
User-centered Offline Analysis of Memory Monitoring Data

[Work in Progress]

Markus Weninger1 Philipp Lengauer2 Hanspeter Mössenböck2

1Christian Doppler Laboratory MEVSS 2Institute for System Software
Johannes Kepler University Linz, Austria Johannes Kepler University Linz, Austria

markus.weninger@jku.at philipp.lengauer@jku.at

ABSTRACT
State-of-the-art memory monitoring tools collect lots of raw
data. Yet, the analysis of this data is often not well sup-
ported. Existing tools restrict the user in the way how to
analyze the underlying data, how to process it, and how
to visualize it. This results in the dilemma that the raw
data often contains more information than what can be ex-
ploited. We present a novel user-centric approach, allowing
custom offline analysis and visualization of memory moni-
toring data by employing user-defined classification on heap
objects. Putting the user in the center of the analysis process
and providing flexible query and classification interfaces can
change the way how we monitor memory usage. Our goal is
to turn special-purpose memory monitoring tools into more
general and customizable tools.

Keywords
Java, Memory Monitoring, Analysis Tool, User-centered,
Classification, Grouping

1. INTRODUCTION
Modern programming languages, such as Java or C#,

relieve the programmer from the error-prone task of free-
ing memory manually by relying on automatic garbage col-
lection. Nevertheless, poor data structure implementation
and usage may result in performance problems and memory
leaks. Performance problems often root in known software
performance anti-patterns (Smith and Williams [9]), e.g.,
excessive dynamic memory allocations (Peiris and Hill [7]).
Memory leaks occur if an object references objects which are
not needed anymore. This results in allocated memory that
would be released otherwise. Since it is hard to manually
detect and prevent such defects, advanced analysis tools are
required.

A multitude of memory monitoring and analysis tools ex-
ist, all serving a specific purpose. They range from heap
health metrics derived from the heap structure, as done in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3030236

Mitchell and Sevitsky [6], object death time estimation, as
done in Ricci et al. [8], to graph mining tools to detect re-
occurring subgraphs, as done in Maxwell [5]. While serving
their specific purpose well, they ignore the fact that much
more information could be derived from the underlying data,
and that this information is lost.

The data structures employed by these approaches are
designed to provide fast access and processing only for the
given purpose, but miss features to derive further informa-
tion which lies outside their focus. Minimalistic user inter-
faces, which are often not even graphical, further increase
the gap between available data and retrievable information.
To reduce this information loss, tools have to support two
fundamental concepts: (1) a general-purpose data structure
with a flexible yet efficient data access layer and (2) a user
interface to this data access layer, both graphically and via
an programming interface.

In this paper, we present a novel approach on how to
achieve flexible, user-centered information retrieval in mem-
ory monitoring and analysis tools using user-defined object
classifiers. An object classifier is used to classify heap ob-
jects, i.e., objects that existed in the monitored application’s
heap, based on certain properties. New custom classifiers
can easily be defined by the user as small dynamically-loaded
code segments.

Instead of providing a non-extendable, predefined set of
classifiers (e.g., the object’s type or its allocation site), as
done in conventional tools, user-defined object classifiers al-
low versatile object classification based on the user’s needs,
which puts the user in the center of the data analysis process.
This enables retrieving information without the mentioned
restrictions in a user-centered way.

Our heap processing framework encompasses various fea-
tures based on object classifiers, such as filtering or grouping
the objects on the heap. It is also possible to group heap
objects based on multiple classifiers, e.g., to first group them
by type and then by allocation site. This results in a clas-
sification tree that allows for step-wise, fine-grained data
analysis. We call this multi-level grouping, a novel approach
that is not available in other tools.

User-defined object classifiers do not have to be defined
at load-time. They can be added at run-time utilizing Java
Service Provider Interfaces (SPI) and in-memory on-the-fly
compilation.

As a proof of concept, we implemented user-defined ob-
ject classifiers in AntTracks (Lengauer et al. [4]), a memory
monitoring tool based on a modified JVM (Java Virtual Ma-
chine) that was derived from the Java HotspotTM VM.

http://mevss.jku.at/?page_id=1742
http://www.ssw.jku.at/General/Staff/PL/
http://www.ssw.jku.at/General/Staff/HM/
http://mevss.jku.at/
http://www.ssw.jku.at/
http://www.jku.at/
http://www.jku.at/
mailto:markus.weninger@jku.at
mailto:philipp.lengauer@jku.at
http://dx.doi.org/10.1145/3030207.3030236

2. BACKGROUND
This section encompasses a short overview on AntTracks’s

workflow and heap reconstruction architecture.

2.1 Trace Recording And Reconstruction
As described in Lengauer et al. [4, 3], AntTracks’ JVM

records memory events throughout an application’s execu-
tion and write them into trace files. These events include
object allocations, object movements, and pointer updates
during garbage collection. The heap’s state can be recon-
structed for the beginning and the end of every garbage col-
lection cycle by incrementally processing the events in the
trace.

2.2 Data Structure
The work in Bitto et al. [1] shows that a näıve approach,

representing each heap object by a Java object in the anal-
ysis tool, results in unacceptable memory overhead. There-
fore, the data structure shown in Figure 1 has been devel-
oped. It separates the heap into multiple spaces (e.g., the
ParallelOldGC’s heap consists of one eden space, two sur-
vivor spaces, and one old space). Each of these spaces en-
compasses various fields such as the starting address, the
size, or the kind of the space (i.e., eden, survivor or old).
Additionally, each space contains an address-to-LAB map.
A LAB (local allocation buffer) represents a set of objects
that have been processed together during garbage collection
(e.g., objects that have been allocated by the same thread
within the same thread-local allocation buffer (TLAB)). The
LAB’s object array contains pointers to the global cache of
object representations, called ObjectInfo. ObjectInfos are
cached structures that contain information about objects,
namely the event which created the object (e.g., an allo-
cation by the interpreter), the object’s allocation site, its
type and its size. For arrays, also the array-length is stored.
Furthermore, for each entry in the LAB’s object array, a
corresponding pointer entry exists.

3. APPROACH
To allow user-centric analysis within AntTracks, the un-

derlying data structures and the user interface have been
refactored and extended. The heap data structure supports
heap traversal, filtering, mapping, and (multi-)grouping op-
erations. Most of these operations rely on object classifiers,
which are guidelines on how to classify heap objects based
on their properties. In addition to a set of ready-to-use pre-

Heap
Space #1
Space #2
Space #3
Space ...

0x0100
0x0500
0x0600
0x0800

Space Lab

0x0200
0x0600
0x0800

Space
address = 0x0100

ObjectInfoCache

Integer
16b

Integer::valueOf

0x0100

String
60b

Foo::bar

char[16]
48b

Foo::baz

address =
 0x0100 pointer:

objects:

Figure 1: Reconstructed heap structure, splitted
into spaces and LABs, in conjunction with a cache
for ObjectInfo objects

defined classifiers, new classifiers and filters (a special kind
of classifiers) can be defined by the user, either before or
at run-time. Based on all the available classifiers and fil-
ters, the user can select a set of classifiers and filters which
should be used to process, filter and group the heap. The
resulting classification tree is then shown to the user in an
expandable tree view control and an experimental visualiza-
tion view, which allow step-wise and user-controlled analysis
and data exploration.

The following sections will give details on the heap analysis
framework, the different kinds of object classifiers and the
resulting classification tree.

3.1 Heap Analysis Framework
As explained in the previous section, heap objects are not

stored as distinct Java objects, but each LAB contains a
map of addresses that refer to ObjectInfos. Furthermore,
the containing space and the object’s pointers are available,
therefore the information known about every heap object
can be expressed as the set

Object = {Space,Address, PointsTo,ObjectInfo}

Constructing temporary objects for this set of information,
which would be needed to support Java 8’s streaming func-
tionality, would introduce too much overhead (cf. Bitto et
al. [1]), in terms of memory (i.e., object headers) as well
as increased GC frequency. Therefore, a performant, user-
extendable framework has been developed for heap analysis.
It encompasses the following functions: (1) Filter allows
restricting further functions to only process heap objects
which match the defined ObjectFilter. (2) ForEach allows
method execution on every filtered heap object. (3) Map-
ping allows mapping a filtered heap object’s properties to
an object of type T, which allows further processing as a Java
Stream<T>. (4) Grouping applies (multiple) object classi-
fiers to group all filtered objects based on their classification
keys into a classification tree.

3.2 Object Classifiers
Object classifiers are objects that provide a classify func-

tion, which takes the heap object’s properties as parameter
and returns one ore more classification keys. If a classifier
cannot classify an object, it is expected to return null.

To support user-defined classifiers, we provide a Object-

Classifier service provider interface (SPI) which can be
seen in Figure 2. Classifiers implementing this interface can
either be included as precompiled jar files or can be compiled
on-the-fly from source code within AntTracks.

interface ObjectClassifier<T> {
T classify(Space space, long address,
long[] pointsTo, ObjectInfo obj);

}

Figure 2: ObjectClassifier interface

To provide a name, a description and a type for the clas-
sifier, classes which override this interface are also expected
to be annotated with the following Java annotation:
@Classifier(name = "<name>", desc = "<descrip-

tion>", type = ClassifierType.<type>

Classifiers can differ in their multiplicity of classification:
(1) One-to-one classifier (ClassifierType.ONE), (2) One-
to-many classifier (ClassifierType.MANY) and (3) One-to-
hierarchy classifier (ClassifierType.HIERARCHY).

3.2.1 One-to-one Classifier
A one-to-one classifier classifies a heap object by exactly

one key. An example for such a classifier is the predefined
type classifier within AntTracks, which identifies a heap ob-
ject based on its type’s name. Figure 3 shows how this
classifier would look like if it were implemented by the user.

public String classify(Space space, long address,
long[] pointsTo, ObjectInfo obj) {
return obj.type.name;

}

Figure 3: A one-to-one classifier that classifies ob-
jects based on their type

ObjectFilters are a special kind of one-to-one classifiers,
which classify each heap object by a boolean value. This
defines whether a heap object should be further processed.

3.2.2 One-to-many Classifier
A one-to-many classifier classifies a heap object by mul-

tiple keys. An example for such a classifier is the predefined
feature classifier within AntTracks. By using a feature-to-
code mapping tool, a mapping between object allocations
and 0...∗ features may be created (e.g., allocations at code
location x belong to feature #1, #4 and #7). The feature
classifier processes this mapping for every heap object and
returns an unordered list of features to which its allocation
site belongs. Another example for a one-to-many classifier
is the one that can be seen in Figure 4, which classifies ob-
jects based on the authors of the package in which their
type was declared. Note that an unordered String array
is returned, instead of a single object as in the case of a
one-to-one classifier.

public String[] classify(Space space, long address,
String[] pointsTo, ObjectInfo obj) {

Type type = obj.type;
if(type.package.startsWith("foo"))
return new String[] {"mw", "pl"};

if(type.package.startsWith("bar"))
return new String[] {"pl", "hm"};

return new String[] {"mw", "pl" , "hm"};
}

Figure 4: One-to-many classifier that classifies ob-
jects based on their package’s authors

3.2.3 One-to-hierarchy Classifier
A one-to-hierachy classifier is typically used if a heap ob-

ject is classified by multiple keys in a hierarchical fashion
(i.e., keys with a parent-child relation). Such a classifier re-
turns an ordered array, where the object at index 0 is the
root, and for all n > 0 the object at index n − 1 is the
parent of the object at index n. An example for a one-to-
hierarchy classifier is the predefined allocation site classifier
within AntTracks, which classifies an object by its alloca-
tion site and the allocation’s call sites. The root object (at
index 0) is the code location where the object was allocated,
the object at index 1 the code location from where the al-
locating method was called, and so on. For each object,
AntTracks collects a partial call stack, containing the first
few call frames. An example implementation for the alloca-
tion site object classifier can be seen in Figure 5. Note that
an ordered String array is returned.

public String[] classify(Space space, long address,
long[] pointsTo, ObjectInfo obj) {
AllocationSite as = obj.allocationSite;
return as.toString() +

Arrays.stream(as.callSites)
.map(cs -> cs.toString())
.toArray(String[]::new);

}

Figure 5: One-to-hierarchy classifier that classifies
objects based on their allocation sites

3.3 Classification Tree
Grouping based on multiple classifiers results in a classifi-

cation tree. The tree’s root has a child node for ever distinct
classification key returned by the first classifier, while each
of this nodes has a child node for every distinct classification
key returned by the second classifier, and so on. Therefore,
for each n > 0, each node on level n represents a group
of objects that have been classified with the same keys by
the classifiers on all levels < n. An exception are one-to-
hierarchy classifiers, which may add multiple levels at once
within the tree.

For example, assuming a list of n objects, i.e., O(1), O(2),
..., O(n), the user chooses to multi-group based on three
classifiers, i.e., age, author and allocation site (AS) includ-
ing call sites. The grouping algorithm classifies one object
after another based on the selected classifiers and merges the
result into the classification tree. Processing the following
list of objects yields the classification tree in Figure 6.

Object (Input): Classification keys (Result)
O(1): Age(1), Author(“mw”, “pl”), AS(add:4, A:480)
O(2): Age(1), Author(“mw”, “pl”), AS(add:4, B:110, D:88)
O(3): Age(3), Author(“mw”), AS(main:44, C:520, A:100)
O(4): Age(3), Author(“mw”), AS(clone:16, D:172)
O(5): Age(3), Author(“mw”), AS(main:44, C:520, A:100)
O(6): Age(1), Author(“mw”, “pl”), AS(add:4, A:480)

Rectangles (yellow) represent tree nodes and smoothed
rectangles (blue) represent the data a node is holding. This
tree can then be visualized hierarchically, first grouping by
age, then by author, and finally by allocation site, showing
information such as the number of objects, the number of
bytes and the average object size for each node.

3.4 Dynamic loading
Since classifiers are instances of Java classes, their classes

have to be loaded before the classifiers can be applied. We

Age … One-to-one classifier
Author … One-to-many classifier
Allocation Site (incl. Call Sites) … One-to-hierarchy classifier

root

1

3

mw

pl

mw

add:4

add:4

clone:16

main:44

A:480

B:110

A:480

B:110

C:520

D:172

Level 0 Level 1: Level 2: Level 3: Level 4:
Age Author Allocation Site Call Site

A:100

Level 5:
Call Site

D:88

D:88

OI(1,6)

OI(2)

OI(1,6)

OI(2)

OI(3,5)

OI(4)

Figure 6: A sample classification tree based on an
age classifier, author classifier and allocation site
classifier

implemented two ways to dynamically load user-defined clas-
sifier classes at run-time: (1) Utilizing Java Service Provider
Interfaces (SPI), and (2) in-memory on-the-fly compilation.

Java SPI defines a way how to provide services and how to
look for them in the environment. First, a service interface
has to be provided, i.e., the ObjectClassifier interface.
Based on this interface, concrete services, i.e., user-defined
classifiers, can be developed by the user and third-party de-
velopers. These services can then be detected and loaded at
runtime using Java’s ServiceLoader class.

For on-the-fly compilation, we take advantage of the Java-
Compiler class, which allows compilation of code at run-
time. To prevent the generation of class files (the default
behavior), we implemented a custom JavaFileManager and
a ClassLoader that manage the compilation of user-defined
classifier in-memory at runtime.

4. USE CASES
Use cases for user-defined classifiers include all tasks where

memory classification and analysis is needed. For memory
leak detection, classifiers based on various metrics could be
implemented, such as the number of objects reachable via
a classified object or the GC size (i.e., the number of bytes
that will be released if the object is reclaimed by the garbage
collector). Moreover, user-defined classifiers may also be
used for tasks outside the area of memory leak detection,
such as change impact analysis. Classifiers are so versatile
that one could think of a classifier that groups objects based
on the source code repository change history (e.g., to detect
if changes at certain code locations had an impact on the
memory behavior).

5. RELATED WORK
The Object Query Language (OQL), developed by the

Object Data Management Group, is a SQL-like query lan-
guage used to query objects from object-oriented databases.
The downside of OQL is its complexity, which results in
the problem that no vendor implements the whole stan-
dard. For example, the Eclipse Memory Analyzer (MAT)
as well as VisualVM, two popular memory analysis tools,
only allow queries in the form of SELECT <select clause>

FROM <from clause> WHERE <where clause>, without fur-
ther grouping. Where clauses can be represented in our ap-
proach using filters, while select clauses can be represented
using an object classifier. Multi-grouping, as supported in
our approach, is neither possible in MAT nor in VisualVM.

6. FUTURE WORK
AntTracks also supports heap diffing, e.g., analyzing

object-level changes within the heap during a certain time
span. While currently the same grouping and classification
methods are available for heap states as well as heap diffing,
heap-diffing-specific information may increase the potential
applications of heap diffing classifiers. The same applies
to feature classification, to ease the integration in memory
monitoring tools based on features and product variants, as
done by Lengauer et al. [2].

While pointers are currently included as long[] parame-
ter in an ObjectClassifier’s classify method, this only
allows for restricted pointer analysis. We plan to develop a
more efficient data structure that allows for more sophisti-
cated pointer-based classification.

Finally, all heap query features may be combined in a DSL
for memory object querying.

Detailed evaluation is also part of future work. The per-
formance can be compared to a Java Stream-based approach.
To analyze AntTracks’s applicability and effectiveness in
memory leak detections compared to other tools, technical
metrics such as task completion time or number of found
memory leaks and subjective metrics such as user satisfac-
tion can be collected during a user study, based on faulty
benchmark implementations or industry applications.

7. CONCLUSIONS
In this paper we presented a user-centered memory anal-

ysis technique that builds up on user-defined classifiers, a
novel way to classify heap objects.

This versatile classification method, in combination with
heap filtering and multi-level grouping, results in a classifi-
cation tree, representing matching groups of heap objects,
that allows stepwise data analysis, from a coarse overview
to in-detail information. This allows more flexible and user
friendly analysis of an application’s memory behavior.

Beside broadening the field of memory monitoring to allow
classification of heap objects on arbitrary properties, even
those that are untypical or not supported in state-of-the-
art tools, user-centric memory analysis may change the way
how memory monitoring tools are designed. It opens new
possibilities on how to visualize the recorded information,
allowing for new visual exploration and analysis techniques
to be applied.

8. ACKNOWLEDGMENTS
This work was supported by the Christian Doppler For-

schungsgesellschaft and by Dynatrace Austria.

9. REFERENCES
[1] V. Bitto, P. Lengauer, and H. Mössenböck. Efficient

rebuilding of large java heaps from event traces.
PPPJ ’15.

[2] P. Lengauer, V. Bitto, F. Angerer, P. Grünbacher, and
H. Mössenböck. Where has all my memory gone?:
Determining memory characteristics of product variants
using virtual-machine-level monitoring. VaMoS ’14.

[3] P. Lengauer, V. Bitto, S. Fitzek, M. Weninger, and
H. Mössenböck. Efficient memory traces with full
pointer information. PPPJ ’16.

[4] P. Lengauer, V. Bitto, and H. Mössenböck. Accurate
and efficient object tracing for java applications.
ICPE ’15.

[5] E. K. Maxwell, G. Back, and N. Ramakrishnan.
Diagnosing memory leaks using graph mining on heap
dumps. KDD ’10.

[6] N. Mitchell and G. Sevitsky. The causes of bloat, the
limits of health. OOPSLA ’07.

[7] M. Peiris and J. H. Hill. Automatically detecting
”excessive dynamic memory allocations” software
performance anti-pattern. ICPE ’16.

[8] N. P. Ricci, S. Z. Guyer, and J. E. B. Moss. Elephant
tracks: Portable production of complete and precise gc
traces. ISMM ’13.

[9] C. U. Smith and L. G. Williams. Software performance
antipatterns. WOSP ’00.

http://www.cdg.ac.at/en/
http://www.cdg.ac.at/en/
http://www.dynatrace.com

	Introduction
	Background
	Trace Recording And Reconstruction
	Data Structure

	Approach
	Heap Analysis Framework
	Object Classifiers
	One-to-one Classifier
	One-to-many Classifier
	One-to-hierarchy Classifier

	Classification Tree
	Dynamic loading

	Use cases
	Related work
	Future work
	Conclusions
	Acknowledgments
	References

