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ABSTRACT
Software becomes more and more complex. Performance degrada-
tions and anomalies can often only be understood by using moni-
toring approaches, e.g., for tracing the allocations and lifetimes of
objects on the heap. However, this leads to huge amounts of data
that have to be classified, grouped and visualized in order to be
useful for developers. In this paper, we present a flexible offline
memory analysis approach that allows classifying heap objects
based on arbitrary criteria. A small set of predefined classification
criteria such as the type and the allocation site of an object can
further be extended by additional user-defined criteria. In contrast
to state-of-the-art tools, which group objects based on a single
criterion, our approach allows the combination of multiple criteria
using multi-level grouping. The resulting classification trees allow
a flexible in-depth analysis of the data and a natural hierarchical
visualization of the results.

KEYWORDS
Memory, Monitoring, Analysis, Tool, Grouping, Classification

ACM Reference Format:
Markus Weninger and Hanspeter Mössenböck. 2018. User-defined Classi-
fication and Multi-level Grouping of Objects in Memory Monitoring. In
ICPE ’18: ACM/SPEC International Conference on Performance Engineering,
April 9–13, 2018, Berlin, Germany. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3184407.3184412

1 INTRODUCTION
The increasing complexity of software systems requires tools and
techniques for monitoring the behavior of large and complex ap-
plications. Many of these tools trace an application by recording
events at run time and writing them to a trace file for later analysis.
For example, a memory monitoring tool could record object allo-
cations and garbage collector activity (e.g., object moves) so that
the application’s heap can be later reconstructed offline for various
analyses.

Such monitoring tools produce huge amounts of data, which
have to be classified, grouped and visualized in order to be helpful
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for the user. For example, users might want to know how many
objects of a certain type were allocated, at which locations they
were allocated, and how long they survived. Unfortunately, many
state-of-the-art tools fail to provide a flexible information retrieval
technique. Most of them only support hard-coded classification
criteria (often type is the only one) in conjunction with tabular
histograms, e.g., showing the number of instances per class and
the number of allocated bytes. They don’t allow users to classify
the data based on multiple criteria (e.g., type, allocation site and
age) and miss features to organize and aggregate the resulting
information hierarchically on multiple levels.

Our tool AntTracks [12, 13] is a memory monitoring tool for
Java based on the Java Hotspot™ VM [21] that records object alloca-
tions and garbage collection moves. It also offers offline analysis of
trace files, in which the heap can be reconstructed for any garbage
collection point in time. Bitto et al. [3] showed how to reconstruct
an application’s heap from traces produced by AntTracks. Based on
this work, Weninger et al. [25] presented first ideas on object classi-
fiers with the goal to make the classification of memory monitoring
data more general and customizable.

In this paper, we extend our work by presenting a generally ap-
plicable object classification and multi-level grouping concept. An
object classifier processes an object and classifies it based on a cer-
tain criterion derived from the object’s properties, e.g., classifying
heap objects based on their type. Objects with the same classifi-
cation result are grouped together. As already mentioned, most
state-of-the-art memory monitoring tools have two major restric-
tions: (1) They only offer a restricted set of classification criteria,
such as Type or Allocation Site, and (2) their grouping mechanism is
based on just a single classification criterion, i.e., single-level group-
ing. Our approach eliminates both restrictions. In addition to a set
of predefined object classifiers that are usable out-of-the-box, users
can define custom object classifiers as small dynamically-loaded
code snippets. Furthermore, the grouping is not based on a single
criterion but on dynamic classification trees, i.e., on multi-level
grouping based on multiple object classifiers. Such classification
trees store classification results in a hierarchical manner and allow
a more flexible top-down data analysis approach. The concepts of
object classification, multi-level grouping and classification trees
are not restricted to memory data and may therefore also be used
in other domains.

Our scientific contributions are (1) a novel concept of object
classifiers, a way to classify a collection of objects based on their
properties, (2) a multi-level grouping algorithm that classifies a
collection of objects based on a user-chosen set of object classifiers
into a classification tree, (3) various classification tree data structures
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that differ in terms of classification throughput, memory overhead
and information loss, and (4) a quantitative evaluation based on
well-known benchmarks as well as a functional evaluation based
on typical memory analysis use cases.

2 BACKGROUND
AntTracks consists of a virtual machine based on the Java Hot-
spot™ VM and a memory analysis tool. The AntTracks VM records
memory events into trace files, which can then be analyzed of-
fline with the tool. Since our object classifier approach has been
integrated into this tool, it is essential to understand AntTracks’s
architecture and workflow.

2.1 Trace Recording
The AntTracks VM records memory events, e.g., events for object
allocations and object movements executed by the garbage collector
(GC), throughout an application’s execution and writes them into
trace files. Furthermore, it is also capable of recording pointers
between objects [11]. After loading such a trace file, the AntTracks
analysis tool provides overview of the memory behavior over time
and can reconstruct the heap’s state and layout for every garbage
collection point by incrementally processing the events in the trace.

2.2 Trace Reconstruction and Data Structure
Bitto et al. [3] show that a naïve approach, in which every heap
object is represented by a Java object in the analysis tool, would
result in an unacceptable memory overhead. Therefore, we devel-
oped the data structure shown in Figure 1. It separates the heap into
multiple spaces. For example, the ParallelOldGC’s heap consists
of one eden space, two survivor spaces, and one old space. Each
of these spaces encompasses various fields such as the starting
address, the size, or the kind of the space (i.e., eden, survivor or old).
Additionally, each space contains an address-to-LAB map. A LAB
(local allocation buffer) represents a sequence of objects that have
been processed together by the same thread (e.g., objects that have
been allocated by the same thread within the same thread-local
allocation buffer (TLAB)). Each entry in the LAB’s object array
represents one heap object and contains a pointer to a global cache
of object representations, called ObjectInfo. ObjectInfos are cached
structures that contain information which is shared by multiple
objects, namely the event which created the object (e.g., an allo-
cation by the interpreter), the object’s allocation site, its type and
its size. For array allocations, also the array length is stored. Using
this mechanism, many different objects can be represented by the
same ObjectInfo. Their addresses do not have to be explicitly stored
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Figure 1: AntTracks’s data structure to represent a heap at a
certain point in time.

but can be computed from their LAB’s address. In addition to the
object array, each LAB contains two arrays of the same length to
store pointer information. For each entry in the object array, i.e.,
for each heap object, the respective entry in the pointers to array
contains the addresses of all objects that are referenced by this
object. Analogously, each entry in the pointed from array contains
the addresses of all objects that point to the respective object.

3 APPROACH
This section presents the domain-independent concepts of classifi-
cation (i.e., representing an object by a classification result made up
of one or more classification values) and multi-level grouping (i.e.,
arranging classification results in a tree structure). Examples on
how these concepts can be applied in a specific domain / tool will
be given in the context of Java and the classification of Java heap
objects within the AntTracks memory analysis tool. If a specific
heap state is shown, it has been reconstructed from a trace of a
DaCapo xalan benchmark run.

3.1 Source Collection and Source Objects
Classification and grouping always operate on a source collection
which consists of source objects of a certain type. AntTracks’s source
collection when classifying a heap state are the Java heap objects
that have been live at the given point in time.

The source collection does not have to be represented by a single
class but may be made up of multiple classes that interact with each
other, see Figure 2. One of these classes must act as the source col-
lection to the public. This class is required to provide functionality
to iterate the contained source objects. In AntTracks, as explained
in Section 2, a heap state is modeled by multiple classes (i.e., the
heap itself, which further consists of multiple spaces, which further
consist of multiple LABs), yet the Heap class acts as the source
collection to the public.

Similarly, the properties of a source object do not have to be
stored in a single object. In AntTracks, for example, they are stored
in different locations: Most of them are stored in the ObjectInfo,
but a heap object’s pointers are stored in the LAB, and its address
is calculated on demand.

Iterable
source collection

Conceptual Model Data Model

Source collection

Part 1 Part 2

Cache DB Some
class

Properties (via
         property functions)

Iteration

e.g., Space

e.g., Heap

e.g., LABSource 
object

Property 1
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Figure 2: Basic classification concepts: Source collection,
source objects and source object properties.

We distinguish the term object from the term source object be-
cause object is often used in the context of programming languages
to describe a certain instance of a class. A source object, on the
other hand, represents properties that may be stored in various
places.



3.2 Source Object Properties and Source
Collection Iteration

A source object is described by itsm properties based on its position
P within its source collection, as shown in Definition 3.1.

Definition 3.1. A source object at position P within its source
collection is described by itsm distributed properties:

soP is described by (prop1, prop2, . . . , propm )P

P ’s format depends on the source collection. For example, in
a list, source objects are identified by their index i , i.e., P = i . In
AntTracks’s heap data structure, a source object’s position, i.e.,
the position of a heap object within the reconstructed heap, is
described by (1) the space in which the object is, (2) the lab inside
the object’s space, and (3) the object’s position within the lab, i.e.,
P = (spaceIndex , labIndex , objectIndex).

Source collection iteration describes the task of visiting every
position in the source collection and obtaining the properties of the
respective source object. In AntTracks, iterating the heap means to
visit every element in the ObjectInfo array of every LAB in every
space, and collecting all properties of the currently visited heap
object, e.g., calculating its address based on its containing LAB.

3.3 Object Classifiers
As soon as a source object’s properties have been obtained, object
classifiers can be used to classify it. Object classifiers are entities
that classify a source object based on a certain criterion derived
from the source object’s properties. Each object classifier provides
a classify function, which takes one parameter per source object
property and returns the classification result. Additionally, every
object classifier contains the following meta-data:

Name. A unique name used to identify the classifier.
Return Type. The classify method’s return type.
Description (Optional). Useful to keep the classifier’s names

short while still offering additional information about the
classifier’s purpose.

Example (Optional). A possible classification result returned
by the classifier, e.g., java.lang.Integer returned by
AntTracks’s Type classifier. This can be shown as a clas-
sification sample to the user in the UI.

Cardinality. Each classifier can be of one of the follow-
ing three cardinalities: One-to-one, one-to-many or one-to-
hierarchy. Depending on the cardinality, the classifier’s clas-
sification result may be made up of a different number of
classification values, see Figure 3.

In AntTracks, object classifiers are used to classify Java heap objects
based on their properties such as the object’s type, its allocation
site and so on. Each classifier, e.g., the Type classifier, implements a
common Java interface (most importantly the classify method),
see Section 4.2.

3.3.1 One-to-one Classifier. A one-to-one classifier classifies a
source object by a unique classification value as classification result
(see top part in Figure 3). The returned classification value is an
instance of the classifier’s return type, i.e., a one-to-one String
classifier returns a single String as value.
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Figure 3: Object classifiers classify a source object based on
its properties. The three types of classifiers vary in their clas-
sification value cardinality.

An example for a one-to-one classifier is AntTracks’s predefined
Type classifier, which classifies a Java heap object based on its type’s
name. Figure 4 shows a part of AntTracks’s analysis view where
each heap object has been classified using the Type classifier.Overall

Figure 4: Classifying heap objects by type in AntTracks.
shows the number and byte count of the whole heap, and each child
row represent a group of heap objects that have been classified by
the same value, i.e., that are of the same type. Each heap object is
part of exactly one group, i.e., one-to-one classification.

Filters. Filters are a special kind of one-to-one classifiers, which
are of type Boolean. Filters are used in the classification process
to define whether a source object should be further processed by
subsequent operations.

3.3.2 One-to-many Classifier. A one-to-many classifier classifies
a source object by multiple classification values, as can be seen in
the middle part of Figure 3. The result is a set of instances of the
classifier’s type: If the classifier’s type is String, a set of strings
will be returned.



An example for such a classifier is the predefined Feature classi-
fier in AntTracks. Assume that (possibly overlapping) code ranges
represent specific features [10]. The allocation site of an object may
then belong to one or more of these features. The Feature classifier
performs a feature mapping for every Java heap object and returns
the set of features to which its allocation site belongs. Figure 5,

Figure 5: Classifying heap objects by feature in AntTracks.

similar to Figure 4, shows again a part of AntTracks’s analysis view.
This time, each heap object has been classified using the Feature
classifier. Since the Feature classifier is a one-to-many classifier, each
heap object can be part of multiple groups (if the classifier returned
multiple values, i.e., features, for that heap object).

3.3.3 One-to-hierarchy Classifier. A one-to-hierarchy classifier
classifies a source object by hierarchical classification values, as
shown in the bottom part of Figure 3. Such a classifier returns
objects of the classifier’s return type in an ordered list. The object
at index 0 is the root object, and for all i > 0 the object at index
i − 1 is the parent of the object at index i .

An example for a one-to-hierarchy classifier is the predefined Al-
location Site classifier in AntTracks, which classifies an object based
on its allocation site and the allocation’s call sites. The root object
(at index 0) is the code location where the object was allocated, the
object at index 1 is the code location from where the allocating
method was called, and so on (i.e., the code location at index i is
the callee and the code location at index i + 1 the caller). Figure 6

s

Figure 6: Classifying heap objects by allocation site in
AntTracks.

also shows a part of AntTracks’s analysis view similar to Figure 5,
yet each heap object has been classified using the Allocation Site
classifier instead. First-level children of the Overall group, i.e., row
2 and row 6, are allocation sites where objects have been allocated.
Child relations represent the call chain, e.g., the call sites on row 3
and row 5 called the allocation site on row 2, and the call site on
row 4 has been the single caller to the call site on row 3.

3.4 Multi-level Grouping
Single-level grouping splits a set of objects into multiple groups.
Each group represents a distinct classification result (i.e., the clas-
sifier’s return value) and contains all objects that are classified by

this result. Typical single-level grouping only supports one-to-one
classifiers, i.e., each object is mapped to exactly one classification
value. In addition to introducing other classifier types beside one-
to-one classifiers, we present multi-level grouping to enhance the
flexibility and level of analysis detail.

3.4.1 Classification. Similar to single-level grouping, multi-
level grouping is an operation that groups a set of source objects.
Yet, instead of applying a single classifier, a list of classifiers is ap-
plied one after the other to every source object, and the sorted list
of their classification results (where each classification result may
be made up of multiple classification values) make up the source
object’s classification.

Obj. Classification and results in parentheses
O(1) [Age(1) → Feat(F1, F2) → AS(add, A)]
O(2) [Age(1) → Feat(F1, F2) → AS(add, B, D)]
O(3) [Age(3) → Feat(F1) → AS(main, C, A)]
O(4) [Age(3) → Feat(F1) → AS(clone, D)]
O(5) [Age(3) → Feat(F1) → AS(main, C, A)]
O(6) [Age(1) → Feat(F1, F2) → AS(add, A)]

Table 1: Example classification of 6 Java heap objects based
on three classifiers: Age (one-to-one), feature (one-to-many)
and allocation site (one-to-hierarchy).

Table 1 shows an example classification for six objects O(1) to
O(6). The three classifiers that get applied are (1) the Age classifier,
a one-to-one classifier categorizing heap objects based on their
number of survived GCs, (2) the Feature classifier (see Section 3.3.2)
and (3) the Allocation Site classifier (see Section 3.3.3). Each classifi-
cation contains three classification results, one per classifier, sorted
in the order in which the classifiers were applied.

3.4.2 Classification Tree. Raw information as presented in Ta-
ble 1 is not very helpful for the user. Classification trees bring such
classification results into a hierarchical format that allows (1) flex-
ible processing of data, such as merging, subgrouping, counting
and so on as well as (2) straightforward visualization, e.g., as a tree
table view, for user-driven analysis.

Figure 7 shows the creation of a classification tree for the objects
in Table 1. Rectangles (yellow) represent tree nodes containing
their keys as text, and arrows point to their child nodes. Smoothed
rectangles (blue) represent the data that a node is holding, i.e., the
source objects assigned to the node.

The following example explains how O(1) gets added to the
classification tree. The algorithm starts with the root node as the
current node. During the classification process, when looking for a
child node with a certain key that does not exist yet, a new child
gets created for that key.

The Age classifier returns 1 as the classification result for O(1).
For each current node (i.e., the root node), the child matching this
classification becomes the new current node, i.e. the status of cur-
rent node moves from the parent to the child. Then, the Feature
classifier is applied, which returns F1 and F2 as its classification val-
ues for the source object O(1). Both features get added as children
of 1 and become the new current nodes. Finally, the Allocation Site
classifier gets applied on the source object and returns the alloca-
tion site add and its caller A. add nodes are appended as children
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Figure 7: Step-by-step multi-level grouping of six heap ob-
jects into a classification tree based on age, feature and allo-
cation site.

to all current nodes (i.e., to F1 and F2) and A nodes are appended to
the two add nodes.

Since no more classifiers have to be applied, the object is then
added as a data entry at the current nodes, i.e., at both A nodes.
This is the state that is shown in the top part of Figure 7. To reach
the state at the bottom of Figure 7 the above steps are repeated for
every source object O(2) to O(6).

Figure 8 shows an example on how classification trees get visu-
alized in AntTracks. It displays a part of AntTracks’s heap state
analysis view where all heap objects have first been classified by
Age, then by Feature, followed by Allocation Site.

3.5 Data Representation in Nodes
Source objects have to be associated with certain nodes of the
classification tree. Various approaches are possible, some of which
sacrifice information in favor of reduced memory overhead (see
Figure 9).

Figure 8: AntTracks’s visualization of classification trees.

3.5.1 Lossless Approaches. Information lossless approaches al-
low to retrieve all properties of all source objects stored in the
classification tree. This is needed if the classification tree should
later be used for further complex processing.

Naïve List Approach. A naïve approach is to represent the node’s
data as a list of objects. A source object’s properties (which are
distributively stored) would have to be combined into a new object
on demand (e.g., new MyObject(p1, p2, p3)).

We chose to store source object properties in a scattered way
exactly because we want to prevent the creation of class instances,
which would lead to increased memory footprint (e.g., due to object
headers). Further, the more live objects reside in the heap, the
less memory is available for new allocations. This results in more
frequent GC invocations, which may slow down the application.

Property List Approach. Instead of storing a list of objects, this
approach only stores a list of one of the source object’s properties.
This is possible if the object’s remaining properties can be derived
from this property, which is the case for nearly all use cases. In
AntTracks, for example, heap objects can be identified by their
address. The downside of this approach is the additional indirection
when obtaining the other properties on demand.

3.5.2 Lossy Approaches. convey a feeling The lossless ap-
proaches retain object identity, i.e., we know exactly which source
objects have been added towhich tree nodes. This level of detail may
be traded for less memory-consuming tree node data structures.

Mapping Approach. This approach relies on a map, where the
key’s type is application-dependent and the value is represented
by a counter.

When adding a source object to a node, information of interest
about the object gets extracted as the object key. This object key is
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Figure 9: Two lossless list approaches and two lossy ap-
proaches based on counters to store node data.



then looked up in the node’s data map and the respective counter
gets incremented (or created if it does not yet exist).

It is crucial to take two aspects into account when choosing
the object key: (1) What data should be reconstructed from the
classification tree and (2) that many source objects should share
the same object key to keep the number of entries in the map
small. For example, AntTracks uses the object size (in bytes) as
the object key. While this allows to only aggregate the number of
objects and number of bytes represented by a certain node, it offers
high memory saving potential which is discussed in more detail in
Section 5. For example, if 1000 objects of only three different sizes
get added to the same node, this approach just needs three key-value
pairs compared to 1000 list entries as in the list approaches.

Counter Approach. This approach is designed to have the lowest
memory footprint, while giving up flexibility and accepting the
highest loss of information. Every time a source object gets classi-
fied at a certain node, counters stored in the node get incremented
based on a fixed scheme. In AntTracks, for example, we could store
two counters, one for the number of objects and one for the number
of bytes classified at the given node.

This approach even loses information about specific properties.
For example, it would not be possible to determine how many heap
objects of a certain size have been classified, which is possible using
the mapping approach.

3.6 Aggregation and Duplicate Detection
Using a one-to-many classifier may cause a source object to be
added to multiple nodes. To avoid wrong results when aggregating
this data, we have to detect duplicate entries in the tree and ignore
them.

3.6.1 List Approaches. Since the entries in every data list are
distinct, the lists can be treated as sets. The set of objects in a tree
with head n can be computed recursively as the union of the objects
in n and in the subtrees (Equation 1). Duplicates will be removed
and the resulting set can be used for counting.

objects(n) = n.data ∪ (

child⋃
n .children

objects(child)) (1)

3.6.2 Mapping Approach. By extracting a source object’s object
key, we lose the object identity which would be needed for duplicate
detection. Therefore, we additionally have to keep track of multiple
classifications. This can be done by installing a second map, i.e., the
duplicate map, in each node.

If a source object is added to more than one subtree of a node
n, a counter for the object’s key is incremented in the duplication
map of node n, which is later used for sifting out duplicates when
the total number of objects in a tree is computed.

3.6.3 Counter Approach. Similar to the mapping approach, ev-
ery node could store a duplicate counter per data counter. In all sit-
uations where a duplicate counter in the mapping approach would
be incremented, the duplicate counter in the counter approach is
incremented.

3.7 Advanced Classifiers
For advanced use, a special kind of classifiers are transformers. So
far, a classifier always took a source object’s properties as its input
and returned one or more classification values as classification
result. A transformer takes a source object and (1) transforms it
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object ...

Transformed
object

...

Classifier

Classifier

...

Classifier

Step 1: Transformation

Step 2: Classification

Step 3: Grouping

Step 1: Transformation

Properties

Properties Properties

Figure 10: Transformers transform a source object into a set
of other source objects, classify each of these objects and
group them.

into a set of other source objects, (2) classifies each of these objects
based on a selected set of object classifiers, and (3) multi-groups
them based on their classification results (see Figure 10).

A use case for transformers in the domain of memory monitoring
is pointer analysis. First, a heap object gets transformed into the
set of all objects that are referenced by it. Second, this set of objects
gets classified based on a list of other classifiers selected by the
user. Finally, the classification results get multi-grouped into the
resulting classification tree. For example, this can be used to analyze
type-points-to-type graphs, as done by Jump and McKinley [8, 9].

4 IMPLEMENTATION
The previous section explained the domain-independent core con-
cepts of classification and multi-level grouping based on object
classifiers alongside some examples in the context of AntTracks.
This section discusses some implementation details on how these
concepts have been incorporated into AntTracks and its memory
analysis.

Property Additional info
address
space Space index, name, address, length, ...
type Name, package, fields, ...
size The object’s size in bytes
isArray true / false
arrayLength -1 for non-arrays
allocationSite Call stack, ...
pointedFrom Addresses of all referencing objects
pointsTo Addresses of all pointees
eventType Allocation event (alloc. subsystem, ...)

Table 2: Source object properties for heap objects.

4.1 Source Objects: Java Heap Objects
AntTracks’s source objects are Java heap objects that were alive
in the monitored application at a given point in time, i.e., the heap



objects that make up a certain heap state. Table 2 shows which
properties make up a Java heap object in AntTracks, i.e., the source
object properties. Every object classifier classifies a Java heap object
based on a criterion derived from these properties.

4.2 Object Classifiers
In AntTracks, classifiers implement a common base interface. This
interface defines the classify method, with its parameter signa-
ture matching the Java heap object properties.

To provide a convenient analysis environment for most use cases,
AntTracks comprises multiple predefined object classifiers. These
classifiers, listed in Table 3, can be used and combined freely on
every heap state. An example implementation of the Type classifier
can be seen in Listing 1.

Listing 1: Implementation of the Type classifier in
AntTracks.
public class T y p eC l a s s i f i e r implements C l a s s i f i e r < S t r i ng > {

// ... Fields modifiable by user , e.g., showPackage ...
@Override public S t r i n g c l a s s i f y (

long addre s s , Space space , Type type , long s i z e ,
boolean i sAr ray , int ar rayLength , A l l o c a t i o n S i t e a l l o c S i t e ,
long [ ] pointedFrom , long [ ] po in tsTo , Event eventType ) {
return type . getName ( showPackage ) ;

}
}

When a heap state is opened in AntTracks, a default classification
(Type classifier followed by theAllocation Site classifier) gets applied.
This gives a fast overview that shows which types have the most
living objects, and where these objects have been allocated.

4.3 Heap Iteration
We implemented three different iteration approaches for
AntTracks’s heap data structure to evaluate their influence on the
classification speed.

4.3.1 Java Streams. This approach has been implemented as a
baseline for performance comparison. It uses the default technique
for Java streams on custom data structures by implementing a
Spliterator, the concurrent counterpart of an Iterator.

Java Stream Memory Overhead. The main problem with Java
streams and spliterators is that they are generic classes working
on Java objects of type T. Therefore, to support Java streams in
AntTracks, we have to transform AntTracks’s source objects (i.e.,
heap objects that are stored as scattered properties) into instances
of an auxiliary HeapObject class. These short-living objects (which
only exist while the stream is processed) may put unnecessary
burden on the garbage collector, especially for large heap states.

4.3.2 Fake Spliterator. This approach relies on a custom iter-
ation class that provides a tryAdvance and a trySplit method,
similar to the Spliterator implemented for the Java stream ap-
proach. However, this fake spliterator does not inherit from Java’s
Spliterator interface, but only mimics its behavior. More specifi-
cally, the fake spliterator’s tryAdvance does not match the official
interface but has been changed in a way that allows the fake split-
erator to process a heap object’s properties separately, which has
the advantage of avoiding the need for auxiliary objects.

4.3.3 Integrated Iteration Functions. A basic implementation of
this approach already existed in the previous versions of AntTracks.
It provided sequential iteration functions on each data structure
level, i.e., on the Heap, the Space, and the LAB. In our approach, we
added support for parallel iteration, which significantly increased
performance.

4.4 User-defined Classifiers
Classification in AntTracks is not restricted to predefined classifiers,
but allows users to define new classifiers, i.e., user-defined classifiers,
in two different ways: (1) By using Java’s Service Provider Interface
(SPI) concept, where new classifiers can be added to AntTracks
as pre-compiled JAR files, and (2) by using in-memory on-the-fly
compilation to support classifier development at run time.

4.4.1 Service Provider Interfaces (SPI). A service provider inter-
face is a set of public interfaces and abstract classes that a third-party
developer can implement. In AntTracks, the SPI encompasses ab-
stract classes for classifiers, transformers, and filters. All of them
define an abstract classify method which can be implemented
by third-party developers in a sub-class. If a JAR containing such
an implementation is detected on AntTracks’s class path (using
convenient SPI methods), it will be added to the list of available
classifiers or filters.

4.4.2 On-the-fly Compilation. It is also possible to define new
object classifiers, transformers and filters at run time. For example,
whenever users have to select one of the available classifiers, they
are offered to define a new one. The user then has to provide the
classify method, the classifier’s name, description, example and
cardinality. This information gets merged into an object classifier
template file which will then be compiled with a modified Java
compiler that enables compilation without generating a Java class
file on disk, i.e., the classifier gets compiled in-memory and on-the-
fly.

This compilation relies on the JavaCompiler instance returned
by ToolProvider.getSystemJavaCompiler(). This instance al-
lows modifying the compilation process in various ways. The most
important step is to provide a modified JavaFileManager. Instead
of providing a stream to a file on disk, AntTracks’s version returns
a ByteArrayOutputStream that keeps a class’s byte code stored
in memory. Additionally, the file manager’s class loader has been
modified to not only look up classes stored on disk, but also to look
up classes that are stored in memory.

5 EVALUATION
To evaluate the applicability of AntTracks’s object classifiers and
multi-level grouping we show how one can use the tool to detect
memory leaks and how to reproduce memory classification done
in related work.

Even though lossless classification tree implementations may
be needed in certain situations, a lossy approach provides enough
information for most use cases, including AntTracks’s heap state
analysis. Therefore, another goal of this evaluation is to analyze
how much classification throughput can be gained as well as how
much memory can be saved by accepting the information loss due
to using a lossy classification tree implementation. All of these



Name Description
Address Classifies objects based on their address.
Type Classifies objects based on their type’s name.
Allocating Subsystem Either VM, Interpreter, C1-compiled code or C2-compiled code.
Array Length Classifies array objects based on their length. Non-array objects are classified as -1.
Object Kind Either Instance (class instances), Small Array (< 255 elements), or Big Array (≥ 255 elements).
Space Classifies objects based on the heap space in which they are contained.
Space Mode Classifies objects based on the mode, i.e., a GC-dependent space info, of their containing heap space.
Space Type Classifies objects based on the type (e.g., Eden) of the space in which they are contained.
Feature Classifies objects based on a loaded feature-to-code mapping file.
Allocation Site Classifies objects based on their allocation site (allocating method + var. number of call sites).
Pointed From This transformer is used to classify the objects that reference a given object.
Points To This transformer is used to classify the objects that a given object references.

Table 3: Predefined classifiers in AntTracks.

analyses have been conducted based on well-known benchmarks
using three different classifier combinations: (1) Type classifier
(2) Allocation Site classifier (3) Type classifier, followed by the
Allocation Site classifier.

Setup. All measurements were run on an Intel® Core™ i7-4790K
CPU @ 4.00GHz x 4 (8 Threads) on 64-bit with 32 GB RAM and
a Samsung SSD 850, running Ubuntu 17.10 with the Kernel Linux
4.13.0-16-generic. All unnecessary services were disabled in order
not to distort the experiments.

5.1 Performance Evaluation
The goal of this evaluation is to gain insight into how much the
classification throughput increases when giving up object identity
and if Java streams are suitable to iterate distributed source ob-
jects. Thus, we compare both implemented tree node types (i.e., the
property list approach (lossless) and the mapping approach (lossy))
using three different parallel heap iteration techniques (i.e., Java
stream, fake spliterator and integrated iteration).

(a) Lossy mapping approach (b) Lossless property list approach

Figure 11: Performance comparison between the mapping
approach and the property list approach.

We used the DaCapo [4] and the DaCapo Scala [6] benchmark
suites, in which, according to Lengauer at el. [14], h2 and factorie
are the benchmarks with the largest live set. We chose to only
analyze these two benchmarks since the other benchmarks from the

mentioned suites do not provide heap states in the same dimension.
Both trace files (h2: 2.9 GB trace file covering 26 garbage collections
with 15,800,000 objects on average per heap state; factorie: 19.5
GB trace file covering 205 GCs with 8,600,000 objects on average
per heap state) have been parsed and a classification tree has been
generated at every garbage collection end using every parameter
combination (i.e., iteration type, classifier, tree type).

Figure 11a shows the average throughput of this classification
tree generation when using the lossy mapping approach, while
Figure 11b shows the throughput using the property list approach.
We can see that the mapping approach is orders of magnitude faster
than the property list approach due to the work that is needed
to add the object’s address to the sorted data list when using the
property list approach. This strengthens our assumption to use the
mapping approach when object-identity loss is acceptable.

Furthermore, it shows that heap iteration using Java streams is
in general slower than the other two approaches. Especially for
larger heap states, the streaming approach falls behind the other
approaches. As hypothesized, this may be due to the temporary
objects that have to be generated during the iteration. Independent
of the domain this indicates that Java streams are not suitable for
iterating distributively stored source objects. The fake spliterator
approach is able to scale and parallelize the best, which explains its
advantage when using the property list approach.

5.2 Memory Footprint
Beside providing the better classification performance, it is inter-
esting to see how much memory can be saved when using the
object-identity-losing mapping approach instead of the property
list approach.

We analyzed a traced run of every DaCapo and DaCapo Scala
benchmark and reconstructed the heap state after every garbage
collection, if the heap state contained at least 200,000 objects. The
Type classifier showed that the number of types of live objects
at a certain point in time is approximately the same across all
benchmarks (around 500 objects), independent of the number of live
objects. Some of the benchmarks have few live objects with a high
number of different allocation site nodes (i.e., few objects allocated
at different sites) while some benchmarks with a large number of
live objects only generate a small number of allocation site nodes
(i.e., a lot of objects allocated at the same sites). Nevertheless, the
tree never reached a critical size in terms of node count for any of
the tested applications (tree size always below 20,000 nodes).
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Figure 12: Average object count per datamap entry using the
mapping approach.

Figure 12 shows that with a rising number of classified objects,
the average number of objects represented by a single data map
entry in the mapping approach increases. For example, classifying
about 10, 000, 000 objects based on the Type classifier resulted
in data map entries each representing about 18, 000 objects on
average (see regression line in Figure 12). Assume that the property
list approach is implemented using arrays and needs 8 bytes per
classified object (i.e., the heap object’s 64-bit address excluding
memory needed by auxiliary data structures). Let’s further assume
that each map entry in the mapping approach points to a key
(containing an int) and a value (containing a long), thus taking up
3∗16 (3∗VM header)+2∗8 (2∗pointer)+4 (int)+8 (long) = 76 bytes.
If one such data map entry represents 18, 000 objects, the property
list approach (8∗ 18, 000 bytes) consumes about 1900 times as much
memory as the mapping approach (76 bytes).

Based on these results and those presented in Section 5.1, we de-
cided to use classification tree generation based on fake spliterator
heap iteration and the mapping approach in AntTracks.

The next section shows that the lossy mapping approach still
provides enough information to detect memory leaks and allows
general memory analysis.

5.3 Functional Evaluation
AntTracks’s goal is to provide a general memory monitoring and
analysis tool that primarily focuses on developers and their needs,
for example performing memory leak detection. In addition, user-
defined classifiers, their flexible combination, and multi-level group-
ing allows developers and also researchers to use AntTracks for
more general and experimental memory analyses.

5.3.1 Memory Leak Detection. Memory leak detection is the
main task developers perform when using AntTracks. To evalu-
ate AntTracks’s ability to allow memory leak detection, as well
as finding the root cause, we used it on an example artificial ap-
plication that uses a stack1 for storing its data. It first pushes 1
million objects onto the stack, then pops these 1 million objects,
followed by another 100,000 pushes and another 100,000 pop op-
erations. Opening the application’s trace displays the overview
shown in Figure 13. We can clearly see that we miss a drop of the
number of live objects after the 1 million objects got popped from

1https://www.codeproject.com/Articles/30593/Effective-Java; Item 6: Eliminate obso-
lete object references; last accessed October 17, 2017

Figure 13: Object count overview of the buggy stack imple-
mentation.

the stack, as we would expect in a non-faulty implementation. To
further investigate this problem, we utilized AntTracks’s heap diff-
ing functionality, which also supports object classifiers and allows
to analyze heap changes over time. Figure 14 shows the application

Figure 14: Heap diff of the buggy stack implementation.

of the Type classifier followed by the Allocation Site classifier on
the time frame selected in Figure 13 (black dots). On the type node
(2nd row, at.jku.data.TestObject), we can see that only 100.000
objects of this type were deallocated (red bar), while exactly the
same amount of objects were allocated (green bar). 900, 000 objects
stayed alive during the whole time frame (blue bar). Looking at the
indented allocation site nodes (3rd and 4th row), we see how many
TestObjects that were originally allocated at these sites were born,
have survived, or have died.

Figure 15: Pointer analysis of the buggy stack implementa-
tion.

Additionally, we would like to knowwhich objects keep those ob-
jects alive. Figure 15 shows a rather advanced application of object
classifiers: It first classifies a given object by its type, then trans-
forms that object into its set of referencing objects, classifies them
by type and then transforms them again into their sets of referenc-
ing objects, finally classifying those objects by type. It shows that
the TestObject instances are referenced from the type Object[],
which is again referenced by the type BuggyStack. With this infor-
mation, it is easy to find the bug in the source code. BuggyStack is
a faulty stack implementation that keeps references to previously



stored objects even after pop operations until a subsequent push
operation overwrites them.

Figure 16: Object count overview of the fixed application.

Figure 17: Heap diff of the fixed application.

Figure 16 and Figure 17 show the object counts and the heap diff
results after the stack implementation was fixed.

5.3.2 Memory Analysis. Developers as well as researchers may
want to classify heap objects based on a criterion not yet covered
by one of the predefined classifiers, which is possible by writing
a user-defined classifier. To showcase the implementation of user-
defined classifiers, we searched for related work on heap object
classification. For example, Mitchell and Sevitsky [17] classified
heap objects in terms of collection health and instance health. Both
classification criteria have been successfully implemented as user-
defined classifiers and can be used and freely combined with other
classifiers in AntTracks.

Collection Health. Collection health classifies every heap object
as one of four types, depending on its use inside collections. (1) head,
the head of a collection, e.g., HashMap, (2) array, array backbones,
e.g., HashMap$Entry[], (3) entry, recursive list-style elements, e.g.,
HashMap$Entry, and (4) contained, anything else.

The classification for collection health is a typical use-case for a
user-defined one-to-one object classifier. Every object gets classified
by exactly one value, i.e., either head, array, entry or contained.
According to Mitchell and Sevitsky, every object that is an array of
a reference type gets classified as array. This is straightforward to
check in the classifier implementation2 since we know the object’s
type. If an object is not classified as array, it falls in the entry
category if it is of a type T and references an object of the same
type T. This check can be accomplished by following and analyzing
the pointers in the object’s pointer array. If the object has not been
categorized as array or entry, the object’s pointers are checked
again. If one of them references an object that is a primitive array
or is classified as array or entry, the object gets classified as head.
Otherwise, the object gets classified as contained.
2http://ssw.jku.at/General/Staff/Weninger/AntTracks/ICPE18/
CollectionHealthClassifier.java

Instance Health. Instance health splits every heap object’s bytes
into four different parts: (1) primitive, which encompasses prim-
itive array elements and primitive fields (2) header, the memory
consumed by the virtual machine (3) pointer, memory occupied by
references between objects (4) null, memory reserved for pointers
but set to null.

The classification for instance health has been reproduced as
a user-defined transformer in AntTracks3. The source object gets
transformed into four virtual objects, one per instance health part,
and every part gets assigned its appropriate size (i.e., byte count).
The amount of bytes of the primitive part can be calculated by
iterating the type’s fields and filtering them for primitive types.
The information about the header size (which depends on the VM
architecture, as well as whether compressed oops are used) is stored
in the symbols information generated alongside the trace file. Since
an object’s pointer array contains one entry per pointer, either with
the referenced object’s address or −1 if the pointer is null, the bytes
made up by pointers and null can also be easily calculated.

The judgment schemes presented by Mitchell and Sevitsky, i.e.,
the ways how to interpret combinations of both classifiers, can now
also be analyzed in AntTracks by using both classifiers at the same
time. Furthermore, they can be used in combination with any other
classifier that AntTracks provides.

Mitchell and Sevitsky used “the built-in facilities of Java virtual
machines (JVM) to trigger writing a snapshot to disk” [17]. Before
being able to write an analysis tool for such heap snapshots, one
must obtain knowledge about the binary file format, how to parse
it, and how to combine the parsed data into a convenient data
structure. Depending on the use-case, results also have to be pre-
sented graphically to the user to allow user-friendly manual analy-
sis, which also may take up a significant amount of development
time. Compared to that, the implementation of the two classifiers
presented above took about two hours each, including writing unit
tests (by checking the correct classification of known Java classes
such as HashMap). The classify methods of both classifiers cover
less than 150 lines of code (LOC). Therefore, we claim that writing
user-defined classifiers takes less work, with regard to person hours
as well as LOC. Additionally, AntTracks provides convenient visu-
alization out-of-the-box and the possibility to combine the newly
developed classifier with any other available classifier.

6 RELATEDWORK
Current state-of-the-art tools share one common problem. Nearly
all of them represent heap states (or the change of the heap over
time) only as type histograms. No free selection of classification
exists, not even to mention multi-level grouping. Even basic infor-
mation such as an object’s allocation site is not available in many
cases, since most tools rely on heap dumps that do not provide
that level of detail. Still, some tools provide additional functionality
such as pointer information on object level (plainly reconstructed
from a heap dump).

The most basic approach supported by the Java Hotspot
VM are the -XX:+PrintClassHistogramBeforeFullGC and
-XX:+PrintClassHistogramAfterFullGC flags. They cause a class

3http://ssw.jku.at/General/Staff/Weninger/AntTracks/ICPE18/
InstanceHealthClassifier.java

http://ssw.jku.at/General/Staff/Weninger/AntTracks/ICPE18/CollectionHealthClassifier.java
http://ssw.jku.at/General/Staff/Weninger/AntTracks/ICPE18/CollectionHealthClassifier.java
http://ssw.jku.at/General/Staff/Weninger/AntTracks/ICPE18/InstanceHealthClassifier.java
http://ssw.jku.at/General/Staff/Weninger/AntTracks/ICPE18/InstanceHealthClassifier.java


histogram to be printed to the console on every full GC. JCon-
sole [18] can connect to a running Java application and retrieves
data from its Java Management Beans. Due to the restricted func-
tionality of the memory bean, it can only show the current heap
memory consumption separated into eden space, survivor space,
and old space. jhat [19] can be used to analyze a Java heap dump file
which has previously been generated using the jmap tool. It starts a
webserver that hosts the heap dump results and can be accessed via
a webbrowser. Beside a type histogram, also the rootset (i.e., objects
that are referenced by a GC root) can be shown. Visual VM [23] is a
general performance monitoring tool for Java applications that pro-
vides memory analysis based on heap dumps. In addition to a type
histogram, it allows users to analyze individual objects of a certain
type, including functionality to follow an object’s pointers and go
to the referencing object. It is also able to calculate the retained set
of objects. The retained set of an objectX is the set of objects which
would be removed when X is garbage collected. In addition to that,
the Eclipse Memory Analyzer (MAT) [7] also allows users to analyze
the application’s dominator tree [15]. The Netbeans profiler [20] is
just a slimmed down version of Visual VM and is integrated into
the Netbeans IDE.

Other approaches such as the one presented by Aftandilian et
al. [1] or De Pauw and Wim [22] focus on visualizing a heap state’s
object graph. To reduce the complexity of such graphs, certain
reduction operations such merging, cutting, and so on, are applied.
Such approaches may work well for pointer analysis, e.g., which
types references which types, yet most of them lack the flexibility
to take other properties into account, e.g., heap spaces or allocation
sites.

A query technique that is integrated into some of the mentioned
tools is the Object Query Language (OQL) [2, 5]. It has been de-
veloped by the Object Data Management Group and is an SQL-
like query language used to query objects from object-oriented
databases. The downside of OQL is its complexity, which results
in the problem that no vendor implements the whole standard.
For example, the Eclipse Memory Analyzer (MAT) as well as Visu-
alVM only allow queries in the form of SELECT <select clause>
FROM <from clause> WHERE <where clause>.Where clauses can
be represented in our approach using filters, while select clauses
can be represented using an object classifier. Multi-level grouping,
as supported in our approach, is neither possible in MAT nor in
VisualVM.

7 FUTUREWORK
The concept of object classifiers and multi-level grouping as well as
their implementation in AntTracks opened a number of interesting
ideas. This section will shortly introduce these ideas and point out
possible ways how to approach them.

Extended Pointer Support in AntTracks. Currently, Ant-Tracks
provides only basic support for pointer analysis. For every object, it
records the referencing and the referenced objects and makes them
available for offline analysis. However, state-of-the-art tools [1,
16] often use advanced data structures such as dominator trees
for analyzing whole pointer graphs. We plan to use similar data
structures also inAntTracks to compute, for example, all objects that
are reachable from a certain object (i.e., the transitive closure [24])

as well as the amount of memory that is kept alive by a specific
object (i.e., the retained size).

Heap Diffing. Weninger et. al. [25] suggest heap diffing, i.e., an-
alyzing how the heap changes over a certain time span, which is
currently already supported to a certain level in AntTracks. The
grouping and classification techniques that were described for heap
states in this paper can partially also be applied to heap diffing.
Extending classifiers with information about a source object’s de-
velopment over time, e.g., how a heap object’s pointers changed
over time, could further increase the potential application of heap
diffing in combination with object classifiers.

Combined Tree Types. We showed that the memory consumption
of a lossless classification tree is orders of magnitude higher than
that of a lossy one. In a classification tree, often only a small subtree
is of interest to the user. Since both classification tree types use
node data structures inheriting from the same interface, they could
be combined to only give lossless information for parts of the tree
that are of higher interest to the user.

AntTracks DSL. To abstract from classifiers and their underlying
programming language, the heap could also be analyzed by using a
domain-specific query language. Such a language could, for exam-
ple, be used to ask for the amount of objects of type T that were
allocated at site S and survived at least n garbage collections. Based
on our classifiers, we plan to develop such a language to provide
even better support for expressing application-specific queries in a
user-friendly way.

8 THREATS TO VALIDITY AND LIMITATIONS
Visualization of data in memory analysis tools is often strongly
coupled with the kind of data that is collected and analyzed by those
tools. Even though AntTracks collects more information about ob-
jects than most of the presented tools (e.g., only few tools collect
allocation site information), the general classification principles
using multi-level grouping and classification trees based on object
classifiers and as well as AntTracks visualization features are not
dependent on that amount of information. Only the number and
the complexity of the classifiers that developers can implement
is limited by the available information. The fewer source object
properties are available, i.e., the less information the tool collects
about heap objects, the less flexibility the developer has when it
comes to writing classifiers. Assuming that AntTracks only col-
lected type and heap space information for each object, we would
still be able to provide the Type classifier, the Object Kind classifier,
the Space classifier and so on as predefined classifiers, but due to the
missing information, no Allocation Site classifier could be provided.
Yet, all the available classifiers could still be freely combined, for
example, by first classifying all objects by space and then by type,
or first by object kind and then by space, or in any other possible
combination. This outclasses the flexibility of the data aggregation
and visualization techniques available in other tools presented in
Section 6.

Similar to the limitation mentioned above, current pointer-based
classifiers are restricted to adjacent objects via the from-pointer and
to-pointer information. As explained in Section 7, new classifiers



may become possible as soon as AntTracks provides full object
graph traversal and root pointer information.

To verify that the extra flexibility simplifies memory analy-
sis, specifically that it facilitates detecting and resolving memory-
related problems such as memory leaks, a user study is planned
as future work. Technical metrics such as task completion time
or number of found memory leaks and subjective metrics such as
user satisfaction can be collected during the study, based on faulty
benchmark implementations or industry applications.

A limitation of our current study is that we have not yet inves-
tigated, which combinations of classifiers are best for detecting
specific memory-related problems. This is another topic to be tack-
led by the mentioned user study.

9 CONCLUSION
In this paper, we presented the domain-independent concepts of
(user-defined) object classifiers and multi-level grouping, which are
novel and general concepts for classifying large amounts of objects,
processing them, and arranging their classification results as a tree
for later analysis. Object classifiers are entities that classify objects
based on a certain criterion derived from the objects’ properties.
Multi-level grouping is the process of applying multiple object
classifiers to a collection of objects and grouping these objects based
on the classification results. In contrast to single-level grouping,
which results in a key-value map, multi-level grouping results in
a classification tree. Such a tree can be visualized in various ways
and allows a top-down, fine-grained manual data analysis by the
user.

Various lossless and lossy classification tree data structures were
presented and analyzed with respect to their performance, their
memory consumption, and their ability to retain object identity. We
showed that the lossy tree structures allow a tremendous reduction
of memory overhead when accepting certain information loss in
the classification tree.

We integrated the concept of object classifiers and multi-level
grouping into the memory monitoring tool AntTracks, a tool that
primarily focuses on helping developers to detect and understand
memory anomalies, thus replacing its previous rigid classification
scheme. Developers benefit from AntTracks’s new ability to clas-
sify heap states based on any combination of classifiers, which
distinguishes our approach from existing state-of-the-art tools. Fur-
thermore, our tool supports user-defined object classifiers, i.e, it
allows the user to write small, dynamically loaded source code
snippets to classify heap objects based on arbitrary criteria. This
may also be of interest to researchers who want to perform more
general and experimental memory analyses. Our memory analysis
approach opens new ways how AntTracks can be used and how
memory can be analyzed, and its applicability has been shown in a
quantitative and a functional evaluation.
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