
 

 
Technisch-Naturwissenschaftliche  
Fakultät 

 
 
 
 
 

Enhanced Heap Visualization with GCspy 

 
 
 

BACHELORARBEIT 
(Projektpraktikum) 

 
zur Erlangung des akademischen Grades 

 

Bachelor of Science 
 

im Bachelorstudium 
 

INFORMATIK 
 
 
 
 
 
Eingereicht von: 

Peter Hofer, 0855349 
 
Angefertigt am: 

Institut für Systemsoftware 
 
Beurteilung: 

o.Univ.-Prof. Dr. Dr.h.c. Hanspeter Mössenböck 
 
Mitwirkung: 

Dipl.-Ing. Thomas Schatzl 
  

 
Linz, August 2011 



Abstract I

Abstract

GCspy is a tool intended for the developers of memory management systems. It can be

easily integrated into any existing system and helps in comprehending and verifying the

system’s behavior by visualizing the heap layout at runtime. [Printezis02]

While the original software was developed in 2002, the primary goal of this thesis was to

enhance the possibilities of visualization, to improve the overall usability and to remove

some long-standing shortcomings of GCspy.

The thesis analyzes GCspy’s architecture, describes the introduced improvements and

illustrates the GCspy client from a user perspective.

Kurzfassung

GCspy ist ein Werkzeug für Entwickler von Speicherverwaltungssystemen. Es kann

einfach in bestehende Systeme integriert werden und unterstützt beim Verständnis

und beim Überprüfen der Arbeitsweise des Systems durch grafische Darstellung der

Heapbelegung zur Laufzeit. [Printezis02]

Während die ursprüngliche Software bereits 2002 entwickelt wurde, war das primäre Ziel

dieser Arbeit die Erweiterung der Möglichkeiten der Visualisierung, die Verbesserung

der Benutzerfreundlichkeit als Ganzes und die Beseitigung einiger länger bestehender

Mängel von GCspy.

Die Arbeit analysiert die Architektur von GCspy, beschreibt die eingeführten Neuerungen

und illustriert die Bedienung des GCspy-Clients.



Contents II

Contents

1 Introduction 1

2 The GCspy framework 3

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 GCspy architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Abstraction of the heap . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Comparison to other tools . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5.1 VisualVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5.2 VisualGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5.3 GCspy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 GCspy client user manual 12

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Main use cases and functionality . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Connecting to a GCspy server . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 The space view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Event filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Technical documentation 20

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Organization of the source tree . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Java source tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Class overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 Communication and data structures . . . . . . . . . . . . . . . . 22

4.3.2 Client and visualization . . . . . . . . . . . . . . . . . . . . . . . 25

5 Enhancements 30

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Prior improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Space view usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Tile rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Magnification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



Contents III

5.6 Space summary and tile property views . . . . . . . . . . . . . . . . . . 41

5.7 Docking views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.8 User interface look and feel . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.9 Asynchronous event handling . . . . . . . . . . . . . . . . . . . . . . . . 48

5.10 Logging and error handling . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusion and perspective 51

A GCspy communication commands 52

A.1 Client to server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.2 Server to client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 56



Introduction 1

Chapter 1

Introduction

Memory management systems have to meet high expectations. They need to provide high

allocation performance while at the same time keeping resource usage and fragmentation

low. Garbage collectors are expected to quickly dispose of unused objects, but should

impose minimal delays on the running application doing so. To meet these expectations,

many of today’s memory management systems have turned into highly sophisticated and

complex pieces of software that incorporate a vast amount of research. As a consequence,

it becomes increasingly hard to comprehend and verify how they operate.

GCspy is intended to provide the developers of those systems with a tool to monitor

and review the behavior of their software beyond simple trace messages, assertions and

memory dumps. It provides ready to use components for easy integration into any

existing memory management system. Because of the abstraction of the heap using the

concept of spaces, streams and blocks, developers can define their own representation of

managed memory. The GCspy client visualizes the heap layout and allows to assess the

current state of the heap at a glance.

Goals and tasks

This thesis focuses on the GCspy client. Although it is a central component of the

GCspy framework, the GCspy client provides only elementary visualization capabilities.

Most notably, it offers only a single mode of visualization that is not suitable for some

frequently used types of data, particularly enumerations. It also lacks the functionality

to compare related values, even though this qualifies as a frequent use case. The GCspy

client displays various information only in text where a graphical representation would

be much more effective. Furthermore, the user interface is more complex than necessary.

GCspy was first released in 2002. Since then, there has been no substantial development

activity. As a result, the GCspy client still contains several long-standing defects. Many

of these defects result in spurious crashes during normal use, which constitute a major

usability issue. Another sign for GCspy’s unmaintained state is that it depends on



Introduction 2

outdated libraries such as the Java Advanced Imaging API, which was last updated in

2006 [JAI]. The user interface is also not on par with modern user interfaces and does

not allow the user to resize or rearrange its views, which is inconvenient when working

with large amounts of data.

Therefore, the primary objective of this thesis is to extend the visualization capabilities

of the GCspy client, to improve its general usability and to resolve the described

long-standing issues.

The goals and tasks of this thesis can be summarized as follows:

• Analyze the architecture and functionality of the GCSpy framework.

• Compare GCspy with other software for monitoring the heap state.

• Inspect the GCspy client code base to identify areas for improvement.

• Resolve identified issues and apply design changes to simplify future changes.

• Extend GCspy’s visualization capabilities and modernize the user interface.

Outline

Chapter 2 of this thesis analyzes the architecture of the GCspy framework, the com-

munication between its components and the abstraction of the heap layout. It also

compares GCspy with similar tools capable of collecting and analyzing runtime heap

information. Chapter 3 illustrates the functionality and use of the GCspy client from a

user perspective. Chapter 4 describes the implementation of GCspy and the purpose

and relationships of the most relevant classes. Chapter 5 discusses the enhancements

introduced in the scope of this thesis and their implementation.



The GCspy framework 3

Chapter 2

The GCspy framework

2.1 Overview

GCspy is an architectural framework for collection, transmission, storage and visual-

ization of heap information. It is not specific to any particular application or runtime

environment and can easily be adapted for use with any memory management system.

[Printezis02]

This chapter analyzes the architecture of GCspy and how the individual components

communicate with it each other. It then goes on to illustrate how the layout of heaps

is abstracted using general, non-specific data structures in GCspy. Finally, GCspy is

compared to other tools for visualizing runtime heap information.

2.2 GCspy architecture

GCspy is designed and implemented as a client-server architecture.

The server component runs within the observed application or its virtual machine. The

GCspy client connects to the server via a TCP/IP socket connection. Triggered by

certain events such as a garbage collector run, the server sends a snapshot of the heap to

the client. The client then interprets and visualizes the received data. It also maintains

an index with a history of received snapshots to allow viewing the state of the heap at

previous points in time.

The GCspy framework provides the server infrastructure as libraries for C, C++ and

Java. The client (also called visualizer) is a Java application with a Swing user interface.

Developers only need to implement data collection in their memory management system

and provide a driver that interprets and preprocesses the collected data for use with

GCspy. Due to the representation of the heap layout in abstract structures, the client

does not require any modifications for supporting new memory management systems.



The GCspy framework 4

Figure 2.1 depicts the described architecture for a virtual machine with garbage collection.

The left-hand side shows the virtual machine with an integrated GCspy server component.

On the right-hand side is the stand-alone client which communicates with the server

within the virtual machine. Only the data collection and driver components on the

server side are specific to the memory management system in question and must be

implemented by users of GCspy.

Application

Virtual Machine

Garbage Collector

Data Collection

GCspy Server

Driver

Communication

GCspy Client

Communication

Interpreter

Visualization

Index

Figure 2.1: Architecture of GCspy with a garbage-collecting virtual machine

At runtime, the GCspy client establishes a TCP socket connection with the GCspy server.

When a significant event occurs on the server, the data collection component collects

and provides the relevant information about the heap. The driver then converts the

collected data to a representation in GCspy’s more general abstract data structures. This

representation is then sent in the response to the client, which receives and interprets

the data. The client visualizes the new heap snapshot and in addition, stores it in an

index so it can be viewed again at a later point in time.

2.3 Abstraction of the heap

GCspy abstracts the specifics of the observed memory management system by introducing

the concept of events, spaces, blocks and streams. This section describes these terms.



The GCspy framework 5

The Heap is the complete set of data that is observed by GCspy.

Events are significant points during the execution of the observed application at which

the heap state may be collected and visualized on the client. An example for an

event is the start or end of a garbage collection run.

Spaces are typically regions of managed memory, but can also represent lists or sets. A

heap can have multiple spaces. For example, the young and old generations of a

generational garbage collector would each qualify as separate spaces. Each space

consists of a number of blocks.

Blocks represent the managed units of a space. They are displayed as equally sized,

adjacent tiles in the GCspy client. However, their actual size, location and order

in memory may differ. Other than chunks of a memory area, blocks can be used

to represent entries of a free-list or remembered-set or other entities.

Streams are the attributes of the blocks of a space. GCspy has two types of streams:

Value streams have integer values that lie within a specified range. The client

uses the value relative to the range boundaries to visualize these streams

with vertical filled bars or fading colors. The preferred display color can be

set on the server side. As an example, the number of objects per block would

be specified in a value stream.

Enumeration streams specify a set of possible named values. The client represents

the different values with distinguishable colors or patterns and displays the

assigned descriptions. Enumeration streams are typically used to specify the

type of a block or boolean values such as marked and not marked.

GCspy also has two visual elements to indicate relations between blocks:

Separators between two adjacent blocks denote boundaries between distinct areas.

Links between two adjacent blocks indicate a connection or common characteristics of

these blocks.

It is the driver’s task to interpret the data gathered by the data collection layer of

the memory management system and provide the GCspy server infrastructure with a

representation of this data as spaces, blocks and streams.

Figure 2.2 illustrates this abstraction with a Mark&Sweep garbage collector. The

data collection functionality within the collector creates a “raw” representation of the

heap by dividing it into equally large chunks of memory. The chunks have three

attributes: the number of contained objects, how many of these objects have been

marked and the occupancy in percent. The driver is provided with that data and creates

a representation using GCspy’s abstract structures. The heap is represented by a single

space, chunks are turned into blocks and the three attributes become streams. This

implementation-independent representation is then sent to the client for visualization.



The GCspy framework 6

Virtual Machine

Garbage Collector

Data Collection

GCspy Server

Driver

Heap
# of objects
# marked
% occupancy

Space 0
Stream 0
Stream 1
Stream 2

Communication

Figure 2.2: Abstraction of a Mark&Compact garbage collector in GCspy

2.4 Communication

The GCspy client and server communicate over a TCP/IP socket connection using a

custom binary data protocol.

When establishing the connection, both client and server transmit a magic string and

their byte order (endianness). When the magic strings differ or the byte order does not

match, the connection fails and an error is raised on both sides. If successful, the server

sends a string with its name. The client then sends a flag indicating if the server should

pause execution as soon as possible until it receives a command to continue. The server

proceeds to send the client all information on the number and layout of spaces and their

streams and the memory management events that may occur.



The GCspy framework 7

2.4.1 Commands

After the connection has been fully established, client and server communicate via

commands. Figure 2.3 shows the structure of such a command. Each transmitted

command starts with a fixed 4-byte start tag for verification by the receiver, succeeded

by a single byte with the type of the command. Then, data specific to this type of

command follows. Finally, each command ends with a 0 byte and a 4-byte end tag.

· · · start tag command type command-specific data 0 byte end tag · · ·

Figure 2.3: Composition of a GCspy command

GCspy distinguishes between server-to-client and client-to-server commands in commu-

nication. Figure 2.4 depicts the structure of a server-to-client stream command. The

server sends these commands to the client to indicate that the values of a stream have

changed.

Like all commands, a stream command begins with a start tag and the command

type, which is 0x07 in this case. Next is one byte with the space identifier succeeded

by another byte that identifies the particular stream of that space. After that, the

command contains a 4-byte integer with the number of values in the stream, followed

by the sequence of actual values. These values are encoded as single-byte, two-byte or

four-byte integers depending on the type of the stream. The client knows the stream’s

type from earlier space commands from the server. The stream command ends with a

zero byte and the end tag.

· · · start tag type 0x07 space identifier stream identifier

4-byte length sequence of values 0 byte end tag · · ·

Figure 2.4: GCspy’s stream command

Appendix A contains a complete list of commands of both types and their description.

2.5 Comparison to other tools

There are several other tools for monitoring heap state and usage of a process. However,

most of these tools are designed to monitor the memory usage of the application instead

of the behavior of the memory management system.

This section describes the differences between GCspy and two other tools, VisualVM

and VisualGC. VisualVM is a free and powerful performance visualization tool originally



The GCspy framework 8

developed as part of the NetBeans IDE [VisualVM]. VisualGC is an unbundled Java

SDK tool that graphically displays performance data of the garbage collector and the

virtual machine [VisualGC].

2.5.1 VisualVM

VisualVM was originally developed as profiler for the NetBeans IDE, but has since

been made available as a stand-alone application. It can be obtained for free from its

project website on java.net. A stable distribution of VisualVM named Java VisualVM

is included in Sun JDK releases starting from JDK 6 update 7 [VisualVM].

VisualVM is intended for application developers and system administrators to profile

and monitor their applications both during development and in production use. It uses

the Java Management Extensions [JMX] to obtain data from the observed application’s

virtual machine, which effectively limits VisualVM to monitoring Java applications.

VisualVM is extensible with plugins that can be installed from a central repository on

the Internet or a local file.

VisualVM only shows basic usage data for the whole heap and the generational garbage

collector’s permanent generation. It can be used to generate heap dumps and inspect

the class instances in memory at the time of the dump, but does not provide any further

information on how these instances are managed by the garbage collector. However,

garbage collectors could make their performance data available via JMX and a plugin

for VisualVM could be developed to visualize that data.

Figure 2.5 depicts VisualVM plotting heap usage over time in a virtual machine that is

running a benchmark. The graphs in the center area of the figure show that VisualVM

only distinguishes between used and free heap space and that it can additionally plot

usage data for the permanent generation. The lower region of the screen capture contains

VisualVM’s plots of class loads and threads running in the virtual machine. Also, the

tab panel in the upper area of the screen capture has a tab of the VisualGC plugin for

VisualVM.

2.5.2 VisualGC

VisualGC is an unbundled tool for the Sun JDK available for download from the Sun

Developer Network. It can also be installed as a plugin for VisualVM [VisualGC].

VisualGC was originally developed to show the effect of various tunable parameters of the

Java virtual machine. Its audience are application developers and system administrators

who wish to tweak the performance of their application and virtual machine instance

and verify the results.



The GCspy framework 9

Figure 2.5: VisualVM showing heap utilization during a memory-intensive benchmark

For access to performance data, VisualGC uses the jvmstat lightweight performance

instrumentation [jvmstat]. Only Sun’s Hotspot virtual machine implements this in-

strumentation and its interfaces are considered private, uncommitted and are officially

unsupported. Therefore, VisualGC is limited to Hotspot and not even guaranteed to

work with future Sun JDK releases.

VisualGC plots the graphical “fill state” of the heap regions over time and in addition

the time spent in garbage collection, compiling and loading classes. It does not show

the location of objects in the heap or the steps performed in garbage collection.

Figure 2.6 shows VisualGC visualizing heap usage of a benchmark running in a Hotspot

virtual machine. The graphs in the window on the left-hand side display the “fill state”

of the particular heap regions (in this case generations). Coloring of the grid allows to

distinguish between committed and uncommitted memory. The plots in the window

on the right show memory usage of the generations over time and also time spent in

garbage collection, compilation or loading classes.

2.5.3 GCspy

GCspy is designed specifically for the developers of memory management systems.



The GCspy framework 10

Figure 2.6: VisualGC showing heap utilization per space and the time spent in garbage
collection during a memory-intensive benchmark

It provides a ready to use server component for C, C++ and Java to communicate

with the client and only requires development of the data collection and driver modules

specific to the memory management system that should be monitored. GCspy has

its own client-server communication protocol and is independent of any custom or

proprietary interfaces.

GCspy can visualize multiple spaces, which consist of an arbitrary number of blocks.

The blocks of a space can have any number of different property values called streams.

The user can choose the most fitting representation of the heap layout as spaces, blocks

and streams. Therefore, an almost arbitrary level of detail is possible.

However, no main-stream virtual machine or memory management system comes with

built-in support for GCspy. To use GCspy with one of these systems, the developer

has to integrate it with GCspy first. Due to the generally higher level of detail when

compared to other tools, integration of GCspy also demands a more sophisticated data

collection layer and better understanding of the memory management’s inner workings

than other solutions.

Still, GCspy has been successfully integrated and used with many garbage collectors and

virtual machines such as Jikes RVM [Printezis02] [Singh07], Rotor [Marion05], dlmalloc



The GCspy framework 11

[Cheadle06] or JamVM [Baldwin05]. It has also been used for visualizing specific

approaches to memory management like the train garbage collector [Printezis02b].

Chapter 3 contains examples on using the GCspy client and several screen captures.



GCspy client user manual 12

Chapter 3

GCspy client user manual

3.1 Overview

The GCspy client is the part of the GCspy framework responsible for the visualization

of heap information. It is a stand-alone application that receives snapshots of the heap

from a server or reads them from a trace file and creates a graphical representation

of the heap layout. This graphical representation allows users to quickly analyze and

assess the state of the heap.

The GCspy client is implemented in Java and uses the Swing user interface toolkit. It

builds on the abstraction of the heap described in chapter 2 and therefore requires no

changes to support new memory management systems.

This chapter describes the main use cases, functionality and usage of the GCspy client.

3.2 Main use cases and functionality

Simple integration: Developers can easily add GCspy support to their memory man-

agement system using the GCspy server framework provided for C, C++ and

Java. Any changes are made exclusively on the server side, the client is unaffected

because of the abstraction of the heap layout. Incorporation of a driver for GCspy

is straightforward and possible in less than 300 lines of code. [Printezis02]

Coherent visualization: GCspy’s visualization capabilities allow to quickly comprehend

the state of the heap and spot deviations from expected values. Values from multi-

ple streams can be visualized next to each other to allow a quick visual comparison

of related values. Enumeration values are assigned easily distinguishable colors.

The tile size can be changed for each space to get a better view of large spaces,

while the intelligent magnification feature shows an enlarged view of the tiles near

the mouse cursor. Additional settings exist for better results on different display

devices such as projectors.



GCspy client user manual 13

Timeline navigation: The GCspy client provides the ability to jump to specific events

within the recorded timeline and examine the state of the heap at that time.

Keyboard shortcuts: Keyboard shortcuts and menu mnemonics in the GCspy client

provide quick access to commonly used features.

Flexible user interface: All components of the user interface can be rearranged and

resized. Particularly large space views can be detached from the main window

and shown in their own window or moved to a separate screen.

3.3 Main window

The client’s main window is the central work space for users of GCspy. It contains a

view for each of the heap spaces where the blocks of the space are visualized as tiles.

These tiles can be selected to show more detailed information about a block. Navigation

controls allow to select earlier or later snapshots in the trace history.

Figure 3.1 depicts a typical layout of the GCspy main window while visualizing a trace.

1

2 3

4

5

6
7

Figure 3.1: GCspy main window showing a trace

The main window consists of the following components, as marked in the figure:



GCspy client user manual 14

1© The menu bar at the top of the main window provides access to less commonly

used functionality and plugins.

2© The space views on the left visualize spaces as tiles based on its blocks and streams.

The toolbar at the top of a space view allows to show views with a summary or

legend for the space such as 5© or to change the display style of the tiles.

3© The property view on the right side of the window shows a description and the

values of all streams for the currently selected tile.

4© The controls at the bottom of a space view allow selecting the displayed stream,

changing the tile size, enabling magnification and clearing tile markings.

5© The legend depicts how different values of a stream are rendered in the tile view.

This view is not shown by default, but can be activated from a space view’s top

toolbar.

6© The buttons, slider and input field at the bottom of the main window allow to

navigate to other snapshots in the trace history or to pause and resume execution

on the server.

7© The disconnect button closes the connection to the currently connected server.

When the GCspy client is not connected, there is a connect button at this location

to establish a server connection or replay a trace from a file.

The main window’s layout is very flexible: except for the menu and navigation controls,

all components are dockable. This means that users can change their position and size

at will. Components can be rearranged, detached from the main window or grouped in

tabbed containers. They can also be temporarily maximized to take up the entire main

window area, minimized to save space, or hidden entirely. This is particularly helpful

when dealing with large spaces.

3.4 Connecting to a GCspy server

When the GCspy client is launched, it automatically opens its Connect dialog. This

dialog enables users to connect to a GCspy server or replay a trace stored in a file.

Figure 3.2 shows the connect dialog for both establishing a connection to a server and

replaying a trace from a file.

For socket connections to a server, the user can specify the host to connect to and the

port where the GCspy server is listening. In addition, execution on the server side can

be suspended immediately after the connection has been established.

Alternatively, traces can be replayed from a file. In this case, a local replay server is

run within the GCspy client. The replay server acts like an actual GCspy server and

offers the same level of control such as pause and continue.



GCspy client user manual 15

Figure 3.2: GCspy’s connect dialog for remote connections as well as replaying files.

3.5 The space view

The space view visualizes the blocks and streams of a space as tiles. It consists of a

toolbar at the top, a large area displaying the tiles of the space and another panel at the

bottom with controls for selecting the stream to visualize or to control magnification

and tile size.

Figure 3.3 depicts a space view visualizing a stream named Block type table. This

stream has been declared in the server as enumeration stream, and the possible values

(block types) and their display names are also provided by the server. The client assigns

visually distinguishable colors to the enumerated values. Every tile is colored according

to the value of the block it represents.

Figure 3.3: The space view showing a single stream.



GCspy client user manual 16

The drop-down list at the bottom left allows selecting the stream used for visualization

of the space. Additionally, a selection window can be opened that allows choosing

multiple streams which will be visualized next to each other in each tile by dividing the

tile vertically.

The magnifier buttons in the bottom panel allow to increase or decrease the tile size.

This can be helpful when visualizing multiple streams or viewing very large spaces.

Additionally, another feature called intelligent magnification can be enabled. When this

feature is active, an area in one of the space view’s corners shows a magnified view of

the region near the mouse pointer. That area automatically moves to another corner

when the mouse pointer is near.

Figure 3.4 shows a space view that visualizes two streams by dividing its tiles vertically.

The actual occupancy stream specifies how much of a block’s capacity is utilized by

objects and is rendered in the right half of each tile. The estimated occupancy stream

represents the memory management system’s estimate of that value and is rendered in

the left half. Rendering these two streams side-by-side for each block allows for a very

quick assessment of how accurate the estimates are. The multi-stream visualization

mode can be selected in the drop-down list at the bottom left 1©. Stream values are

rendered as vertical bars, so an empty cell means a value close to zero while an almost

full bar represents a value close to the 100%.

Figure 3.4: Space view showing multiple streams with magnification and markings

The figure also shows the intelligent magnification feature. It can be enabled with a

button in the bottom right section 2©. The area near the mouse pointer 3© is enlarged

and displayed in a rectangle in one of the space view’s corners 4©.



GCspy client user manual 17

For remembering a set of tiles, for example while stepping through execution on the

server, tiles can marked by right-clicking them. Multiple adjacent tiles can be marked

at once by dragging the mouse with the right mouse button held down. The marked

tiles are highlighted with a colored background. Figure 3.4 also contains several of

these marked tiles 6©. All tile markings of a space view can be cleared with the Clear

markers button at the bottom right 7©.

The Summary button in the space view’s top toolbar opens a summary view in the main

window that shows data aggregated for all blocks of a space. The Legend action opens

the legend view that shows how tiles with different values are visualized for that space.

Clicking Display Style opens a dialog which allows changing the colors and visualization

style for the space in question.

Figure 3.5 shows a summary view for a space. It lists all different enumeration values

for enumeration streams such as Allocation type. For each enumeration value, it shows

the number of blocks with that particular value on the right. The bars in the middle

visualize the percentage of these blocks out of all blocks. For value streams such as

Occupancy (est) or #holes, either the average value or a total of all blocks is listed and

visualized.

Figure 3.5: Summary for a space

Figure 3.6 depicts the Display Style settings dialog for a space view. This dialog allows

to select colors other than the default colors provided by the server.

In the Streams group, the colors with which the different streams are visualized can be

changed. Colors for enumeration streams cannot be set, since the enumerated values

are automatically assigned different visually distinguishable colors.



GCspy client user manual 18

Figure 3.6: Display style settings for a space view

The controls in the Interface Colors group allow to change colors not directly related to

the visualized heap data: the background color of the space view, the highlighting color

of selected and marked tiles, and the color of separators and links between tiles.

At the bottom of the window, the visualization style for enumerations and value streams

can be selected. By default, enumeration streams are rendered by filling the tile with

the color associated with the block’s enumeration value. However, some colors can be

hard to distinguish for people with vision deficiencies or on certain display devices such

as projectors. For this case, enumeration streams can also be visualized using colored or

monochrome patterns of lines and dots.

Value streams are rendered with vertical bars by default, but can also be rendered with

a solid fill color interpolated between black and the stream’s color. In that case, black

represents a value close to the lower bound of the stream’s value range, while the stream

color itself indicates a value near the upper bound of the value range.

3.6 Event filters

Event filters are used to enable or disable reporting of certain events and perform

additional actions when they occur. Event filtering is performed by the server, but

the filter settings can be changed in the client. The event filter settings dialog can be

opened with the Event Filters... entry in the main window’s Utilities menu.



GCspy client user manual 19

Figure 3.7 depicts the event filter dialog. It contains a table with a row for each event

that can occur in the server and its current filter settings. These settings in the table’s

cells can be changed in place. Using the Reset button at the bottom left of the dialog,

all or only some of the settings in the dialog can be reset to their defaults. Clicking OK

closes the dialog and passes the new filter settings to the server. The Cancel button

closes the dialog, disregarding any changes.

Figure 3.7: Event filter dialog

Using the checkboxes in the table’s Enabled column, single events can be enabled or

disabled. When a disabled event occurs in the server, the client is not notified of the

event and no heap information is transmitted.

In the Delay column, a delay in milliseconds can be entered that should be imposed

when such an event occurs.

When the checkbox in the Pause column is checked, execution on the server is suspended

until the user resumes execution when this type of event occurs.

The value in the Period column specifies that only every n-th occurrence of the event

should be reported to the client. For example, a value of 3 means that only the first,

fourth, seventh, etc. occurrence of the event should be reported while the events in

between are ignored.



Technical documentation 20

Chapter 4

Technical documentation

4.1 Overview

This chapter documents the implementation of GCspy. It outlines the organization of the

GCspy source code and describes the most important Java classes and the relationships

between them.

4.2 Organization of the source tree

At the top level, GCspy’s source code is separated into three subdirectories:

c contains a C language implementation of GCspy’s server-side component as well as

additional utility functions for working with GCspy’s data structures.

cpp also provides an implementation of GCspy’s server infrastructure complete with

utility functions, but as C++ classes which are more suitable for integration into

object-oriented C++ code. This implementation is stand-alone and does not

reference the C code.

java contains the source code for the GCspy client as well as a Java implementation of

the server-side component. It references neither of the other two other code bases.

The code for each language also includes implementations of drivers for testing and

working examples. Directories c and cpp are split further into the subdirectories src

and include, which separate the implementation and the header files for inclusion from

other projects.

The top-level build script as well as the build infrastructure for the C and C++ code

bases are realized as makefiles compatible with GNU make. Apache Ant is used for

building the Java source code.

When building the C and C++ code bases, the directories lib and obj for build artifacts

are created as subdirectories of c and cpp. The obj directory contains the object files



Technical documentation 21

that the compiler creates. The lib directory holds the final build result, which is a

library that can be linked against.

4.2.1 Java source tree

The java directory contains the gcspy directory at its root. It represents a Java

package of the same name and holds all of GCspy’s Java source code. The two other

subdirectories lib and icons in java contain third-party libraries that GCspy depends

on and graphics that are displayed in the GCspy client’s user interface.

The Java source code is built using Apache Ant with a supplied build.xml file. During

the build, the additional subdirectory bin for build artifacts is created. The build

result is a Java archive file (JAR) in bin containing all compiled GCspy classes and the

third-party dependencies for running the GCspy client.

The Java code base also contains several plugins for the GCspy client. The source code

of these plugins is not separated from the main source tree. However, all plugins have

their own subpackage in gcspy.vis.plugins and are built into distinct JAR files which

are placed in the plugins directory.

After a build, the GCspy client can be started from the command line by running

java -jar gcspy-<version>.jar

from the bin directory. Alternatively, the GCspy client can be launched from a file

browser, provided that it associates JAR files with a Java runtime environment.

Package hierarchy

The classes in GCspy’s Java source code are organized in several packages. This section

outlines the hierarchy and content of these packages.

gcspy The top-level package with the GCspy client’s main class.

gcspy.comm Classes for client-server communication.

gcspy.utils General utility classes.

gcspy.tools Standalone command-line tools for dealing with trace files.

gcspy.interpreter General “interpreter” for processing data from communication, and

classes representing GCspy’s abstract data structures such as spaces and streams.

gcspy.interpreter.client Client-specific interpreter.

gcspy.interpreter.server Server-specific interpreter.

gcspy.vis User interface, visualization and most other classes of the GCspy client.



Technical documentation 22

gcspy.vis.plugins Code of the plugin framework and parent package for all plugins.

gcspy.vis.plugins.histogram Histogram view plugin.

gcspy.vis.plugins.text Tabular text view plugin.

gcspy.vis.plugins.history History plugin.

gcspy.vis.utils Utility classes used by the GCspy client.

Because the primary scope of this thesis were improvements to the GCspy client, almost

all of the changes described in this chapter were made in gcspy.vis and its subpackages.

4.3 Class overview

This section characterizes GCspy’s most important Java classes and the relationships

between them. The descriptions only intend to provide an overview over the code base

and do not include all of the packages, classes, methods or attributes. Several details

have been abstracted or left out to facilitate a better understanding.

4.3.1 Communication and data structures

This subsection describes relevant classes responsible for communication between client

and server and classes that represent GCspy’s abstract data structures. These classes

are unrelated to the GCspy client’s user interface or visualization. Many of the classes

are shared between client and server implementations.

Figure 4.1 shows a diagram of the classes described hereafter. The descriptions explain

the function and relationships of each class from top to bottom and left to right in the

diagram, grouped by package.

Package gcspy.comm

SocketClient is a wrapper around Java’s Socket class that implements communication

functionality commonly used in GCspy.

CommandStream implements a data stream for sending and receiving commands,

which are messages transmitted between server and client. Each instance of

CommandStream keeps a collection of Command objects representing valid commands.

When a CommandStream receives a certain type of command, it calls the execute()

method of the corresponding Command object and passes the received data.

Command is the interface which actual commands (such as a pause command) have to

implement. Classes that realize this interface perform an action specific to their

type of command in their implementation of the execute() method.



Technical documentation 23

gcspy::comm

CommandStream

start()
execute(input)
stop()

gcspy::interpreter

Interpreter

client : SocketClient

setupEventFilters()
setupEventCount()
getData() : TraceData

Space

id
name
tileNum

getStream(i)
serialise(output)
deserialise(input)

TraceData

current : SingleEventTraceData
info : TraceHeaderData

getSpace(i)
getEvents()
getEventFilters()
getGeneralInfo()

Stream

id
name
data

getAccessor() : DataAccessor
getData() : StreamData
serialise(output)
deserialise(input)

DataAccessor

«interface»

hasData()
get(i)
getLength()
getAdjusted(i)

Events

names

getNum()
getName(i)
serialise(output)
deserialise(input)

streams accessor

data

EventFilters

eventNum

setEnabled(i,enabled)
setPause(i,pause)
setDelay(i,delay)
enableAll()
disableAll()

gcspy::interpreter::clientgcspy::interpreter::server

ClientInterpreter

connectListeners
eventListeners
pauseListeners
spaceListeners

mainLoop()
getSpace(i)
sendEventFilters()

ServerInterpreter

startServer(port)
mainLoop()
sendEvent(...)
sendSpace(space)
sendStream(...)
sendPause()
sendShutdown()

ConnectListener

«interface»

onConnect()

EventCommandListener

«interface»

onEventCmd(...)

PauseListener

«interface»

onPause()

SpaceCommandListener

«interface»

onSpaceCmd(space)

SocketClient

socket

send(data)
receive()
getBufferIn()
close()

PauseCmd

execute(input)

Command

«interface»

execute(input)

«call»

cmds

EventCmd

execute(input)

StreamCmd

execute(input)

SpaceCmd

execute(input)

«realize» «realize» «realize» «realize»

Figure 4.1: Diagram of GCspy’s non-visualization Java classes



Technical documentation 24

In addition to the classes described here, gcspy.comm also contains helper classes for

reading and writing buffers.

Package gcspy.interpreter

Interpreter is a subclass of CommandStream and extends it with functionality to manage

trace data using class TraceData. Trace data describes the state of the heap and

is transmitted from the server to the client. Interpreter also provides public

methods to obtain its trace data.

TraceData stores the state of the heap from the most recent event and additional meta-

data about the trace itself. It provides public methods to access this information.

EventFilters holds the configuration of event filters, which are rules for pre-processing

events on the server. It allows other objects to inspect or modify event filters.

Events holds information about the number and names of events that can occur on the

server. The class also provides methods to serialize or deserialize this information

for transmission.

Space represents a GCspy space as described in chapter 2, which is typically a region of

the heap. It stores information about the space itself, such as its identifier, name

and the number of blocks, as well as the streams of the space. The Space class

has methods for serialization and deserialization, which also serialize or deserialize

all the streams of the space.

Stream represents a GCspy stream, i.e. an attribute of the blocks of a space. The

Stream class allows to access the stream’s values in two ways. The method

getAccessor() provides an accessor object that allows to obtain the stream’s

value as well as other information for specific blocks of the space. Calling method

getData() instead returns the underlying instance of the StreamData class (not

shown in the diagram) for direct access to the data. Like classes Events and

Space, the Stream class also provides methods for serializing and deserializing its

data for transmission.

DataAccessor is an interface that defines methods for reading a stream’s value for a

block by its index. The actual implementation class used for a stream depends

primarily on the stream’s data type.

Package gcspy.interpreter.server

ServerInterpreter is a subclass of Interpreter and implements server-side communi-

cation. This includes listening for client connections, providing the heap layout

when the connection is first initiated, transmitting heap data when events occur

as well as pre-processing events according to the event filters in place.



Technical documentation 25

This package also contains implementations for all client-to-server commands as real-

izations of the Command interface. These classes are not shown in the diagram or

described here, but the commands are characterized in appendix A.

Package gcspy.interpreter.client

ClientInterpreter derives from the Interpreter class like ServerInterpreter. The

ClientInterpreter class handles all client-side communication. This involves

connecting to a server, waiting for events, sending pause or resume commands, or

submitting updated event filter settings to the server after they were changed in

the client.

The ClientInterpreter class employs the observer pattern to notify other objects,

particularly user interface components, when a certain type of action occurred.

There are several listener interfaces in the same package, one for each type of

action that can be subscribed to. Objects that want to receive notifications have

to provide an implementation for one or more of these interfaces and register it

with the ClientInterpreter instance. The ClientInterpreter keeps a list of

subscribers for each type of listener and notifies all of them when an action of

that type occurred.

ConnectListener is a listener interface for receiving notifications after successfully

establishing a connecting to a server.

EventCommandListener is an interface for observing received event commands that

the server sends after a memory management event has occurred.

PauseListener is an interface for subscribing to pause commands which the server sends

when it has paused execution (typically as a result of a pause request from the

client).

SpaceCommandListener is an interface for observing received space commands with

which the server sends a new snapshot of a space and all its streams.

PauseCmd, EventCmd, SpaceCmd and StreamCmd are examples for realizations of

the Command interface for server-to-client commands. The package contains several

more classes for commands that are not described here. These commands and all

other server-to-client commands are described in appendix A.

4.3.2 Client and visualization

This subsection describes the most important classes that are specific to the GCspy client.

These classes make up the GCspy client’s user interface, handle visualization of trace

data, provide a framework for adding plug-ins and implement additional functionality

as command-line utilities.



Technical documentation 26

Figure 4.2 shows a class diagram comprising these classes. The following descriptions

explain the function and relationships of each class in the diagram, grouped by package.

Package gcspy

Main contains the entry point for the graphical GCspy client, main(). The method

creates GCspy’s main window by instantiating class MainFrame.

Package gcspy.tools

These classes provide additional stand-alone command-line tools and do not belong to

the graphical GCspy client (visualizer).

TerminalClient provides a separate command-line client that connects to a GCspy

server and writes the received data to the terminal as formatted text. Like

the full client, TerminalClient uses a ClientInterpreter instance for handling

client-side communication.

TerminalStoreTrace is another command-line client that also connects to a GCspy

server, but stores all received data in a trace file using ClientInterpreter and

StreamTrace.

TerminalPlayTrace is a command-line tool that acts as a GCspy server and replays

recorded trace data from a trace file to a client, also using StreamTrace.

StreamTrace implements reading trace data from as well as writing trace data to a file

(or any stream of bytes).

Package gcspy.vis

MainFrame implements the GCspy client’s main window. It provides access to all

frequently used functionality. The largest part of the main window is a docking

area that contains views for the spaces of the heap as well as information about

the trace.

ConnectionDialog provides a dialog window where users can specify a remote host to

connect to or a trace file to open. Instances are created by MainFrame on demand.

EventFilterDialog is another dialog window. It allows users to modify the event filters

of the ongoing trace. EventFilterDialog is also instantiated by MainFrame as

needed.

Indexer stores the offsets of events and heap snapshots within a trace. This class is

used by MainFrame to be able to navigate through past events.



Technical documentation 27

gcspy::tools

TerminalPlayTrace

main()

TerminalStoreTrace

main()

TerminalClient

main()

StreamTrace

buffer

setupInput(input)
setupOutput(output)
writeEvent(...)
writeSpace(space)
parse()

«use»«use»

ClientInterpreter

gcspy

gcspy::Main

main()

gcspy::vis

MainFrame

dockController
pluginManager

connect(...)
play()
disconnect()
quit()

Indexer

interpreter
traceData

getNumEvents()
getNumSpaces()
getSpace(i)

ConnectionDialog

getConnectionType()
getHost()
getPort()
getTraceFile()

EventCountView

table
traceData

EventFilterDialog

table

getEventFilters()

EventSlider

eventCount
listeners

reset()
moveSlider(pos)
addMovedListener(l)

LegendView

space
streamIds

setDisplayedStreams(...)

MagnifyingPanel

glassPane
contentPane

setMagnificationEnabled(ena)
getContentPane()
setLayout(layoutmgr)

SpaceManager

space
streamChooser
selectedStreams

TileManager

space
streams

setStreams(streams)
update()
setTileSize(w,h)
clearSelection()
clearMarkers()

SpaceSummary

space
summaryView

update()
copyToClipboard()

TileStyle

enumColors
streamColors
selectedColor
backgroundColor
enumPaintStyle
valuePaintStyle

revertToDefaults()

TileStyleSettings

listeners

addTileColorsListener(l)

UIInterpreterProxy

data : TraceData
pauseListeners
eventListeners
spaceListeners

«instantiate»

«use»

PauseListener

«interface»

EventCommandListener

«interface»

SpaceCommandListener

«interface»

InterpreterEventProvider

«interface»

addEventListener(l)
fireEventListeners(...)
addPauseListener(l)
firePauseListeners()
addSpaceListener(l)
fireSpaceListeners(...)
getEventCounts()
getEvents()

«instantiate»

«instantiate»

«instantiate»

gcspy::vis::plugins

PluginManager

plugins

getPluginListeners()
setActivePlugin(plugin,active)

PluginListener

interpreter
space

getLabel()
init(...)

gcspy::vis::utils

AdjustedColor

fromColor
toColor

generate(val,max)
generate(from,to,val,max)

Factory

createIconButton(...)
createTitlePanel(title,content)
createTable(...)

ActionListener

«interface»

actionPerformed(event)

«realize»

«realize»«realize»«realize»

«realize»

Figure 4.2: Diagram of GCspy’s visualization and user interface classes



Technical documentation 28

EventCountView is a user interface component that displays a table of all event types

and how often they occurred in the current trace. The component is part of

MainFrame, but not visible by default.

EventSlider provides a slider component for the user interface and a text input field

with an event number. Users can navigate to events by clicking and dragging

the slider or by entering a particular event number. MainFrame contains a single

instance of EventSlider in its bottom panel.

UIInterpreterProxy forwards events from a ClientInterpreter to subscribed user

interface components. For receiving events, UIInterpreterProxy itself realizes

several of the ClientInterpreter listener interfaces. The UIInterpreterProxy

class was introduced in the scope of this thesis and is discussed in more detail

later in this chapter.

InterpreterEventProvider is an interface that defines methods for subscribing to

events from ClientInterpreter, but also for triggering events which origi-

nate from within the user interface. This interface is implemented by class

UIInterpreterProxy. MainFrame provides an instance of UIInterpreterProxy

to user interface components so they can subscribe for the types of event they are

interested in.

SpaceManager is a user interface component that visualizes a single space using

TileManager. It allows choosing the visualized stream(s) and viewing additional

information with controls in panels at its top and bottom.

SpaceSummary implements a graphical summary view of the values of all streams of

that space. This view is not enabled by default.

LegendView implements a legend view for the currently visualized stream(s). It shows

the appearance of tiles with various values.

TileManager visualizes the tiles of a space, showing one or more streams. It uses

MagnifyingPane to enlarge the area near the mouse pointer when magnification

is enabled.

MagnifyingPanel is a type of panel that can display an overlay with a magnified

subsection of the panel’s content.

TileStyle holds the colors and visualization options that are used by TileManager when

rendering the space.

TileStyleSettings implements a dialog window that allows to change the used colors

and visualization options. It is instantiated by SpaceManager and manipulates

the TileStyle object which TileManager uses.



Technical documentation 29

Package gcspy.vis.plugins

PluginListener is an abstract class central to GCspy’s plugin framework. Each plugin

for GCspy must provide a concrete plugin listener derived from this class. When

the user activates a plugin in the user interface, GCspy calls the plugin listener’s

actionPerformed() method defined in superinterface ActionListener. In its

implementation of this method, the plugin can react accordingly, for example by

opening a dialog window.

PluginManager determines which plugins are available by scanning GCspy’s plugins

subdirectory for JAR files. When a server connection is established, MainFrame

calls PluginManager to load all enabled plugins and return objects for their

PluginListener implementations for integration with the user interface. Single

plugins can be disabled and will then not be loaded.

Package gcspy.vis.utils

AdjustedColor allows to interpolate between two colors, given a start and end color

and positive integers for value and maximum value (the minimum value is always

considered to be 0).

Factory provides static convenience methods to construct commonly used user interface

components.



Enhancements 30

Chapter 5

Enhancements

5.1 Overview

This chapter characterizes the enhancements to GCspy that were introduced in the

scope of this thesis. Each of the following sections discusses a change or set of changes.

A section starts with the motivation or requirements that led to the change. Then it

describes the design of the solution as well as other approaches that were considered.

Finally, the section characterizes the aspects of the final implementation.

5.2 Prior improvements

The source code of this thesis is based on GCspy release 1.0.12 [GCspy]. Before I

started working on the implementation, my supervisor had already introduced several

improvements to make GCspy more suitable for using it in a different project. These

changes are not described in detail here and only listed in short:

Replaying and saving trace files in the user interface

Prior to this change, replaying trace files required manually starting a local replay server

from the command line and connecting to it with the GCspy client. Saving trace data

to a file was also done with a command-line utility that connects to the GCspy server

and writes received trace data directly into the file.

With this change in place, trace files can be replayed from within the GCspy client’s

user interface and the data from an ongoing trace session can be saved to a file at any

time.



Enhancements 31

Navigation within traces

Originally, GCspy could only visualize the heap state from the most recent event.

Viewing the heap from events that occurred before that was not supported and the

navigation controls only allowed pausing and continuing execution.

This change introduced the Indexer class that stores information about all past events

up to the current event. Using EventSlider and other new navigation controls, the

user can now seek and view any past event of the current trace.

Build process

The Java source code used to be built with make, which is unusual and rather unflexible

for Java code bases. The makefile was replaced with a build.xml file for Apache Ant.

The whole GCspy client is now packaged as a single JAR file complete with required

libraries while previously, only plugins were packaged. The use of Apache Ant also allows

easier import of the source code in most Java integrated development environments

(IDEs).

5.3 Space view usability

GCspy’s original space visualization had a number of limitations that can affect a

user’s efficiency in using GCspy. Hence, the motivation for this change was to improve

usability for GCspy by addressing those limitations. Figure 5.1 is a screen capture of

the original GCspy client with only the enhancements described earlier in Section 5.2.

In the following, this figure will be used to point out some of these issues.

A major limitation was that users were required to manually switch between spaces

by clicking the Activate button below the respective space’s view 1©, 2©. This was

necessary to view information for a tile within that space or to change the visualized

stream with the view chooser 3©. The desired improvement here was to make spaces

more independent of each other and to show tile details after clicking on a space’s tile

without having to activate the space first.

Large spaces raised another problem: GCspy’s space views did not have any scrolling

capability. Instead, the space view would display only as many tiles from the start of

the space as could fit in the available area. An arrow in the bottom right corner of the

view would indicate when there are more tiles in the space than currently visible 4©,

5©. The intended improvement for this issue was that users should be able to scroll

through all tiles of a space as well as change the tile size to see more tiles at once.



Enhancements 32

Figure 5.1: GCspy 1.0.12 with enhancements showing a trace

Another issue was the lack of keyboard navigation. After selecting a tile, the user could

not use the arrow keys to navigate to neighboring tiles. Using the mouse for selecting

tiles was mandatory.

Finally, marking of tiles was performed with the middle mouse button and was only

possible for a single group of neighboring tiles 6©. The objective here was to allow

marking of tiles in separate locations and to avoid relying on the availability of three

mouse buttons.

The first considered approach to address the described limitations was to revise and

extend the existing components. This would have involved using component focus to

determine the currently active space, reacting to keyboard events for navigation and

adding a vertical scrollbar to reach all tiles of large spaces.

However, an inspection of the design and implementation of the space visualization

components revealed that their behavior and structures were very rigid. The implemen-

tation barely used standard components and had its own implementation for rendering

tiles and handling mouse events. Essentially, the class TileManager acted as canvas for

the SpaceManager class to render the tiles of the space. Tests with JScrollPane to add

scrolling capability to TileManager confirmed that extensive changes to the existing

implementation would be necessary.



Enhancements 33

For these reasons and because other changes to tile rendering were already planned at

that time, a different approach was chosen. The class TileManager was rewritten to

use JList [JList], which is a standard Swing component designed to lay out objects

in rows and columns and render them. The tremendous advantage of this approach is

that JList already performs layouting of the tiles and implements keyboard navigation.

Only slight changes were made to keyboard behavior so that the Home and End keys

jump to the first or last tile of the current row instead of the whole space and Ctrl-Left

and Ctrl-Right can be used to skip several cells when navigating.

Another important characteristic of JList is that it follows the Model-View-Controller

architectural pattern (MVC) in which the collection of items (model), their visual

representation (view) and user interaction (controller) are separated. This allowed for a

much cleaner separation of data and visualization than before and proved very helpful

for the subsequent enhancements to tile rendering which are described in later sections.

The new implementation of TileManager uses its JList in combination with Swing’s

JScrollPane class. When a space is large enough so that it does not fit the available

area, JScrollPane automatically adds a vertical scrollbar. In addition, two new buttons

were added to allow the user to increase or decrease the size of the individual tiles to fit

more tiles on the screen or to get a better look at the displayed tiles. This was also easy

to accomplish because JList allows to set a uniform size for all displayed items.

In order to remove the need for users to switch between spaces manually, spaces were

made independent of each other. Each space view now has a separate drop-down list

for choosing the stream to visualize. Tiles of a space can be selected without prior

activation of the space, and tile details are always shown for the most recently selected

tile regardless of its space. As a result, the Activate buttons were no longer necessary

and removed.

One feature that JList does not provide is marking list items. This functionality was

implemented in the new class MarkerManager that handles mouse click events and sets

marked tiles accordingly. Tiles are marked by right-clicking a single tile or by holding

the right mouse button and dragging the mouse pointer over several tiles. Marking new

tiles no longer clears the previous marking, but instead marks new tiles or unmarks

tiles. The entire marking can still be cleared with the Clear Markers button.

The screen capture from Figure 3.4 on page 16 shows most of the described improvements.

Figure 5.2 shows a simplified diagram of the classes involved in GCspy’s new space

view implementation. The following description characterizes their interaction and some

implementation details.

SpaceManager uses TileManager to render the tiles of the space it represents, as

described earlier in Section 4.3.2.



Enhancements 34

gcspy::vis

SpaceManager

space
streamChooser
selectedStreams

TileManager

space
streams

setStreams(streams)
update()
setTileSize(w,h)
clearSelection()
clearMarkers()

javax::swing

JList

setModel(m)
setCellRenderer(r)
setFixedCellWidth(w)
setFixedCellHeight(h)
clearSelection()
getSelectedIndex()

SpaceListModel

space
streams

getElementAt(i) : Tile

JScrollPane

«create» JScrollPane(component)

MagnifyingPanel

glassPane
contentPane

setMagnificationEnabled(ena)
getContentPane()
setLayout(layoutmgr)

model

list

scrollPane
ListCellRenderer

«interface»

getListCellRenderer(list,value,index,...)

TileRenderer

«realize»

TileComponent

style
tileFlags
selected
marked

setTile(tile : Tile)
paintComponent(g : Graphics)

Tile

space
streams
index

«create»

renderer

MarkerManager

mouseAdapter

isMarked(tileIndex)
clear()

DefaultListSelectionModel

isSelectedIndex(index)
addSelectionInterval(from,to)
removeSelectionInterval(from,to)
clear()

markers

ListModel

«interface»

getSize()
getElementAt(index)
addDataListener(l)
removeDataListener(l)

«realize»

Figure 5.2: Diagram of GCspy’s space view classes

JList is a standard Swing component designed to lay out and render items of a list in

rows and columns. A class implementing the ListModel interface acts as the model

which provides JList with the collection of list items to display. Another class

that realizes the ListCellRenderer interface acts as view and provides JList

with components that it can use to draw the list items on the screen.

TileManager is the class that assembles the tile view from single components. It

instantiates a JList for rendering tiles and provides it with a SpaceListModel

object as backing store and with a TileRenderer for drawing the tiles. The JList

is placed inside a JScrollPane to add scrolling capabilities. The JScrollPane in

turn is placed inside a MagnifyingPanel that can magnify its content.

Tile represents a single tile in a space by its index.

SpaceListModel is a list model implementation that provides Tile objects to JList

as list items.



Enhancements 35

TileComponent is a visual component that renders a single tile of a space. In addition

to the tile’s values and special properties (such as separators or links), it also

displays whether the tile is selected or marked.

TileRenderer is called from JList to obtain a component for rendering a specific list

item. JList passes that list item’s value, which is a Tile object created earlier

by SpaceListModel. The TileRenderer has a private TileComponent instance

which it then updates to match the requested tile (list item) and provides it to

JList for drawing.

MarkerManager manages the set of marked tiles in the tile view. It handles mouse

click events inside the JList and uses the DefaultListSelectionModel class to

efficiently handle ranges of marked tiles.

5.4 Tile rendering

The GCspy client originally supported only a single “color-interpolating” mode of

rendering tiles. The driver on the server side has to initially specify a color and upper

and lower boundaries for each stream. When visualizing that stream, the GCspy client

takes each block’s value relative to the stream’s boundaries and interpolates a color

between black and the predefined color. The tile representing that block is then filled

with that color. For example, if a stream’s predefined color is red, a tile in dark red

indicates a value near the lower boundary while a bright and saturated red tile stands

for values close to the stream’s upper boundary.

Figure 5.3 shows an example of how the GCspy client visualizes tiles of a stream. The

values of the stream in question are between 0 and 65535, therefore the stream’s lower

bound is chosen to be 0 and the upper bound is set to 65535. The stream’s predefined

color is white, which is associated with the stream’s upper bound in visualization. Black

is associated with the stream’s lower bound. Tiles with a value matching either bound

are rendered in the respective bound’s color. The color of tiles for other values within

the bounds are interpolated between black and white, resulting in different shades of

gray.

0 16384 32768 49152 65535

0% 25% 50% 75% 100%

Figure 5.3: Tile visualization by interpolating colors

This mode of visualization allows users of GCspy to quickly assess which tiles of a space

have low, medium, or particularly high values. Still, it is not very easy to estimate a



Enhancements 36

tile’s actual value from its tile’s color or to recognize a difference between tiles with

somewhat close values such as 40% and 60%. This becomes a problem especially when

using stream colors such as blue or violet where different shades become even harder

to distinguish. Another issue is that this visualization relies entirely on correct color

perception and therefore excludes people with a vision deficiency.

Enumeration streams were also rendered with this visualization mode. The major

drawback of this approach is that with four or more enumeration values, it becomes

very hard to tell the difference between the different shades and to match them to

enumeration values.

Finally, only one stream of a space could be viewed at the same time. In practice

however, there can be two or more streams that are related to each other, such as

estimated occupancy and actual occupancy. A user can only compare such streams by

viewing the details of a single tile or by repeatedly changing the displayed stream while

focusing on a specific area in the space.

Resolving these limitations proved to be rather straight-forward after the changes to

the space view described in section 5.3. Most of the enhancements described in the

following were made in the TileComponent class.

First, a second visualization mode was conceived that addresses the problems with

color-interpolating visualization. Instead of filling the entire tile with a color, it renders

a vertical bar inside the tile. The bar’s height represents the value of the tile relative

to its bounds. The major advantage of this mode is that is becomes much easier to

estimate a tile’s value from the height of its bar. Therefore, users can also better tell

the difference between tiles with close values. The effect even increases with larger tile

sizes. This visualization mode also relies much less on color perception.

Figure 5.4 shows how tiles are rendered with the vertical bar visualization mode. The

color of the bar is computed with the same interpolation that the original visualization

method uses. This provides users with an additional visual clue for spotting tiles with

particularly low or high values.

0 16384 32768 49152 65535

0% 25% 50% 75% 100%

Figure 5.4: Visualization of tiles with vertical bars

Because vertical bar visualization proved superior in many cases, it was made the default

for value streams. However, enumeration values were still not very distinguishable with

this visualization mode. Hence, another mode was created specifically for enumeration

streams.



Enhancements 37

This new visualization mode assigns each enumeration value a color from a pool of 14

distinct colors. Each tile is filled with the color assigned to its value. The first seven

colors of the pool are selected by choosing bright colors with equivalent hue distances in

the Hue, Saturation, Brightness (HSB, also called HSV) color model. The second set of

colors are darker versions of the first seven colors.

This visualization proves to be very effective for streams with up to ten enumeration

values. Users can quickly distinguish tiles with different enumeration values by their color.

Therefore, GCspy automatically applies this new mode when visualizing enumeration

streams. Still, this method relies on correct color perception. Users with a color vision

deficiency could have difficulties distinguishing the colors. Also, some display devices

such as projectors often replicate colors inaccurately.

For this reason, an additional variant of this visualization mode was added. With

this variant, GCspy assigns each value of an enumeration stream one of eight different

patterns composed of visual elements such as dots, a grid, horizontal, vertical, or

diagonal lines. Tiles are then painted with these patterns instead of only filled with

their respective colors. The pattern can be rendered in the same distinguishable colors

as in the filling mode (the default) or in only black and white (monochromatic mode).

Figure 5.5 shows the legend view for an enumeration stream with monochromatic pattern

visualization. GCspy assigns each block type a different, distinguishable pattern.

Figure 5.5: Legend of an enumeration stream with pattern visualization

The implementation of the patterns is centered around a new interface named

FillPattern which declares a single method fill(). Each type of pattern like dots

or horizontal lines is represented by a class realizing the FillPattern interface. These

classes implement the fill() method so that it draws their kind of pattern into a

rectangular area passed by the caller.

To generalize further, all visualization modes were implemented as patterns:



Enhancements 38

The opaque pattern fills a tile with a single color. Color-interpolating visualization and

all variants of enumeration visualization use this “pattern”.

The vertical bar pattern draws a vertical bar with a specific relative height inside the

tile. GCspy uses this mode exclusively for the vertical bar visualization mode.

The invalid pattern draws a question mark on a red background inside the tile. This

pattern is used to indicate tiles with invalid values, for example because the values

is outside the stream’s boundaries.

Figure 5.6 depicts the classes responsible for rendering tiles, including the FillPattern

interface and three of its implementations. The interaction between these classes is

characterized in the following.

java::awt

Graphics

setColor(c)
fillRect(x,y,w,h)
fillPolygon(points)
fillOval(x,y,w,h)

gcspy::vis

FillPattern

«interface»

fill(g : Graphics,area : Rectangle)

OpaquePattern HorizontalLinesPattern

spacing
thickness

«realize»

DotsPattern

spacing
diameter

«realize»

TileComponent

style
tileFlags
selected
marked

setTile(tile : Tile)
paintComponent(g : Graphics)

«use» «use» «use»

«realize»

«use»

Figure 5.6: Diagram of classes responsible for rendering tiles

As described earlier in Section 5.3, JList asks TileRenderer to provide a component for

drawing a specific tile on the screen. TileRenderer returns a TileComponent instance

that is configured to draw the tile in question. JList calls the paintComponent()

method of TileComponent and passes a Graphics object that provides methods to

perform the actual drawing. TileComponent in turn calls the fill() method of the

appropriate FillPattern implementation and passes the Graphics object as well as

the rectangular area that should be painted. TileComponent itself also draws additional



Enhancements 39

visual elements such as highlighting when the tile is selected or marked, links or separators

between tiles, borders, and the background.

The last remaining issue after the the modifications described so far was that it was hard

to compare related streams of a space. This limitation was approached by allowing users

to choose multiple streams for visualization. GCspy then vertically divides each tile into

segments of equal size and visualizes each selected stream in a different segment of the

tile. This feature is implemented in TileComponent by calling the fill() method on

the appropriate pattern for each stream and passing the area of that stream’s segment.

Figure 5.7 shows three different streams that are visualized at once in the tiles of a

space. Each tile is divided into three segments. The left segment contains the block type

enumeration stream which is rendered with patterns. The center segment visualizes the

garbage collector’s estimate of the occupancy of each block as a vertical bar. The right

segment contains a block’s actual occupancy and is rendered as vertical bar as well.

Figure 5.7: Visualization of three streams at once

Figure 5.8 depicts the dialog for selecting multiple streams for visualization. Users can

open it by choosing <Show multiple streams...> in the stream selection drop-down list.

A user can choose at most three streams to display at the same time.

Figure 5.8: Dialog for selecting multiple streams for visualization



Enhancements 40

5.5 Magnification

GCspy 1.0.12 already included a magnification feature for tile views that was located in

the bottom left corner of the main window. This feature can be seen in Figure 5.1 on

page 32. The magnification area shows the neighboring tiles of the currently selected

tile. The upper row of tiles uses a small tile size and provides an overview of the tile’s

neighborhood. The lower row uses a large tile size and intends to make the visual

differences between the tiles more noticeable.

This approach to magnification has several disadvantages. Firstly, a tile must be selected

to be shown in the magnification area. The previous selection is lost in the process. In

earlier GCspy releases, selecting a tile could also require manually activating that tile’s

space first. Secondly, when inspecting a space view and using the magnification feature,

the user has to repeatedly shift focus between the space view and the magnification

area because they are in entirely different parts of the main window. Finally, the

magnification area takes up space even when it is not being used.

The magnification feature might appear less important now that GCspy allows to change

the tile size in space views. However, it still proves very useful for large spaces where

small tiles are helpful for instantly spotting many particularly high or low values and

the magnification feature allows to quickly get a more detailed view. Hence, a more

sophisticated replacement of this feature was conceived.

The new intelligent magnification area is placed in a corner of the space view itself

instead of a separate dedicated region of the main window. It magnifies the area near

the mouse pointer rather than neighbors of the selected tile. When the user moves the

mouse pointer near the magnification area, the area automatically moves to a different

corner so it doesn’t obstruct the user’s view. Figure 3.4 on page 16 shows a space view

with the magnification area in the bottom left corner 4©.

This magnification mechanism is implemented in a single class named MagnifyingPanel

which is depicted in the class diagrams shown in Figure 4.2 on page 27 and Figure 5.2

on page 34. MagnifyingPanel acts as container for other user-interface elements just

like a normal panel. However, when magnification is enabled and the mouse pointer is

inside the boundaries of the MagnifyingPanel, it draws a magnified view of the region

near the mouse pointer into a rectangle in one of its two bottom corners.

Figure 5.9 shows how the functionality of MagnifyingPanel is implemented using layered

panes. The MagnifyingPanel places the actual user-interface components it contains in

the content pane, which is the bottom-most layer in terms of depth. Above the content

pane is a glass pane. As the name suggests, the glass pane is fully transparent, but

it intercepts any mouse events intended for the elements in the content pane. These

events are necessary for tracking the position of the mouse and are forwarded to their

actual recipients after processing.



Enhancements 41

Glass pane

Content pane

On-screen area

Magnification
rectangle

Figure 5.9: Layers of the magnifying panel

The MagnifyingPanel lets the panels draw into a buffer instead of directly on the

screen. From this buffer, it can extract the region near the mouse pointer and enlarge

it. MagnifyingPanel then draws the content of the buffer on the screen and adds the

magnification rectangle with the enlarged region as overlay.

5.6 Space summary and tile property views

GCspy originally used plain text areas to display information for tiles and spaces.

Figure 5.10 shows two examples for these text areas. The tile property view is located

in the left pane of the main window. It shows information about the location of the tile

within the space in the first line and then lists all stream values for the tile. Depending

on the type of stream, a stream’s value can also be shown as a percentage, which is the

case with the Occupancy (est) and Occupancy (act) streams.

The space summary is in a separate window on the bottom right. It shows a summary

for all streams over an entire space, in this case the Remembered Sets space. The blocks

of this space represent remembered sets of references between heaps. The RS state

stream specifies the current state of such a remembered set, while the Heap Id stream

specifies the heap where the references originate. The summary values that the summary

view displays are provided by the server. Enumeration streams such as RS state and

Heap Id typically give the number of tiles with a particular enumeration value in their

summary values.

Other streams represent a count, such as the #holes stream in the Whole heap space.

This stream specifies the number of gaps (“holes”) between the objects in a block. A

meaningful summary value for this stream would be the sum over the values of all blocks,

i.e. the total number of holes in the space. For streams specifying relative values or

percentages, such as estimated and actual occupancy, the average value over all blocks

is an informative summary value.



Enhancements 42

Figure 5.10: Main window and views in external windows in GCspy 1.0.12

The plain-text views are simple to generate and display. However, they require the user

to read through the displayed text and put the values in context. In order to allow

users to more quickly judge the state of a tile or space, it was decided that lists with

additional horizontal fill bars in their rows should replace the text views. The size of a

bar should indicate the stream’s relative value, for example the percentage of tiles of a

particular type in the entire space.

One advantage of the text views was that users could select and copy text to the clipboard

and use them in other applications or save them in a file. The new type of view retains

this functionality with a small button that allows to copy a text representation of the

entire view’s content to the system clipboard.

Figure 3.5 on page 17 shows a space summary with this new type of view. Allocation

type, RS state, and Heap id are streams in the Whole heap space. The length of the

bars of the individual enumeration values is based on the total number of tiles with

that value in the space. Other streams for which the server provides a percentage in the

summary, such as the Occupancy (est) and Occupancy(act), use that percentage for the

bar’s size. The fourth button from the right in the tab panel at the very top allows the

user to copy a text representation of the view’s contents to the clipboard.

The properties view shown in Figure 5.13 on page 48 also uses this new type of

visualization. This figure also depicts a space summary view that displays the same

information as the space summary in Figure 5.10.

Figure 5.11 depicts the classes involved in the new space summary view. Each

SpaceManager, which represents a space view, has a SpaceSummary panel. This panel



Enhancements 43

contains a SpaceSummaryView component which is reponsible for visualizing the space

summary. This component uses a PropertyListView which in turn relies on JList

for rendering the list. Class JList follows the MVC pattern described earlier in Sec-

tion 5.3. The SpaceSummaryView provides a SpaceSummaryListModel as model for

JList. This model creates an instance of PropertyItem for each list row. Such an

instance holds the name displayed on the left side, whether the item represents a heading,

the value to display on the right side, as well as whether and how a horizontal bar

should be rendered. The PropertyListView on the other hand provides an instance of

PropertyItemRenderer to its JList to render list items. The JList calls the renderer

with PropertyItem instances from the model. The renderer then updates a private

PropertyItemComponent instance to reflect the values from the PropertyItem and

returns it to JList for drawing. PropertyItemComponent in turn uses the DiagramBar

component to render the horizontal bar.

gcspy::vis

SpaceManager

space
streamChooser
selectedStreams

SpaceSummary

space
summaryView

update()
copyToClipboard()

SpaceSummaryView

update()

summaryView

PropertyListView

setModel(m)

SpaceSummaryListModel

space

PropertyItem

name
isHeading
value
hasPercentage
percentage
color

«create»

PropertyItemRenderer

PropertyItemComponent

paintComponent(g)

DiagramBar

value

paintComponent(g)

javax::swing

JList

setModel(m)
setCellRenderer(r)
setFixedCellWidth(w)
setFixedCellHeight(h)
clearSelection()
getSelectedIndex()

«use» ListCellRenderer

«interface»

getListCellRenderer(list,value,index,...)

ListModel

«interface»

getSize()
getElementAt(index)
addDataListener(l)
removeDataListener(l)

«realize» «realize»

Figure 5.11: Classes of the new summary view

The mechanism for displaying properties is slightly more complex because there is only

one property view that the multiple space views share.



Enhancements 44

Figure 5.12 shows the classes involved in the property display mechanism. PropertyView

is an interface for components that display properties. Such a PropertyView has only

a single provider of properties at the same time (or none). Whenever an object other

than the current provider calls setProperties(), this object becomes the new provider

and the PropertyView notifies registered PropertySourceListener objects that its

provider has changed. AbstractPropertyView is an abstract class that implements

part of the functionality that the PropertyView interface requires.

gcspy::vis

PropertyView

«interface»

setProperties(provider,props)
addPropertySourceListener(l)

AbstractPropertyView

currentProvider

«realize»

PropertySourceListener

«interface»

propertySourceChanged(view,newProvider)

SpaceManager

«realize»

PropertyListView

sourceListeners

TilePropertyView

copyToClipboard()
view

MainFrame

propertiesView

tilePropertyView

Figure 5.12: Classes involved in the property display mechanism

The PropertyListView class described above extends the AbstractPropertyView class

and takes care of the visualization of properties. The MainFrame, i.e. GCspy’s main

window, has a single property view that uses PropertyListView. Each SpaceManager

instance is provided with a reference to the property view and immediately registers

itself as PropertySourceListener.

When the user clicks a tile in the space view, that space’s SpaceManager calls the property

view’s setProperties() method and becomes its new property provider. When the

user later clicks another tile in a different space view, that space’s SpaceManager

also calls setProperties() on the property view and the property provider changes

again. The PropertyView now calls the propertySourceChanged() method of all

listeners, including the SpaceManager object which formerly acted as provider. That

SpaceManager then clears its selection because the user has selected another tile in a

different space. As long as a SpaceManager is the current property provider (i.e. a tile

in its space is currently selected), it updates the properties whenever the tile’s values

change, typically after an event from the server.



Enhancements 45

5.7 Docking views

The original main window of the GCspy visualizer, which is shown in Figure 5.10 on

page 42, was partitioned into three panels. The tools panel on the left side displayed

the current event, information about the selected tile, the stream chooser for the active

space, and the magnification area. The space panel occupied the right side of the main

window and contained all space views. The navigation panel at the window’s bottom

showed controls for navigation in the trace and the connect/disconnect buttons.

GCspy uses layout managers to adjust the layout of its panels and views to different

window sizes. However, it did not allow to resize or hide single panels or views. As a

result, working with multiple large spaces could be inconvenient because all space views

were shown at the same time and had to share the available space, even though a user

would often work only with a single space at the same time.

Additional views such as the summary and legend views of a space were not shown by

default and opened on request in separate windows. Figure 5.10 on page 42 shows two

such windows as well. However, these windows did not stay on top of the main window.

When working with a maximized main window or with limited space on screen, it was

often required to switch between the main window and these separate windows using

the task bar, which proved inefficient and inconvenient.

In order to resolve these issues, it was decided that GCspy should be equipped with

a more flexible and modern user interface. In particular, the GCspy visualizer should

implement the docking views paradigm that many applications use, most notably the

major integrated development environments (IDEs) such as the Eclipse IDE, NetBeans

IDE or Microsoft Visual Studio.

In this paradigm, the user can resize panes and views by clicking and dragging their

borders. Panes and views also provide buttons to hide, minimize or maximize them in

the main window. The user can click and drag a view or pane within the main window

to change its position, but also drag it outside the main window so it becomes a separate,

independent window.

There are several implementations of docking functionality for Java that are available

for non-commercial use. Many of them were evaluated and considered for use in GCspy.

The following description characterizes these implementations and reflects the situation

at the time of writing, April 27, 2011.

NetBeans RCP. The NetBeans Rich Client Platform (RCP) provides well-developed

and feature-rich docking capabilities to applications built on it [NetBeansRCP]. However,

NetBeans is a rather heavy dependency for the otherwise lightweight GCspy client.

Moving GCspy to NetBeans RCP as base would require considerable effort that seems

unjustified for the gained functionality.



Enhancements 46

Eclipse platform. The Eclipse platform also provides mature and rich docking to its

applications [EclipsePP]. But like NetBeans RCP, it constitutes a heavy dependency

and would require substantial changes to GCspy. In addition, Eclipse is based on the

Standard Widget Toolkit (SWT) while GCspy uses the Swing toolkit. Although Swing

code is supported in Eclipse, it could lead to visual inconsistencies and other cross-toolkit

issues [Hirsch07].

Docking Frames Docking Frames is an open source docking framework for Swing

licensed unter the GNU Lesser General Public License (LGPL) [DockingF]. Its goal

is to offer a maximum of flexibility. The project is very active and frequently releases

new versions: the most recent version 1.1.0 was released only several days ago. Docking

Frames also comes with an exhaustive documentation.

VLDocking. VLDocking is a Swing docking framework that claims to provide rich

docking features and easy integration into existing applications [VLDocking]. VLDocking

was developed by the company VLSolutions which just closed when the framework

was first evaluated. However, development of the framework seems to continue slowly,

although no releases are currently offered for download.

Flex Dock. Flex Dock is a stand-alone windowing and docking framework for Swing

[FlexDock]. The project appears to be barely active. Its website on java.net only

provides access to the source code repository and does not offer any downloads1.

JDocking. The JDocking project provides the docking functionality from NetBeans

as a stand-alone framework. However, the project appeared to be unmaintained when

first evaluated and at the time of writing, the project’s website on java.net can no longer

be reached1.

There are also two commercial docking frameworks for Swing that are dual-licensed as

free software under the GNU General Public License (GPL): InfoNode Docking Windows

[IDockWin] and Sanaware Java Docking [SanaJDock]. However, since GCspy is licensed

under a BSD-like license which is incompatible to the GPL, it could not use either of

them. Also, the most recent releases of both projects are more than two years old, which

indicates low activity.

It was finally decided that GCspy’s new docking functionality will be implemented with

the Docking Frames framework. Docking Frames provides a high level of flexibility, but

comes with a“common” library that allows to use frequently used functionality with little

effort. The framework includes more than 100 pages of illustrated documentation and

the source code is annotated with helpful JavaDoc comments. The project frequently

1 Earlier in 2011, Oracle moved java.net to Project Kenai. Not all projects were migrated and some
content may have been lost.



Enhancements 47

publishes new releases, which is an indicator that the framework will continue to be

maintained.

The contents of GCspy’s main window, with the exception of the menu bar at the top

and navigation panel at the bottom, were replaced with a single large docking area. This

docking area can hold an arbitrary number of dockables and is managed by an instance

of class CControl from the Docking Frames Common library.

Each space view as well as the tile info view were placed inside CDockable instances

that can be docked in the docking area. The space view’s summary and legend views

which were previously opened in external windows were turned into ordinary panels

and placed inside dockables as well. In addition, most other windows such as general

information about a trace, event counters and timer info are now also dockable.

In the course of the transition, the default layout of the main window changed as well.

Figure 5.13 depicts the new main window with dockable views. It shows the same trace

and displays the same data as Figure 5.10 on page 42. The space views now occupy the

left two thirds of the docking area. The tile properties view (formerly named tile info)

is in the column on the right and by default occupies the entire column. GCspy places

additional views that are not shown by default, such as the legend and summary views

shown in the figure, below the properties view. The user can rearrange all dockables at

will and close them as well. Closed space views can be reopened from the new Spaces

menu.

In retrospect, the transition to a flexible user interface of dockable views with Docking

Frames turned out to be rather simple and straight-forward. For the most part, adoption

of the framework only required wrapping the existing views into dockables.

5.8 User interface look and feel

GCspy was originally designed and implemented using the cross-platform Metal look

and feel for Swing. The appearance and behavior of this look and feel is the same on

all different platforms and environments such as Microsoft Windows or Sun Solaris

[SwingLAF]. While this can be considered an advantage from a developer’s point of

view, it also means that GCspy did not integrate very well with these environments.

In order to improve integration with its environment, GCspy was modified to use the

look and feel of the system it is running in. This change was not entirely unproblematic.

GCspy has a widely used class Factory with methods mostly for creating user interface

components. Some of these methods used certain fonts or font sizes that fit the Metal

look and feel, but seemed out of place with other look and feels. Therefore, the methods

of Factory were modified to be aware of the active look and feel and use its fonts and

colors. In the process, several overly trivial methods or methods that did not actually

create an object were removed from Factory.



Enhancements 48

Figure 5.13: New main window with dockable views arranged in the default layout

5.9 Asynchronous event handling

In GCspy 1.0.12, when the client received a command from the server, the

ClientInterpreter first deserialized the command and then immediately called all

listeners subscribed for that type of command from its own main loop thread. The

listeners then processed this event, typically by updating the part of the user interface

they were responsible for. Afterwards, ClientInterpreter continued execution and

resumed communication with the server.

There were two major problems with this synchronous approach. First, it led to

unnecessary delays in the client when the server already sent another command that

could be deserialised while the listeners still processed the current event. The server had

to wait for the client as well when there were too many unprocessed commands. While

this problem occurred less frequently with “real” servers, it did matter when replaying a

trace from a file.

The second issue was that most of the listeners performed user interface updates directly

from within the thread they were called in. However, most of the Swing user interface



Enhancements 49

code executes in a special thread called the Event Dispatch Thread (EDT). The majority

of Swing components used in the GCspy client’s user interface are not thread-safe and

their methods must be also be invoked from this thread. Violations of this constraints

may result in unpredictable errors that can be hard to reproduce [SwingConc].

As a first important step, the UIInterpreterProxy class was introduced even be-

fore this thesis. This class acts as a central hub that dispatches events from a

ClientInterpreter to listeners in the user interface. UIInterpreterProxy and

its super-interface InterpreterEventProvider are described in more detail in Sec-

tion 4.3.2.

In order to resolve both described problems, UIInterpreterProxy was enhanced to use

runnables together with Swing’s event queue. Runnable is an interface that declares a

single method run(). Realization of this interface implement this method to perform a

particular task. Runnable is typically used to execute code across threads or in thread

pools.

When UIInterpreterProxy receives an event from the ClientInterpreter, it cre-

ates a Runnable instance for each listener to dispatch the event to that listener. It

then enqueues the Runnable instances in the user interface event queue using the

SwingUtilities.invokeLater() method. At this point, UIInterpreterProxy already

returns control to ClientInterpreter, which can immediately continue execution and

resume communication.

The EDT on the other hand keeps processing events from the event queue and eventually

takes the Runnable instances from the queue and invokes them. At this point, the

listeners are notified of the event that occurred earlier and can update their user interface

from the proper thread.

This new asynchronous mechanism has greatly reduced the delays in processing server

commands, which is particularly noticeable when replaying a trace from a file. Listeners

still receive event notifications in the correct order because of the first in, first out

(FIFO) nature of the event queue. Correct usage of the EDT also prevents the GCspy

client from random problems as a result of threading issues in the user interface.

5.10 Logging and error handling

Some of the components of the GCspy client reported debug information or error

messages to the terminal. They either used the the System.out or System.err streams

or GCspy’s own Verbose class which provided elementary logging functionality.

However, apart from not being uniform, these approaches had some drawbacks. It was

not possible to limit the level of detail or disable output entirely. The messages also did

not have a consistent format or a time stamp. Finally, redirection of GCspy’s output



Enhancements 50

into a file was problematic because some messages were sent to the standard output

stream while others were sent to the standard error output.

Hence, these methods for output were replaced with actual logging using the Java

Logging API which is part of the Java standard edition [JLogging]. The Java Logging

API allows multiple named Logger objects to record log messages. Each log message

has a level that is an indicator for the importance of the message and ranges from severe

to finest.

The Java Logging API includes several types of handlers that can write log records to

different destinations such as the terminal or into a file. Log messages can be filtered by

source (e.g. the originating class or logger) or by their log level. A typical application

is to hide fine-grained debugging messages that are not of interest to users. Users

can configure filters and handlers without changing the source code by adapting the

logging.properties file.

In the process of rewriting logging and error handling, several calls to System.exit

were removed from exception handlers. Their purpose was to exit to program when

severe errors occurred. However, they sometimes lead to unexpected termination on

minor, recoverable errors.



Conclusion and perspective 51

Chapter 6

Conclusion and perspective

This thesis examined and described the architecture of the GCspy framework and the

data structures it provides to abstract the heap layout. It also compared GCspy with

other tools that offer similar functionality. The thesis further identified and illustrated

the GCspy client’s main use cases and functionality.

The thesis’ technical documentation gave an overview over the implementation of GCspy.

It described the layout of the source tree and identified and characterized GCspy’s most

relevant classes. The thesis then identified certain disadvantages and limitations in the

original GCspy implementation and the means by which they were solved.

In summary, the GCspy client now provides considerably enhanced visualization capa-

bilities and its modernized user interface offers a better user experience. Spaces can be

used independent of each other and can be navigated by keyboard. New and improved

tile visualization modes allow users to more accurately estimate values or recognize the

type of a tile. Values of a tile can now be compared by visualizing multiple streams of

a space at the same time. The new magnification allows users to conveniently inspect

large spaces. Improved tile properties and space summary views visualize values with

bar diagrams to allow quicker judgement of the data. Finally, the implementation of

the docking views paradigm as well as improvements to the look and feel result in a

generally more modern and robust user interface.

Future work on GCspy might revisit the plugin mechanism, where plugins currently

need knowledge of internal data structures instead of using pre-defined interfaces. The

GCspy client itself could be modularized and perhaps be built on one of the available

rich client platforms. These typically provide a mature plugin framework and graphing

libraries that would allow for even more extensive visualization functionality.

In conclusion, GCspy now provides a robust tool with rich visualization capabilities and

a modern user interface to developers of memory management systems.



GCspy communication commands 52

Appendix A

GCspy communication commands

The following is a complete list of the commands used in communication between client

and server.

A.1 Client to server

Pause Request commands are sent to request suspending the execution of the applica-

tion at the earliest convenience so no new events will be produced for the time

being.

Restart commands are sent when the server is in paused state to continue execution.

Play One commands in paused state request to continue execution until the next event

occurs, then return to the paused state.

Shutdown Requests are for initiating the end of the connection.

Event Filter commands modify the event filters in place. Event filters are used to

disable or delay transmission of certain events to the client.

A.2 Server to client

Pause commands (as opposed to pause requests by the client) are sent by the server

when it enters a paused state.

Shutdown is sent by the server to end its connection with the client (typically after a

shutdown request by the client).

Stream commands are sent when the data of the stream of a space has changed and

include the updated data.

Event commands indicate that an event occured and include the type of the event and

timing information.



GCspy communication commands 53

Control commands indicate that control information of a space has changed (such as

the placement of separators or links) and include the new control data.

Event Count commands are used to update the event count at the client.

Summary commands are sent when the summary information of a space’s stream

changes and include the updated summary information.

Space Info commands indicate that the description of a space has changed and include

the new description.

Space commands are sent when a space changes in its entirety. The new space infor-

mation is included with the command.



List of abbreviations 54

List of abbreviations

API Application Program Interface

BSD Berkeley Software Distribution

EDT Event Dispatch Thread (Swing)

FIFO First In, First Out

GC Garbage collection, garbage collector

GNU GNU’s Not UNIX, The GNU Project (free software project)

GPL GNU General Public License

HSB Hue, Saturation, Brightness (alias for HSV)

HSV Hue, Saturation, Value (color model)

IDE Integrated Development Environment

IP Internet Protocol

JAI Java Advanced Imaging (API)

JAR Java Archive

JDK (Sun) Java Development Kit

JMX Java Management Extensions

LGPL GNU Lesser General Public License

MVC Model-View-Controller (architectural pattern)

RCP Rich Client Platform

RVM Research Virtual Machine (Jikes RVM)

SDK Software Development Kit

TCP Transmission Control Protocol

UI User Interface

VM Virtual Machine



List of Figures 55

List of Figures

2.1 Architecture of GCspy with a garbage-collecting virtual machine . . . . 4

2.2 Abstraction of a Mark&Compact garbage collector in GCspy . . . . . . 6

2.3 Composition of a GCspy command . . . . . . . . . . . . . . . . . . . . . 7

2.4 GCspy’s stream command . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 VisualVM showing heap utilization during a memory-intensive benchmark 9

2.6 VisualGC showing heap utilization per space and the time spent in

garbage collection during a memory-intensive benchmark . . . . . . . . 10

3.1 GCspy main window showing a trace . . . . . . . . . . . . . . . . . . . . 13

3.2 GCspy’s connect dialog for remote connections as well as replaying files. 15

3.3 The space view showing a single stream. . . . . . . . . . . . . . . . . . . 15

3.4 Space view showing multiple streams with magnification and markings . 16

3.5 Summary for a space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6 Display style settings for a space view . . . . . . . . . . . . . . . . . . . 18

3.7 Event filter dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Diagram of GCspy’s non-visualization Java classes . . . . . . . . . . . . 23

4.2 Diagram of GCspy’s visualization and user interface classes . . . . . . . 27

5.1 GCspy 1.0.12 with enhancements showing a trace . . . . . . . . . . . . . 32

5.2 Diagram of GCspy’s space view classes . . . . . . . . . . . . . . . . . . . 34

5.3 Tile visualization by interpolating colors . . . . . . . . . . . . . . . . . . 35

5.4 Visualization of tiles with vertical bars . . . . . . . . . . . . . . . . . . . 36

5.5 Legend of an enumeration stream with pattern visualization . . . . . . . 37

5.6 Diagram of classes responsible for rendering tiles . . . . . . . . . . . . . 38

5.7 Visualization of three streams at once . . . . . . . . . . . . . . . . . . . 39

5.8 Dialog for selecting multiple streams for visualization . . . . . . . . . . . 39

5.9 Layers of the magnifying panel . . . . . . . . . . . . . . . . . . . . . . . 41

5.10 Main window and views in external windows in GCspy 1.0.12 . . . . . . 42

5.11 Classes of the new summary view . . . . . . . . . . . . . . . . . . . . . . 43

5.12 Classes involved in the property display mechanism . . . . . . . . . . . . 44

5.13 New main window with dockable views arranged in the default layout . 48



Bibliography 56

Bibliography

[Baldwin05] J. Baldwin, B. Gallop, C. Matthews, JamOLizer: Garbage Collection

Visualizer in the JamVM, 2005.

[Cheadle06] A. M. Cheadle, A. J. Field, J. W. Ayres, N. Dunn, R. A. Hayden, J.

Nystrom-Persson, Visualising Dynamic Memory Allocators, Proceedings of the 5th

international symposium on Memory management (ISMM ’06), June 2006, pp.

115-125.

[DockingF] B. Sigg, DockingFrames, an open source Java Swing docking framework.

http://dock.javaforge.com/. Retrieved on April 27, 2011.

[EclipsePP] The Eclipse Foundation, Eclipse Platform Project. http://www.eclipse.

org/platform/. Retrieved on April 27, 2011.

[FlexDock] java.net, Flexdock, Swing windowing and docking framework. http://java.

net/projects/flexdock/. Retrieved on April 27, 2011.

[GCspy] University of Kent School of Computing, GCspy: visualizing the heap. http:

//www.cs.kent.ac.uk/projects/gc/gcspy/. Retrieved on April 22, 2011.

[Hirsch07] G. Hirsch, Swing/SWT Integration. http://www.eclipse.org/articles/

article.php?file=Article-Swing-SWT-Integration/index.html. Retrieved

on April 27, 2011.

[IDockWin] NNL Technology AB InfoNode, InfoNode Docking Windows: a pure

Java Swing based docking windows framework. http://www.infonode.net/index.

html?idw. Retrieved on April 27, 2011.

[JAI] Sun Developer Network, Java Advanced Imaging (JAI) API. http://java.sun.

com/javase/technologies/desktop/media/jai/. Retrieved on May 17, 2011.

[JList] Oracle Technology Network, The JavaTMTutorials: How to Use Lists. http:

//java.sun.com/docs/books/tutorial/uiswing/components/list.html. Re-

trieved on April 24, 2011.

[JLogging] Oracle Technology Network, JavaTMLogging Technology. http://download.

oracle.com/javase/6/docs/technotes/guides/logging/. Retrieved on Febru-

ary 8, 2011.

http://dock.javaforge.com/
http://www.eclipse.org/platform/
http://www.eclipse.org/platform/
http://java.net/projects/flexdock/
http://java.net/projects/flexdock/
http://www.cs.kent.ac.uk/projects/gc/gcspy/
http://www.cs.kent.ac.uk/projects/gc/gcspy/
http://www.eclipse.org/articles/article.php?file=Article-Swing-SWT-Integration/index.html
http://www.eclipse.org/articles/article.php?file=Article-Swing-SWT-Integration/index.html
http://www.infonode.net/index.html?idw
http://www.infonode.net/index.html?idw
http://java.sun.com/javase/technologies/desktop/media/jai/
http://java.sun.com/javase/technologies/desktop/media/jai/
http://java.sun.com/docs/books/tutorial/uiswing/components/list.html
http://java.sun.com/docs/books/tutorial/uiswing/components/list.html
http://download.oracle.com/javase/6/docs/technotes/guides/logging/
http://download.oracle.com/javase/6/docs/technotes/guides/logging/


Bibliography 57

[JMX] Sun Developer Network, Java Management Extensions (JMX) Technology. http:

//java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/.

Retrieved on September 27, 2010.

[jvmstat] Sun Developer Network, jvmstat: light weight performance and configura-

tion instrumentation for the HotSpot JVM. http://java.sun.com/performance/

jvmstat/. Retrieved on September 27, 2010.

[Marion05] S. Marion, R. Jones, GCspy port to SSCLI (Rotor), 2005.

[NetBeansRCP] Oracle Corporation, The NetBeans Platform. http://platform.

netbeans.org/. Retrieved on April 27, 2011.

[Printezis02] T. Printezis, R. Jones, GCspy: An Adaptable Heap Visualisation Frame-

work, Proceedings of OOPSLA’02 ACM Conference on Object-Oriented Systems,

Languages and Applications, November 2002, pp. 343-358.

[Printezis02b] T. Printezis, A. Garthwaite, Visualising The Train Garbage Collec-

tor, Proceedings of the 3rd international symposium on Memory management

(ISSM ’02), June 2002, pp. 50-63.

[SanaJDock] Sanaware, Sanaware Java Docking. http://www.javadocking.com/. Re-

trieved on April 27, 2011.

[Singh07] V. Singh, S. Ranu, Extending GCspy for Jikes RVM, March 2007.

[SwingConc] Oracle Technology Network, The JavaTMTutorials, Lesson: Con-

currency in Swing. http://java.sun.com/docs/books/tutorial/uiswing/

concurrency/. Retrieved on April 27, 2011.

[SwingLAF] Oracle Technology Network, The JavaTMTutorials: How to Set the Look

and Feel. http://java.sun.com/docs/books/tutorial/uiswing/lookandfeel/

plaf.html

[VisualGC] Sun Developer Network, VisualGC: Visual Garbage Collection Monitor-

ing Tool. http://java.sun.com/performance/jvmstat/. Retrieved on August 15,

2010.

[VisualVM] java.net, VisualVM: All-in-One Java Troubleshooting Tool. https://

visualvm.dev.java.net/. Retrieved on August 15, 2010.

[VLDocking] L. Chamontin, VLDocking, the Swing Docking Framework. http://code.

google.com/p/vldocking/. Retrieved on April 27, 2011.

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/performance/jvmstat/
http://java.sun.com/performance/jvmstat/
http://platform.netbeans.org/
http://platform.netbeans.org/
http://www.javadocking.com/
http://java.sun.com/docs/books/tutorial/uiswing/concurrency/
http://java.sun.com/docs/books/tutorial/uiswing/concurrency/
http://java.sun.com/docs/books/tutorial/uiswing/lookandfeel/plaf.html
http://java.sun.com/docs/books/tutorial/uiswing/lookandfeel/plaf.html
http://java.sun.com/performance/jvmstat/
https://visualvm.dev.java.net/
https://visualvm.dev.java.net/
http://code.google.com/p/vldocking/
http://code.google.com/p/vldocking/


Eidesstattliche Erklärung 58

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig und

ohne fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benützt und die

den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich

gemacht habe.

Linz, am 22. August 2011

Peter Hofer


	1 Introduction
	2 The GCspy framework
	2.1 Overview
	2.2 GCspy architecture
	2.3 Abstraction of the heap
	2.4 Communication
	2.4.1 Commands

	2.5 Comparison to other tools
	2.5.1 VisualVM
	2.5.2 VisualGC
	2.5.3 GCspy


	3 GCspy client user manual
	3.1 Overview
	3.2 Main use cases and functionality
	3.3 Main window
	3.4 Connecting to a GCspy server
	3.5 The space view
	3.6 Event filters

	4 Technical documentation
	4.1 Overview
	4.2 Organization of the source tree
	4.2.1 Java source tree

	4.3 Class overview
	4.3.1 Communication and data structures
	4.3.2 Client and visualization


	5 Enhancements
	5.1 Overview
	5.2 Prior improvements
	5.3 Space view usability
	5.4 Tile rendering
	5.5 Magnification
	5.6 Space summary and tile property views
	5.7 Docking views
	5.8 User interface look and feel
	5.9 Asynchronous event handling
	5.10 Logging and error handling

	6 Conclusion and perspective
	A GCspy communication commands
	A.1 Client to server
	A.2 Server to client

	Bibliography

