framework. For a more flexible

work flow GCSpy would benefit of the ability to create new virtual spaces out of existing

trace data without changing a single line of code in the server implementation. This

requires a number of fundamental functionality:

• Create new space data objects by script

• Create new stream data objects by script

• Deploy new GUI components at runtime

• Make the trace data accessible to scripts

Design 13

3.1.4 Markers and cursor

In practice it is often useful for developers to quickly identify tiles of interest. For that

reason a function would be profitable, that automatically highlights important tiles in

a space when specific conditions are fulfilled. The scripting interface has to provide

functionality to access respectively modify the marker state of single tiles in a space.

• Make maker information accessible to scripts

• Allow scripts to set markers

• Support individual maker colors for every tile

3.1.5 Control information

In addition to the stream values GCSpy offers control information for every tile in

a space which results in links and separators between them. To use this function in

virtual spaces the scripting API has to provide access to this controls.

• Let scripts read the control information of native spaces

• Allow scripts to set the control information of virtual spaces

3.1.6 Event and timing information

GCSpy currently offers access to event and timer information as described in chapter 2.

In order to use this data for debugging issues, it should also be available in the scripting

engine. Further the event filters function should be considered in the script API.

• Make event information accessible to scripts

• Make timer information accessible to scripts

• Allow scripts to modify the event filters settings

3.1.7 Logging

To be able to write arbitrary memory management or script state information into

external files, the scripting interface should provide basic logging functionality.

3.1.8 External libraries

The python engine should be capable to use external python libraries for realization of

further extensions. The python standard libraries should be available native in GCSpy

without installation of further software modules.

Design 14

3.2 Scripting language

An appropriate scripting language needs among others high expressiveness, as well as

a simple and easy to learn syntax. Python is such a powerful programming language

and satisfies both requirements. Compared to other high level languages it provides

a good amount of functionality and its syntax is relatively tense, retaining the same

expressiveness. Another important argument is the huge number of available libraries

that can be utilized to extend GCSpy’s abilities.

As the visualizer of GCSpy is written in Java, an appropriate Python interpreter for

this project should be available as a Java library. The open source project Jython meets

all requirements and allows an easy integration of Python functionality into existing

Java applications. The interpreter allows the execution of single commands and whole

scripts, as well as exchange and access of data object in both directions. [Jython]

We use the standalone version of Jython because it already contains the python stan-

dard libraries, so they can be accessed without installing further modules on the sys-

tem. Part of this library is the logging module which can be easily utilized to satisfy

the requirement for an adequate logging facility in a flexible way. See the logging

documentation for more details. [Logging]

3.3 GUI

To grant an efficient script handling, the GUI has to be augmented with two new ele-

ments. The first one is a Script Manager (1) that gives an overview of the registered

scripts and their current state, as well as the ability to manipulate and administrate

them. The second one is a Script Console (2) which shows script output or error infor-

mation from the script interpreter and allows the developer to enter single commands

for debugging issues. Figure 3.1 shows the integration of this new GUI elements in

the visualizer, as well as an exemplary Virtual Space (3) dynamically generated and

incorporated by a script.

Design 15

Figure 3.1: New GUI elements: Script Manager and Script Console

The Script Manager shows all registered scripts in a list. The first column holds the

name of the script, which is equivalent to the corresponding file name. If a script has

been modified, it gets labeled with a bullet on the end of the name. The second column

holds a check box that indicates the current execution state of the script. It also allows

the user to enable or disable a script by left click on the check box. The third column

contains a comment, which is parsed from the first appearing comment inside the script

content. If a script causes an error during execution it gets disabled automatically and

marked as faulty using red font color in the script list.

The control area contains four buttons as shown in figure 3.2:

• New: Creates a new script using a stored template (see UC1.1)

• Open: Opens a script from a file (see UC1.2)

• Delete: Removes a script form the Script Manager (see UC1.4)

• Settings: Opens the Script Settings dialog.

Design 16

Figure 3.2: Script Manager

It is also possible to open scripts in an external editor, which is either the default editor

defined in the operating system or the application defined it the alternative command

string option inside the Script Settings dialog (see figure 3.3). The second method is

recommended if the OS does not provide a default desktop operation.

Figure 3.3: Script Settings

To edit a script the user double clicks the desired line in the script list. While the script

is opened in the particular editor, it gets disabled in the Script Manager and marked

as modified. When the user has finished his changes, he safes the updated content to

the file and closes the editor. After that he reactivates the script in the Script Manager

which causes the application to reload the script’s content from the file.

The second GUI component needed for scripting is the Script Console shown in figure

3.4. In the top area it contains a command line which enables the developer to directly

execute single commands and functions. The console runs in the same context as the

scripts registered in the Script Manger which alleviates script debugging tasks. It also

provides a input history function for convenient recall of previously entered commands

using the up- and down arrow keys.

Design 17

Figure 3.4: Script Console

The text area below shows the output of the scripting engine and accordant error

information in case of a fault. It is also possible to print individual content using the

accordant print function in the scripting interface.

3.4 Scripting interface

Another important design task is the scripting interface itself. For some use-cases it

is necessary to distinguish between commands which are executed only once at load

time and commands which are executed at every event. During creation of a virtual

space, for example space and streams first must be initialized and deployed to the main

frame once when script is loaded. Additionally the space data has to be updated at

every event. For this reason scripts in GCSpy have to provide two basic functions for

initialization and event handling as shown in the following code fragment.

1 ””” F i r s t comment ge t s parsed and d i sp layed in the S c r i p t Manager ”””

class NewScript :

4

def i n i t (s e l f) :

7 ””” I n i t i a l i z a t i o n s e c t i o n ge t s executed only once at load time ”””

def event (s e l f , curEvent , eventID , elapsedTime , compensationTime) :

10

”””Event s e c t i o n ge t s executed at every event ”””

Listing 3.1: Basic script structure

When the script interpreter loads a script, it instances the first class found inside the

script and automatically calls its init method once, provided that such a method exists.

If the main class defines an event method, it gets executed at every event. Additional

utility classes and methods are not considered directly, but are available in the script

interpreter’s context and can be invoked from initialization or event method.

Design 18

The first comment within the script gets parsed at load time and displayed in the Script

Manager. This enables the user to place short notes to gain a better overview on loaded

scripts. In the initialization section definition of variables must be done in the scripts

context (self) to avoid name interferences with oder running scripts. The event section

provides some important event and timing parameters which can be used to flexibly

filter the execution of the scripts event function using simple conditions.

• curEvent: The serial number of the current event.

• eventID: The type of the current event.

• elapsedTime: Time passed since the last event.

• compensationTime: Amount of time used for compensation.

The syntax for the scripting API should be equivalent to the Java code used in the

object structure of the visualizers implementation. This brings benefits when directly

dealing with native data objects like Stream, Space or Event because the user does not

have to distinguish between API and object syntax.

3.5 Example Scripts

This section shows some example scripts for the most representative use-cases described

in appendix A. For detailed information about the used commands see the API docu-

mentation in appendix B.

All scripts are described and explained via inline comments. The used trace data

contains two spaces. Space 0 is the main space and contains the whole heap information,

while space 1 holds information about the result sets.

3.5.1 Breakpoint

The script observes the main space and stops the visualization when any tile in stream 3

(occupancy estimated) reaches a threshold of 10000. It remembers breakpoints already

visited and ignores them in the further process. Tiles which triggered a visualization

stop get marked and the latest one gets selected with the cursor so that the properties

window displays the tile information.

1 class BreakPoint :

def i n i t (s e l f) :

4 ”””Get number o f t i l e s in space 0 and d e f i n e th r e sho ld o f 10000 ”””

s e l f . t i lenum = gcs . getSpace (0) . getTileNum ()

s e l f . th r e sho ld = 10000 ;

7 s e l f . memory = []

Design 19

def event (s e l f , curEvent , eventID , elapsedTime , compensationTime) :

10 ””” I t e r a t e over a l l t i l e s in space 0 ”””

for i in range (0 , s e l f . t i lenum) :

””” Def ine breakpo int cond i t i on (stream value reached thr e sho ld) ”””

13 i f gcs . getVal (0 , 3 , i) > s e l f . th r e sho ld and not

(i in s e l f . memory) :

”””Let cur so r po int on the t i l e and h i g h l i g h t i t with a marker ”””

16 gcs . se tCursor (0 , i)

gcs . setMarked (0 , i)

”””Flag the t i l e as v i s i t e d ”””

19 s e l f . memory . append (i)

”””Stop the v i s u a l i z a t i o n and e x i t i t e r a t i o n ”””

gcs . pause ()

22 break

Listing 3.2: Breakpoint

3.5.2 Virtual Spaces

This example script creates a new virtual space containing one stream which displays

a summery of old and young generation tiles. It gathers the information from stream

0 (block type table) inside the main frame.

from java import awt

2

class Virtua lSpace :

5 def i n i t (s e l f) :

””” Def ine r e f e r e n c e s on space 0 (main space) and ”””

””” stream 0 (block type ta b l e) and get number o f t i l e s ”””

8 s e l f . complete = gcs . getSpace (0)

s e l f . b locktype = s e l f . complete . getStream (0)

s e l f . t i lenum = s e l f . complete . getTileNum ()

11 ””” Create a new space with one stream ”””

s e l f . myspace = gcs . c reateSpace (”myspace ” , s e l f . t i lenum ,

1 , ”Region ” , ”Block S i z e : 64k ”)

14 s e l f . enumnames = ”Young” , ”Old ” , ”Unused ”

s e l f . mystream = gcs . createStream (s e l f . myspace ,

”mystream ” , 0 , 2 , 0 , 0 , ”” , ”” , gcs .PRES ENUM, 0 ,

17 awt . Color . red , s e l f . enumnames)

gcs . addSpace (s e l f . myspace)

s e l f . myspaceID = s e l f . myspace . getID ()

20 ”””Get i n d i c e s o f young gene ra t i on ”””

s e l f . eden = gcs . nameToIndex (s e l f . blocktype , ”Eden ”)

s e l f . s u rv i vo r = gcs . nameToIndex (s e l f . b locktype , ”Surv ivor ”)

23 s e l f . largeyoung = gcs . nameToIndex (s e l f . b locktype , ”LargeYoung ”)

”””Get i n d i c e s o f o ld gene ra t i on ”””

Design 20

s e l f . o l d f u l l = gcs . nameToIndex (s e l f . b locktype , ”Old Fu l l ”)

26 s e l f . o ldcand idate = gcs . nameToIndex (s e l f . b locktype , ”Old Candidate ”)

s e l f . o l d r e c y c l a b l e = gcs . nameToIndex (s e l f . b locktype , ”Old Recyc lab le ”)

s e l f . l a r g e = gcs . nameToIndex (s e l f . b locktype , ”Large ”)

29

def event (s e l f , curEvent , eventID , elapsedTime , compensationTime) :

””” F i l t e r unwanted events ”””

32 i f eventID == 0 or eventID == 1 :

data = []

young sum = 0

35 old sum = 0

””” I t e r a t e over a l l t i l e s in source space 0 ”””

for i in range (0 , s e l f . t i lenum) :

38 ”””Get t i l e va lue f o r stream 0 (block type t a b l e) ”””

va l = gcs . getVal (0 , 0 , i)

i f va l == s e l f . eden or va l == s e l f . s u rv i vo r or

41 va l == s e l f . largeyoung :

”””Summarize young gene ra t i on ”””

young sum+=1

44 data . append (0)

gcs . s e tCont ro l (s e l f . myspaceID , i , gcs .CTRL USED)

e l i f va l == s e l f . o l d f u l l or va l == s e l f . o ldcand idate or

47 va l == s e l f . o l d r e c y c l a b l e or va l == s e l f . l a r g e :

”””Summarize o ld gene ra t i on ”””

old sum+=1

50 data . append (1)

gcs . s e tCont ro l (s e l f . myspaceID , i , gcs .CTRL USED)

else :

53 ”””Unused t i l e s ”””

gcs . s e tCont ro l (s e l f . myspaceID , i , gcs .CTRL UNUSED)

data . append (2)

56 ””” Create summary f o r the v i r t u a l stream ”””

summary = young sum , old sum , s e l f . t i lenum−young sum−old sum

s e l f . mystream . setSummary (summary)

59 ””” Set data o f the v i r t u a l stream ”””

gcs . setStreamData (s e l f . mystream , data)

Listing 3.3: Virtual Space

3.5.3 Markers

The script marks every tile inside the main space where the value of stream 3 (occupancy

estimated) reaches a threshold of 16000 and also the corresponding result set in space

1.

class Marker :

Design 21

3 def i n i t (s e l f) :

”””Get number o f t i l e s in space 0 and d e f i n e th r e sho ld o f 16000 ”””

s e l f . t i lenum = gcs . getSpace (0) . getTileNum ()

6 s e l f . th r e sho ld = 16000 ;

def event (s e l f , curEvent , eventID , elapsedTime , compensationTime) :

9 ””” Clear a l l markers in both spaces ”””

gcs . c l earMarkers (0)

gcs . c l earMarkers (1)

12 ””” I t e r a t e over a l l t i l e s in space 0 ”””

for i in range (0 , s e l f . t i lenum) :

””” Def ine marking cond i t i on (stream value reached thre sho ld) ”””

15 i f gcs . getVal (0 , 3 , i) > s e l f . th r e sho ld :

””” Set a marker on the t i l e and mark correspond ing r e s u l t s e t ”””

gcs . setMarked (0 , i)

18 gcs . setMarked (1 , gcs . getVal (0 , 5 , i))

Listing 3.4: Marker

3.5.4 Event Filters

This example script slows down the visualization process from event index 200 to 300

using the Event Filter functionality. It reduces the event types delivered from the server

to GC start events (minor and major), GC end events are ignored. Furthermore it uses

the delay functionality to slow down the visualization.

class F i l t e r :

3 def event (s e l f , curEvent , eventID , elapsedTime , compensationTime) :

””” Def ine s t a r t cond i t i on (event index = 200) ”””

i f curEvent == 200 :

6 ””” Conf igure which types o f events are enabled ”””

enabled = 1 , 1 , 0 , 0

gcs . e fSetEnabled (enabled)

9 ””” Set de lay f o r enabled event types to 200ms ”””

de lays = 200 , 200 , 0 , 0

gcs . e fSe tDe lays (de lays)

12 ””” Def ine end cond i t i on (event index = 300) ”””

e l i f curEvent == 300 :

””” Restore d e f a u l t s e t t i n g s f o r event f i l t e r s ”””

15 gcs . e fEnab leAl l ()

gcs . e fC l ea rDe lays ()

Listing 3.5: Event Filters

Design 22

3.5.5 Logging

This example script demonstrates the logging functionality using the python standard

library. It observes the main space and emits a log entry when any tile in stream 3 (oc-

cupancy estimated) reaches a threshold of 16000. Tiles already visited are remembered

and ignored in the further process.

import l o gg ing

2

class Logging :

5 def i n i t (s e l f) :

”””Setup l o g g e r ”””

l ogg ing . bas i cCon f i g (f i l ename=’ example . l og ’ ,

8 l e v e l=logg ing .DEBUG, f i l emode=’w ’)

s e l f . l o g g e r = logg ing . getLogger (’ Logging example s c r i p t ’)

”””Get number o f t i l e s in space 0 and d e f i n e th r e sho ld o f 16000 ”””

11 s e l f . t i lenum = gcs . getSpace (0) . getTileNum ()

s e l f . th r e sho ld = 16000 ;

s e l f . l o g g e r . i n f o (’ Threshold = ’ + s t r (s e l f . th r e sho ld))

14 s e l f . memory = []

def event (s e l f , curEvent , eventID , elapsedTime , compensationTime) :

17 ””” I t e r a t e over a l l t i l e s in the main space ”””

for i in range (0 , s e l f . t i lenum) :

”””Get value o f stream 3 (occupancy est imated) ”””

20 va l = gcs . getVal (0 , 3 , i)

””” Def ine l ogg ing cond i t i on (t i l e va lue reached thr e sho ld) ”””

i f va l > s e l f . th r e sho ld and not (i in s e l f . memory) :

23 ”””Emit l og in fo rmat ion and mark t i l e as v i s i t e d ”””

s e l f . l o g g e r . i n f o (’ Event ’ + s t r (curEvent) + ’ − Ti l e ’

+ s t r (i) + ’ exceeded thre sho ld : ’ + s t r (va l))

26 s e l f . memory . append (i)

Listing 3.6: Logging

Implementation 23

Chapter 4

Implementation

This chapter describes implementation details and required modifications on the visu-

alizer for the integration of the scripting engine. In order to find the right strategy, the

first step implies a detailed analysis of the visualization process. Next part will cover

integration of the script interpreter and components for script management. Then func-

tionality defined in the requirements must be made accessible to the scripting engine.

4.1 Analysis of the visualization process

Figure 4.1: Data flow

Figure 4.1 shows data and control flow between server and client. As already mentioned

in the introduction GCSpy is implemented as a server-client architecture. The server

Implementation 24

serializes the gathered trace data and transfers it to a client interpreter over TCP/IP.

This interpreter converts raw data into an object oriented data structure and passes it

to the visualizer. View actualization is carried out through a listener architecture using

a proxy which delegates notifications to all registered views. This architecture grants

better separation between data model and GUI components.

Between client and visualizer there also exists an indexer which buffers incoming data

into an index file. This procedure allows local event history access inside the visualizer

when data transmission is paused. Inside the user interface this is realized through the

navigation panel containing control buttons and event slider. The history stored in the

index file provides all events from connection time to the latest event received from the

server. In the opposite direction the client interpreter is able to send control commands

to the server to steer the data transmission, i.e. stop and resume the data transfer and

send updates for the event filter settings.

Trace Data

-id : int
-name : String
-driverName : String
-title : String
-blockInfo : String
-tileNum : int
-tileNames : String[]
-streamNum : int
-streams : Stream[]
-spaceInfo : String
-unusedString : String
-mainSpace : bool
-control : byte[]

Space

-id : int
-name : String
-minValue : int
-maxValue : int
-zeroValue : int
-defaultValue : int
-stringPre : String
-stringPost : String
-presentation : int
-paintStyle : int
-maxStreamIndex : int
-color : Color
-enumNames : String[]
-space : Space
-data : StreamData
-accessor : DataAccessor
-summary : int[]

Stream

-info : TraceHeaderData
-current : SingleEventTraceData

TraceData

-enabled : bool[]
-delays : int[]
-pauses : bool[]
-periods : int[]

EventFilters

*

1

*1

11 -generalInfo : String
-spaceNum : int
-events : Events
-eventFilters : EventFilters

TraceHeaderData

-spaces : List<Space>
-eventCount : int[]

SingleEventTraceData

-eventNum : int
-names : String[]

Events

1
1

1
1

1

1

-dataType : Datatype
-bData : byte[]
-sData : short[]
-iData : int[]

StreamData11

Figure 4.2: Trace data structure

Implementation 25

The detailed class structure of the trace data is shown in figure 4.2. Main component

of the diagram is the TraceData object which contains the snapshot of the memory

structure for a single event, represented by an object named SingleEventTraceData. It

mainly consists of a number of Spaces and Streams holding heap information. Fur-

thermore SingleEventTraceData provides an integer array with counters for every singe

type of event.

In addition to the single event data TraceData contains a header holding some general

information like the total number of spaces, details about the different types of events,

as well as the EventFilters responsible for data transmission control between server and

client.

SingleEventTraceData contains at least one Space which again consists of one or mul-

tiple Streams. All of them provide a unique integer identifier, as well as several fields

holding data like name, driver, title, block and space information. Also every tile has

its own name which is represented by an string array. Furthermore the control infor-

mation is stored for every space as a byte array. See [Hofer10] for further information

about the control functionality.

GCSpy supports different types of streams. Tiles in enumeration streams display dif-

ferent memory states using distinct colors. Tiles in percentage streams show arbitrary

data values in form of a vertical chart bar. Parameters used in the particular stream

depend on its type, for example the enumeration names are only used in enumera-

tion streams. All streams comprise ether trace data of type byte, short or integer and

provide access to them by accordant accessors.

1 private void playOne (int nextEvent) {
. . .

F i le InputStream f = new Fi leInputStream (in d ex F i l e) ;

4 long framePos = indexer . getFramePosAt (nextEvent) ;

F i l e U t i l s . seek (f , framePos) ;

7 int s i z e = (int) indexer . getFrameSizeAt (nextEvent) ;

byte [] data = new byte [s i z e] ;

F i l e U t i l s . read (f , data , 0 , data . l ength) ;

10

ByteArrayInputStream in = new ByteArrayInputStream (data) ;

13 SingleEventTraceData t r a c e = new SingleEventTraceData (

in t e rp r e t e rData . getSpaceNum ()) ;

for (int i = 0 ; i < indexer . getNumSpaces () ; i++) {
16 t r a c e . setSpace (i , indexer . getSpace (i)) ;

}

Implementation 26

19 Event In te rp re t e r i n t e r p r e t e r = new Event In te rp re t e r (in , t r a c e) ;

i n t e r p r e t e r . execute () ;

22 for (int i = 0 ; i < indexer . getNumSpaces () ; i++) {
proxy . f i r e S p a c e L i s t e n e r s (indexer . getSpace (i)) ;

}
25

proxy . f i r e E v e n t L i s t e n e r s (i n t e r p r e t e r . getLastEventId () ,

i n t e r p r e t e r . getLastElapsedTime () ,

28 i n t e r p r e t e r . getLastCompensationTime ()) ;

curEvent = nextEvent ;

31 . . .

}

Listing 4.1: Function playOne in MainFrame

An important task is to find an adequate position to apply event-based script execution.

Code fragment 4.1 shows the original playOne function inside the MainFrame class of

the visualizer which gets executed every time the position of the event slider changes

and also when a new event arrives.

Parameter nextEvent represents the index of the event to show next inside the visual-

izer. Between line 3 and 11 system reads the index file containing the complete event

history including the latest event received from the server and locates the correct frame

position according to the given event index to be displayed. Then it constructs a Sin-

gleEventTraceData object for the event from the indexer information from lines 13 to

17. After that system starts an EventInterpreter processing the information (line 19,

20) and fires all space and event listeners using the UIInterpreterProxy from line 22 to

28.

After the EventInterpreter has handled the data, there is a point where scripting can be

applied without much effort. The scripting engine additionally processes the informa-

tion before the listeners are notified. The next section describes the required changes

on this method in detail.

4.2 Required changes on the system architecture

This section describes the required modifications on the visualizer. Figure 4.3 shows

an abstract overview on the static class structure including components responsible for

script interaction.

Implementation 27

Scritping

Trace Data

Visualizer

ScriptConsoleScriptInterpreter ScriptConsoleView

ScriptManagerViewScriptManager

ScriptAPI

MainFrame

*

1

Space

1 1

1

1

1

1
1

1

11

PythonInterpreter

1
1

SpaceManager

TileManagerMarkerManager

TileStyle

Stream

TraceData

1

1

*

1*

1

11

1

1

SingleEventTraceData

1

1

1

*

1

1

Script

Figure 4.3: Overall class structure

Visualizer

ScriptConsoleView

ScriptManagerView

-playOne() : void
+play() : void
+pause() : void
+bwd()
+fwd() : void
+setCurEvent(eing. curEvent : int) : void
+setupSpaces() : void
+rebuild() : void
+sendEventFilters() : void

MainFrame

1 1

1

1

SpaceManager

+getSelectedTile() : int
+setSelectedTile(eing. index : int) : void
+clearSelection() : void
+update() : void

TileManager

*

1

+isMarkerd(eing. index : int) : bool
+setMarked(eing. index : int) : void
+clearMarkers() : void

MarkerManager

+setMarkerColor(eing. index : int) : void

TileStyle

11

1

1

1

1

Figure 4.4: Visualizer class structure

Implementation 28

Figure 4.4 shows a class diagram for the visualizer. Its central component is the Main-

Frame which contains the primary GUI components. Most of the interactive control

functionality is directly reachable through this class. [Hofer10]

In order to gain access to the visualizers functionality the script interpreter has to

interact with some of its components. For navigation and control of the visualization

process the interpreter has to call accordant methods inside the MainFrame which result

in the same actions like the navigation buttons and the event slider. Furthermore the

MainFrame has to consider virtual spaces during setup of the SpaceManagers accessing

the ScriptInterpreter and also provide a function to rebuild the GUI if the number of

spaces changes at runtime. Also the method for sending the event filter settings to the

server must be accessible to the script interpreter.

For the marker and cursor functionality the script interpreter has to make use of the

TileManager which is part of the SpaceManager. The TileManager itself allows request

and manipulation of the current cursor position and also holds a MarkerManager which

is provides equivalent functionality for the markers. Every TileManager has a TileStyle

object which has been modified to allow the use of individual marker colors instead of

one common color per space.

Scritping

-name : String
-absPath : String
-comment : String
-content : String
-className : String
-enabled : bool
-unsaved : bool
-faulty : bool
-execOnEvent : bool
-spaces : List<Space>

Script

+execCommand(eing. cmd : string) : void
+print(eing. string : string) : void
+println(eing. string : string) : void

-scriptInterpreter : ScriptInterpreter
-textArea : JTextArea
-buffer : StringBuilder
-commandHistory : List<String>

ScriptConsole

+execCommand(eing. command : string) : void
+execScritp(eing. script : Script) : void

-mainFrame : MainFrame
-data : TraceData
-scriptManager : ScriptManager
-scriptConsole : ScriptConsole
-scriptAPI : ScriptAPI
-pythonInterprter : PythonInterpreter
-virtualSpaces : List<Space>
-spaceManagers : ScriptManager

ScriptInterpreter

+newScript(eing. file : File) : String
+openScript(eing. file : File) : String
+removeScript(eing. script : Script) : void
+editScript(eing. index : int) : String

-scipts : List<Script>
-scriptModelListeners : List<ScriptModelListener>
-scriptInterpreter : ScriptInterpreter
-desktopEnabled : bool
-cmdLine : String

ScriptManager

ScriptAPI

* 1

1

1

1

1

1

1

PythonInterpreter

1

1

Figure 4.5: Scripting class structure

Implementation 29

Figure 4.5 shows a more detailed view on the scripting components including all data

fields, functions and dependencies. For the integration of the Python interpreter we

introduce a new component called ScriptInterpreter holding an instance of the Jython

interpreter itself and responsible for all kinds of script execution. Furthermore this

class is the central node for all interaction between scripts and the remaining system.

For this issue the interpreter maps the ScriptAPI into the python interpreter under the

variable name gcs. The object contains all necessary methods and functions to allow

script-based interactions with the visualizer. The particular commands are delegated

to the ScriptInterpreter which provides the requested data and calls the accordant

methods in the visualizer. Furthermore the ScriptInterpreter holds a list of all Space-

Managers currently registered in the MainFrame, as well as a list of all virtual spaces

created by scripts.

The ScriptInterpreter provides different methods for script execution. The first one runs

single commands in the python interpreter which is necessary for the debugging console.

The second one executes a whole script which is needed once at script initialization time

to define variables, create virtual spaces and streams and register the scripts methods.

The last one invokes the event method of all registered scripts to set actions at event

time.

In order to keep a clear separation between data model and interpreter we introduce a

ScriptManager holding a list of all registered scripts and responsible for all script ad-

ministration issues. The ScriptManagerView represents the accordant interface inside

the GUI. The same strategy was used for the ScriptConsole which is also separated

into view and data model. See chapter 3 for further information about these two com-

ponents.

private void playOne (int nextEvent) {
2 . . .

Event In t e rp re t e r i n t e r p r e t e r = new Event In te rp re t e r (in , t r a c e) ;

i n t e r p r e t e r . execute () ;

5

// Get event and timing in fo rmat ion from Event In te rp re t e r and

// pass i t to the S c r i p t I n t e r p r e t e r , execute a l l r e g i s t e r e d s c r i p t s

8 int eventID = i n t e r p r e t e r . getLastEventId () ;

int elapsedTime = i n t e r p r e t e r . getLastElapsedTime () ;

int compensationTime = i n t e r p r e t e r . getLastCompensationTime () ;

11 s c r i p t I n t e r p r e t e r . execOnEvent (curEvent , eventID ,

elapsedTime , compensationTime) ;

14 // Fi re l i s t e n e r s o f nat ive spaces

for (int i = 0 ; i < indexer . getNumSpaces () ; i++) {
proxy . f i r e S p a c e L i s t e n e r s (indexer . getSpace (i)) ;

Implementation 30

17 }

// Fi re l i s t e n e r s o f v i r t u a l spaces

20 int spacenum = indexer . getNumSpaces () ;

for (int i = spacenum ; i < spacenum +

s c r i p t I n t e r p r e t e r . getSpaceNum () ; i++) {
23 proxy . f i r e S p a c e L i s t e n e r s (s c r i p t I n t e r p r e t e r . getSpace (i)) ;

}

26 proxy . f i r e E v e n t L i s t e n e r s (eventID , elapsedTime , compensationTime) ;

. . .

}

Listing 4.2: Modified playOne function

For event-based script execution the playOne introduced in the previous section has

to be modified so that it invokes the scripts event function and considers the virtual

spaces during notification of the views. Code fragment 4.2 above shows how it works in

detail. After the EventInterpreter has processed the trace data system calls a method

inside the ScriptInterpreter which executes the event method of all registered scripts

with the event and timing parameters gathered form the EventInterpreter. Then in

addition to the notification of the views for the native spaces system has to fire space

listeners for the virtual ones. Their number and the virtual spaces itself are requested

from the ScriptInterpreter.

Conclusion and future work 31

Chapter 5

Conclusion and future work

GCSpy is now featured with an integrated scripting engine which allows use of python

language inside the visualizer. Now developers are free to create new individual spaces

and streams showing information calculated by python scripts. Furthermore they may

now use common breakpoint functionality to control the visualization process.

Also the script-based marker access with individual color support eases debugging by

dynamically highlighting important tiles inside spaces. The API grants access to all

trace data, event and timing information, as well as the event filter functions to reject

unwanted information or slow down the visualization.

The GUI provides a script management utility, as well as a debugging console which

allows direct script interaction. Another accomplishment of this project is the fact that

now there are no barriers for future enhancements using the huge variety of available

python libraries.

In order to achieve more convenience it should be possible to response spaces and

streams by their index or short name. The current data structure considers only a

field for the full name which is not very efficient because of its length. This extension

requires changes also on the server module of GCSpy.

At the moment, GCSpy offers a plug-in interface including several plug-ins for histogram

visualization and recording as described in chapter 2. Unfortunately, they are not very

interesting for the developer because they do not give new information.

During the latest improvements the visualizer gained an indexing mechanism which

made the history examination more comfortable and reduced the importance of this

histogram plug-ins. Furthermore, the entire plug-in framework is difficult to maintain

or modify because it is hard coded in Java.

The new scripting functionality offers the opportunity to re-implement the whole plug-

in framework in a more reasonable and flexible way utilizing some external graphic

libraries like matplotlib.

Use-cases I

Appendix A

Use-cases

This appendix lists the fundamental user interactions for script management inside

the GUI and some common use-cases for script utilization, i.e. the basic usage of the

scripting interface. Scripting offers a wide application spectrum, especially when using

external libraries to extend functionality. For this reason not all possible use-cases can

be considered.

All of the following textual use-cases include only the two actors User and System. One

general precondition is a running GCSpy application which is connected to a server or

running with a trace file. Also the utilities necessary for script administration (Script

Manager, Script Console) have to be open.

A.1 Script management

UC1.1 Create new script

Description Create a new script file and deploy it to the visualizer.

Preconditions -

Postconditions File system contains a new script file in the chosen location. Script
is registered in Script Manager and enabled by default.

Normal Course
1. User clicks the New button in the Script Manager.
2. User defines name and location for the script file using a standard

file chooser dialog (default name is new).
3. System adds an empty script object to Script Manager and creates

the corresponding script file.

Failure
a. File with desired name already exists in chosen location. User must

confirm to overwrite existing file.
b. Script with desired name already registered in Script Manager.

Show accordant error Message and abort action.

Table A.1: UC1.1 - Create new script

Use-cases II

UC1.2 Load script from file

Description Load a script from an existing file and deploy it to the visualizer.

Preconditions At least one script file is available in the file system.

Postconditions Script is registered in Script Manager and enabled by default. View
contains entry showing scripts filename, comment and state. GUI
elements created by the script get integrated into the main frame.

Normal Course
1. User clicks the Open button in the Script Manager.
2. User browses a file chooser dialog for the desired script file and

clicks the Open button.
3. System creates a script object form the file content and deploys it

to the Script Manager.
4. System changes scripts execution state to enabled. GUI elements

created in the scripts initialization function get integrated into the
main frame. If a event function was defined it will be executed
every time an event occurs.

Failure
a. Script is faulty: Script automatically gets disabled and marked as

faulty in the Script Manager. The output area of the Scripting
Console shows an accordant error message.

Table A.2: UC1.2 - Load script from file

UC1.3 Edit script

Description Change a scripts content using an external editor.

Preconditions At least one script is registered in the Script Manager.

Postconditions Script is up to date, all changes have taken effect in the visualizer.

Normal Course
1. User selects desired script form the Script Manager by double click.
2. System opens script using the default editor configured in the OS.
3. System deactivates script and marks it as edited in the Script Man-

ager which appears as a star at the end of the filename.
4. User edits script data and safes changes to the file using the external

editor.
5. User reactivates the edited script in the Script Manager.
6. System updates script data from file and enables it for execution.

Failure
a. Default desktop action not supported by the OS: System shows

accordant error message. User is enabled to start an arbitrary ex-
ternal editor using the alternative command in the Script Settings.

b. Script is faulty: Script automatically gets disabled and marked as
faulty in the Script Manager. The output area of the Scripting
Console shows an accordant error message.

Table A.3: UC1.3 - Edit script

Use-cases III

UC1.4 Delete script

Description Remove a script from the visualizer.

Preconditions At least one script is registered in the Script Manager.

Postconditions Deleted script is not longer registered in the Script Manager and does
not get executed anymore. All GUI elements created by the script
are removed from the main frame. The associated script file stays
untouched.

Normal Course
1. User selects one or multiple scripts in the Script Manager and clicks

the Delete button.
2. System disables all selected scripts and removes all virtual spaces

created by them from the main frame.
3. System removes all selected scripts from the Script Manager.

Failure -

Table A.4: UC1.4 - Delete script

UC1.5 Change scripts execution state

Description Enable respectively disable a script for execution.

Preconditions At least one script is registered in the Script Manager.

Postconditions • Enabled: GUI elements created in scripts initialization section get
integrated into the main frame. If an event function is defined it
will be executed each time an event occurs.
• Disabled: GUI elements created by the script are removed from

the main frame. The scripts event function does not get executed
anymore until it gets enabled again but script is still registered in
the Space Manager.

Normal Course
1. User clicks the Enabled check box of the desired script in the Script

Manager.
2. If the script was enabled before, system sets its state to disabled. It

is still registered in the Script Manager, but does not get executed
any more. All GUI elements created by the script are cleared from
the main frame.

3. If the script was disabled before, system sets its state to enabled.
All instructions declared in the initialization section of the script
get executed. System integrates all GUI elements created by the
script into the main frame.

Failure
a. Script is faulty: Script automatically gets disabled and marked as

faulty in the Script Manager. The output area of the Scripting
Console shows an accordant error message.

Table A.5: UC1.5 - Change execution state

Use-cases IV

A.2 Script utilization

UC2.1 Breakpoints

Description Stop visualization process when specific condition is fulfilled.

Preconditions The visualization process is running.

Postconditions Visualization is paused and the user is able to walk through the trace
data event by event using the GUI’s navigation controls or by com-
mand line in the Script Console. All stream’s current data values can
be obtained from the Properties window or using the output section
of the Script Console.

Normal Course
1. User creates a new script as described in UC1.1.
2. User defines a condition within the scripts event section accessing

the native trace data at which the visualization should stop.
3. User applies the pause command to stop the visualization.
4. System executes the script at every event. If the defined condition

is fulfilled the visualization stops.

Failure
a. Script is faulty: Script automatically gets disabled and marked as

faulty in the Script Manager. The output area of the Scripting
Console shows an accordant error message.

Table A.6: UC2.1 - Breakpoints

UC2.2 Virtual spaces and streams

Description Create a new virtual space including several virtual streams by pro-
cessing data from native ones.

Preconditions -

Postconditions Main frame contains the new virtual space.

Normal Course
1. User creates a new script as described in UC1.1.
2. In the script’s initialization section user defines a new virtual space

and at least one virtual stream.
3. User applies the addSpace command to deploy the new space to

the main frame.
4. In the scripts’s event section user accesses the native trace data

and processes it for the virtual streams.
5. User updates virtual streams data and the corresponding summary.

Failure
a. Script is faulty: Script automatically gets disabled and marked as

faulty in the Script Manager. The output area of the Scripting
Console shows an accordant error message.

Table A.7: UC2.2 - Virtual spaces and streams

Use-cases V

UC2.3 Cursor

Description Let the cursor dynamically point on tiles of interest.

Preconditions The visualization process is running.

Postconditions Visualization is stooped and cursor points on desired tile.

Normal Course
1. User creates a new breakpoint script as described in UC2.1.
2. At every breakpoint the user additionally sets the cursor position

to the tile that caused the visualization stop.
3. System executes the script at every event and stops the visualiza-

tion when a breakpoint is reached.
4. System sets the cursor position to the actual breakpoint tile. The

Properties window displays detail information for the selected tile.

Failure
a. Script is faulty: Script automatically gets disabled and marked as

faulty in the Script Manager. The output area of the Scripting
Console shows an accordant error message.

Table A.8: UC2.3 - Cursor

UC2.4 Markers

Description Use the marker functionality to dynamically highlight tiles of interest.

Preconditions -

Postconditions Desired tiles get marked dynamically accordant to the defined condi-
tions.

Normal Course
1. User creates a new script as described in UC1.1.
2. User defines one or multiple conditions at which specific tiles should

get marked.
3. User applies accordant API commands to set and remove markers

in arbitrary spaces and apply individual marker colors.
4. System executes script at every event and dynamically sets respec-

tively removes markers if defined conditions are fulfilled.

Failure
a. Script is faulty: Script automatically gets disabled and marked as

faulty in the Script Manager. The output area of the Scripting
Console shows an accordant error message.

Table A.9: UC2.4 - Markers

Use-cases VI

UC2.5 Control information

Description Set the control information for tiles in virtual streams and use GC-
Spy’s ability to display memory structure.

Preconditions -

Postconditions In addition to stream data the virtual space is provided with control
information.

Normal Course
1. User creates a new virtual space script as described in UC2.2.
2. Within the scripts event section user defines one or multiple condi-

tions at which control information for specific tiles should change.
3. User applies accordant control commands to set tiles to either used

or unused or set links and separators between them.
4. System executes the script at every event and dynamically sets

control information for all tiles in the virtual stream.

Failure
a. Script is faulty: Script automatically gets disabled and marked as

faulty in the Script Manager. The output area of the Scripting
Console shows an accordant error message.

Table A.10: UC2.5 - Control information

UC2.6 Event filters

Description Use GCSpy’s event filter functionality to slow down the visualization
at critical sections or to dynamically limit observation detail during
visualization.

Preconditions The visualization process is running.

Postconditions Event filter settings change dynamically according to the definitions
in the script and influence the data transmission from the server.

Normal Course
1. User creates a new script as described in UC1.1.
2. Within the scripts event section user defines one or multiple con-

ditions at which the event filter settings should change.
3. User applies desired event filter commands for changing state, delay

and period for specific event types.
4. System executes the script at every event and adjusts the server-

side event filters according to the definitions.

Failure
a. Script is faulty: Script automatically gets disabled and marked as

faulty in the Script Manager. The output area of the Scripting
Console shows an accordant error message.

Table A.11: UC2.6 - Event filters

API VII

Appendix B

API

The development of an efficient and easy to use scripting API is one of the most

important requirements of this project. This appendix gives a detailed description

to every single function. For a better understanding, chapter 4 contains a couple

of example scripts for some common use-cases. Generally the command syntax is

gcs.<function>

B.1 Navigation

The following commands allow script-based control of the visualization process. They

are modeled according to the GUI’s navigation panel and provide the same functionality.

Developers are enabled to use this methods for debugging issues like setting breakpoints.

Type Function Description

void pause() Stops the visualization process equivalent
to the Pause button. If the visualization is
already stopped, the action has no effects.

void play() Starts respectively resumes the visualiza-
tion process equivalent to the Play button.
If the visualization is already running, the
action has no effects.

void fwd() Navigate one single event forward equiva-
lent to the Forward button. Only possible
if visualization is paused.

void bwd() Navigate one single event backward equiv-
alent to the Backward button. Only pos-
sible if visualization is paused.

void setCurEvent(int eventIndex) Set the current event to a specific index
equivalent to the Event Slider. Only possi-
ble if visualization is paused and eventIn-
dex lies within valid range.

Table B.1: API - Navigation

API VIII

B.2 Spaces and streams

This part of the API covers space and stream handling tasks. The functions allow

access to the stream data, creation and manipulation of virtual spaces and streams, as

well as their integration into the main frame.

Type Function Description

const int PRES PLAIN Present a tile as it is.

const int PRES PLUS Present a tile as maximum if its value ex-
ceeds the maximum for the stream.

const int PRES MAX VAR Max. value from iteration over stream.

const int PRES PERCENT Present as percentage of a fixed maximum.

const int PRES PERCENT VAR Present as percentage but use the value
of corresponding tile in stream maxStrea-
mIndex for its maximum.

const int PRES ENUM Select presentation from enumnames.

TraceData getData() Returns the current trace data.

int getVal(int spaceIndex, int
streamIndex, int tileIndex)

Returns the value of a specified tile in a
stream or -1 if not found.

Space getSpace(int spaceIndex) Gets space with given index or null if not
found.

Space getSpace(String spaceName) Returns the space with given name.

Stream getStream(int spaceIndex, int
streamIndex)

Returns the stream with given index in a
space or null if not found.

Stream getStream(int spaceIndex,
String streamName)

Returns the stream with given name in a
space or null if not found.

Space createSpace(String name, int
tileNum, int streamNum,
String title, String blockInfo)

Returns a new virtual space object with
provided properties. User has to define a
name for the space, the number of tiles,
the number of streams, a title which is
used as prefix for the tile index (e.g. Re-
gion 122) and an optional block informa-
tion (e.g. Block Size: 64k).

Stream createStream(Space space,
String name, int minVal,
int maxVal, int zeroVal,
int defaultVal, String pre,
String post, int presentation,
int maxStreamIndex, Color
color, String[] enumNames)

Returns a new stream object with pro-
vided properties. User has to de-
fine the target space, a name for the
stream, value range and default value, op-
tional pre- and postfix for the streams
string representation, the presentation
style (PRES *), the, maxStreamIndex for
PRES PERCENT VAR, the tile color and
a list of names for PRES ENUM.

void setStreamData(Stream
stream, int[] data)

Updates the stream with the provided
data.

void addSpace(Space space) Adds the given space to the main frame.

void removeSpace(Space space) Removes given space form the main frame.

Table B.2: API - Spaces and streams

API IX

B.3 Markers and cursor

This commands provide access to the cursor and also the markers for every space. The

cursor can used to point on the actual tile of interest during execution of breakpoint

scripts so that the Properties window always displays accordant information automati-

cally. The markers can be utilized to highlight arbitrary tiles in every native and virtual

space and also support individual marker colors.

Type Function Description

boolean isMarked(int spaceIndex, int
tileIndex)

Returns if a specific tile in a space is
marked.

void setMarked(int spaceIndex, int
tileIndex)

Marks one specific tile inside a space given
its index.

void setMarked(int spaceIndex, int
tileIndexStart, int tileIndex-
End)

Marks multiple tiles inside a space given
start and end index.

void clearMarkers(int spaceIndex) Clears all markers inside a space equiva-
lent to the Clear Markers button.

void setMarkerColor(Color color,
int spaceIndex, int tileIndex)

Sets the marker color for a specific tile.

void resetMarkerColors(int
spaceIndex)

Resets all markers in a space to default
color.

int getCursor(int spaceIndex) Returns the cursors current position or -1
if cursor is not set in the given space.

void setCursor(int spaceIndex, int
tileIndex)

Moves the cursor to a specific tile in a
space.

void clearCursor(int spaceIndex) Removes the cursor form a space.

Table B.3: API - Markers and cursor

API X

B.4 Control information

The following functions cover the utilization of control information in native and virtual

spaces. The interface provides access to control information for single tiles or entire

spaces. The different control types are encoded in a control byte represented by five

constants defined in the API.

Type Function / Constant Description

const
byte

CTRL USED Used tiles represent busy memory areas
and display accordant detail information.

const
byte

CTRL BACKGROUND Background tiles appear as gray boxes and
does not show any information.

const
byte

CTRL UNUSED Unused tiles appear as gray boxes and
does not show any information.

const
byte

CTRL SEPARATOR Draws a separator between a tile and its
left neighbor.

const
byte

CTRL LINK Draws a link between a tile and its right
neighbor.

byte[] getControl(int spaceIndex) Returns all control information of a space
as a byte array.

byte getControl(int spaceIndex, int
tileIndex)

Returns the control information for a spe-
cific tile in a space.

void setControl(int spaceIndex,
byte[] control)

Sets the control information for all tiles in
a space.

void setControl(int spaceIndex, int
tileIndex, byte control)

Sets the control information for a specific
tile in a space.

Table B.4: API - Control information

B.5 Event information

This commands provide access to the event information for the actual space, as well as

the Event Counters accordant to the accordant utility in the GUI.

Type Function Description

String[] getEventNames() Returns the event names for the actual
trace data as a string array.

String getEventName(int eventIn-
dex)

Returns the name of a specific event type.

int getEventNum() Returns the number of different event
types for the actual trace data.

int[] getEventCounts() Returns the number of events for every
type received since connection as an in-
teger array.

Table B.5: API - Event information

API XI

B.6 Event filters

This are the commands for event filter access and manipulation according to the Event

Filters dialog in the GUI. Developers are enabled to control the data transmission

behavior of the server module.

Type Function Description

boolean efGetEnabled(int eventIndex) Returns if a specific event type is enabled
in the event filters. Disabled events are
ignored by the server.

void efSetEnabled(int eventIndex,
boolean enabled)

Enables or disables a specific type of event.

boolean[] efGetEnabled() Returns enabled settings for all event
types.

void efSetEnabled(boolean[] en-
abled)

Sets enabled settings for all event types.

void efEnableAll() Enables all event types for transmission.

void efDisableAll() Disables all event types for transmission.

int efGetDelay(int eventIndex) Returns delay settings for a specific event
type. Server delays for given time in ms
after transmissions of this events.

void efSetDelay(int eventIndex, int
delay)

Sets the delay for a specific type of event.

int[] efGetDelays() Returns the delay settings for all different
event types.

void efSetDelays(int[] delays) Sets the delay settings for all different
event types.

void efClearDelays() Sets the delay for all event types to zero.

boolean efGetPause(int eventIndex) Returns the pause option for a specific
type of event in the event filters. Server
pauses after transmission of this events.

void efSetPause(int eventIndex,
boolean pause)

Sets the pause option for a specific event.

boolean[] efGetPauses() Returns pause settings for all event types.

void efSetPauses(boolean[] pauses) Sets the pause settings for all event types.

void efClearPauses() Deletes pause settings for all event types

int efGetPeriod(int eventIndex) Returns the actual period settings for a
specific type of event in the event filters.
Transmission of this event types happens
only every n times.

void efSetPeriod(int eventIndex,
int period)

Sets the period for a specific type of event.

int[] efGetPeriods() Returns period settings for all event types.

void efSetPeriods(int[] periods) Sets the period settings for all event types.

void efResetPeriods() Resets period for all event types to 1.

Table B.6: API - Event filters

API XII

B.7 Utilities

In addition to the main functionality the API provides some commands which allow

access to the Script Console and assist during script implementation.

Type Function Description

void print(int val) Print an integer value on the Script Con-
sole.

void print(string s) Print a string value on the Script Console.

int nameToIndex(Stream stream,
String enumName)

Returns the index for a specific enumera-
tion name in a given stream or -1 if not
found.

Table B.7: API - Utilities

List of Figures XIII

List of Figures

2.1 GCSpy’s architecture [Printezis02] . 4

2.2 GCSpy’s visualizer . 5

2.3 Connection dialog . 5

2.4 Display style dialog . 6

2.5 Event filters dialog . 8

3.1 New GUI elements: Script Manager and Script Console 15

3.2 Script Manager . 16

3.3 Script Settings . 16

3.4 Script Console . 17

4.1 Data flow . 23

4.2 Trace data structure . 24

4.3 Overall class structure . 27

4.4 Visualizer class structure . 27

4.5 Scripting class structure . 28

List of Tables XIV

List of Tables

A.1 UC1.1 - Create new script . I

A.2 UC1.2 - Load script from file . II

A.3 UC1.3 - Edit script . II

A.4 UC1.4 - Delete script . III

A.5 UC1.5 - Change execution state . III

A.6 UC2.1 - Breakpoints . IV

A.7 UC2.2 - Virtual spaces and streams . IV

A.8 UC2.3 - Cursor . V

A.9 UC2.4 - Markers . V

A.10 UC2.5 - Control information . VI

A.11 UC2.6 - Event filters . VI

B.1 API - Navigation . VII

B.2 API - Spaces and streams . VIII

B.3 API - Markers and cursor . IX

B.4 API - Control information . X

B.5 API - Event information . X

B.6 API - Event filters . XI

B.7 API - Utilities . XII

Bibliography XV

Bibliography

[Aftandilia10] E. Aftandilian, S. Kelley, C. Gramazio, N. Ricci, S. Su, S. Guyer,

Heapviz: Interactive Heap Visualization for Program Understanding and Debug-

ging, ACM Symposium on Software Visualization 2010 (SOFTVIS10), Salt Lake

City, USA.

[Eclipse] IBM Developer Works, Debugging with the Eclipse Platform, http://www.

ibm.com/developerworks/library/os-ecbug/, Retrieved on December 17, 2010.

[Hofer10] P. Hofer, Visualization of Heaps with GCSpy, Bachelor thesis, JKU Linz,

Austria, to be published.

[HPROF] Sun Developer Network, HPROF: A Heap/CPU Profiling Tool in J2SE 5.0,

http://java.sun.com/developer/technicalArticles/Programming/HPROF.

html, Retrieved on December 17, 2010.

[Jython] The Jython Project, Jython: Python for the Java Platform, http://jython.

org, Retrieved on December 17, 2010.

[Logging] Python Documentation, logging - Logging facility for Python, http://docs.

python.org/py3k/library/logging.html, Retrieved on December 17, 2010.

[Printezis01] T. Printezis, R. Jones, Visualizing The Train Garbage Collector, Proceed-

ings of the 2002 International Symposium on Memory Management (ISMM02),

Berlin, Germany.

[Printezis02] T. Printezis, R. Jones, GCSpy: An Adaptable Heap Visualization Frame-

work, Proceedings of the 17th Annual ACM Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications 2002 (OOPSLA02), Seattle,

USA.

[Singh07] V. Singh, S. Ranu, Extending GCSpy for JikesRVM, Technical Report CM-

PCS 263, Department of Computer Science, University of California, Santa Bar-

bara, USA.

http://www.ibm.com/developerworks/library/os-ecbug/
http://www.ibm.com/developerworks/library/os-ecbug/
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
http://jython.org
http://jython.org
http://docs.python.org/py3k/library/logging.html
http://docs.python.org/py3k/library/logging.html

List of abbreviations XVI

List of abbreviations

API Application Programming Interface
CPU Central Processing Unit
GC Garbage Collection
GUI Graphical User Interface
IDE Integrated Development Environment
IP Internet Protocol
I/O Input/Output
JVM Java Virtual Machine
J2SE Java 2 Standard Edition
OS Operating System
TCP Transport Control Protocol
UI User Interface
UML Unified Modeling Language
VM Virtual Machine

Curriculum vitae XVII

Curriculum vitae

Personal data

Name Benjamin Dallinger

Date of birth March 18, 1983

Family status Single

Citizenship Austria

Parents Evelyn Dallinger

Norbert Wüstner

Siblings None

Education

1989-1993 Primary school, Nußdorf am Attersee

1993-1997 Secondary school, BRG Vöcklabruck

1997-2002 Technical school for mechanical engineering, HTL Vöcklabuck

June 2002 Final examination passed with distinction

2002-2003 Compulsory military service

2003-2007 Employee in mechanical engineering department

March 2007 Higher education entrance qualification

Since 2007 Study of computer science, JKU Linz

Eidesstattliche Erklärung XVIII

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne

fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benützt und die den

benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich

gemacht habe.

Linz, am 25.01.2011 Benjamin Dallinger

	1 Approach and motivation
	1.1 What is GCSpy?
	1.2 Idea and task description
	1.3 Further structure of this thesis

	2 Introduction to GCSpy
	2.1 Overview
	2.2 GUI and visualization
	2.3 Previous work
	2.4 Comparison with related applications

	3 Design
	3.1 Requirements
	3.1.1 Script management
	3.1.2 Navigation
	3.1.3 Spaces and streams
	3.1.4 Markers and cursor
	3.1.5 Control information
	3.1.6 Event and timing information
	3.1.7 Logging
	3.1.8 External libraries

	3.2 Scripting language
	3.3 GUI
	3.4 Scripting interface
	3.5 Example Scripts
	3.5.1 Breakpoint
	3.5.2 Virtual Spaces
	3.5.3 Markers
	3.5.4 Event Filters
	3.5.5 Logging

	4 Implementation
	4.1 Analysis of the visualization process
	4.2 Required changes on the system architecture

	5 Conclusion and future work
	A Use-cases
	A.1 Script management
	A.2 Script utilization

	B API
	B.1 Navigation
	B.2 Spaces and streams
	B.3 Markers and cursor
	B.4 Control information
	B.5 Event information
	B.6 Event filters
	B.7 Utilities

	Bibliography

