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Abstract
A Java virtual machine (JVM) typically manages large amounts
of class metadata (e.g. class descriptors, methods, byte codes) in
main-memory. In this paper, we analyze the impact of metadata
memory management on garbage collection costs in an industrial-
strength JVM. We show that, for most applications in the latest
DaCapo benchmark suite, the tracing of class metadata accounts
for a significant part of full collection time.

We propose a novel approach to metadata memory management
based onmetaspacesand on alinkset graph. Metaspaces store
class metadata segregated by their class loader and keep an exact
record of references from class metadata to the heap. The linkset
graph summarizes what metaspaces reference others via resolved
symbolic links. Metaspaces allowen massereclamation of the
storage allocated to classes defined by a class loader when this class
loader becomes unreachable. The linkset graph eliminates the need
to trace references between metadata to determine the liveness of
classes and of the heap objects they refer to.

This reduces the number of visited references in class metadata
to less than 1% of the original amount and cuts down tracing time
by up to 80%. Average full heap collection time improves by at
least 35% for all but one of the Dacapo benchmarks, and by more
than 70% for six of them.

Metaspace-based management of class metadata also extends
well to multi-tasking implementations of the JVM. It enables tasks
to unload classes independently of other tasks.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features - Classes and Objects;
D.3.4 [Programming Languages]: Processors - Memory manage-
ment (garbage collection), Run-time environments

General Terms Garbage Collection, Dynamic Linking, Java Vir-
tual Machine, Performance, Memory Management

Keywords class metadata, class loader, class unloading, tracing
collectors, multi-tasking

1. Introduction
The Java platform offers a rich set of features, such as pro-
grammable class loading, dynamic linking, reflection, and exe-
cution from an architecture-neutral binary form. These features
require JVM implementations to maintain sophisticated data struc-
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tures describing classes in memory during program execution.
These data structures mirror information encoded in class files
as well as additional runtime information needed by various com-
ponents of a JVM. Data for a single class type comprises several
objects that may reference data describing other class types defined
by the same or by different class loaders. For example, the virtual
method table of a class may include references to method descrip-
tors that pertain to other classes. Similarly, the constant pool of
a class may include references to metadata describing fields and
methods of other classes.

Garbage collectors require intimate knowledge of class meta-
data, both for collecting the heap and for class unloading. Class
metadata provides the garbage collector with precise locations
of references in class instances. They may also hold references
to heap objects via static variables, or via direct references to
the reflection objects that represent themselves (e.g., instances of
java.lang.Class). In some cases, class metadata may hold the
only path to certain heap objects. They may themselves be reach-
able only from other class metadata, or only from heap-allocated
objects. Hence, the garbage collector needs to trace class metadata.

For these reasons, it is common for JVM implementations to
lay out class metadata in the same way as Java heap objects in
order to unify their processing during garbage collection. In some
cases, like in JVMs implemented in Java [1, 12], class metadata
are Java objects allocated directly in the heap. Since class metadata
is typically long-lived, JVMs equipped with generational garbage
collection often pre-tenure class metadata or store them in a special
heap area such as the permanent generation of the Java HotSpotTM

Virtual Machine [16] (called the HotSpot VM hereafter).
Class metadata consume a large amount of memory [13]. This

has prompted several efforts to share them across applications in
multi-tasking environments [5, 6, 11, 15]. However, to the best of
our knowledge, there are no quantitative analyses on the impact
of different metadata memory management schemes on the per-
formance of a JVM’s memory subsystem. This paper focuses on
class metadata memory management and how it impacts garbage
collection costs. We study both a traditional setup where a JVM
runs a single application (single-tasking mode), and the case of
a multi-tasking JVM implementation where multiple applications
can be executed in isolation in the same operating system process.
The vehicule for this study is MVM, a version of the HotSpot
VM modified to optionally support multi-tasking and isolated
heaps [14]. When multi-tasking is disabled, MVM resembles the
original HotSpot JVM, in particular with respect to class metadata
memory management.

When running the DaCapobachbenchmark suite [4] in single-
tasking mode, we found that metadata memory management con-
tributes substantially to garbage collection costs. Surprisingly, class
unloading plays a secondary part compared to tracing of class meta-
data. When multi-tasking is enabled, class unloading is not sup-
ported. The current management of class metadata makes it hard
to reclaim space of classes unloaded by one task independently of
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Figure 1. Linkset graph and metaspaces.

others, and would nullify the benefit of isolated heaps. Nonetheless,
tracing class metadata remains necessary and imposes the same
costs as those observed in single-tasking mode.

In this paper, we present a novel memory management approach
for class metadata, based on alinkset graphand onmetaspaces, that
eliminates all the negative effects mentioned above, both in single
and multi-tasking mode.

Metaspaces are class metadata region-based allocators that ex-
ploit the property that the lifetimes of class types are equal to
that of their defining loader1 [8]. All metadata that describe class
types defined by the same class loader are therefore allocated in
the same metaspace. This simplifies memory management in two
ways. First, space reclamation within a metaspace is not needed any
more since all objects in it have the same lifetime. Second, mem-
ory of all class types defined by a specific loader can be reclaimed
en massewhen this loader becomes unreachable, by releasing the
regions of its metaspace.

Metaspaces are paired with a linkset identifier, orlinkset for
short. A linkset identifies both the set of all class types defined by
a class loader and the set of all class types resolved by that class
loader. As described in more detail in Section 2.3, class loaders
known to produce the same linkset can share their class metadata,
and therefore, use the same metaspace.

References created between class metadata objects are shortcuts
that reflect link resolution decisions. Once taken by a class loader,
these decisions remain valid for the lifetime of the loader. Since
all classes defined by the same loader have the same lifetime, any
reference from one metaspace to another weighs the same in terms
of reachability: i.e., all class data in a metaspace are live if any of
them is reachable.

This information can be summarized in a small directed graph,
called thelinkset graph, that is built incrementally during class
link resolution. The linkset graph has one vertex per linkset, and
a directed edge between two verticesL1 andL2 if at least one
symbolic link from L1 resolves to a class type inL2’s set of
defined class types. In other words, the linkset graph records which
metaspaces are reachable from others via resolved symbolic links.

Figure 1 shows the linkset graph for a multi-tasking JVM run-
ning two tasks, each with its own heap. For simplicity only a sub-
set of the data structures for class types are depicted. Each task
runs an application with its own class loaders. For some of them,

1 See alsohttp://java.sun.com/docs/books/jls/unloading-ratio-
nale.html.

a multi-tasking JVM may transparently share the metadata of the
class types they define across tasks. As a result, class loaders from
two different tasks may be paired with the same linkset (e.g.,L1).

Each metaspace also keeps track of its references to the appli-
cation heap. This information, combined with the linkset graph,
allows the garbage collector to determine the liveness of classes,
class loaders, and heap objects without tracing all class metadata.
Instead, garbage collections trace the linkset graph and just follow
references from the metaspaces of live linksets to the application
heap. This makes the costs of tracing metadata a function of the
size of the linkset graph instead of a function of the number of
metadata objects and references between them. This strategy can
dramatically cut down the number of references that have to be
traced during full collections: our study reveals that for half of the
benchmarks, more than 50% of the traced references emanate from
class metadata, and for all but one, this number is above 20%. In
contrast, the proportion of references in the metadata that point to
the heap never exceeds 0.7%. The number of class loaders that an
application uses is negligible compared to the total number of ref-
erences in class metadata. Table 1 shows the class loader usage
we observed in the DaCapo benchmarks. Every run always uses at
least four loaders: the three JDK loaders, and the DaCapo harness
loader. Table 1 only shows the other types of class loaders used:
reflection loaders (R) and custom loaders (C). All but two of the
benchmarks create less than 55 loaders. The remaining two, trade-
beans and tradesoap, create several hundreds of loaders. Interest-
ingly, most class loaders are created by the JDK’s support for fast
reflection via dynamically generated stubs (column R in Table 1).

R C R C R C
avrora 1 0 batik 2 0 jython 16 41
h2 1 0 fop 3 0 tomcat 50 5
sunflow 1 0 xalan 32 0 tradebeans 409 72
luindex 1 0 pmd 6 10 tradesoap 512 72
lusearch 2 0 eclipse 6 16

Table 1. Class loader usage in the DaCapo Benchmarks.

Segregating class metadata based on their defining loaders also
simplifies support for isolated heaps in multi-tasking JVMs. In par-
ticular, when running multiple tasks concurrently, garbage collec-
tion of one task’s heap only needs to trace that part of the linkset
graph that corresponds to this task’s class loaders. For example, a
full collection of the heap of task 1 depicted in Figure 1 only re-
quires tracing the sub-graph consisting of nodesL1 andL2. There-
fore, only the references to the heap of task 1 are traced. This both
strengthens isolation between tasks and improves garbage collec-
tion performance. Similarly, unloading classes defined by only one
task can be performed in complete isolation to other tasks. Finally,
caching of shared class metadata does not impact garbage collec-
tion costs since their metaspace is not included in any task’s subset
of the linkset graph.

In summary, the contributions of this paper are:

• We quantitatively analyze the usage of class metadata in the Da-
Capo benchmarks, showing that memory management of class
metadata makes up a substantial part of the overall garbage col-
lection time, both in single-tasking and in multi-tasking JVMs.

• We propose a novel approach to manage memory for class
metadata that practically eliminates class metadata tracing and
space reclamation costs from garbage collection.

• We show how our approach enables tasks to unload classes and
reclaim their space independently of others in a multi-tasking
implementation of the JVM.

The rest of this paper is structured as follows. Section 2 gives
some background on the JVM that we used for our experiments.
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Section 3 presents our design of metaspaces and linkset graph, and
explain some implementation details. Section 4 evaluates the im-
pact of our new metadata memory management both on single-
tasking and multi-tasking JVMs. We discuss related work in Sec-
tion 5 and summarize our results in Section 6.

2. Background
We implemented our class metadata management approach for
MVM, a research version of the HotSpot VM which supports multi-
tasking and isolated heaps [14]. This section provides the relevant
background on how the original MVM manages the application
heap and the class metadata storage.

At JVM startup, a large contiguous range of virtual memory is
reserved and split into two contiguous areas, one for the application
heaps, the other for class metadata and other objects from the JVM.

2.1 Application Heap Management

Figure 2 shows how application heaps are organized. The memory
dedicated to application heaps is organized into a pool of fixed-size
regions. Regions are made of an integral number of virtual memory
pages that can be mapped in and out on demand.

Regions are allocated to application heaps as needed, up to a
specified maximum heap size. Each heap is managed with gener-
ational garbage collection [17] and comprises two dynamically re-
sized generations. Over time, regions may be assigned to different
generations within the same or within different heaps. Thus gener-
ations may consist of a set of discontiguous regions.

The young generation is divided into a nursery and a survivor
space. Applications allocate into the nursery, using adaptively re-
sized thread-local allocation buffers. Allocation in the old genera-
tion promotes bump-pointer allocations, as in [3]. Free space in par-
tially occupied regions is recorded in per-region list of free chunks,
where chunks are not smaller than a threshold. Allocations incre-
ment a free-space pointer initialized to the beginning of either an
empty region or the first free chunk of a partially occupied region.

Garbage collection follows a mark-sweep scheme with deferred
evacuation similar to [2]. It employs two collectors: a mark-sweep
collector, and a copying collector. A major collection runs the
mark-sweep collector, and then performs some evacuations using
the copying collector. Subsequent evacuations are performed at
minor collections using the copying collector only. It implements a
form of generation scavenging [17] that evacuates live objects into
either new survivor regions or into old generation regions, based on
a dynamically adjusted age threshold.

The copying collector always evacuates the young generation. It
may also select old generation regions amongold evacuation can-
didatesthat have been assigned a remembered set at full collec-
tions. Remembered set implementation is based on card table [10].

All garbage collection data structures have been designed to
be operated on a per-region basis. This region-centric organization
avoids false sharing between tasks, allows immediate and precise
per-task accounting, and lets a task operate on its application heap
independently from other tasks.

2.2 Class metadata memory management

MVM uses the same organization and layout of class metadata as
the HotSpot VM, with some minor modifications to ease support
for multi-tasking and isolated heaps. Class metadata is allocated
in a permanent generationnext to the area reserved for applica-
tion heaps. This permanent generation is shared by all tasks, which
compete for allocations to it. As for application heaps, a card table
is used to track updates to references and support partial evacuation.
Minor collections iterate over dirty cards of the permanent gener-
ation. Full collections trace both the application heap and the per-
manent generation. Space in the permanent generation is reclaimed

Figure 2. Two heaps with their generations consisting of regions
allocated from a region pool.

using a mark-compact algorithm. Objects are always allocated at
the end of the permanent generation.

Class unloading is done during full collections, after the mark-
ing phase has been completed. Class unloading consists of cleaning
up the JVM’s runtime data structures that refer to dead class meta-
data. These cleanups remove references to dead objects and reclaim
memory allocated to auxiliary data structures from the native heap
via malloc. Space allocated to metadata of unloaded classes is re-
claimed later, when the permanent generation is compacted. This
happens when one of the following two conditions hold:

1. the amount of dead space reaches a certain fraction of the
available permanent generation space (30% by default).

2. there has not been a compaction during the past N major col-
lections (where N is 4 by default).

When multi-tasking is enabled, both tracing the permanent gen-
eration and scanning its dirty cards filter out references unrelated
to the garbage collecting task. Further, class unloading is not sup-
ported and the permanent generation is never compacted. Doing the
latter would require stopping all tasks.

When multi-tasking is disabled, MVM’s class metadata man-
agement is almost identical to that of the HotSpot VM, except for
differences in the representation of class descriptors that simplify
optional support of multi-tasking, as described below.

2.3 Class data sharing

Class data sharing in MVM has been extensively described in [5].
Here, we only explain the key aspects relevant to class metadata
management. Class data sharing is only supported for classes de-
fined by the JDK’s built-in class loaders: the boot loader, the stan-
dard extension loader and the system loader. Two class loaders can
share the metadata that describes the class types they defined if they
produce the samelinkset.

The term linkset denotes two sets of class types: the set of all
class types resolved by a class loader, and the set of all class types
defined by that loader. For a class loader C, these sets depends on
C’s environmentwhich has two components: the set of binary rep-
resentations that C build class types from, and the set of class load-
ers that C’s resolution strategy delegates link resolution to. If two
class loaders produce the same linkset, then the class types they de-
fine only differ by a small part that is specific to each class loader.
It comprises essentially the static variables, the Java objects repre-
senting the class, its protection domain and signers, and additional
state (e.g. class initialization state, initializing thread [5]). Except
for this class-loader-specific part, the class metadata can be shared
among class loaders that produce the same linkset.

There are two reasons why sharing is currently limited to the
JDK’s built-in class loaders. First, the mapping of shared class
metadata to class-loader-specific data can be simply implemented
via a fixed-sizetask tablesince there is only one instance of each
built-in class loader per task. Each task is uniquely assigned the
same slot in all these tables. Threads cache the slot index of their
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task in a thread-local variable, making the retrieval of a task’s class-
loader-specific metadata efficient [5]. Second, determining whether
the environment provided to each class loader will produce the
same linkset can be inferred easily based on the classpath provided
to each of the built-in loaders. Linksets that may be produced by
more than one class loader are saidshareable. Since sharing of
class metadata isn’t supported for custom class loaders, these are
assumed to always produce a distinct (i.e., non-shareable) linkset.

Every class loader carries a linkset identifier. Two class loaders
producing the same linkset carry the same linkset identifier. Class
loaders tag the class descriptors of the class types they define with
their linkset identifier. Metadata of class types whose class descrip-
tor is tagged with a shareable linkset may survive their defining
loaders. They may remain cached in the permanent generation even
if there are no tasks using them. MVM uses this caching to improve
startup time of programs.

When a class loader associated with a shareable linkset defines
a class whose shared part is already in memory, it only needs to
allocate and initialize the class-loader-specific part. Otherwise, it
constructs the shared part of the class metadata from the supplied
class file and tags it with its linkset identifier.

2.4 Costs of the permanent generation

Managing class metadata in a mark-compact permanent generation
causes significant garbage collection costs.

Laying out class metadata as standard heap objects simplifies
the garbage collector’s work to determine live class metadata as
well as objects that are reachable only from other class metadata.
The downside is that full collections have to traverse the whole
class metadata graph. This makes the cost of full collections de-
pendent on the number of references between class metadata.

Compacting the permanent generation to reclaim space simpli-
fies memory management: it provides a single large contiguous
space enabling simple bump-pointer allocation for all sizes of class
metadata. However, this comes at a cost. Not only is the compaction
itself time-consuming, but relocating live class metadata may re-
quire the garbage collector to update the header of every live heap
object to reflect the new location of their class descriptor.

The impact of permanent generation compactions may be mit-
igated by reducing their frequency until enough space can be re-
claimed. However, leaving dead objects around requires sweeping
them to clear any stale references to the younger generations if re-
membered sets are not exact (e.g. using card-marking).

When multi-tasking is enabled, the permanent generation is
shared between tasks. It may also cache metadata describing
classes defined by shareable linksets that may not be in use by
any task. The interleaving of class metadata from different tasks
causes several problems. First, card-marking cannot tell if a dirty
card in the permanent generation comprises metadata relevant to a
specific task. Thus, dirty cards that do not refer to the heap being
garbage collected are wastefully iterated during minor collections.
Second, the collector has to spend additional time for filtering out
references to heaps other than the one being collected. Finally, the
heap regions of a terminated task cannot be reused before stale
references from the permanent generation have been cleared.

More importantly, sharing the permanent generation causes in-
terference between tasks. Compacting requires synchronizing with
all tasks, since class metadata used by any task may be relocated.
Furthermore, tracing the permanent generation when collecting the
heap of one task requires synchronizing with other tasks that may
concurrently allocate to the permanent generation.

3. Metaspace implementation
Figure 3 shows the implementation of metaspaces and their rela-
tionship to class loaders. We have extended MVM so that (i) a

Figure 3. Metaspace implementation.

linkset maintains a set of successors in the linkset graph, and (ii)
it is created with a metaspace. They reference each other. On JVM
startup, aboot metaspaceis created for theboot linksetused by the
boot loader.

Metadata for a class are allocated in the metaspace associated
with that class’s defining loader. Class metadata allocations happen
only at a few well-known places in the JVM. Namely, when a class
type is defined from its class file, or when a new array type is
defined. The remaining allocations are performed at VM startup
time. It is trivial to identify what metaspace to allocate from (it
is the one associated with the defining class loader, or the boot
metaspace if we are in the startup phase) and requires few changes
to the existing code base.

Metadata for UTF8 symbols are exempted from the above rule.
These are typically interned in order to save space and to enable fast
comparison. UTF8 symbols may be shared across class metadata
in different metaspaces, and may survive the class metadata they
were initially created for. Therefore, our implementation always
allocates symbols in the boot metaspace for simplicity.

3.1 Metaspace memory management

Metaspaces allocate space from fixed-size memory chunks that are
supplied on demand by a metaspace chunk allocator. If a metadata
object does not fit in a fixed-size chunk it is allocated a custom-size
single-object chunk.

Metaspaces are created empty, i.e., without any chunks, except
for the boot metaspace, which is initialized with a very largestartup
chunk (2 Mb in our implementation). We observed that a large
amount of class metadata are allocated in the boot metaspace. For
example, the boot loader allocates 1.5 Mb of class metadata before
any other class loader is created when running with JDK 7. Further-
more, many classes loaded at application startup are defined by the
boot loader, owing to applications’ reliance on a large number of
classes from the JDK. Initializing the boot metaspace with a large
first chunk helps to limit intra-chunk fragmentation.

Metaspaces keep track of their chunks in two linked lists, one
for the fixed-size chunks, and the other for the large single-object
chunks. Every chunk begins with a small header that contains a
reference to its containing metaspace, the size of the chunk, and
a link to the next chunk in its list. In addition to that, fixed-size
chunks carry the allocation hand of a bump-pointer allocator. The
startup chunk is formatted as a fixed-size chunk.

Allocation in metaspaces promotes speed and simplicity. Meta-
data objects are allocated in the most recently created fixed-size
chunk, at the head of the metaspace’s list of fixed-size chunks. If
the object does not fit into this chunk, a new fixed-size chunk is
allocated and added as the new head of the list, unless the object is
too large. In this case it is allocated in a single-object chunk.
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Metaspace chunks are carved out of a single contiguous area of
virtual memory reserved at startup and logically assigned to one
of three areas: the startup chunk, the fixed-size chunks area (or F
area), and the single-object chunks area (or S area). The startup
chunk starts the contiguous range, the F area is next to it, while the
S area is at the end of the contiguous range. The F and S areas grow
towards each other. The space in the middle, delimited by theHF
and theLS pointers (for the highest address in the F area and lowest
address in the S area, respectively) is free, and is used to extend the
F and S areas as needed. Fixed-sized chunks are sized to a multiple
of virtual memory pages and are aligned to page boundaries.

This layout of the metaspace chunk area allows fast retrieval of
the metaspace of any metadata object using simple pointer arith-
metic on its reference. It also enables fine control over memory
footprint: pages of a free fixed-size chunk can be mapped and un-
mapped as needed to satisfy footprint constraints. A simple bit vec-
tor is used to track which chunk is free and whether its pages are
currently mapped to physical memory.

Fixed-size chunks are allocated from unused chunks in their
area, using the bit vector mentioned above. When this fails, the
F area is extended. Single-object chunks are allocated from the top
of the S area in decreasing address order. Free single-object chunks
are tracked in a free list. Allocating a single-object chunk performs
a first fit search within the free list. When this fails, the LS limit is
moved down further to satisfy the allocation request.

3.2 Linkset Graph

The linkset graph summarizes how class loaders reference each
other through resolved symbolic links. As mentioned earlier, this
graph is built incrementally, when symbolic links to classes are
resolved. This needs to be done only on two occasions: at creation
of a class typeT from a class file, when resolvingT ’s super-
class and super-interfaces; and when resolving a class entry inT ’s
constant pool. In both cases, if the resolved class typeR is not
defined byT ’s class loader, the linkset ofR’s defining loader is
added to the set of successors ofT ’s linkset. The set of successors
is implemented as a tiny hash-table.

3.3 Garbage collection with metaspaces

Our implementation avoids direct references from metaspaces to
the young generation. Metadata representing a class have been
carefully crafted so that the only references from metaspaces to
the application heap are to instances ofjava.lang.Class and
to class mirrors, as shown in Figure 4. Class mirrors are cre-
ated only for classes: they hold the class-loader-specific part of
class metadata (see Section 2.3) which includes a reference to the
java.lang.Class instance for the class. Array classes reference
their java.lang.Class instance directly, since it is their only
class-loader-specific part.

There is only one reference to a mirror per class. That single
reference is stored in the class’s descriptor, or in atask tableif
the class descriptor can be shared across tasks (i.e., when multi-
tasking is enabled). We refer to these asmirror reference holders.
All mirror reference holders within a metaspace are linked together
(see Figure 4). Class mirrors are created at class definition-time by
the JVM, and allocated directly in the old generation.

Major garbage collections use the linkset graph and the list of
mirror reference holders of the corresponding metaspaces to avoid
expensive tracing of class metadata. This requires a slight modifica-
tion of MVM’s original mark-sweep collector, as described below.

The marking phase begins with marking all roots grey. This
includes tracing all heap references in the boot metaspace, simply
by iterating over its list of mirror reference holders.

When reaching a grey object, the garbage collector visits its
references to mark grey those yet unmarked. The key difference

Figure 4. Class descriptors and mirrors.

between marking with or without metaspaces is how the header of
grey objects is processed, and how grey instances of sub-classes of
java.lang.ClassLoader are treated.

When visiting this header, the original marking algorithm pro-
cessed the field where the class descriptor’s reference is stored like
any other reference within that object. This causes the algorithm to
trace the graph of metadata objects rooted by the class descriptor.

Our new marking algorithm replaces the tracing of the class
metadata graph rooted in the object header with a traversal of
the linkset graph. In other words, instead of marking the class
descriptor, the collector visits its linkset. Visiting a linkset consists
of marking the class loader object associated with the linkset,
iterating over the list of mirror reference holders of the linkset’s
metaspace, and visiting its successors in the linkset graph. Every
linkset has avisitedflags that the garbage collector uses to prevent
multiple traversals of linksets during the marking phase, and to
identify unreachable linksets afterwards.

A linkset may not be reachable from other visited linksets via
the linkset graph, or from heap objects via their class descriptor
stored in their header. Yet, the class loader object associated with
the linkset may be alive, and therefore the classes it defines too. In
order to protect against unloading in this case, visiting a grey class
loader object includes an extra step of visiting its linkset, found
using the linkset identifier stored in the class loader object.

When marking is complete, the collector can determine what
classes to unload simply by iterating over the current task’s list of
linksets. If the visited flag of a linkset is not set, its metaspace is
freed. Otherwise, the visited flag is cleared.

4. Performance Evaluation
In this section we analyze the impact of class metadata organization
on garbage collection. The system we used for obtaining the mea-
surements is an Intel Core 2 Quad Processor Q8400 (4M Cache,
2.66 Ghz, 1333 Mhz FSB) with 8 GB of RAM running Solaris Ex-
press 11 in 64 bit mode. During the measurements, we tried to load
the machine as lightly as possible, i.e. only running the desktop and
default system services. All timings were gathered using the Solaris
high resolution timer exposed by thegethrtime() system call.

We compare two implementations of MVM which we name
COMP and META hereafter. COMP and META only differ by
their class metadata management. COMP is the original MVM im-
plementation. It uses a permanent generation where space is re-
claimed using a mark-compact algorithm. META is the new pro-
totype that implements our novel approach based on metaspaces
and on a linkset graph. Both COMP and META derived from the
same implementation of the HotSpot VM (build 6u14), and run
with a recent multi-tasking enabled version of the JDK7. All mea-
surements were taken with multi-tasking disabled, except for the
measurements in Section 4.4.

We use the benchmarks of the DaCapobachbenchmark suite [4]
as example applications. The benchmarks were run at their default
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Benchmark Heap size [MB]
avrora, fop, jython, luindex, lusearch, pmd,
sunflow, tomcat, xalan

32

batik 96
eclipse, tradebeans 128
h2, tradesoap 256

Table 2. Heap sizes used. We choose a multiple of 32 MB that is
larger than the maximum live heap size measured at the end of full
collections in multiple runs of the benchmark.

Figure 5. Costs of full collection phases for COMP.

size and default threading settings. All reported measurements are
averages over results of 11 successive runs of the benchmarks.

We disabled automatic heap resizing by setting the minimum
and the maximum heap sizes to the same value. Table 2 shows the
heap sizes we used for each benchmarks. We fixed the permanent
generation size to 64 MB upfront to avoid additional full collec-
tions due to permanent generation exhaustion. In other words, full
collections are triggered by heap exhaustion only.

Our measurements show that the number of full collections is
almost always the same for our measurements in both implemen-
tations, off by one at most. The live heap sizes after full collection
differ by a few percent only.

4.1 Costs of using a compacting permanent generation

The impact of class metadata management is seen mostly on full
collections. Minor collection avoids tracing class metadata, and
only traces dirty permanent generation cards for young references.
Such references are rare in COMP, due to pre-tenuring of most of
the heap objects referenced from the permanent generation.

Figure 5 shows where time is spent in COMP’s full collections.
We decomposed full collection times into four categories:Tracing,
Class unloading, CompactionandOthersand report their contri-
butions as percentage of the full collection times. Tracing is the
time spent for tracing the object graph and marking all live objects;
Class unloading is the time spent for cleaning up internal data struc-
tures; Compaction is the time spent for compacting the permanent
generation; the Others category comprises everything else: collec-
tion setup and teardown, the entire sweep phase, and the subsequent
evacuation of regions, as described in Section 2.1. These values are
averages. Actual pause times of full collections vary greatly due
to the heuristic used by COMP to trigger permanent generation
compaction (see section 2.1). Namely, the permanent generation
is compacted every fourth full collection only.

Tracing dominates all other costs, accounting for more than
60% of full collection time in all benchmarks but jython and tom-

Figure 6. References visited during full collections. The line be-
tween the bars separates the references emanating from the applica-
tion heap (bottom) from those emanating from the permanent gen-
eration (top).

cat. The second largest contributor is compaction. Class unloading
costs are modest, except for tomcat and jython. Unlike other bench-
marks that run with a 32 MB heap, both tomcat and jython use
many custom class loaders (see Table 1) and perform class unload-
ing while executing. This requires cleaning unloaded class meta-
data references from compiled code that use dynamic optimizations
such as inline caches.

Whereas permanent generation compaction and class unloading
costs can clearly be attributed to class metadata management, it is
hard to break down tracing time. However, statistics over the traced
references help understand how much class metadata contribute to
tracing times. Figure 6 shows the population of reference locations
visited during full collection, sorted by to their origin and their
destination (heap names the application heap,perm names the
permanent generation).

The distribution of traced references varies widely among the
benchmarks, but for half of them (avrora, fop, luindex, lusearch,
sunflow, tomcat, xalan), more than 50% of all references visited
are located in the permanent generation. In all of these applications,
class metadata takes as much space as live objects, except in xalan
and sunflow, where the latter is more than twice as large. For the
remaining applications, h2 excluded, at least 25% of the references
emanate from the permanent generation. The ratio of live objects to
class metadata varies from 1.2 to 3.4, with heap occupancy varying
from 19 MB to 242 MB depending on the benchmark. H2 is very
different from the others: its live heap size is, on average, 30 times
larger than its permanent generation at 248 MB, whereas the ratio
for all other benchmarks is never greater than 3.4. In other words,
h2 is a very simple program running on a very large data set.

In all benchmarks, references from the permanent generation to
the heap only make up a tiny fraction of the total number of traced
references. We report the percentage of these references in Table3
as it can hardly be seen in Figure 6. They account for less than 0.7%
of traced references.

These statistics suggest that use of the linkset graph for garbage
collection should reduce tracing time substantially.

4.2 Impact of META on full collection times

Figure 7 compares full collection times for each DaCapo bench-
mark when using COMP and META. Times are reported in abso-
lute values, and broken down into the categories used in Figure 5.
Due to the wide difference in full collection times across the bench-
marks, we report times using two separate diagrams with different
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Figure 7. Full collection performance of META and COMP.

Benchmark % Benchmark % Benchmark %
avrora 0.64 jython 0.67 tradebeans 0.61
batik 0.68 luindex 0.57 tradesoap 0.63
eclipse 0.64 lusearch 0.56 sunflow 0.57
fop 0.54 pmd 0.48 xalan 0.54
h2 0.49 tomcat 0.57 Average 0.58

Table 3. Average percentage of references in the permanent gen-
eration that point to application heap.

scales: benchmarks with an average full collection time of up to
180 ms are shown on the left, the others on the right.

META eliminates tracing of cross-metadata references and
compaction costs. This improves full collection times from 15%
to 80%. For more than half of the benchmarks, the improvement
is over 50%. For most benchmarks, this improvement correlates
directly to the improvement in tracing time. This is because com-
paction of the permanent generation accounts for significantly less
than tracing class metadata in COMP’s full collection time. The
reason is that tracing class metadata needs to be performed at every
full GC, whereas compaction is performed less frequently (4 times
less frequently in our setup, which is the default inherited from the
HotSpot VM).

Tracing time improves particularly on benchmarks where cross-
metadata references account for a large proportion of the total
number of references traced by COMP, e.g. avrora, fop, luindex,
lusearch, sunflow, tomcat and xalan. For these benchmarks tracing
time is reduced by a factor of five or more.

The smallest gains are obtained for h2 (15% only). Its total
number of live objects in the application heap are more than 65
times as large, and the number of references emanating from the
application heap are more than 50 times as large than from the
permanent generation. Thus, h2 is the only benchmark to benefit
more from the elimination of compaction than the reduction in
tracing time.

The other costs (Class unloading and Other) are approximately
the same as in COMP.

4.3 Impact on class metadata footprint

Metaspaces perform region-based allocation, i.e., each metaspace
uses chunks of memory that can only be used for allocating class

metadata of a single linkset (i.e., a single class loader when multi-
tasking is disabled). Furthermore, space is never reclaimed until
the entire metaspace is freed at once. We look at how this im-
pacts memory usage by comparison to the permanent generation
approach, where space for class metadata is allocated linearly, and
compacted.

Figure 8 shows the amount of memory assigned to metaspaces.
The numbers reported are averages of assigned memory after full
collection. The numbers are reported per type of class loaders, i.e.,
memory assignment for a type T of class loader shows the mem-
ory assigned to all metaspaces used by class loaders of type T. We
categorized class loaders into six types: the boot loader (Boot), the
extension loader (Ext), the system loader (System), the DaCapo
benchmark Harness class loader (H), reflection support class load-
ers (R) and benchmark-specific custom class loaders (C). Each of
the first four types correspond to a single metaspace, since there is
only one class loader of this type per benchmark.

The DaCapo benchmark Harness class loader (or Harness
loader for short) is an artefact of the DaCapo benchmark suite: it is
used to instantiate and run the benchmarks. In a regular application,
most of the classes it defines would be defined by the system loader.
Reflective class loaders are created for fast reflective invocation to
define a single invocation stub class.

Figure 8. Footprint of metaspaces, grouped by class loader type.
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Except for eclipse, tomcat, tradebeans and tradesoap, most
space is assigned to the boot loader, and most of the remaining
space is assigned to the Harness loader. Jython differs in that it also
assigns a significant amount of memory to custom class loaders.

In eclipse, tomcat, tradebeans and tradesoap, the second largest
assignment of memory goes to custom class loaders. These bench-
marks make extensive use of custom class loaders as shown in Ta-
ble 1. Tradebeans and tradesoap hardly use the Harness loader.

Table 5 shows how much of this assigned memory is unoccu-
pied. Unoccupied space includes the space at the end of the cur-
rent fixed-size chunk, which available for allocation, and the space
left in the other chunks, which cannot be used for allocation and is
therefore wasted.

Benchmark Boot Ext System H R C
avrora 3.83 6.47 3.48 2.66 78.61 0.00
batik 3.66 6.47 3.04 2.63 77.81 0.00
eclipse 4.01 6.47 2.74 4.08 79.53 3.91
fop 4.03 6.47 3.48 3.13 80.03 0.00
h2 3.30 6.47 2.73 2.83 78.61 0.00
jython 6.42 7.50 3.26 3.45 80.19 18.81
luindex 3.84 6.47 2.93 2.78 78.61 0.00
lusearch 3.91 6.47 3.51 3.31 78.61 0.00
pmd 4.55 6.47 3.22 3.48 78.95 0.00
sunflow 3.55 6.47 2.82 5.34 78.61 0.00
tomcat 6.51 4.97 1.91 4.68 80.13 4.34
tradebeans 6.79 3.82 2.65 25.98 78.92 3.77
tradesoap 7.78 3.82 2.67 25.98 79.64 3.79
xalan 4.91 6.47 3.20 3.51 78.87 0.00

Table 5. Percentage of unoccupied space in metaspace.

The numbers in table 5 demonstrate that for the largest metas-
paces (Boot, H and C) the amount of unused space is usually be-
low 5%, except for a few outliers. Outliers for boot metaspace can
be explained by our simplistic allocation within fixed-size chunks:
if an allocation request cannot fit in the current chunk and is too
small to be allocated a single-object chunk, a new chunk is allo-
cated and becomes the current allocating chunk. This is problem-
atic due to the allocation pattern of class metadata: when defining a
class, the JVM always begins by allocating a few large or medium
sized metadata objects (e.g. constant pool, method and field tables)
before allocating many smaller items (method and field descriptors,
etc.). Often the first larger objects do not fit into the current chunk
and a new chunk is used, although the subsequent smaller metadata
objects would still fit into the original chunk. This problem could
be solved with an overflow allocator similar to the one described in
[3].

Other outliers in table 5 include the harness loader for trade-
beans and tradesoap, the reflection class loaders, and the custom
class loaders in jython.

Except for jython, the reported unoccupied space is entirely
available for allocation. The Harness loaders in tradesoap and
tradebeans are hardly used and their metaspaces are made of a
single chunk with up to 25% of space available for allocation.

Reflection class loaders typically use only 20% of a single
chunk. These loaders never define more than one class and pro-
visioning them with a single chunk wastes memory. We are aware
of this problem and plan to handle them in a special way, e.g. by
subdividing a regular fixed-size chunk into suitable sub-chunks.

The large amount of unused space in custom class loaders for
jython can be attributed to fragmentation in the single-object chunk
allocator. As described in section 3, we try to first-fit the allocation
request using a free list. When a free block is found, we either split
it, or return it as a whole if the remainder would be smaller than the

minimum size of a single-object chunk. This is sometimes the case
in jython, hence the large wastage.

Table 4 compares the total assigned memory to metaspaces to
a baseline for each application. As baseline we use the size of
the used space in the permanent generation in COMP. In reality,
COMP overcommits memory to avoid frequent resizings or forced
collections due to a full permanent generation.

TheBaselinecolumn shows the baseline for every application.
Assignedis the amount of memory assigned to the metaspace class
metadata organization. TheOverheadcolumn shows the manage-
ment overhead (chunk headers), theUnusedcolumn shows the ac-
tual unused space within the chunks on average. The fifth column
summarizes the result by showing the difference between the Base-
line and the Assigned columns in percent. The last column,Dis-
countedshows the same value when removing the overhead of re-
flection class loaders.

Tomcat uses less space than the baseline in this table. Our
measurements indicate that for this benchmark, the full collections
occur at slightly different locations for the different class metadata
organizations, so the compared values do not match up.

In general the management overhead shown in the fourth col-
umn is very small. The total overhead amounts to at most 7.5% for
applications which heavily use reflective class loaders. A simple
improvement to handle reflective class loaders as sketched earlier
can reduce this overhead to at most 5.6%.

To summarize, organizing metadata into metaspaces has a
marginal impact on memory footprint. Combined with use of a
linkset graph to avoid tracing class metadata, it dramatically re-
duces full collection times by up to 80%.

4.4 Impact of META in multi-tasking

The shared permanent generation in the original MVM makes it
hard to implement class unloading and class metadata space recla-
mation in isolation. Compacting the permanent generation requires
stopping every task, which defeats the purpose of isolated heaps.
Hence, the original MVM supports neither compaction nor class
unloading when multi-tasking is enabled. In contrast, metaspaces
enable a task to reclaim class metadata without interference with
other tasks. In this section we show that META performs class
metadata space reclamation without extra costs. We also show that
the performance improvements described for single-tasking also
apply to multi-tasking.

To simulate a multi-tasking situation where an MVM already
caches class metadata from concurrently running applications, we
ran 5 batik benchmarks without the DaCapo harness, each in a
separate task in the same MVM. We used different classpaths to
trick MVM to not share class metadata among the 5 runs of batik.
This adds around 20MB of class metadata (∼1M references), and
substantially increases the amount of class metadata in the shared
boot metaspace. The benchmark of interest is then run.

Figure 9 shows the full collection times broken down into its
parts as before for a subset of the DaCapo benchmarks in three con-
figurations: for reference we measure COMP with disabled class
unloading, and META with and without class unloading (named
COMP-, META+ andMETA-respectively hereafter). Tracing times
for COMP-, META- and META+ are the same as in single-tasking
mode, indicating that reference filtering in COMP- and tracing only
the task’s subset of the linkset graph for both META are effective
at isolating tracing activities. Both META configurations show the
same performances as in single-tasking.

META+ also reclaims class metadata without additional impact
on tracing. In comparison, COMP with compaction would need
to stop all tasks in order to move class metadata in the shared
permanent generation and fix object headers in all isolated heaps.
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Metaspace
Benchmark Baseline [kB] Assigned [kB] Overhead [kB] Unused [kB] Difference [%] Discounted [%]
avrora 5701 5926 1.4 226 3.93 3.78
batik 11078 11492 4.1 417 3.74 3.57
eclipse 19364 20285 8.4 805 4.75 4.48
fop 9536 9944 3.3 398 4.28 3.95
h2 6737 6966 1.9 228 3.41 3.24
jython 16294 17190 6.9 1097 5.50 4.87
luindex 5354 5571 1.2 213 4.07 3.91
lusearch 4998 5205 1.0 202 4.15 3.89
pmd 8735 9345 3.1 422 6.98 5.56
sunflow 5990 6215 1.5 219 3.76 3.65
tomcat 17684 16670 6.7 1079 -5.73 -8.09
tradebeans 43220 46164 21.1 3113 6.81 3.50
tradesoap 45365 48736 22.4 3767 7.43 3.00
xalan 7381 7766 2.3 379 5.22 3.16

Table 4. Memory usage for META compared to COMP

Figure 9. Full collection performance of COMP-, META- and
META+.

We showed that this is already very costly in single-tasking mode,
and would aggravate compaction costs even more for multi-tasking.

The Class unload times of META+ are slightly higher than in
single-tasking mode. Global data structures, such as the code cache
that stores dynamically compiled methods (which may be shared),
or a dictionary tracking all loaded classes, are still shared between
tasks. This makes cleanup cost of class unloading dependent on the
number of classes and compiled code from all tasks, and not from
just the task doing the unload. We intend to rectify these remaining
issues in the future.

5. Related Work
JVM implementations differ vastly with respect to where class
metadata are stored and how garbage collection interacts with them.
The HotSpot VM allocates class metadata directly in a permanent
generation that extends the generational heap. Space reclamation
in the permanent generation uses a mark-compact algorithm. The
original implementation of MVM directly adopted this design.

We have few details of JRockit [9] and J9 [13], the other two
industrial-strength J2SE implementations besides the HotSpot VM.
Both JRockit and J9 allocate class metadata with the native dy-
namic memory allocator (i.e., using libc’smalloc).

JVM implementations written in Java usually implement class
metadata as Java objects. Both the Jikes research VM [1] and the
Maxine VM [12] allocate class metadata into the application heap.

Jikes includes support for animmortal spacethat may be used for
pre-tenuring. However, the immortal space is never collected. So it
cannot be used to store metadata that may need to be unloaded.

The conditions under which classes may be unloaded have been
defined in the Java Language specification (JLS) [8]. A class or
an interface may be unloaded only if its defining class loader
becomes unreachable. Vechev & Petrov [18] exploit this property
to unload all classes defined by the same class loader at once.
Class metadata are allocated in native memory. Loaders keep a
list of all classes they define. When a class loader object is found
to be unreachable during the sweeping phase of their mark-sweep
collector, the metadata of all the classes it defined are unloaded at
once. Unloading simply iterates over the loader’s list and frees up
memory allocated for class metadata.

The Sable VM [7] also exploits the JLS’s class unloading prop-
erty. It allocates class metadata inclass-loader-specific memories,
composed of fixed-size blocks. Space within these blocks is never
reclaimed. Instead, all blocks forming the class-loader-specific
memory are reclaimed at once when the class loader becomes un-
reachable. Our metaspaces follow a similar idea, but extends it with
a linkset graph that summarizes how metaspaces reference each
other through resolved symbolic links. Our solution also organizes
class metadata such that there is only one reference to the heap
per class descriptor, allowing fast heap reference iteration from a
specific metaspace by the garbage collector without write-barriers
or remembered sets. These additions allow replacing of tracing of
the class metadata graph with the tracing of a comparatively tiny
linkset graph, which, as shown in Section 4, is even more important
for garbage collection performance than avoiding compaction.

Previous work on class metadata has focused primarily on foot-
print and startup issues. A common approach is to share class meta-
data across JVM processes using shared memory [6]. The HotSpot
VM provides support for dumping a main-memory image of se-
lected class metadata to a file that is later memory-mapped at JVM
startup [15]. Class metadata are split into two parts: one mutable,
and the other immutable. Only the immutable part is shared across
JVMs. The mutable part is shared with copy-on-write semantics,
which may result in little actual sharing. The memory-mapped file
is a special extension of the permanent generation that cannot be
collected, although it is traced with the permanent generation dur-
ing full collections. This mechanism is currently limited to classes
defined by the boot loader. IBM Version 6 SDK offers similar ca-
pabilities, but extends sharing to application class loaders [11].

A multi-tasking JVM provides an alternative approach to shar-
ing, in which all applications run in a single operating system pro-
cess. This approach both simplifies the sharing of class metadata
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and extends the sharing to the mutable part of class metadata, ex-
cept for a small part that encapsulate all class-loader-specific state.
This increases sharing [6], but requires careful rethinking of JVM
internals in order to avoid sources of interferences between tasks
that weaken isolation. The latest prototype of MVM [14] increases
performance isolation, thanks to isolated application heap support.
However, the permanent generation as well as related internal data
structures for managing class metadata are still shared across all
tasks. This requires system-wide synchronization for class unload-
ing, which strongly affects performance. The work presented in this
paper improves MVM by eliminating interferences between tasks
that exist due to class metadata management.

The recent quantitative analysis of [13] on non-Java memory
shows that class metadata accounts for a large fraction of space
in real-world applications. None of the works mentioned above
provide insight on the impact of class metadata organization on
garbage collection performance. Our study is unique in that it is the
first to show evidence that this impact can be substantial.

6. Conclusion
We have shown that memory management for class metadata can
have a significant impact on garbage collection performance. The
key issue is the number of references between metadata objects
that have to be traced. These references account for up to 70%
of all references traced during full collection in a HotSpot VM.
Compaction of class metadata storage is the secondary key issue.

We have presented a novel approach for class metadata manage-
ment that avoids these two sources of inefficiencies. We base our
approach on metaspaces and a linkset graph. Their combined use
reduces tracing time of full garbage collections by up to 80% and
completely eliminates compaction costs. This translates into more
than 35% speedup of full collection for all but one of the DaCapo
benchmarks, and into more than 70% speedup for six of them.

Metaspaces and the linkset graph apply well to other JVMs
with different class metadata organizations. The linkset graph is
an auxiliary data structure that is independent of where class meta-
data are allocated (i.e., in dedicated heap regions or in the native
heap). It only requires interposing on class link resolution for up-
dates and minor changes to the tracing of object header and class
loader objects. Metaspaces do not necessarily need to be physi-
cal containers. They may just logically segregate class metadata.
The gains on garbage collection performance from these changes
to other JVM implementations depends primarily on the number
of cross-metadata references that are traced, since the linkset graph
eliminates their tracing.

Our solution also applies well to multi-tasking JVMs. It strictly
limits the amount of tracing to the metadata of a single task. It al-
lows immediate reclamation of metadata memory on task termi-
nation and strengthens isolation by eliminating interference due to
false sharing of class metadata.

References
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-

D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V.Sarkar,
M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srini-
vasan, and J. Whaley. The jalapeño virtual machine.IBM Syst. J., 39:
211–238, January 2000.

[2] O. Ben-Yitzhak, I. Goft, E. K. Kolodner, K. Kuiper, and V.Leikehman.
An algorithm for parallel incremental compaction. InProceedings of
the 3rd international symposium on Memory management, ISMM ’02,
pages 100–105, New York, NY, USA, 2002. ACM.

[3] S. M. Blackburn and K. S. McKinley. Immix: a mark-region garbage
collector with space efficiency, fast collection, and mutator perfor-
mance. InProceedings of the 2008 ACM SIGPLAN conference on

Programming language design and implementation, PLDI ’08, pages
22–32, New York, NY, USA, 2008. ACM.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovíc, T. VanDrunen, D. von Dincklage, and B. Wieder-
mann. The DaCapo Benchmarks: Java Benchmarking Development
and Analysis. InOOPSLA ’06: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-Oriented Programing, Systems, Lan-
guages, and Applications, pages 169–190, New York, NY, USA, Oct.
2006. ACM Press.
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