
On the Applicability of Annotation-Based Source Code
Modification in Kotlin (Work in Progress)

Daniel Pfeffer∗
Institute for System Software

Johannes Kepler University Linz
Linz, Austria

Markus Weninger∗
markus.weninger@jku.at

Institute for System Software
Johannes Kepler University Linz

Linz, Austria

Abstract
Annotations add metadata to source code entities such as
classes or functions, which later can be processed by so-
called annotation processors to, for example, modify the an-
notated program’s source code. While annotation processing
has been well-explored in Java, the Kotlin community still
lacks a comprehensive summary. Thus, in this paper, we sum-
marize the main approaches available in Kotlin: (1) Compile-
time annotation processing using (a) Kotlin Annotation Pro-
cessing Tool (KAPT), (b) Kotlin Symbolic Processing (KSP),
or (c) writing a custom Kotlin Compiler plugin; as well as
(2) load-time code modification using an agent or a custom
class loader. We provide proof-of-concept implementations,
discuss advantages and disadvantages, and specifically fo-
cus on how well each approach supports modifying the an-
notated source code. This should help developers and re-
searchers to better decide when to use which approach.

CCS Concepts: • Applied computing → Annotation; •
Software and its engineering → Source code genera-
tion; Compilers; Preprocessors; Language features; • Gen-
eral and reference → Surveys and overviews; Design.

Keywords: Kotlin, Annotations, Source Code Generation,
Source Code Modification, AST, Compiler Plugin

ACM Reference Format:
Daniel Pfeffer and Markus Weninger. 2023. On the Applicability
of Annotation-Based Source Code Modification in Kotlin (Work
in Progress). In Proceedings of the 20th ACM SIGPLAN Interna-
tional Conference on Managed Programming Languages and Run-
times (MPLR ’23), October 22, 2023, Cascais, Portugal. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3617651.3622983

∗Both authors contributed equally to this research.

MPLR ’23, October 22, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 20th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes (MPLR ’23), October 22, 2023, Cascais,
Portugal, https://doi.org/10.1145/3617651.3622983.

1 Introduction
Various programming languages allow developers to provide
additional metadata in the form of annotations. Frameworks
such as JPA [61], Spring [41] or Kotless [58] heavily make
use of this feature. There is a wide array of other application
areas for annotations [17, 18], including testing [38, 50], GUI
programming [40] or non-nullability annotating [20].
According to Yu et al. [63] Java code with annotations

tends to be less error-prone, yet they also mention that better
tutorials and dedicated training would help novice developers
[...] to more use annotations. We want to tackle this lack of
literature: While DBLP [37] currently lists 74 papers with the
words Java and Annotation in their title, not a single one has
a title containing Kotlin and Annotation. Even though this is
just a rudimentary metric, a thorough web search confirmed
our initial assumption: there is clearly a lack of guidance
when it comes to developing annotation processors in Kotlin.

In this work-in-progress paper, we summarize Kotlin’s
existing approaches for annotation processing. We highlight
their advantages and disadvantages and discuss how they
can be used to modify the annotated source code. Based on
the experience we gained while implementing a simple yet
realistic annotation-based post-condition checking system,
we provide a guideline on when to use which approach. Thus,
our contributions are:

• an overview on how to process annotations in Kotlin,
specifically at compile time using the Kotlin Anno-
tation Processing Tool (KAPT) (Section 4.1), Kotlin
Symbolic Processing (KSP) (Section 4.2), or a custom
Kotlin compiler plugin (Section 4.3); or at load time
using an agent or a custom class loader (Section 5).
– This includes an example use case (Section 3) im-
plemented as a compiler plugin and an agent, see
https://bit.ly/annotation-modification-mplr-2023

• a thorough discussion of the advantages and disadvan-
tages of each approach, as well as a guideline on when
to use which approach (Section 6)

2 Background
As all discussed approaches revolve around annotation pro-
cessing and the programming language Kotlin, this section
provides an overview of the relevant background.

https://orcid.org/0009-0003-4689-947X
https://orcid.org/0000-0002-8232-5030
https://doi.org/10.1145/3617651.3622983
https://doi.org/10.1145/3617651.3622983
https://bit.ly/annotation-modification-mplr-2023

MPLR ’23, October 22, 2023, Cascais, Portugal Daniel Pfeffer and Markus Weninger

2.1 Java Annotations and Their Processing
Annotations in Java have become an integral part of the
language since they were introduced in Java 1.5 in 2004 as
part of Java Specification Request (JSR) 175 [5]. They add
metadata information primarily to indicate that an annotated
element should be processed in a special way by development
tools, deployment tools, or run-time libraries.
Annotations are either processed (1) at run time or (2) at

compile time using the Annotation Processing API [10], an
API that enables developers to plug custom annotation pro-
cessors into javac (before Java 1.6, the Annotation Processing
Tool (apt) [5, 32] was used for this task).
While annotation processors are typically tasked with

writing new files or reporting error messages [46], also mod-
ifying the underlying source code is possible: (1) Load-time-
based approaches (such as [51]) typically rely on a Java agent
or a custom class loader to modify the annotated entities
when they are loaded, while (2) annotation processors might
go against their design philosophy and use the (quite com-
plex) Compiler Tree API [45] to modify the compiled Abstract
Syntax Tree (AST) as a workaround [49].

2.2 Kotlin
Kotlin is a modern, statically typed language developed by
JetBrains. It was initially targeted to run on the Java Virtual
Machine (JVM), enabling developers to write and run Kotlin
code alongside existing Java code (or any other JVM-based
language), and has since developed into a multiplatform
language [21]. This allows Kotlin source to target Android,
iOS, desktop, web, and native at the same time with only a
minor target-specific source code.

3 Example Use Case
In this section, we present an example that we used to test the
various annotation processing approaches regarding their
applicability for source code modification. In this example, a
Holds annotation (see Listing 1) can be attached to properties
or function parameters to define a condition that must hold at
any time. Annotated entities should automatically be verified
at all necessary locations, for example when a new value is
assigned. Imagine we have an Account class that represents
a bank account, we would be able to write code as shown in
Listing 2, using verfiers as the one shown in Listing 3.
To achieve this, an annotation processor first has to find

all annotated properties and parameters. For each annotated
property, the processor then has to add verification code

• on initialization (whichmight lead to a new init block,
as shown in Listing 2 1).

• after every value write (as shown in Listing 2 3).
Writes can be found as calls to the property’s setter
function (which, together with a property’s getter func-
tion, form the property’s property accessors [26]).

For each annotated parameter, the relevant check has to be
performed at the beginning of the function (as shown in
Listing 2 2)

@Target(PROPERTY, VALUE_PARAMETER)
@Retention(AnnotationRetention.RUNTIME)
annotation class Holds(val verifier: KClass<out Verification<∗>>)

Listing 1. Holds annotation that can be attached to proper-
ties and function parameters.

class Account(@Holds(PositiveOrZero::class) var balance: Int) {
// (1) init { PositiveOrZero.verify(balance) }

fun withdraw(@Holds(Positive::class) amount: Int) {
// (2) Positive.verify(amount)

this.balance −= amount
// (3) PositiveOrZero.verify(balance)

} /* ... */

}

Listing 2.Using an annotation-based verification system, we
do not need to call the verfication code (see comments) man-
ually, as they are generated automatically by the annotation
processor at the correct locations.

object PositiveOrZero : Verification<Int>{
override fun verify(toVerify: Int) {
if (toVerify < 0) { /* handle unsuccessful verification */ }

}
}

Listing 3. Verifier to ensure a given integer is positive or 0.

4 Compile-Time Annotation Processing
In this section, we present three annotation processing tech-
niques that run as part of the compilation process, namely
the Kotlin Annotation Processing Tool (KAPT), Kotlin Symbolic
Processing (KSP), as well as custom Kotlin compiler plugins.

4.1 Kotlin Annotation Processing Tool
The Kotlin Annotation Processing Tool (KAPT) was the first
annotation processing tool developed by JetBrains. [25] It en-
ables using existing Java annotation processors with Kotlin.
This means that by using KAPT, an annotation processor
written for Java can be used for Kotlin without modifications.

Example. Due to the following limitations, we deliber-
ately do not provide an example on how to develop annota-
tion processors using KAPT to not encourage bad practices.

Limitation #1: Maintenance Mode. Since October 2021,
KAPT has been in maintenance mode. This means that there
are no plans to implement new features for it. Jetbrains sug-
gests to use KSP instead. [25].

On the Applicability of Annotation-Based Source Code Modification in Kotlin (Work in Progress) MPLR ’23, October 22, 2023, Cascais, Portugal

Limitation #2: Performance. To use existing Java an-
notation processors, KAPT has to generate Java stubs from
Kotlin files. As stub generation is expensive, it has a signif-
icant impact on the compile time. According to Uber [62],
their Kotlin builds with KAPT experience an overhead of
around 95 percent compared to pure Kotlin.

Limitation #3: Multiplatform. Since KAPT is exclusive
to the JVM platform, it cannot be used when targeting other
platforms such as Kotlin’s native backend.

Limitation #4: Kotlin Features Not Available. Lan-
guage features specific to Kotlin without a direct equivalent
in Java are not directly accessible from within the annota-
tion processors. This includes information about explicit
nullability, primary constructors, properties, and so on. [42]

Limitation #5: Complex Code Modification. Since Java
annotation processors (and thus also KAPT) are encouraged
to not modify the code being compiled, only workarounds
based on the complex Compiler Tree API exist [64].

4.2 Kotlin Symbolic Processing
The Kotlin Symbolic Processing (KSP) API — an abstraction of
the more advanced kotlinc compiler plugin API that will be
discussed in Section 4.3 – simplifies developing lightweight
compiler plugins. It offers a powerful metaprogramming tool
similar to KAPT, whilst being Kotlin idiomatic. Thus, the
existing problems with KAPT, especially the performance
issues, are mitigated. For instance, JetBrains claims that KSP
can run up to 2 times faster than KAPT. [27]
In contrast to one of KAPT’s limitations — being tied to

the JVM — KSP addresses all of Kotlin’s targets, therefore
being suitable for multiplatform projects.

Example. A KSP processor has to implement the inter-
face SymbolProcessor and provides, in its most basic form, a
function process(resolver: Resolver) that will be called
when the processor is run. The resolver can be used to ob-
tain information about all source files, which in turn might
be processed one-by-one, often using a KSVisitor. The vis-
itor interface contains around 25 functions in the style of
visitXYZ(xyz: KSXYZDeclaration) that can be overrid-
den to perform certain operations when one of the respec-
tive code elements is encountered. With a focus on anno-
tation processing, the resolver also provides a function
getSymbolsWithAnnotation(...) which can be used to
easily obtain all elements annotated with a certain annota-
tion. We can then, similar to reflection, query information
about every annotated element (for example whether it is
a property or a function parameter). A CodeGenerator in-
stance can be used to create new code, typically through the
help of a code generation framework such as KotlinPoet [56].

Limitation #1: Fine-Grained Analysis. KSP lacks the
possibility to examine expression-level instructions. [29]

Limitation #2: Source Code Modification. With KSP,
it is not possible to modify source code. [29] This is further
enforced by not even providing an AST-modification-based
workaround, as available in Java annotation processors.

4.3 Compiler Plugins
As last compile-time approach, we present custom Kotlin
compiler plugins. First, we discuss how Kotlin’s new K2
compiler is structured, using a frontend and backend design
philosophy, each with its own intermediate representation.
Following, we show that one can inject custom plugins at dif-
ferent compilation phases and present which kind of plugin
we used to implement our example use case.

4.3.1 The K2 Kotlin Compiler. Kotlin’s new K2 com-
piler aims primarily to accelerate the development of new
language features by unifying certain tasks across all Kotlin
Multiplatform targets. It also brings general performance im-
provements and should provide an official API for compiler
plugins. As there was no need for different targets when
Kotlin’s first compiler was developed (since the only target
was the JVM), when new targets were introduced (such as
the JavaScript target), an entirely new backend had to be de-
veloped that builds the target code completely from scratch
based on the syntax tree and its semantic information. With
the new K2 compiler, that changed: A new frontend inter-
mediate representation (FIR) has been introduced, and all
backends now rely on a common intermediate representa-
tion (IR). In a common backend, the K2 compiler performs
general work (and optimizations) needed for every target
based on this IR. Only entirely target-specific functionality
has to be added to the target-specific backends.

Compiler Frontend. The compiler frontend is split into
four phases, each with different sub-phases, as shown in
the top half of Figure 1. The parsing phase executes the
Lexical Analysis to generate tokens which are then used for
the Syntax Analysis, after which anAbstract Syntax Tree (AST)
is created. Then, a Semantic Analyzer is invoked on the AST,
after which the Program Structure Interface (PSI) alongside a
BindingContext, i.e., a lookup table for semantic information,
is created. In the intermediary code generation phase, this
PSI is transformed to the FIR, which combines the traditional
PSI and the BindingContext. The FIR is used in the resolution
phase to performCode Analysis, a last stage to report different
diagnostics on the FIR and to modify the FIR according to
frontend plugins. After the last code analysis stage reports
success, the FIR is passed to the compiler backend. [19]

Compiler Backend. The new common compiler backend
(see bottom half of Figure 1) receives the FIR as input and
converts it, using optional compiler plugins, to the Intermedi-
ate Representation (IR). After the IR generation, the compiler
backend invokes the common optimization phase. This op-
timized IR is then passed to a target-specific backend (for

MPLR ’23, October 22, 2023, Cascais, Portugal Daniel Pfeffer and Markus Weninger

example the JVM backend), which transforms the optimized
IR to the target-specific code (for example Java bytecode).
Since most of the work now happens in the common com-
piler backend, the target-specific backends become smaller
and therefore faster to adapt to new language features.

Compiler Backend
Common Backend

IR
Generator

IR
Optimization

Target Code
GeneratorTarget Code

Modied IR

Target-specific Backend

IR

Compiler Frontend

Semantic
Analyser

FIR
Generator

Code
Analysis

Resolution phase FIR Codegen

Syntax
Analyser

Lexical
Analyser

FIR PSI

Parsing phase
AST

Figure 1. Simplified overview of Kotlin’s K2 compiler com-
pilation process.

Plugins. The K2 compiler offers native support to attach
multiple plugins at the different phases in the compile pro-
cess, ranging from frontend analysis to backend IR genera-
tion (suitable phases for compiler plugins are marked with a
plus symbol (+) in Figure 1). Some of these plugin-able ex-
tensions only affect one target, for example, the Synthetic-
JavaResolveExtension [22] plugin is JVM-backend-specific
and generates synthetic constructs only relevant there, but
not in, for example, JavaScript. Nevertheless, most plugins
operate on either the FIR or the IR, therefore being general.
A compiler plugin can, in turn, consist of multiple com-

piler plugins, and each plugin can be attached to a different
stage in the compilation process. For example, the prominent
Jetpack Compose [15] compiler plugin registers multiple plu-
gins to facilitate complex user interface creation. Two other
well-known compiler plugins that change the default behav-
ior of Kotlin are the NoArg-Plugin [30], which generates an
additional zero-argument default constructor, and the Al-
lOpen-Plugin [23], which automatically defines all classes as
open (classes in Kotlin are final by default and have to be
explicitly marked as open to be able to inherit from them).

4.3.2 Example. For the implementation of our example
use case (cf. Section 3), we decided to develop a backend plu-
gin that attaches to the IR Generation step (see Figure 1). This
way, our plugin is not target-specific and can also be used
with targets besides the JVM. Section A.1 contains the most
important code constructs of our reference implementation.

To transform the IR in a backend plugin, we have to im-
plement the IrGenerationExtension interface. Similar to
KSP, a visitor can be used to traverse all IR nodes from top
to bottom. In contrast to KSP, when a compiler plugin visits
an IR node, it is able to modify the underlying code.

The first visitor function relevant to our use case is visit-
FunctionAccess. This function is called when a function
access expression, i.e., a function call, is encountered. If the
called function is the setter of a property annotated with our
@Holds annotation, we have to insert verification code, as
outlined in Listing 4 (a simplified version of Listing 5). At
1 we generate (and finally return) a new IR block, which in
turn contains two function calls. The first function call 2 is
the original call to the setter, i.e., the new value is written to
the property. The generateVerification function 3 is
responsible for generating the IR nodes to call the respective
verification function. For this, we pass the annotated prop-
erty as a parameter into generateVerification. Based on
the property’s annotation @Holds(XY::class), the function
generates and returns IR code that, simply speaking, exe-
cutes XY().verify(property). The unary plus symbol in
front of 2 and 3 is part of Kotlin’s compiler plugin DSL
and simply adds the two IrExpressions to the body of the
enclosing IrBlock.
return DeclarationIrBuilder(context, expression.symbol).irBlock { // (1)

+super.visitFunctionAccess(expression) // (2)

+generateVerification(property) // (3)

}

Listing 4. A simplified version of how we generate verifica-
tion calls after a property write.

The second relevant visitor function is visitFunctionNew,
which is called when a function is visited in the IR. We then
iterate its parameters, and if a parameter is annotated with
our Holds annotation, verification code is added at the be-
ginning of the function’s body (see Listing 6).

Lastly, we add an init block containing the respective ver-
ification code for annotated properties (see Listing 7). init
blocks are automatically called during object instantiation.

Once all IR nodes were visited, the compiler simply passes
the modified IR to another IR Generation compiler plugin or,
if no such plugin exists, to the IR Optimization phase.

4.3.3 Limitations. While compiler plugins are the most
powerful and versatile approach for annotation-based source
code modification, they are not without limitations.

Limitation #1: Lack of Documentation. Currently, the
main resources for compiler plugin development are videos
by JetBrains employees (e.g., [14]), written tutorials by third
parties (e.g., [43, 57]), and examples on GitHub (e.g., [36, 44]).

Limitation #2: Kotlin-Specific. To the best of our knowl-
edge, Kotlin compiler plugins can only process Kotlin code
and not, for example, Java code.

On the Applicability of Annotation-Based Source Code Modification in Kotlin (Work in Progress) MPLR ’23, October 22, 2023, Cascais, Portugal

5 Load-time Annotation Processing
This section presents the two dominating ways of modifying
code at load time: Java agents and custom class loaders.

5.1 Java Agents
Java agents leverage the Java Instrumentation API to modify
classes at load time or run time. This modification is per-
formed on the bytecode level, often utilizing Java bytecode
manipulation libraries such as Javassist [7, 9] or ASM [6].

Example. Java agents use a so-called transformer to mod-
ify a class’s bytecode. A transformer implements the Class-
FileTransformer interface, which defines a byte[] trans-
form(...) method. This method receives (besides other pa-
rameters) the bytecode (as byte[]) of the class currently
being transformed and it must return the modified bytecode.
Our transformer, whose most important code constructs

can be found in Section A.2, utilizes Javassist. In Javassist,
the class currently being transformed is represented as a
CtClass [8] object. A CtClass object provides methods such
as getDeclaredFields and getDeclaredMethods, which
we use to find annotated properties and annotated function
parameters (see Listing 8). Javassist enables developers to
add new bytecode by just providing the new source code as a
simple string (compared to, for example, complex IR nodes as
is the case for compiler plugins). This means that for a given
annotated property with its setter method s, one can sim-
ply write s.insertAfter(str), where str might contain
the code string "verifierObj.verify(this.propName);"
(see in a similar fashion in Listing 9).

5.2 Custom Class Loader
It is possible to achieve a similar effect by writing a custom
class loader. In the custom class loader’s findClass function,
the class’s byte code might be modified similarly as it would
be using a Java agent (e.g., using a library such as Javassist).
Thus, it is possible to check a class for the existence of certain
annotations within it and, if so, modify the required code
parts while loading that class.

Using the Java property java.system.class.loader one
can change the system class loader to a specific class loader.
Providing a custom system class loader allows us to auto-
matically handle the loading (and modifying) of every class
that might be annotated with our annotation(s).

5.3 Limitations
Limitation #1: Startup Time. : Since the modifications

happen at load time, this approach can slow down the startup
of the application. Depending on the use case, this might be
negligible, for example for long-running processes, or a real
concern, for example for Android applications that rely on
fast startup for high user experience.
In a minimal test setup (5 classes, 14 annotations), we

noticed a startup time of about 40ms compared to a startup

time of 10ms using a Custom compiler plugin. Nevertheless,
we want to mention we did not implement any test cases
that focus specifically on performance, neither did we focus
on implementing the most performing agent.

Limitation #2: JVM-Specific. Since the presented load-
time approaches are JVM-specific, they cannot be used to
modify code generated by other backends.

Limitation #3: Multiple Class Loaders. A class can not
be loaded by multiple class loaders but only by a single one.
It is thus not possible for multiple class loaders to modify
the same class.

6 Discussion
As we have shown, each approach has its set of limitations.
As the approaches differ greatly in the way they are imple-
mented, it is hardly possible to switch from one to another
one during development without heavy refactoring. There-
fore, Table 1 reiterates the advantages and disadvantages
of each approach, we discuss certain performance consid-
erations, and we present a set of guidelines to aid in the
decision-making process on when to use which approach.

Table 1. Advantages and disadvantages of Kotlin’s different
annotation processing techniques.

Advantages Disadvantages

KAPT
(maintenance
mode)

+ Can reuse
Java processors

- Slow
- No multiplatform
- Not Kotlin-idiomatic
- Complicated code mod.

KSP
+ Kotlin-idiomatic
+ Fast
+ Multiplatform

- No expr.-level analysis
- No code modification

Compiler
Plugins

+ Same as KSP but
more versatile
(compilation phases, ...)

- Most complex approach
- Lack of documentation

Load-time
Approaches

+ Easy to implement
+ Good tool support
(Javassist [7],
ASM [6], ...)

- Slower startup
- No multiplatform
- Not Kotlin-idiomatic

Performance. To preliminarily evaluate how much over-
head our custom compiler plugin and Java agent introduce
(which have not been specifically implementedwith high per-
formance in mind), we developed a dummy application that
simulates server-side business logic. It contains 23 classes,
including verification procedures, with an overall number
of 6 methods that perform dummy business logic. Within
these, we annotated 25 fields and parameters with our Holds
annotation.
Table 2 shows our results, as well as some statements

regarding KAPT and KSP from other sources (since we do
not have implementations for these approaches).

MPLR ’23, October 22, 2023, Cascais, Portugal Daniel Pfeffer and Markus Weninger

Table 2. KAPT and KSP: Taken from related work. Plugin:
We performed 2000 compilations (1000x without plugin (off),
1000x with plugin (on)). On average, our plugin increased
the compile time by about 6%. Agent: We ran the application
2000 times (1000x with manually added verification code,
1000x with agent). On average, our agent increased the run
time by 385 ms.

Run Time

KAPT (compile time) Uber: 95% overhead compared
to pure Kotlin only [62]

KSP (compile time) JetBrains: up to 2 times
faster than kapt [27]

Compiler Plugin
(compile time in ms)
95% conf. interval

off: [542, 544] (avg. 543ms)
on: [575, 578] (avg. 576ms, +6.08%)

Java Agent
(run time in ms)
95% conf. interval

off: [268, 268] (avg. 268ms)
on: [652, 653] (avg. 653ms, +385ms)

Guideline. We suggest suitable Kotlin annotation pro-
cessing approaches based on the following guidelines, also
depicted in Figure 2:

• No need to modify source code: KSP (high perfor-
mance; well-documented, de-facto standard for anno-
tation processing in Kotlin)

• Need to modify source code:
– Startup time relevant: Custom Kotlin compiler plu-
gin (versatile, powerful capabilities; yet complex and
documentation nearly non-existent)

– Startup time not critical (JVM-backend only):
Load-time-based approach using a custom class loader
or an agent (easier to implement; helpful libraries
and examples available)

Startup time relevant?

Multiplatform support needed?

Need to modify code?

KSP

Load-time-based
approach Custom compiler plugin

Custom compiler plugin

no yes

no

Ino yes

yes

Figure 2. Decision tree for when to use which annotation
processing technique in Kotlin.

7 Related Work
In the following, we present various related work that modi-
fies source code based on annotations as well as resources
for developing processors in KAPT, KSP as well as Kotlin
compiler plugins.

Annotation-Based Source CodeModification. Spoon [47,
48] is a Java library to analyze, rewrite, transform, and tran-
spile Java source code that utilizes compile-time annotation
processing. Likewise, Project Lombok [49] leverages Java an-
notations to automatically generate boilerplate code such as
getter and setter functions during compilation. The Java
Persistence API (JPA) [12] as well as other jakarta packages
use annotation processing for various tasks, including anno-
tating ORM entities [12] to dependency injection [11]. Birillo
et al. [4] present Reflekt, a tool to replace run-time reflection
with compile-time reflection to improve performance. It re-
lies on a Kotlin compiler plugin to modify the code being
compiled.

KAPT, KSP and Kotlin Compiler Plugin Development.
Most introductory works that teach KAPT, KSP, and espe-
cially compiler plugins are distributed as videos [14], written
tutorials [43, 57], or as plain code examples on GitHub [36,
44]. Most articles present a single, small example, without
(many) references or resources to follow upon. In our expe-
rience, we achieved the best results by looking at existing
projects such as MapStruct (a KAPT / Java Annotation Pro-
cesser) [39], Google’s KSP examples [16], or the AllOpen [24]
and NoArg [31] compiler plugin.

Using Kotlin’s Techniques to Extend Existing Work.
For Java, ample work presents approaches that either create
new files or modify existing code. Such approaches could
also be introduced in Kotlin: Those that create new files
could be implemented with KSP, while approaches that want
to hook deeper into the compilation process, for example to
modify the bytecode produced by the compiler, could use a
custom compiler plugin. In the following, we present a few
selected examples.

Pattern-Based Structural Expressions (PBSE) [53, 60] are a
way to automatically add annotations to various code entities
of a yet unannotated Java codebase (besides other languages).
Using PBSE’s DSL, one can define a PBSE file that describes
which code entities (for example which methods) should
become annotated with which annotations. This descrip-
tion has similarities to a pointcut description in AspectJ’s
aspected-oriented programming approach [34, 35]. For exam-
ple, one can define that every public method whose name
starts with test should become annotated with JUnit’s @Test
annotation [33]. In simple terms, the tool takes a PBSE file
(describing which annotations should be added where) along-
side the (unannotated) Java source code to generate files that
contain the annotated Java source code. PBSE files enable
developers to use the same descriptions across multiple ap-
plications, and by exchanging the PBSE file one might switch
to another framework without heavy refactoring. Since the
existing code is not modified but only new code is gener-
ated (basically using string concatenation), a PBSE tool could
be re-implemented in Kotlin using KSP. Since it would be
enough to include the annotations in the bytecode during

On the Applicability of Annotation-Based Source Code Modification in Kotlin (Work in Progress) MPLR ’23, October 22, 2023, Cascais, Portugal

compilation without creating annotated Java source code at
all, one could even develop a custom compiler plugin that
completely hides the annotation process from the user.
Song and Tilevich [52] present a similar DSL to describe

metadata invariants. These must hold for all matching source
code entities, otherwise the developer is warned about the
non-conforming code locations. For example, one could de-
fine that all methods whose name starts with test must have
the annotation @Test attached to them. They also present
algorithms that, based on a given codebase with annotated
entities, can derive possible invariant candidates. To analyze
the codebase (either for inferring or checking), they walk the
classes’ abstract syntax trees using JDT [13]. Both, KSP or a
custom Kotlin compiler plugin, could be used to perform the
same tasks since no code has to be modified or generated
and both techniques are able to inspect the syntax tree.
Tansey and Tilevich [59] present an approach that auto-

matically upgrades source code according to a set of when-
then transformation rules (which might be user-defined or au-
tomatically inferred from code examples). For example, they
used their tool to upgrade a large codebase to a newer ver-
sion of JUnit that used (different) annotations. Song et al. [54]
extended this approach to also be able to upgrade legacy pro-
grams that were initially configured using XML but changed
to an annotation-based configuration [59]. These transforma-
tions are purely text-based, thus KSP in combination with a
code generation framework such as CodePoet could provide
an excellent foundation to recreate these tools in Kotlin.

8 Limitations and Future Work
Even though being a work-in-progress paper, the paper
strives to provide a comprehensive overview of annotation-
based source code modification in Kotlin. To provide others
with templates to develop their own code-modifying anno-
tation processors, we host reference implementations for
the, in our opinion, most flexible approaches: (1) a custom
compiler-plugin and (2) an instrumenting agent. In the fu-
ture, we might also provide reference implementations for
the other presented approaches: KAPT (is in maintenance
mode), KSP (no source code modification possible), and using
a custom class loader (quite similar to an agent).
As we have discussed, the complexity of compiler plu-

gin development and the lack of documentation makes it
hard to even get started. Existing introductory compiler plu-
gins [24, 31] are, generally speaking, often too simple, while
more comprehensive compiler plugins[2, 28] are lacking
explanations. One framework that claims to make plugin
development easier, ARROWMeta [3], unfortunately has no
working documentation available. Thus, in the future, we
want to extend and document our existing compiler plugin
example in even more detail. With it, we want to provide a
comprehensive resource for others wanting to learn about
compiler plugin development and all of its phases.

To identify the needs of the Kotlin community in more
detail, we also plan to perform a study on how annotations in
Kotlin are currently used “in the wild”, for example bymining
repositories on GitHub [1, 55]. This might provide insights
into which aspects of annotation-oriented development are
most relevant to the community.

9 Conclusions
Due to a lack of existingwork, we presented how annotations
can be used to modify Kotlin source code. We explored three
different compile-time approaches, namely using (1) Kotlin’s
Annotation Processing Tool (KAPT), (2) Kotlin’s Symbolic
Processing (KSP) or (3) custom Kotlin compiler plugins, as
well as two different load-time approaches, namely using
(1) an instrumenting Java agent or (2) a custom class loader.
We highlighted the limitations of each of these approaches,
especially that KAPT is already in maintenance mode and
not actively developed anymore, as well as KSP’s constraint
of only being able to generate additional source code files
but not to being able to modify existing one.

We provide a reference annotation processor implementa-
tion for both, a custom Kotlin compiler plugin as well as a
Java agent. These reference implementations, as well as our
discussion on when to use which approach, will hopefully
help developers and researchers to easier get started with
annotation-based source code modification in Kotlin and
might spark ideas on how to improve existing annotation
processing tools and frameworks.

A Sources
This appendix contains the most important code constructs
used for our reference implementations of the example use
case presented in Section 3. The full source code can be found
at https://bit.ly/annotation-modification-mplr-2023.

A.1 Custom Kotlin Compiler Plugin
This section contains listings for our custom Kotlin compiler
plugin. Listing 5 presents how to generate verification code
after property sets, Listing 6 presents how to generate verifi-
cation code for function parameters, and Listing 7 shows how
we create an optional init (anonymous initializer) block.
return DeclarationIrBuilder(context, expression.symbol).irBlock {
+super.visitFunctionAccess(expression) // (1)

+generateVerificationFunctionCall(// (2)

property, irCall(property.getter!!).also {
+it.dispatchReceiver = expression.dispatchReceiver

}
)

}

Listing 5. The DeclarationIrBuilder is used to create a
container containing (1) the originally intercepted expres-
sion, as well as (2) the generated verification call.

https://bit.ly/annotation-modification-mplr-2023

MPLR ’23, October 22, 2023, Cascais, Portugal Daniel Pfeffer and Markus Weninger

val body = func.body ?: return super.visitFunctionNew(func)
val valueParameterVerifications =
DeclarationIrBuilder(context, func.symbol).irBlock { // (1)

func.valueParameters.forEach {
if (it.hasAnnotation(annotation)) {
+generateVerificationFunctionCall(it, irGet(it))

}
}

}
(body.statements as MutableList).add(0, valueParameterVerifications) // (2)

Listing 6. (1) The DeclarationIrBuilder is used to gener-
ated a block containing the verification call for all annotated
value parameter. (2) This block is then added as the first
element in the function body’s statement list.

if (!declaration.hasAnonymousInitializer()) {
declaration.declarations.add(
irFactory.createAnonymousInitializer(
/*...*/

).also {
it.parent = declaration
// empty body

it.body = DeclarationIrBuilder(context, it.symbol).irBlockBody {
}

})
}

Listing 7. If the intercepted class does not have an init
block, we add a new init block with an empty body which
will be filled with the verification call at a later point.

A.2 Java Agent
This section contains listings for our custom Java agent. List-
ing 8 presents how to find annotated Kotlin property getters
in the bytecode, and Listing 9 presents how to generate veri-
fication code for function parameters.

declaringClass.declaredBehaviors.firstOrNull { behavior −>
behavior.name.startsWith(
"get${name.capitalized}"

) && behavior.hasAnnotation(annotation.java)
}

Listing 8. When annotating a Kotlin property, the anno-
tation can be attached to the backing field, the setter func-
tion or the getter function. To find the latter for a property
named name, we iterate over all declared behaviors (meth-
ods + constructors) in the class, check whether the method
name matches the getter name and whether the method is
annotated.

// The entries contain all annotations (Array<Annotation>)

// of their respective function parameter

val params : Array<Array<Annotation>> = /* ... */

params.forEachIndexed { index, paramAnnotations −>
paramAnnotations.forEach {

if (it.typeName == Commons.annotation.qualifiedName!!) {
val parameter = ctMethod.getParameterNames()[index]
val annotation: Holds = it.toAnnotationType(
classPool.classLoader, classPool

) as Holds
visitAnnotation(annotation)
ctMethod.insertBefore("${ctClass.name}
.${annotation.verifier.simpleName!!.lowercase()}

.verify($parameter);")
}

}
}

Listing 9. By iterating over all annotations of all parameters
of a function we can decide if a parameter has an applicable
annotation. If so, we can then insert the verification code at
the top of the function body.

References
[1] Mohammad Al-Marzouq, Abdullatif Al-Zaidan, and Jehad Al-Dallal.

2020. Mining GitHub for research and education: challenges and
opportunities. Int. J. Web Inf. Syst. 16, 4 (2020), 451–473. https:
//doi.org/10.1108/IJWIS-03-2020-0016

[2] AndroidX. 2023. Jetpack Compose source code. https://github.com/
androidx/androidx/tree/androidx-main/compose

[3] ARROW. 2023. Arrow Meta. https://github.com/arrow-kt/arrow-meta
[4] Anastasiia Birillo, Elena Lyulina, Maria Malysheva, Vladislav Tankov,

and Timofey Bryksin. 2022. Reflekt: a Library for Compile-Time Reflec-
tion in Kotlin. In 44th IEEE/ACM International Conference on Software
Engineering: Software Engineering in Practice, ICSE (SEIP) 2022. IEEE,
231–240. https://doi.org/10.1109/ICSE-SEIP55303.2022.9793932

[5] Joshua Bloch. 2002. JSR 175: A Metadata Facility for the JavaTM Pro-
gramming Language. https://jcp.org/en/jsr/detail?id=175

[6] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: A
code manipulation tool to implement adaptable systems. Adaptable
and Extensible Component Systems 30, 19 (2002).

[7] Shigeru Chiba. 2000. Load-Time Structural Reflection in Java. In Pro-
ceedings of the 14th European Conference on Object-Oriented Program-
ming (ECOOP) . 313–336. https://doi.org/10.1007/3-540-45102-1_16

[8] Shigeru Chiba. 2023. Javassist: CtClass. https://www.javassist.org/
html/javassist/CtClass.html

[9] Shigeru Chiba and Muga Nishizawa. 2003. An Easy-to-Use Toolkit for
Efficient Java Bytecode Translators. In Proceedings of the 2nd Interna-
tional Conference on Generative Programming and Component Engineer-
ing (GPCE). 364–376. https://doi.org/10.1007/978-3-540-39815-8_22

[10] Joe Darcy. 2005. JSR 269: Pluggable Annotation Processing API. https:
//jcp.org/en/jsr/detail?id=269

[11] Eclipse Foundation. 2020. Jakarta Context Dependency Injection API.
https://jakarta.ee/specifications/cdi/3.0/apidocs/

[12] Eclipse Foundation. 2022. Jakarta Persistence API. https://jakarta.ee/
specifications/persistence/3.1/apidocs/

[13] Eclipse Foundation. 2023. Eclipse JDT (Java development tools). https:
//projects.eclipse.org/projects/eclipse.jdt

[14] Mikhail Glukhikh. 2023. K2 Compiler Plugins. https://www.youtube.
com/watch?v=Pl-89n9wDqo

[15] Google. 2023. Jetpack Compose. https://developer.android.com/
jetpack/compose

[16] Google. 2023. KSP example source code. https://github.com/google/
ksp/tree/main/examples/multiplatform

[17] Eduardo Guerra. 2016. Design Patterns for Annotation-Based APIs. In
Proceedings of the 11th Latin-American Conference on Pattern Languages

https://doi.org/10.1108/IJWIS-03-2020-0016
https://doi.org/10.1108/IJWIS-03-2020-0016
https://github.com/androidx/androidx/tree/androidx-main/compose
https://github.com/androidx/androidx/tree/androidx-main/compose
https://github.com/arrow-kt/arrow-meta
https://doi.org/10.1109/ICSE-SEIP55303.2022.9793932
https://jcp.org/en/jsr/detail?id=175
https://doi.org/10.1007/3-540-45102-1_16
https://www.javassist.org/html/javassist/CtClass.html
https://www.javassist.org/html/javassist/CtClass.html
https://doi.org/10.1007/978-3-540-39815-8_22
https://jcp.org/en/jsr/detail?id=269
https://jcp.org/en/jsr/detail?id=269
https://jakarta.ee/specifications/cdi/3.0/apidocs/
https://jakarta.ee/specifications/persistence/3.1/apidocs/
https://jakarta.ee/specifications/persistence/3.1/apidocs/
https://projects.eclipse.org/projects/eclipse.jdt
https://projects.eclipse.org/projects/eclipse.jdt
https://www.youtube.com/watch?v=Pl-89n9wDqo
https://www.youtube.com/watch?v=Pl-89n9wDqo
https://developer.android.com/jetpack/compose
https://developer.android.com/jetpack/compose
https://github.com/google/ksp/tree/main/examples/multiplatform
https://github.com/google/ksp/tree/main/examples/multiplatform

On the Applicability of Annotation-Based Source Code Modification in Kotlin (Work in Progress) MPLR ’23, October 22, 2023, Cascais, Portugal

of Programming (Buenos Aires, Argentina) (SugarLoafPLoP ’16). The
Hillside Group, USA, Article 9, 14 pages.

[18] Eduardo M. Guerra, Menanes Cardoso, Jefferson O. Silva, and Clovis T.
Fernandes. 2010. Idioms for code annotations in the Java language. In
Proceedings of the 8th Latin American Conference on Pattern Languages
of Programs, SugarLoafPLoP 2010. ACM, 7:1–7:14. https://doi.org/10.
1145/2581507.2581514

[19] Amanda Hinchman-Dominguez. 2023. Kotlin Compiler Crash Course.
https://github.com/Daniel-Pfeffer/Kotlin-Compiler-Crash-Course

[20] Laurent Hubert. 2008. A non-null annotation inferencer for Java
bytecode. In Proceedings of the 8th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, PASTE’08.
ACM, 36–42. https://doi.org/10.1145/1512475.1512484

[21] Svetlana Isakova. 2020. Kotlin 1.4 Released with a Focus on Quality
and Performance. https://blog.jetbrains.com/kotlin/2020/08/kotlin-1-
4-released-with-a-focus-on-quality-and-performance

[22] JetBrains. 2021. SyntheticJavaResolveExtension source code.
https://github.com/JetBrains/kotlin/blob/master/compiler/
frontend.java/src/org/jetbrains/kotlin/resolve/jvm/extensions/
SyntheticJavaResolveExtension.kt

[23] JetBrains. 2023. All-open compiler plugin. https://kotlinlang.org/docs/
all-open-plugin.html

[24] JetBrains. 2023. AllOpen compiler plugin source code. https://github.
com/JetBrains/kotlin/tree/master/plugins/allopen

[25] JetBrains. 2023. Kotlin Annotation Processing Tool. https://kotlinlang.
org/docs/kapt.html

[26] Jetbrains. 2023. Kotlin: Properties - Getters and Setters. https:
//kotlinlang.org/docs/properties.html#getters-and-setters

[27] JetBrains. 2023. Kotlin Symbol Processing API. https://kotlinlang.org/
docs/ksp-overview.html

[28] JetBrains. 2023. Kotlinx serialization source code. https://github.com/
JetBrains/kotlin/tree/master/plugins/kotlinx-serialization

[29] JetBrains. 2023. KSP: Limitations. https://kotlinlang.org/docs/ksp-
why-ksp.html#limitations

[30] JetBrains. 2023. No-arg compiler plugin. https://kotlinlang.org/docs/no-
arg-plugin.html

[31] JetBrains. 2023. NoArg compiler plugin source code. https://github.
com/JetBrains/kotlin/tree/master/plugins/noarg

[32] Oracle Joe Darcy. 2011. JEP 117: Remove the Annotation-Processing Tool
(apt). https://openjdk.org/jeps/117

[33] JUnit Team. 2023. JUnit 5. https://junit.org/junit5/
[34] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey

Palm, and William G. Griswold. 2001. An Overview of AspectJ. In
15th European Conference on Object-Oriented Programming, ECOOP
2011 (Lecture Notes in Computer Science, Vol. 2072). Springer, 327–353.
https://doi.org/10.1007/3-540-45337-7_18

[35] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. 2001. Getting started with ASPECTJ.
Commun. ACM 44, 10 (2001), 59–65. https://doi.org/10.1145/383845.
383858

[36] ktargeter. 2023. ktargeter compiler plugin. https://github.com/
ktargeter/ktargeter

[37] Michael Ley. 2002. The DBLP Computer Science Bibliography: Evolu-
tion, Research Issues, Perspectives. In String Processing and Information
Retrieval, 9th International Symposium, SPIRE 2002 (Lecture Notes in
Computer Science, Vol. 2476), Alberto H. F. Laender and Arlindo L.
Oliveira (Eds.). Springer, 1–10. https://doi.org/10.1007/3-540-45735-
6_1

[38] Panagiotis Louridas. 2005. JUnit: Unit Testing and Coding in Tandem.
IEEE Softw. 22, 4 (2005), 12–15. https://doi.org/10.1109/MS.2005.100

[39] MapStruct. 2023. MapStruct annotation processor source code. https:
//github.com/mapstruct/mapstruct/tree/main

[40] Mostafa Mehrabi, Nasser Giacaman, and Oliver Sinnen. 2018. Unob-
trusive Support for Asynchronous GUI Operations with Java Anno-
tations. In 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops, IPDPS Workshops 2018. IEEE Computer Society,
405–414. https://doi.org/10.1109/IPDPSW.2018.00075

[41] Gabriel Menezes, Bruno B. P. Cafeo, and André C. Hora. 2022. How
are framework code samples maintained and used by developers? The
case of Android and Spring Boot. J. Syst. Softw. 185 (2022), 111146.
https://doi.org/10.1016/j.jss.2021.111146

[42] Lukas Morawietz. 2022. An Introduction to Kotlin Symbol Process-
ing. https://www.codecentric.de/wissens-hub/blog/kotlin-symbol-
processing-introduction

[43] Brian Norman. 2020. Writing Your Second Kotlin Compiler
Plugin. https://bnorm.medium.com/writing-your-second-kotlin-
compiler-plugin-part-1-project-setup-7b05c7d93f6c

[44] Brian Norman. 2023. kotlin-power-assert compiler plugin. https://
github.com/bnorm/kotlin-power-assert

[45] Oracle. 2023. Compiler Tree API. https://docs.oracle.com/javase/8/
docs/jdk/api/javac/tree/index.html

[46] Oracle. 2023. JavaDoc: Interface ProcessingEnvironment.
https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/
javax/annotation/processing/ProcessingEnvironment.html

[47] Renaud Pawlak. 2006. Spoon: Compile-time Annotation Processing
for Middleware. IEEE Distributed Syst. Online 7, 11 (2006). https:
//doi.org/10.1109/MDSO.2006.67

[48] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera,
and Lionel Seinturier. 2016. SPOON: A library for implementing
analyses and transformations of Java source code. Softw. Pract. Exp.
46, 9 (2016), 1155–1179. https://doi.org/10.1002/spe.2346

[49] Project Lombok. 2023. Project Lombok. https://projectlombok.org/
[50] Viera K. Proulx and Weston Jossey. 2009. Unit test support for Java

via reflection and annotations. In Proceedings of the 7th International
Conference on Principles and Practice of Programming in Java, PPPJ
2009. ACM, 49–56. https://doi.org/10.1145/1596655.1596663

[51] Mark E. Royer and Sudarshan S. Chawathe. 2018. Java unit annota-
tions for units-of-measurement error prevention. In IEEE 8th Annual
Computing and Communication Workshop and Conference, CCWC 2018.
IEEE, 816–822. https://doi.org/10.1109/CCWC.2018.8301759

[52] Myoungkyu Song and Eli Tilevich. 2012. Metadata invariants: Check-
ing and inferring metadata coding conventions. In 34th International
Conference on Software Engineering, ICSE 2012. IEEE Computer Society,
694–704. https://doi.org/10.1109/ICSE.2012.6227148

[53] Myoungkyu Song and Eli Tilevich. 2015. Reusing metadata across
components, applications, and languages. Sci. Comput. Program. 98
(2015), 617–644. https://doi.org/10.1016/j.scico.2014.09.002

[54] Myoungkyu Song, Eli Tilevich, and Wesley Tansey. 2009. Trailblazer:
a tool for automated annotation refactoring. In Companion to the 24th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2009. ACM, 813–814.
https://doi.org/10.1145/1639950.1640028

[55] Egor Spirin, Egor Bogomolov, Vladimir Kovalenko, and Timofey
Bryksin. 2021. PSIMiner: A Tool for Mining Rich Abstract Syntax
Trees from Code. In 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021. IEEE, 13–17. https://doi.org/10.1109/
MSR52588.2021.00014

[56] Square Open Source. 2023. KotlinPoet. https://square.github.io/
kotlinpoet/

[57] Ji Sungbin. 2023. Say Hello to the Kotlin Compiler Plu-
gin. https://betterprogramming.pub/say-hello-to-kotlin-compiler-
plugin-f4e857be9a1

[58] Vladislav Tankov, Yaroslav Golubev, and Timofey Bryksin. 2019. Kot-
less: A Serverless Framework for Kotlin. In 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2019. IEEE,
1110–1113. https://doi.org/10.1109/ASE.2019.00114

https://doi.org/10.1145/2581507.2581514
https://doi.org/10.1145/2581507.2581514
https://github.com/Daniel-Pfeffer/Kotlin-Compiler-Crash-Course
https://doi.org/10.1145/1512475.1512484
https://blog.jetbrains.com/kotlin/2020/08/kotlin-1-4-released-with-a-focus-on-quality-and-performance
https://blog.jetbrains.com/kotlin/2020/08/kotlin-1-4-released-with-a-focus-on-quality-and-performance
https://github.com/JetBrains/kotlin/blob/master/compiler/frontend.java/src/org/jetbrains/kotlin/resolve/jvm/extensions/SyntheticJavaResolveExtension.kt
https://github.com/JetBrains/kotlin/blob/master/compiler/frontend.java/src/org/jetbrains/kotlin/resolve/jvm/extensions/SyntheticJavaResolveExtension.kt
https://github.com/JetBrains/kotlin/blob/master/compiler/frontend.java/src/org/jetbrains/kotlin/resolve/jvm/extensions/SyntheticJavaResolveExtension.kt
https://kotlinlang.org/docs/all-open-plugin.html
https://kotlinlang.org/docs/all-open-plugin.html
https://github.com/JetBrains/kotlin/tree/master/plugins/allopen
https://github.com/JetBrains/kotlin/tree/master/plugins/allopen
https://kotlinlang.org/docs/kapt.html
https://kotlinlang.org/docs/kapt.html
https://kotlinlang.org/docs/properties.html#getters-and-setters
https://kotlinlang.org/docs/properties.html#getters-and-setters
https://kotlinlang.org/docs/ksp-overview.html
https://kotlinlang.org/docs/ksp-overview.html
https://github.com/JetBrains/kotlin/tree/master/plugins/kotlinx-serialization
https://github.com/JetBrains/kotlin/tree/master/plugins/kotlinx-serialization
https://kotlinlang.org/docs/ksp-why-ksp.html#limitations
https://kotlinlang.org/docs/ksp-why-ksp.html#limitations
https://kotlinlang.org/docs/no-arg-plugin.html
https://kotlinlang.org/docs/no-arg-plugin.html
https://github.com/JetBrains/kotlin/tree/master/plugins/noarg
https://github.com/JetBrains/kotlin/tree/master/plugins/noarg
https://openjdk.org/jeps/117
https://junit.org/junit5/
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1145/383845.383858
https://doi.org/10.1145/383845.383858
https://github.com/ktargeter/ktargeter
https://github.com/ktargeter/ktargeter
https://doi.org/10.1007/3-540-45735-6_1
https://doi.org/10.1007/3-540-45735-6_1
https://doi.org/10.1109/MS.2005.100
https://github.com/mapstruct/mapstruct/tree/main
https://github.com/mapstruct/mapstruct/tree/main
https://doi.org/10.1109/IPDPSW.2018.00075
https://doi.org/10.1016/j.jss.2021.111146
https://www.codecentric.de/wissens-hub/blog/kotlin-symbol-processing-introduction
https://www.codecentric.de/wissens-hub/blog/kotlin-symbol-processing-introduction
https://bnorm.medium.com/writing-your-second-kotlin-compiler-plugin-part-1-project-setup-7b05c7d93f6c
https://bnorm.medium.com/writing-your-second-kotlin-compiler-plugin-part-1-project-setup-7b05c7d93f6c
https://github.com/bnorm/kotlin-power-assert
https://github.com/bnorm/kotlin-power-assert
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/index.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/annotation/processing/ProcessingEnvironment.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/annotation/processing/ProcessingEnvironment.html
https://doi.org/10.1109/MDSO.2006.67
https://doi.org/10.1109/MDSO.2006.67
https://doi.org/10.1002/spe.2346
https://projectlombok.org/
https://doi.org/10.1145/1596655.1596663
https://doi.org/10.1109/CCWC.2018.8301759
https://doi.org/10.1109/ICSE.2012.6227148
https://doi.org/10.1016/j.scico.2014.09.002
https://doi.org/10.1145/1639950.1640028
https://doi.org/10.1109/MSR52588.2021.00014
https://doi.org/10.1109/MSR52588.2021.00014
https://square.github.io/kotlinpoet/
https://square.github.io/kotlinpoet/
https://betterprogramming.pub/say-hello-to-kotlin-compiler-plugin-f4e857be9a1
https://betterprogramming.pub/say-hello-to-kotlin-compiler-plugin-f4e857be9a1
https://doi.org/10.1109/ASE.2019.00114

MPLR ’23, October 22, 2023, Cascais, Portugal Daniel Pfeffer and Markus Weninger

[59] Wesley Tansey and Eli Tilevich. 2008. Annotation refactoring: in-
ferring upgrade transformations for legacy applications. In 23rd An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2008. ACM, 295–312.
https://doi.org/10.1145/1449764.1449788

[60] Eli Tilevich and Myoungkyu Song. 2010. Reusable enterprise metadata
with pattern-based structural expressions. In 9th International Con-
ference on Aspect-Oriented Software Development, AOSD 2010. ACM,
25–36. https://doi.org/10.1145/1739230.1739234

[61] Catalin Tudose and Carmen Odubasteanu. 2021. Object-relational
Mapping Using JPA, Hibernate and Spring Data JPA. In 23rd Interna-
tional Conference on Control Systems and Computer Science, CSCS 2021.

IEEE, 424–431. https://doi.org/10.1109/CSCS52396.2021.00076
[62] Uber. 2019. Measuring Kotlin Build Performance at Uber. https://www.

uber.com/blog/measuring-kotlin-build-performance/
[63] Zhongxing Yu, Chenggang Bai, Lionel Seinturier, and Martin Mon-

perrus. 2021. Characterizing the Usage, Evolution and Impact of Java
Annotations in Practice. IEEE Trans. Software Eng. 47, 5 (2021), 969–986.
https://doi.org/10.1109/TSE.2019.2910516

[64] Wang Zaijun. 2022. Do You Know the Principle of Lombok That Has Been
Used for a Long Time? https://www.alibabacloud.com/blog/599443

Received 2023-06-29; accepted 2023-07-31

https://doi.org/10.1145/1449764.1449788
https://doi.org/10.1145/1739230.1739234
https://doi.org/10.1109/CSCS52396.2021.00076
https://www.uber.com/blog/measuring-kotlin-build-performance/
https://www.uber.com/blog/measuring-kotlin-build-performance/
https://doi.org/10.1109/TSE.2019.2910516
https://www.alibabacloud.com/blog/599443

	Abstract
	1 Introduction
	2 Background
	2.1 Java Annotations and Their Processing
	2.2 Kotlin

	3 Example Use Case
	4 Compile-Time Annotation Processing
	4.1 Kotlin Annotation Processing Tool
	4.2 Kotlin Symbolic Processing
	4.3 Compiler Plugins

	5 Load-time Annotation Processing
	5.1 Java Agents
	5.2 Custom Class Loader
	5.3 Limitations

	6 Discussion
	7 Related Work
	8 Limitations and Future Work
	9 Conclusions
	A Sources
	A.1 Custom Kotlin Compiler Plugin
	A.2 Java Agent

	References

