
Utilizing Object Reference Graphs and Garbage Collection
Roots to Detect Memory Leaks in Offline Memory Monitoring

Markus Weninger
Institute for System Software,

CD Labor MEVSS,
Johannes Kepler University

Linz, Austria
markus.weninger@jku.at

Elias Gander
CD Labor MEVSS,

Johannes Kepler University
Linz, Austria

elias.gander@jku.at

Hanspeter Mössenböck
Institute for System Software,
Johannes Kepler University

Linz, Austria
hanspeter.moessenboeck@jku.at

ABSTRACT
Complex software systems often suffer from performance problems
caused by memory anomalies such as memory leaks. While the
proliferation of objects is rather easy to detect using state-of-the-
art memory monitoring tools, extracting a leak’s root cause, i.e.,
identifying the objects that keep the accumulating objects alive,
is still poorly supported. Most state-of-the-art tools rely on the
dominator tree of the object graph and thus only support single-
object ownership analysis. Multi-object ownership analysis, e.g.,
when the leaking objects are contained in multiple collections, is
not possible by merely relying on the dominator tree. We present
an efficient approach to continuously collect GC root information
(e.g., static fields or thread-local variables) in a trace-based memory
monitoring tool, as well as algorithms that use this information to
calculate the transitive closure (i.e., all reachable objects) and the
GC closure (i.e., objects that are kept alive) for arbitrary heap object
groups. These closures allow to derive various metrics for heap
object groups that can be used to guide the user during memory
leak analysis. We implemented our approach in AntTracks, an
offline memory monitoring tool, and demonstrate its usefulness
by comparing it with other widely used tools for memory leak
detection such as the Eclipse Memory Analyzer. Our evaluation
shows that collecting GC root information tracing introduces about
1% overhead, in terms of run time as well as trace file size.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Software defect analysis; • Information systems→ Clustering and
classification; •Theory of computation→Data structures design
and analysis;

KEYWORDS
Memory Monitoring, Memory Leak, Pointer Analysis, Garbage
Collection, Graph Closure,

ManLang’18, September 12–14, 2018, Linz, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 15th International
Conference on Managed Languages & Runtimes (ManLang’18), September 12–14, 2018,
Linz, Austria, https://doi.org/10.1145/3237009.3237023.

ACM Reference Format:
MarkusWeninger, Elias Gander, and Hanspeter Mössenböck. 2018. Utilizing
Object Reference Graphs and Garbage Collection Roots to Detect Memory
Leaks in Offline Memory Monitoring. In 15th International Conference on
Managed Languages & Runtimes (ManLang’18), September 12–14, 2018, Linz,
Austria.ACM, NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3237009.
3237023

1 INTRODUCTION
Modern programming languages such as Java or C# rely on garbage
collection to relieve the programmer from freeing allocatedmemory
manually. The garbage collector (GC) tries to free heap space by
removing dead objects that are not reachable from root objects
anymore. Examples for root objects are objects referenced by GC
roots such as static fields or thread-local variables. Since these
objects cannot be reclaimed by the GC, they also keep alive all
other objects that are directly or indirectly referenced by them.
This reveals one of the drawbacks of garbage collection. Since
programmers are no longer required to free memory manually,
they tend to use object allocations more carelessly. However, even
in garbage-collected languages, careless handling of memory can
lead to anomalies such as memory leaks. A memory leak occurs
when objects that are not needed anymore are still unintentionally
reachable and can therefore not be garbage collected.

Detecting the presence of a memory leak is often relatively easy.
A simple chart displaying an application’s growing memory usage
may be enough to detect such a leak. Yet, it is difficult to track
down a memory leak’s root cause, i.e., to identify which objects
are leaking and which objects are responsible for that by keeping
the leaking objects alive. Most state-of-the-art memory monitoring
tools analyze the heap based on the object graph in conjunction
with its dominator tree [25]. The object graph is a representation of
the heap state, where each object is represented as a node, and the
references between objects are represented as edges. The dominator
tree of an object graph describes a keeps-alive relationship between
the objects. If an object A dominates an object B and A is collectible
by the GC, also B is collectible. While the dominator tree may help
to find memory leaks where a single object is responsible, e.g.,
when all leaking objects are contained in a single large list, it fails
to provide insight in situations where multiple objects are keeping
objects alive (e.g., in multiple collections) [6].

AntTracks [4, 21–23] is a memory monitoring tool for Java based
on the Java Hotspot™ VM [30]. During an application’s execution,
it records various events such as object allocations, object moves
during garbage collection, or pointer information. Based on such

https://doi.org/10.1145/3237009.3237023
https://doi.org/10.1145/3237009.3237023
https://doi.org/10.1145/3237009.3237023

ManLang’18, September 12–14, 2018, Linz, Austria M. Weninger et al.

trace files, the heap can be reconstructed for any garbage collec-
tion point in time. For inspecting the live objects at such points,
Weninger et al. [42, 43] presented the concept of object classifiers
and multi-level grouping, which enable the user to classify and
group heap objects on multiple levels based on arbitrary grouping
criteria.

In this paper, we extend their work by presenting a novel ap-
proach to collect and use information about GC roots and the object
graph in order to guide users in finding the root causes of memory
leaks. First, our approach encompasses an efficient technique to
collect GC root information of different kinds (e.g., of static fields
or thread-local variables) in a trace. Then, we show how to use
this information to calculate object closures. AntTracks is able to
calculate closures for arbitrary heap object groups, not just for sin-
gle objects as other approaches that rely on dominator-tree-based
analysis. The transitive closure encompasses all objects reachable
from the given object group. TheGC closure encompasses all objects
kept alive by the given object group, i.e., those objects that could
get garbage collected if the given object group was freed. Based on
these closures, metrics such as the transitive size and the retained
size can be calculated. We show how these metrics, in combination
with AntTracks’s user-driven classification system, can be used to
detect memory leaks. Finally, we show in a quantitative evaluation
based on three different well-known benchmark suites that collect-
ing GC root information introduces about 1% overhead in terms of
run time and trace file.

Thus, our scientific contributions are

(1) a concept to integrate information about GC roots into a
trace-based memory monitoring tool such as AntTracks,

(2) algorithms to calculate the transitive closure and the GC
closure of a single heap object as well as of heap object
groups to derive meaningful metrics,

(3) various techniques to use this information in top-down and
in bottom-up memory analysis,

(4) a quantitative evaluation of the tracing overhead and a func-
tional evaluation of our approach based on typical memory
anomaly detection use cases.

The paper is organized as follows: Section 2 provides the back-
ground of our work, Section 3 describes our approach as well as
its concepts and techniques, Section 4 provides details on the im-
plementation of these concepts in AntTracks, Section 5 presents a
quantitative and a functional evaluation, Section 6 discusses related
work, Section 7 outlines possible future work and discusses threats
to validity, and Section 8 concludes the paper.

2 BACKGROUND
AntTracks consists of the AntTracks VM, a virtual machine based on
the Java Hotspot™ VM [30], and the AntTracks Analyzer, a memory
analysis tool. The AntTracks VM records memory events into trace
files, which can then be analyzed offline with the tool. Since the con-
cepts presented in this paper have been integrated into AntTracks,
it is essential to understand AntTracks’s architecture and workflow
alongside basic garbage collection mechanisms.

root

Object[] LinkedList

Stack:init() MyService:foo() X:meth()

4000 obj
10 MB

1000 obj
15 MB

50 obj
1 MB

5,000 obj
25 MB

50 obj
1 MB

1. Classify by type

2. Classify by
allocation site

… Classification tree node … Info stored in tree node

5,000,000 obj
500 MB

Figure 1: A heap state, consisting of 5 million heap objects,
first classified by type followed by allocation site.

GC roots Reachable objects Non-reachable objects
(dead / garbage)

Figure 2: All objects directly or indirectly reachable by GC
roots are considered live. Other objects are considered dead
or garbage, and may be collected by the GC.

2.1 AntTracks VM: Trace Recording and
Reconstruction

The AntTracks VM records memory events, e.g., events for object
allocations and object movements executed by the GC, and writes
them into trace files. After parsing such a trace file, the AntTracks
Analyzer provides an overview of the memory behavior over time
and can reconstruct the heap state for every garbage collection
point by incrementally processing the events in the trace. A heap
state is the set of heap objects that were live in the monitored
application at a certain point in time. For every heap object, a
number of properties can be reconstructed, including its address,
its type, its allocation site, the heap objects it references, and the
heap objects it is referenced by.

2.2 AntTracks Analyzer: Memory State
Analysis

The AntTracks Analyzer uses user-defined object classifiers and
multi-level grouping [42, 43] to enable user-driven heap state anal-
ysis. Object classifiers classify heap objects based on certain criteria
such as their type, their allocation site, their allocating thread, and
so on. For example, the Type classifier classifies a heap object based
on its type’s name, e.g. java.util.HashMap. Multi-level grouping
is the process of applying multiple classifiers to a collection of ob-
jects (i.e., to a heap state), and grouping these objects based on the
classification results into a hierarchical classification tree.

A typical example in AntTracks is to first group all heap objects
by their types (using the Type classifier) and then by their allocation
site (using the Allocation Site classifier). Figure 1 shows such a
classification tree. Yellow rectangles represent tree nodes, and gray
rounded rectangles represent data about all heap objects that were
classified by the respective tree branch (basically the number of
objects and the number of bytes).

Utilizing Object Reference Graphs and Garbage Collection
Roots to Detect Memory Leaks in Offline Memory Monitoring ManLang’18, September 12–14, 2018, Linz, Austria

2.3 Garbage Collection Roots
Certain objects in the heap are so-called root objects. Root objects
must not be collected during a garbage collection, and neither
must objects be collected that are directly or indirectly reachable
from root objects. Whether a heap object is a root object or not is
determined by the fact whether at least one GC root is referencing
the object. There are different kinds of GC roots in Java (and in
most other object-oriented languages), the most important ones
are:

• Local variables of threads: Local variables reside on the call
stack of a thread and may reference objects on the heap.
Therefore, threads and all objects referenced by local vari-
ables of threads are always considered root objects.

• Static variables: Static fields of loaded classes are GC roots,
i.e., objects referenced by static fields are considered root
objects.

Figure 2 shows an example of how GC roots keep reachable
objects alive whereas non-reachable objects are eligible for garbage
collection.

2.4 Running example
For the algorithms in the following sections we will use a singly-
linked list as a running example (see Listing 1). A singly-linked
list is represented by its root object of type LinkedList. If a list
contains at least one object, its LinkedList instance points to the
head node of the list, an instance of Node. Every node may point
to another node (its successor) and must point to an instance of
Data. A Data instance contains some integer value and may point
to another Data instance.

A heap state can be represented as an object graph, i.e., a directed
graph in which the nodes correspond to heap objects and references
between objects are the edges. Figure 3 shows the visualization of
an object graph of two LinkedList instances and their referenced
objects.

class L i n k e d L i s t {
private Node head ;
// ...

}
class Node {

Node nex t ;
Data da t a ;
Node (Data d) { d a t a = d ; }
// ...

}
class Data {

int va lue ;
Data o th e r ;
Data (int v) { this (v , null) ; }
// ...

}

Listing 1: Code example for a singly-linked list

L N N N N

D D D

N

D

N N N N N

D D D

LN

D

Figure 3: Object graph of two LinkedLists (L, red), one with
five Nodes and one with six Nodes (N, blue) that point to eight
Data instances (D, green).

event
type

root
types

Thread ID Class ID Method ID Slot number

Thread ID

Class ID Field offset

absolute
address

header:

1st GC root -
local var:

2nd GC root -
static var:

3rd GC root -
JNI local:

4th GC root -
Monitor:

5th GC root -
JVMTI:

6th GC root -
Class loader:

Figure 4: Example of a GC root event (with a size of 22 ∗ 4 =
88 bytes) that contains information about a local variable, a
static field, a JNI GC root and 3 other GC roots without addi-
tional information.

3 APPROACH
In this section, we show which information can be retrieved from
GC roots and how it can be integrated into our trace-based memory
monitoring approach. We further present algorithms to calculate
the transitive closure and the GC closure for arbitrary heap object
groups. Finally, we discuss how closures and GC root information
can be used as a guidance to users when tracking down memory
anomalies and memory leaks.

3.1 Retrieving GC Root Information
There are two kinds of information that can be retrieved from GC
roots: (1) information about the GC roots themselves and (2) infor-
mation about the references between the objects that are directly
or indirectly reachable from the GC roots. Approaches that rely on
snapshot-based analysis create heap dumps, which contain infor-
mation about the objects that were live at a certain point in time
as well as the references between them and GC root information.
However, if we are not just interested in the heap state at a single
point in time, but in the development of the heap over time, heap
dumps may prove insufficient.

Instead of creating multiple heap dumps, which would introduce
enormous run time overhead, continuous tracing approaches such
as AntTracks produce trace files. These allow the offline reconstruc-
tion of heap states for arbitrary garbage collection points in time.
Trace files contain a sequence of events that have a certain encod-
ing and are only allowed in a certain order. Lengauer et al. [21, 22]
present a general event format to trace objects and the references
between them. In the following, we propose an additional GC root
event to trace information about GC roots and root objects.

GC root events are written before any other event at the start of
every garbage collection. The format of a GC root event is shown
in Figure 4, where each block represents a word of 4 bytes. Like
every other event in AntTracks’s event format, a GC root event
starts with a 1-byte event type. The remaining 3 bytes of the first
word are filled with six 4-bit numbers, each of which indicates the
type of one GC root that is encoded in the event (see Table 1 for
the different GC root types) or is set to 0 if less than six GC roots

ManLang’18, September 12–14, 2018, Linz, Austria M. Weninger et al.

ID Type Description Info encoded in event
1 Class Loader GC root referencing a class loader -
2 Static Field GC root representing a static field referencing a heap object class id, field offset
3 Thread GC root referencing a thread thread id
4 Local variable GC root representing a local variable referencing a heap object thread id, class id, method id, slot number
5 Code Blob GC root referencing a code object (e.g. a JIT-compiled method) class id, method id
6 JNI GC root referencing a heap object created via JNI thread id
7 JVMTI GC root referencing a heap object created via JVMTI -
8 Monitor GC root referencing a monitor object used for synchronizing -
9 Management GC root referencing internal objects used by MXBeans -
10 Others GC root referencing other JVM internal object (e.g., profilers) -

Table 1: The different GC root types in the JVM.

are encoded in the event. Thus, the number of GC roots that can be
encoded in a single GC root event is limited to six. For every GC
root encoded in the event, the address of the referenced root object
as well as additional information (depending on the type of the GC
root) is appended after the header word (see Figure 4).

The types of the different GC roots encoded in the header word
are necessary to correctly interpret the given GC root’s informa-
tion. As shown in Table 1, depending on the type of each GC root,
additional information is added to the event’s payload (the size of
the different IDs is determined by the JVM):

• A static field root adds a 4-byte class ID and a 4-byte field
offset.

• A thread root adds an 8-byte thread ID.
• A local variable root adds an 8-byte thread ID (i.e., the thread
that holds the local variable), a 4-byte class ID (i.e., the class
in which the local variable is defined), a 4-byte method ID
(i.e., the method in which the local variable is defined) and a
4-byte slot number (i.e., the local variable stack index).

• A code blob root adds a 4-byte class ID and a 4-byte method
ID.

• A JNI local root adds an 8-byte thread ID.

The connection between a thread’s ID and its name is established
by a separate event that is recorded whenever a new thread is
started. This information can later be used to resolve a thread
ID into the thread’s name. Similarly, class IDs, method IDs, field
offsets and slot numbers can be resolved to their identifiers and type
signatures using symbol information that is written to a separate
symbols file during program execution.

Based on local variable GC roots, the call stacks of all threads
at the time of the garbage collection can be reconstructed. This is
possible because (1) each local variable root stores the method and
thread they belong to and (2) they are written in the same order as
they are encountered when traversing their thread’s stack frames
from top to bottom. This excludes stack frames that do not contain
at least one local variable.

The amount of information differs among GC root types, thus
the total event size is variable. However, the maximum size of a GC
root event is 43 words (336 bytes) which is reached in the case of 6
local variable GC roots.

Since GC roots are recorded at the start of every garbage col-
lection, their referenced objects may be moved during garbage
collection. AntTracks also records these object movements. When
encountering a matching move event while parsing a trace file, GC
roots have to be updated to the move’s destination address.

3.2 Heap Object Closures
In general, a heap object closure is the set of heap objects that
are directly or indirectly reachable from a given heap object or
from a group of heap objects. A heap object closure may contain
all reachable objects (i.e., the transitive closure) or only those that
satisfy certain criteria (e.g., in the case of the GC closure). In this
section, we show how to calculate closures for arbitrary object
groups. This allows us to detect leaking objects that are kept alive,
even by more than one object. Metrics derived from the closures
such as the retained size can be displayed to help and guide users
during heap state analysis. Closure calculations, as well as metrics
derived from these closures, have been integrated into AntTracks.
Nevertheless, this techniques could also be integrated into other
heap profiling tools such as Elephant Tracks [39], as long as they
are able to reconstruct heap object graphs, i.e., they record the
heap objects themselves, pointers between them, as well as garbage
collection roots.

3.2.1 Transitive Closure. The transitive closure [20, 41] of a sin-
gle node in a graph is made up of the node itself and all other nodes
that are directly or indirectly reachable from this node following
all edges. Its calculation has been well studied, e.g., by Eve and
Kurki-Suonio [13].

Instead of calculating the transitive closure of a single object, we
argue that it is also useful to calculate the transitive closure of an
object group.We call the objects for whichwe calculate a closure the
closure root objects (which are not to be confused with root objects,
i.e., objects that are referenced by GC roots). The transitive closure
of an object group is made up of the closure root objects themselves
and all other objects that are directly or indirectly reachable from
at least one of the closure root objects. Figure 5 shows the transitive
closure (gray background), first for a single closure root object (thick
border), and second for a group of two closure root objects. The
transitive closure is calculated based on the pseudocode presented
in Listing 2.

Section 4.2 discusses how the transitive closure algorithm is
computed in AntTracks based on AntTracks’s internal heap state
data structure.

The transitive closure can be used to detect objects that reference
an unexpectedly large amount of other objects since it describes
how many objects are reachable from the given closure root objects.
Analogously, an object group with a small transitive closure, i.e.,
an object group that does not reach many other objects, can never
be the root cause of a memory leak. In AntTracks, heap objects are
separated into object groups that get arranged in a classification

Utilizing Object Reference Graphs and Garbage Collection
Roots to Detect Memory Leaks in Offline Memory Monitoring ManLang’18, September 12–14, 2018, Linz, Austria

L N N N N

D D D

N

D

N N N N N

D D D

LN

D

L N N N N

D D D

N

D

N N N N N

D D D

LN

D

Figure 5: Two examples showing the transitive closures
when using the thick bordered object(s) as closure root ob-
jects.

tree based on their classification results. If the user is only inter-
ested in finding memory leak roots, i.e., objects that keep a lot of
other objects alive, tree nodes of object groups with small transitive
closures can be hidden and excluded from further analysis. This
reduces the tree’s complexity, speeds up further computations, and
thus eases the overall analysis process. Nevertheless, a large transi-
tive closure does not automatically identify a leaking data structure
or object group. Just because objects are reachable from a given
set of closure root objects does not mean that only the closure root
objects keep them alive. Therefore, the transitive closure can be
used to further calculate the GC closure, a closure that describe the
closure root objects’ ownership over other objects.

3.2.2 GC Closure / Retained Closure. The transitive closure con-
tains all objects reachable from the closure root objects. In contrast,
the GC closure contains all objects that (1) are reachable from the
given closure root objects and (2) could be garbage collected if all
closure root objects were collected. Thus, the GC closure describes
object ownership, i.e., all objects that are kept alive by a given set of
closure root objects. Being able to detect heap object groups that
keep large amounts of other objects alive bears large potential in
helping users to resolve memory leaks.

To calculate the GC closure of a single object, the object graph’s
dominator tree can be used. In graph theory, a node d dominates a
node n if every path from the root to n must pass through d [40].
Figure 6 shows the dominator tree of a sample object graph of two
singly-linked lists. Some of the data is shared between the two lists,
i.e.,D3,D4 andD5, which results in those three objects not having a
dominator. For example, assuming that node N 8 could be collected
by the garbage collector (by removing all references to it), all child
objects in its dominator subtree (i.e, D8, N9, and N10) could be

// called with closure root objects as initial work list
t r a n s i t i v e C l o s u r e (L i s t workL i s t) {

L i s t c l o s u r e = new L i s t () ;
mark a l l o b j e c t s in workL i s t as v i s i t e d ;
f o r e a ch (ob j in workL i s t) {

add ob j to c l o s u r e ;
f o r e a ch (c h i l d r e f e r e n c e d by ob j) {

if (c h i l d i s not ye t marked as v i s i t e d) {
mark c h i l d as v i s i t e d ;
add c h i l d to workL i s t ;

}
}

}
return c l o s u r e

}

Listing 2: Pseudocode calculating the transitive closure for
a given closure root object group

L1

N1

N2

N3

N4

D1

D2

D3

N5

D4 N9

N8

N7

N6

D8

D7

D6

L2

N10D5

GC Roots

L1

N1

N2

N3

N4

D1

D2

D4

N5

D5

N9

N8

N7

N6

D8

D7D6

L2

N10

D3

Dom. Tree

Figure 6: Object graph of two singly-linked lists and its dom-
inator tree.

collected, too. However, it is not possible to use the dominator tree
to answer which objects could be freed if a certain object group,
e.g., N 4 and N 9, would be freed (which would be N 5 and N 10, but
also D4 and D5).

While the dominator tree and its algorithms are well-studied,
they are only suited to analyze single nodes and to detect the maxi-
mum unique ownership [27] within a graph, e.g., what happens if
one specific heap object could be freed by the GC. We are therefore
presenting a new algorithm that is able to calculate the GC closure
for arbitrary closure root object groups.

Simple Approach. Our approach assumes that an heap object
group’s transitive closure is already known, e.g., by using the algo-
rithm presented in Section 3.2.1. This transitive closure can then
be reduced to the GC closure by following these steps:

(1) The initial GC closure is set to the transitive closure.
(2) To determine which objects could be freed if the closure root

objects get freed, we have to simulate that the closure root
objects are not reachable from root objects anymore. Thus,
we ignore all references to these objects (i.e., assuming that
all references to the closure root objects have been set to
null).

(3) Then, the heap is recursively traversed, starting at the heap’s
root objects (i.e., the objects directly referenced by GC roots),
visiting every reachable object exactly once. If the currently
visited object is part of the GC closure (which has been
initialized to the transitive closure, see Step 1), the current
object and all objects reachable from it are removed from
the closure. This is done because these objects would still
be reachable from the heap’s root objects and thus be kept
alive, even if the closure root objects would be freed. Visited
and removed objects are marked to avoid processing them
multiple times.

At the end of this algorithm, the GC closure contains only those
objects that are not referenced by GC roots from outside the transi-
tive closure. The object in the GC closure are the objects that could
be freed if the closure root objects were released.

A major problem with this approach is that its complexity de-
pends on the object graph size, i.e., the number of objects in the
heap, since the heap traversal starts at the root objects. Yet, with

ManLang’18, September 12–14, 2018, Linz, Austria M. Weninger et al.

minor adjustments to the algorithm, the complexity can be reduced
to only depend on the object group’s transitive closure size.

Improved Approach. The performance problems of the simple
approach can be tackled by using the following technique. When a
heap state is reconstructed from a trace file, we traverse the object
graph once (instead of traversing the object graph on every GC
closure calculation in the simple approach). Starting at the GC root
objects, every visited object is marked. This allows us to identify all
objects either as live (if they have been visited) or as dead (if they
have not been visited). Since this additional information can be
stored as a single bit per object (i.e., 0 if the object is not reachable
from any GC root or 1 if it is) the additional memory overhead is
negligible. For example, this information would take up around
12.5 MB for a heap state of 100, 000, 000 objects). The improved
approach works as follows:

(1) The initial GC closure is set to the transitive closure.
(2) To determine which objects could be freed if the closure root

objects get freed, we have to simulate that the closure root
objects are not reachable from root objects anymore. Thus,
we ignore all references to these objects (i.e., assuming that
all references to the closure root objects have been set to
null).

(3) The GC closure (which has been initialized to the transitive
closure) is recursively traversed, starting at the closure root
objects, visiting every object in the closure exactly once. The
current object is checked for the following criteria:
• Is it directly referenced by a GC root?
This can easily be checked since we know every GC root.

• Is it referenced by a live object that is not part of the clo-
sure?
AntTracks enables access all objects that reference a given
object (pointed-from analysis). For each of these refer-
encing objects it can be checked whether it is part of the
closure, and whether it has been marked as live during
the heap state reconstruction.

If at least one of the mentioned criteria holds, the current
object and all objects reachable from it are removed from the
closure. Visited and removed objects are marked to avoid
processing them multiple times.

Instead of having to traverse the whole heap, the algorithm’s
complexity now only depends on the transitive closure’s size. Fig-
ure 7 shows how objects that are reachable from live objects outside
the transitive closure have to be removed to reduce the transitive
closure to the GC closure.

3.3 Metrics
A single object’s shallow size is the size of the object itself. This
encompasses the object’s header and its data, without taking into
account any referenced objects. The shallow size of an object group
is the sum of the shallow sizes of all contained objects. Using the
transitive closure, the transitive object count (also called deep object
count) as well as the transitive size (also called deep size) can be
calculated. The transitive object count is the number of objects
contained in the transitive closure, while the transitive size is the
sum of the shallow sizes of all objects in the transitive closure.
Similarly, using the GC closure, the retained object count as well as

L1

N1

N2

N3

N4

D1

D2

D3

N5

D4 N10

N8

N7

N6

D8

D7

D6

L2

N11D5

GC Roots

Non-root-pointed objects

X1 X2

Transitive closure

GC closure

Figure 7: GC closure for L1 and L2, derived from the transi-
tive closure and GC root information.

the retained size can be calculated. The retained object count is the
number of objects contained in the GC closure, i.e., the number of
objects that could be freed if the closure root objects were released,
while the retained size is the sum of the shallow sizes of all objects
in the GC closure.

As explained in Section 2, AntTracks applies user-specified ob-
ject classifiers to aggregate heap objects in a classification tree
(see Figure 1). Without information about an object group’s tran-
sitive closure and GC closure, only the group’s object count and
shallow size could be calculated and displayed to the user. While
this information is good enough to learn about the system under
investigation (e.g., about the most frequently allocated types, the
hot allocation sites, the object allocations per thread, etc.), it is not
well suited to track down memory leaks. So far, the users’ decisions
on which object groups to analyze in more detail (e.g., by applying
further classifiers) often strongly depended on prior knowledge
about the system under analysis, e.g., by having an educated guess
on what to look for. For example, a user unaware of the internals
of a given system may not suspect a possible memory leak when
discovering that there was a single instance of type A with a small
shallow size. However, knowing that objects of type A are very
complex (i.e., may keep a lot of other objects alive) and are not
expected to be alive in the given heap state would lead to further
investigation.

Thus, we extended AntTracks to also display the deep size as well
as the retained size for every tree node in a classification tree. Even
without knowing anything about the system under investigation,
the user is now able to detect object groups that keep a lot of other
objects alive. An evaluation of this feature will be described in
Section 5.1.

3.4 Utilizing GC Root Information
In some cases, one might be aware of a group of objects that occupy
a large portion of the heap. For example, by analyzing multiple
heap states, we may detect that objects of a certain type that are

Utilizing Object Reference Graphs and Garbage Collection
Roots to Detect Memory Leaks in Offline Memory Monitoring ManLang’18, September 12–14, 2018, Linz, Austria

allocated at a certain allocation site accumulate over time. To free
their memory, these objects must be made eligible for garbage
collection. This can be done either by freeing all root objects that
reference the object group or by cutting all connections to them.
Therefore, bottom-up analysis is used to detect possible ways to
free memory occupied by a given object group by inspecting the
relation between the object group and its referencing root objects.
For example, we may detect a suspiciously large object group. By
following the object references from the object group back to the
GC roots we may detect that all these objects are stored in a list,
which in turn is referenced directly or indirectly by multiple GC
roots. Ideally, we are able to remove the list head, and in turn the
whole object group becomes unreachable and can thus be garbage
collected. If this is not possible, suitable cutting points to remove
single elements from the list have to be found.

3.4.1 Root Object Classification. Assume that we detect a suspi-
cious object group. As a first step, we obtain all root objects that
reference the object group. Since not every object of the suspicious
object group must be referenced by every found root object, we
have to detect those root objects that own most of them. This can be
done by further analyzing the found root objects, e.g., by applying
multiple classifiers on them (e.g., classifying them by their types,
packages, allocation sites, etc.). Since the classified object groups
can be sorted by their size or by their retained size, we can try
to find object groups that are small but still keep a large number
of other objects alive. This small number of root objects is then
feasible to be traced and dealt within the code.

3.4.2 Bottom-up Visualization. Alternatively, instead of analyz-
ing the root objects directly, one can also trace and visualize all
paths from the suspicious object group to their root objects. These
paths may reveal possible cutting points to make (parts of) the
object group unreachable and thus eligible for garbage collection.
To facilitate the task of locating high-impact cutting points, the
paths can be displayed as a graph with objects as nodes and their
pointers as edges. Additionally, since object groups can be very
large, node aggregation would be necessary in many cases. The
goal of node aggregation is to combine multiple objects into a single
node by detecting typical reference patterns between them. This
could, for example, be achieved by merging nodes that belong to
the same data structure, which is a goal of our future work. Node
aggregation decreases the complexity of the graph and thus enables
users to draw meaningful conclusion from it more easily.

4 IMPLEMENTATION
4.1 Retrieving GC Root Information
AntTracks uses a modified Java Hotspot™ VM to detect events (e.g.,
object allocations) and to write information about these events
into trace files. GC root information gets written at the beginning
of every garbage collection. Since there are different types of GC
roots, various VM-internal data structures are used to retrieve this
information. The ClassLoaderDataGraph contains information
about classes that are loaded by an application’s class loaders. Other
data structures include the SystemDictionary and the Universe.
These data structures are needed to retrieve information about
static fields, since static fields are stored inside Java class instances.

To collect information about thread-local variables, we iterate all
Java threads and extract each thread’s stack trace. Each frame in the
stack trace contains a StackValueCollection that allows to access
information about the frame’s local variables. Also, the thread object
itself is marked as a root object. Furthermore, we handle CodeBlobs
as GC roots. These may be JIT-compiled static references to certain
addresses. JNIHandles and JvmtiExport are used to detect objects
that are kept alive via JNI and JVMTI. Other types of GC roots are
ObjectSynchronizer (i.e., monitors), FlatProfiler (i.e., a JVM
profiling tool), and Management (i.e., objects used by MXBeans).

4.2 Closure Algorithms
Section 3.2 presented algorithms to calculate the transitive closure
and the GC closure for arbitrary object groups. Implementing these
algorithms efficiently is crucial for their application in end-user
applications such as AntTracks Analyzer. After evaluating various
approaches, we decided to use BitSets for the representation of
closures. A BitSet is a vector of bits that is indexed by a nonnega-
tive object number and keeps track of which objects are part of the
closure.

To be able to use BitSets, we had to adjust AntTracks’s heap
data structure. It is now organized in such a way that objects can be
identified by a unique number that is used as their index in the bit
sets. The heap object at index 0 is the object with the lowest address,
while the object at index n (where n is the number of objects in the
heap) is the object with the highest address.

Another advantage of bit sets is their ability to be combined
using logical operators such as and or or. For example, using these
operators, we do not need to calculate the transitive closure for
every node in the classification tree, but only for leaf nodes. Imagine
classifying heap objects first by type and then by allocation site.
This may result in a classification tree node for two objects of type
A (intermediate node), one allocated at allocation site x (leaf node)
and one at allocation site y (leaf node). It is sufficient to calculate
the transitive closures for the x node and the y node based on the
object graph, since the transitive closure for nodeA is just the union
of the two closure for x and y. The union of these closures can be
obtained by or-ing their bit sets.

4.3 Classifiers
In addition to the metrics presented in Section 3.3, we extended
AntTracks by a number of new classifiers, which can be freely
combined with any other existing classifier to analyze a heap state.

4.3.1 Directly-GC-Rooted Classifier. This classifier categorizes
heap objects based on the GC roots by which they are directly
referenced and splits them into multiple groups (e.g., Root: Static
field or Root: Thread-local variable). Each of these groups is then
split into further subgroups, depending on the root type, to provide
further information. For example, objects in the group Root: Static
field are further split by the static fields’ classes, and then by the
static fields themselves (as shown in Figure 8). The classifier can
also be configured to only show variables (static fields, thread-local
variables and JNI locals) instead of all roots. In addition, the user
can chose if objects that are only indirectly referenced by GC roots
or not reachable from GC roots at all should be shown in a separate
group or be completely hidden.

ManLang’18, September 12–14, 2018, Linz, Austria M. Weninger et al.

Figure 8: A heap state in AntTracks, classified using the di-
rectly rooted classifier.

Figure 9: A heap state in AntTracks, classified using the type
classifier followed by the indirectly rooted classifier.

Figure 8 shows an example for the use of the directly-GC-rooted
classifier in AntTracks. The first line (with the key Overall) shows
how many objects the heap contains. Its first child (with the key
Not directly referenced by any variable) contains the 89.406 ob-
jects that are not directly root-pointed by a variable. The second
child (with key Root: Static field) contains 318 objects that are di-
rectly root pointed by a static field. Two of them are referenced
from a static field in the class jku.anttracks.example.gcroot-
classifier.Service (4th line), one by the field names (5th line)
and one by the field map (6th line).

4.3.2 Indirectly-GC-Rooted Classifier. Similar to the directly-
GC-rooted classifier, the indirectly-GC-rooted classifier categorizes
heap objects based on the GC roots by which they are referenced.
However, instead of only taking direct references into account, also
indirectly referencing GC roots are considered. The classifier can
also be configured to only show variables instead of all roots, as
well as to whether objects that are not root-pointed at all should
be shown in a separate group or be completely hidden.

This classifier is especially useful when the user encounters
an unexpectedly large group of objects that was not assumed to
be alive or when such a group has been growing over time. In
such situations the indirectly-GC-rooted classifier can be used to
find out which root objects are keeping them alive. To improve
performance, it is also possible to cut the calculation as soon as the
first referencing root object is encountered.

Figure 9 shows an example for the use of the indirectly-GC-
rooted classifier, following the type classifier. 21, 129 String objects
exist at the given point in time, of which 20, 849 are reachable
from static fields. 20, 000 of these strings are reachable from the
static field names in the class jku.anttracks.example.gcroot-
classifier.Service.

4.4 Object Group Inspection Window
The classification mechanism in AntTracks produces object groups
that share certain properties based on the selected classifiers (e.g.,
objects of the same type allocated at the same allocation site). Beside

further classifying such object groups (e.g., extending the classifica-
tion tree by further splitting the objects by their allocating thread),
a given object group can also be inspected in more detail in an
object group inspection window.

A classification tree visualizes a particular heap state by showing
the object count, the shallow size, the deep size, and the retained
size of each object group. This is well suited for a fast overview.
It either enables users to detect small groups of objects with large
retained sizes (most probably heads of larger data structures) or
large groups of objects (most probably contained in other data
structures). The aim of the inspection window is now to provide
more detailed information about a particular object group.

First of all, the view shows all root objects from which a selected
object group can be reached and which keep the object group
alive. These root objects can then be further classified (root object
classification) or the paths to them can be visualized (bottom-up
visualization) as described in Section 3.4. Second, the inspection
window includes another classification tree showing the objects in
the group’s transitive closure or in its GC closure. Again, classifiers
can be applied to assign the objects in the closures to the branches
of the tree (e.g., according to the object types in the closures). This
feature might prove useful in helping user to understand the own-
ership relations between the inspected object group and the closure
objects.

5 EVALUATION
To evaluate the usefulness of our analyses we show how one can
use the AntTracks Analyzer to detect memory leaks and compare
it to a dominator-tree-based state-of-the-art memory monitoring
tool, namely the Eclipse Memory Analyzer (MAT) [15].

We also evaluate the overhead that is caused by recording the GC
root data in terms of run time and trace file size. All analyses were
performed on well-known benchmarks from the DaCapo suite1 [5]
(version 9.12-bach), DaCapo Scala suite2 (version 9.12-bach) and
the SPECjvm2008 suite3 (version 1.01).

Setup. All measurements were run on an Intel® Core™ i7-4790K
CPU @ 4.00GHz x 4 (8 Threads) on 64-bit with 32 GB RAM and
a Samsung SSD 850, running Ubuntu 17.10 with the Kernel Linux
4.13.0-16-generic. All unnecessary services (including graphical
user interfaces) were disabled in order not to distort the experi-
ments.

5.1 Functional Evaluation
In this section we are going to evaluate AntTracks’s applicability
to detect memory leaks and their root causes. The analyzed appli-
cation, mulit-cache, is an artificial demo application to demonstrate
AntTracks’s ability to detect memory leaks caused by multiple ob-
jects, a situation in which dominator-tree-based approaches prove
less useful. It stores products in a database which can be identified
by a long id as well as a String name. Once a Product instance
is queried, it gets stored in two caches (HashMap), one to access
products via their id and one to access them via their name. Both
HashMaps are stored in static fields, one in the class IdCache and
1http://dacapobench.org/(last accessed May 11, 2018)
2Info: http://www.scalabench.org/ (last accessed May 11, 2018)
3https://www.spec.org/jvm2008/ (last accessed May 11, 2018)

http://dacapobench.org/
http://www.scalabench.org/
https://www.spec.org/jvm2008/

Utilizing Object Reference Graphs and Garbage Collection
Roots to Detect Memory Leaks in Offline Memory Monitoring ManLang’18, September 12–14, 2018, Linz, Austria

Figure 10: Dominator tree view in MAT.

one in the class NameCache. To simulate a memory leak, the caches
are never cleared and thus grow over time. We compare AntTracks
to the Eclipse Memory Analyzer (MAT), a state-of-the-art memory
monitoring tool that employs dominator-tree-based memory leak
detection. This comparison should demonstrate how tools that only
perform dominator-tree-based analyses are not able to derive the
root cause of a memory leak that is caused by multiple objects, i.e.,
by multi-object ownership.

As a baseline, we analyzed the application usingMAT, which pro-
vides a hierarchical visualization of the dominator tree. Figure 10
shows the dominator tree view for the multi-cache demo applica-
tion. It reports that the complete heap (about 273 MB) is kept alive
by the AppClassLoader, which again holds a Vector that holds an
Object[], i.e., the loaded classes. The two classes with the largest
retained size are the IdCache (about 64 MB) and the NameCache
(about 40 MB). Both keep a HashMap alive (only the IdCache is
shown in detail in Figure 10), which further keeps its HashMap$Node
instances alive using an array. Yet, these HashMap$Nodes only dom-
inate their keys, but not their data. Since the dominator tree is
only suitable for detecting single-ownership, it is not possible to
infer how much and which memory is kept alive by both caches
together, or if further data structures are involved in the memory
leak. This is also reflected by the fact that the Object[] that keeps
the loaded classes alive is the dominator of 1, 000, 000 Product in-
stances, which is rather useless to infer ownership (this number is
not directly visible in Figure 10 but is a part of the very last entry
in the figure).

By default, AntTracks classifies all objects by type, which can
be seen in Figure 11. The figure shows that the application’s 22
HashMaps together keep 99.9% of the heap alive. When classifying
the maps by allocation site (see Figure 12), the classification tree dis-
plays the retained sizes of the individual hash maps (23.6% for the
one allocated in IdCache, 14.8% for the one allocated in NameCache,
and 0.0% for the remaining 20 maps). The individual retained sizes
do not add up to the combined retained size of 99.9%, which in-
dicates shared ownership between the hash maps. To analyze the
shared ownership of the two caches, both have to be combined
into one object group, which in turn may then be analyzed. There
are two options to do this: (1) Selecting the two rows in the tree
and opening the object group inspection window (showing the
object group information explained in Section 4.4 for the two maps
combined) or (2) applying a classifier that groups the two caches
into one node in the classification tree.

Figure 13 shows parts of the object group inspection window
that gets displayed when using the first method. The upper part

Figure 11: AntTracks’s default heap state analysis view, clas-
sifying heap objects by type.

Figure 12: Classifying heap objects by type and allocation
site in AntTracks.

Figure 13: Parts of the object group inspection window
displaying information about the hash maps allocated in
IdCache and NameCache

of the figure shows various metrics, including the retained size. A
retained size of about 272MB confirms our assumption that both
caches together nearly keep the whole heap alive. In the lower
part, the classification tree (by default classifying objects by their
types) of the retained objects is shown. It reveals that, beside other
objects, 1, 000, 000 Product instances are part of the caches’ shared
GC closure.

When using the second method to analyze shared ownership,
a suitable classifier has to be used to group the suspicious objects
into one tree node. Since both caches are allocated in the same
package, the allocating package classifier seems advisable to group
them. Additionally, the type classifier, followed by the indirectly-
GC-rooted classifier has been applied, and the result can be seen in
Figure 14. We can see that 3, 000, 002 objects have been allocated
in the jku.anttracks.example.data package, and all objects to-
gether have a retained size of 99.9% of all memory. By classifying
these objects by type, we can see that they split up into 1, 000, 000
Product instances, 2, 000, 000 int[] instances, and 2 HashMaps,
i.e., the maps in the caches. The maps also have a retained size
of 99.9%, which clearly identifies the two HashMaps as the source

ManLang’18, September 12–14, 2018, Linz, Austria M. Weninger et al.

Figure 14: Classifying heap objects by allocating package,
type and indirect GC roots in AntTracks.

Figure 15: AntTracks’s object group inspection window also
allows the analysis of GC roots.

of the memory leak. To find out which GC roots keep certain ob-
jects alive, one can apply the indirectly-GC-rooted classifier. In the
case of the two maps this classifier returns two static fields, one in
the IdCache class of type java.util.Map called idCache, and one
in the NameCache class of type java.util.Map called nameCache.
Even if the user would not have had any prior knowledge about
the system under investigation, we claim that this information is
enough to find the corresponding locations in the source code to
investigate the leak further on source code level.

This memory leak could have also been identified by using
bottom-up analysis. By comparing multiple heap states regard-
ing the frequency of types, one could detect that the number of
Product instances is increasing over time. In Section 3.4, such an
object group has been called suspicious object group. By opening
the object group inspection window for such an object group, we
can inspect the closures of the objects as well as the GC roots. The
hierarchical view of the GC roots also allows us to define classifiers
on them. By default, the root objects are classified using the directly-
GC-rooted classifier, categorizing them based on their referencing
GC roots (see Figure 15). This again identifies the two HashMaps as
responsible for the memory leak.

5.2 Recording Overhead
In Section 3.1 we presented the events that are recorded by the
AntTracks VM to collect information about GC roots. Information
is recorded for every GC root at the start of every garbage collection.
Therefore, the recording of this information may have an influence
on the following metrics:

• Run time: The time it takes to execute a given benchmark.
• Trace file size: The size of the resulting trace file.

Figure 16: Median run time without (-GCRoots) and with
(+GCRoot) GC root tracing, relative to the median run time
without GC root tracing enabled.

The recording does not influence the number of garbage collections
since we did not modify the GC’s collection behavior, but only
perform additional operations at the beginning of each garbage
collection.

We evaluate the overhead using benchmarks from the DaCapo
suite, the DaCapo Scala suite and the SPECjvm2008 suite, all fixed to
amaximumheap size of 2GB (which is enough to run the benchmark
with the largest live set, i.e., DaCapo h2) and using the Parallel Old
GC. We reduced our selection to benchmarks that trigger at least
one garbage collection per run.

As a baseline, we used the AntTracks VM to trace the applica-
tions, including pointer information but disabling GC root infor-
mation tracing (parameter -GCRoots). According to Lengauer et
al. [21], this introduces an average run time overhead of 15.0%. We
measured the additional overhead introduced by enabling GC root
information tracing (parameter +GCRoots). For warm-up, we ran
a benchmark with a given parameter 10 to 40 times on a single
VM instance using the largest input size to ensure stabilization of
caching and JIT compilation. The largest possible input sizes and
the necessary warm-up iterations depend on the benchmarks and
have been taken from Lengauer et al., Figure 1 [24]. After warm-
up, we ran the benchmark another 10 times on the same VM and
calculated the median run time and median trace file size of these
runs. We repeated this experiment 10 times for every benchmark
and parameter combination, using a new VM instance every time.
In the next sections, we report the median, the 25 percentile, and
the 75 percentile of the 10 medians per benchmark and parameter
setting.

5.2.1 Run time. Figure 16 shows the median run time for each
benchmark, relative to the median run time without GC root tracing
enabled. The error bars show the 25 percentile and the 75 percentile.
On average (geometric mean), the run time increases by 1.00%
across all benchmarks when turning GC root tracing on, with an
outlier of a maximum median run time increase by 8.77% on the
DaCapoScala tmt benchmark. The reason for this outlier may be
that tmt is one of the most allocation-intensive benchmarks. The
official documentation describes tmt as externally single-threaded
and internally multi-threaded. It creates a large number of threads,
each of which is only very short-lived.4 Allocating a lot of objects
may trigger many garbage collections, which, in combination with
a large number of thread-local GC roots, may lead to a run-time

4http://www.benchmarks.scalabench.org/modules/tmt-dacapo-benchmark/ (last ac-
cessed May 11, 2018)

http://www.benchmarks.scalabench.org/modules/tmt-dacapo-benchmark/

Utilizing Object Reference Graphs and Garbage Collection
Roots to Detect Memory Leaks in Offline Memory Monitoring ManLang’18, September 12–14, 2018, Linz, Austria

Figure 17: Trace file size without (-GCRoots) and with (+GC-
Root) GC root tracing, relative to the median trace file size
without GC root tracing enabled.

Figure 18: Trace file size without (-GCRoots) and with (+GC-
Root) GC root tracing, relative to the median trace file size
without GC root tracing enabled (excluding benchmarks
generating trace files < 30MB).

increase. Nevertheless, tmt was the only outlier, and we claim that
an average run-time increase of one percent makes our approach
feasible for production systems.

5.2.2 Trace file size. Figure 17 shows the median trace file size
for each benchmark, relative to the median trace file size without
GC root tracing. The error bars show the 25 percentile and the 75
percentile. The extreme trace file size increases for certain bench-
marks (over 1000% for SPECjvm scimark.fft.small) have to be set in
relation to their absolute file sizes. For most benchmarks, the trace
files have sizes between some 100 megabytes and some gigabytes,
depending on how many objects are allocated by the application
and moved by the garbage collector. All benchmarks that show a
large relative increase of their trace sizes have an original trace
size of less than 30MB. These benchmarks allocate and move very
few objects, and the size of the GC root information exceeds the
amount of the trace data for the actual objects.

Figure 18 shows the same data as Figure 17, but excludes all
benchmarks that generate trace files smaller than 30MB. On av-
erage (geometric mean), the trace file size for these benchmarks
increases by 0.21% across all benchmarks when turning GC root
tracing on. Since most of the data that is written to the trace files
concerns object allocations, object movements and pointer updates,
the additional data written due to GC roots becomes nearly negligi-
ble.

6 RELATEDWORK AND STATE-OF-THE-ART
Based on the dominator tree algorithm proposed by Lengauer and
Tarjan [41], various variations have been presented [2, 7, 33]. Dom-
inator trees are used in a wide range of applications. For example,

dominance is used in compilers to analyze control flow graphs [10]
or to visualize software dependencies [14].

In the domain of program understanding and memory leak de-
tection, dominator trees (alongside other techniques) are often
used as basis for ownership detection, component analysis and
aggregation in heap graph visualization. Hill et al. [17, 18] reduce
object graphs into ownership trees for visualization based on the
dominator tree. Rayside et al. [34, 35] introduce object ownership
profiling, a technique that uses the dominator tree alongside in-
formation about last object access times and object interactions to
identify memory leaks and memory management anti-patterns in
applications. Mitchell [27] summarizes an application’s memory
footprint with help from the dominator relation. He introduces a set
of ownership structures, detects these structures in object graphs
and aggregates them into concise ownership graphs that visualize
responsibility and ownership of data structures. In further work,
Mitchell and Sevitsky [29] introduce health signatures for data struc-
tures based on dominator tree reference analysis. They show how
to judge data structure designs or implementations based on their
relationship between actual data and structural overhead. In [28],
Mitchell et al. present aggregation techniques using the domination
relation in heap object graphs to perform progressive graph ab-
stractions, alongside corresponding visualizations. Similarly, other
approaches use dominator information to abstract object graph
visualizations [26, 36–38] or to layout graphs [1].

Nevertheless, ample work in the domain of memory leak detec-
tion exists that does not rely on dominator trees but uses object
graphs directly, as we do in AntTracks. Most of these approaches
rely on certain types of pattern detection in the object graphs. De
Pauw et al. [11, 12] extract patterns from object graphs, shifting the
focus from individual objects to groups of objects to abstract their
visualization. Jump and McKinley [19] developed the memory leak
detection tool Cork that reduces the object graph to a type-points-
to-type graph for analysis. Barr et al. [3] use the object graph to
detect and classify typical reference patterns in real-world applica-
tion heaps. Chis et al. [6] discuss the limitations of the dominator
relation (mostly due to the issue of detecting shared ownership),
alternatively describe a ContainerOrContained relation, and use this
relation to detect various inefficient memory patterns.

State-of-the-art memory monitoring tools share the typical func-
tionality to represent heap states as type histograms, showing the
number of instances per class and their shallow sizes. While this
enables users to detect large object groups of a certain type in the
same way in all tools, they differ in how they support memory leak
root cause detection.

VisualVM [32] is a general performance monitoring tool for
Java applications that provides memory analysis based on heap
dumps. In addition to a type histogram, it can display a list of all
root objects, as well as the dominator tree. From each view, it is
possible to inspect individual objects, including functionality to
inspect an object’s fields, accessing referencing objects, and finding
the closest root object. Even though VisualVM can calculate the
retained size for the objects of a given type, it is not possible to
change that classification or to further split that group. Neither can
the user select multiple objects that might have shared ownership
for inspection, a functionality that is available in AntTracks by using
its object group inspection window on arbitrary object groups. The

ManLang’18, September 12–14, 2018, Linz, Austria M. Weninger et al.

Netbeans profiler [31] is a slimmed down version of VisualVM and
is integrated into the Netbeans IDE.

The focus of the the Eclipse Memory Analyzer (MAT) [15] tool is
to provide a fast overview on possible memory leaks, reducing the
need for complex user interaction. By default, it displays overview
charts of the largest dominating objects, packages and class loaders.
Their computations heavily rely on the dominator tree. In addition,
MAT provides an automatic leak suspect analysis which detects and
extracts the most suspicious objects from the dominator tree. While
MAT provides easy-to-use automated analysis features and high-
level abstractions based on the dominator tree, it shares a common
problem with VisualVM: Memory leak root cause detection is not
supported for leaking object groups with shared ownership.

7 FUTUREWORK AND THREATS TO
VALIDITY

Heap object graphs, alongside closure, could also be reconstructed
and calculated using normal heap dumps. Yet, the analysis of a single
heap state may not be sufficient to detect and analyze the prolif-
eration of objects. Thus, AntTracks utilizes a trace-based method
to continuously record memory information. Trace files can then
be used to analyze an application’s memory behavior over time on
object-level. Future work will make use of the temporal information
that can be reconstructed from traces and will combine it with
the approaches presented in this work. This includes automated
analysis of changes to the heap object graph, i.e., how object refer-
ences and GC root pointers change over time. This will enable us to
automatically detecting continuously growing object groups, e.g.,
detecting growing object groups of certain types or allocation sites.
It will also be possible to detect objects with a growing retained
size, which might hint at growing data structures. We further plan
to include a constraint DSL in AntTracks which would enable users
to define memory constraints such as maximum retained sizes or
checks for invalid reference patterns. Such constraints can then be
checked during parsing of trace files.

After detecting growing object groups (e.g., due to a memory
leak) or object groups that keep large portions of the heap alive,
the user’s goal is to make these objects eligible for garbage collec-
tion. This can be done by cutting references between objects on
the paths to their GC roots. Analyzing these paths to find suitable
cutting points is most effectively done by visualizing the object
graph. We therefore plan to develop more sophisticated graph visu-
alization techniques that offer convenient navigation and analysis
of object graphs. Yet, without aggregation, such object graphs tend
to grow big and become infeasible to analyze. Thus, our goal is to
reduce this complexity by collapsing the object graph based on data
structure membership, i.e., by aggregating objects that belong to
a certain data structure into a single graph node. When searching
for suitable cutting points, one is not interested in the internals of
data structures. For example, a linked list maintains its elements
via Node objects. These internals should not show up in the object
graph. By aggregating all objects of the list into a single node, one
could raise the abstraction level of the analysis. As a first step, data
structure aggregation could be done for the well-known Java col-
lection types. Later it could also be done for arbitrary user-defined
data structures described by a domain-specific language.

The major threat to validity of our work is its currently restricted
evaluation based on an artificial use case. It also lacks an evalu-
ation on how often multi-object ownership occurs in real-world
applications. There exist studies on the memory behavior of real-
world applications [8, 9, 16], yet they do not evaluate the interaction
between objects or data structures, e.g. they do not report multi-
object ownership rates. We plan to conduct in-depth evaluations on
open-source projects in the future to gain a deeper understanding
of object interaction in real-world applications. Further, to prove
AntTracks’s applicability for finding the root cause of memory
leaks in such real-world applications, we also plan to conduct a
user study with our industry partner. In addition to comparing
AntTracks to existing tools, e.g., in terms of found memory leaks,
we also want to evaluate which classifier combinations are most
useful when searching for memory leaks.

8 CONCLUSION
In this paper, we presented new techniques for collecting informa-
tion about GC roots and how to use this information for computing
the transitive closure and the GC closure of the object graphs refer-
enced by these roots. A distinguishing feature of our approach is
the fact that we can compute the GC size for whole object groups
and not only for single objects, as is the case in dominator-tree-
based approaches. From the closures we derived metrics such as
the retained size of an object group (i.e., the amount of memory that
is kept alive by this group). Finally, we integrated our techniques
into a state-of-the-art memory monitoring tool (AntTracks) that
provides classification and navigation facilities for analyzing the
memory behavior of an application and finding the root causes of
memory leaks.

The GC root information is written to a trace file at the start of
every garbage collection and can thus be reconstructed offline for
any garbage collection point. In a quantitative evaluation based on
the DaCapo, DaCapoScala and SPECjvm2008 benchmark suites, we
showed that tracing GC root information introduces 1.00% overhead
on the application’s run time and 0.21% overhead on the generated
trace file size on average, which is low enough to be used in pro-
duction systems.

A functional evaluation showed that our approach for computing
the GC closure enables us to detect memory leaks even if the leaking
objects are shared by multiple owner objects. In particular, the
retained size metric proved useful to detect data structures that
have shared ownership. Finally, we showed how bottom-up analysis
can be used to find the GC roots that keep a set of leaking objects
alive.

ACKNOWLEDGMENTS
This work was supported by the Christian Doppler Forschungsge-
sellschaft, and by Dynatrace Austria GmbH.

REFERENCES
[1] Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci, Sara L.

Su, and Samuel Z. Guyer. 2010. Heapviz: Interactive Heap Visualization for
Program Understanding and Debugging. In Proceedings of the 5th International
Symposium on Software Visualization (SOFTVIS ’10). ACM, New York, NY, USA,
53–62. https://doi.org/10.1145/1879211.1879222

[2] Stephen Alstrup and Peter W. Lauridsen. 1996. A Simple Dynamic Algorithm for
Maintaining a Dominator Tree. Technical Report.

https://doi.org/10.1145/1879211.1879222

Utilizing Object Reference Graphs and Garbage Collection
Roots to Detect Memory Leaks in Offline Memory Monitoring ManLang’18, September 12–14, 2018, Linz, Austria

[3] Earl T Barr, Christian Bird, andMarkMarron. 2013. Collecting a heap of shapes. In
Proceedings of the 2013 International Symposium on Software Testing and Analysis.
ACM, 123–133.

[4] Verena Bitto, Philipp Lengauer, and Hanspeter Mössenböck. 2015. Efficient
Rebuilding of Large Java Heaps from Event Traces. In Proc. of the Principles and
Practices of Programming on The Java Platform (PPPJ ’15). 76–89.

[5] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn S
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z Guyer, et al. 2006. The DaCapo benchmarks: Java benchmarking
development and analysis. In ACM Sigplan Notices, Vol. 41. ACM, 169–190.

[6] Adriana E Chis, NickMitchell, Edith Schonberg, Gary Sevitsky, Patrick O’Sullivan,
Trevor Parsons, and John Murphy. 2011. Patterns of memory inefficiency. In
European Conference on Object-Oriented Programming. Springer, 383–407.

[7] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. 2001. A simple, fast
dominance algorithm. Software Practice & Experience 4, 1-10 (2001), 1–8.

[8] Diego Costa, Artur Andrzejak, Janos Seboek, and David Lo. [n. d.]. Empirical
Study of Usage and Performance of Java Collections. ([n. d.]). https://doi.org/10.
1145/3030207.3030221

[9] Diego Costa and Rivalino Matias Jr. 2015. Characterization of Dynamic Memory
Allocations in Real-World Applications: An Experimental Study. In 2015 IEEE 23rd
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems. IEEE, 93–101. https://doi.org/10.1109/MASCOTS.
2015.28

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1989. An
Efficient Method of Computing Static Single Assignment Form. In Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’89). ACM, New York, NY, USA, 25–35. https://doi.org/10.1145/
75277.75280

[11] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John Vlissides, and
Jeaha Yang. 2002. Visualizing the execution of Java programs. In Software
Visualization. Springer, 151–162.

[12] Wim De Pauw and Gary Sevitsky. 1999. Visualizing Reference Patterns for
Solving Memory Leaks in Java. In ECOOP’ 99 — Object-Oriented Programming,
Rachid Guerraoui (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 116–134.

[13] J. Eve and R Kurki-Suonio. 1977. On computing the transitive closure of a relation.
Acta Informatica 8, 4 (oct 1977), 303–314. https://doi.org/10.1007/BF00271339

[14] R. Falke, R. Klein, R. Koschke, and J. Quante. 2005. The Dominance Tree in Visu-
alizing Software Dependencies. In 3rd IEEE International Workshop on Visualizing
Software for Understanding and Analysis. 1–6. https://doi.org/10.1109/VISSOF.
2005.1684311

[15] Eclipse Foundation. 2018. Eclipse Memory Analyzer (MAT) (last accessed May
11, 2018). https://www.eclipse.org/mat/. (2018).

[16] Mohammadreza Ghanavati, Diego Costa, Artur Andrzejak, and Janos Seboek.
2018. Memory and Resource Leak Defects in Java Projects: An Empirical
Study. In Proceedings of the 40th International Conference on Software Engineer-
ing: Companion Proceeedings (ICSE ’18). ACM, New York, NY, USA, 410–411.
https://doi.org/10.1145/3183440.3195032

[17] T. Hill, J. Noble, and J. Potter. 2000. Scalable visualisations with ownership trees.
In Proceedings 37th International Conference on Technology of Object-Oriented
Languages and Systems. TOOLS-Pacific 2000. 202–213. https://doi.org/10.1109/
TOOLS.2000.891370

[18] Trent Hill, James Noble, and John Potter. 2002. Scalable visualizations of object-
oriented systems with ownership trees. Journal of Visual Languages & Computing
13, 3 (2002), 319–339.

[19] Maria Jump and Kathryn S. McKinley. 2007. Cork: Dynamic Memory Leak
Detection for Garbage-collected Languages. In Proceedings of the 34th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’07). ACM, New York, NY, USA, 31–38. https://doi.org/10.1145/1190216.
1190224

[20] Donald E. Knuth. 1971. Top-down syntax analysis. Acta Informatica 1, 2 (01 Jun
1971), 79–110. https://doi.org/10.1007/BF00289517

[21] Philipp Lengauer, Verena Bitto, Stefan Fitzek, Markus Weninger, and Hanspeter
Mössenböck. 2016. Efficient Memory Traces with Full Pointer Information. In
Proc. of the 13th Int’l. Conference on Principles and Practices of Programming on
the Java Platform: Virtual Machines, Languages, and Tools (PPPJ ’16).

[22] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2015. Accurate and
Efficient Object Tracing for Java Applications. In Proc. of the 6th ACM/SPEC Int’l.
Conference on Performance Engineering (ICPE ’15). 51–62.

[23] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2016. Efficient and
Viable Handling of Large Object Traces. In Proc. of the 7th ACM/SPEC on Int’l.
Conference on Performance Engineering (ICPE ’16). 249–260.

[24] Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus Weninger.
2017. A Comprehensive Java Benchmark Study on Memory and Garbage Collec-
tion Behavior of DaCapo, DaCapo Scala, and SPECjvm2008. In Proceedings of the
8th ACM/SPEC on International Conference on Performance Engineering (ICPE ’17).
ACM, New York, NY, USA, 3–14. https://doi.org/10.1145/3030207.3030211

[25] Thomas Lengauer and Robert Endre Tarjan. 1979. A Fast Algorithm for Finding
Dominators in a Flowgraph. ACM Trans. Program. Lang. Syst. 1, 1 (Jan. 1979),

121–141. https://doi.org/10.1145/357062.357071
[26] M. Marron, C. Sanchez, Z. Su, and M. Fahndrich. 2013. Abstracting runtime heaps

for program understanding. IEEE Transactions on Software Engineering 39, 6 (June
2013), 774–786. https://doi.org/10.1109/TSE.2012.69

[27] Nick Mitchell. 2006. The Runtime Structure of Object Ownership. In Proceedings
of the 20th European Conference on Object-Oriented Programming (ECOOP’06).
Springer-Verlag, Berlin, Heidelberg, 74–98. https://doi.org/10.1007/11785477_5

[28] Nick Mitchell, Edith Schonberg, and Gary Sevitsky. 2009. Making Sense of
Large Heaps. In Proceedings of the 23rd European Conference on ECOOP 2009 —
Object-Oriented Programming (Genoa). Springer-Verlag, Berlin, Heidelberg, 77–97.
https://doi.org/10.1007/978-3-642-03013-0_5

[29] Nick Mitchell and Gary Sevitsky. 2007. The Causes of Bloat, the Limits of Health.
In Proceedings of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications (OOPSLA ’07). ACM, New York, NY, USA,
245–260. https://doi.org/10.1145/1297027.1297046

[30] Oracle. 2018. The HotSpot Group (last accessed May 11, 2018). http://openjdk.
java.net/groups/hotspot/. (2018).

[31] Oracle. 2018. Netbeans Profiler (last accessed May 11, 2018). https://profiler.
netbeans.org/. (2018).

[32] Oracle. 2018. VisualVM: All-in-One Java Troubleshooting Tool (last accessed
May 11, 2018). https://visualvm.github.io/. (2018).

[33] G. Ramalingam and Thomas Reps. 1994. An Incremental Algorithm for Maintain-
ing the Dominator Tree of a Reducible Flowgraph. In Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
’94). ACM, New York, NY, USA, 287–296. https://doi.org/10.1145/174675.177905

[34] Derek Rayside and Lucy Mendel. 2007. Object Ownership Profiling: A Tech-
nique for Finding and Fixing Memory Leaks. In Proceedings of the Twenty-second
IEEE/ACM International Conference on Automated Software Engineering (ASE ’07).
ACM, New York, NY, USA, 194–203. https://doi.org/10.1145/1321631.1321661

[35] Derek Rayside, Lucy Mendel, and Daniel Jackson. 2006. A Dynamic Analysis for
Revealing Object Ownership and Sharing. In Proceedings of the 2006 International
Workshop on Dynamic Systems Analysis (WODA ’06). ACM, New York, NY, USA,
57–64. https://doi.org/10.1145/1138912.1138924

[36] Steven P Reiss. 2009. Visualizing the Java heap - Demonstration Proposal. In
Software Maintenance, 2009. ICSM 2009. IEEE International Conference on. IEEE,
389–390.

[37] S. P. Reiss. 2009. Visualizing the Java heap to detect memory problems. In 2009
5th IEEE International Workshop on Visualizing Software for Understanding and
Analysis. 73–80. https://doi.org/10.1109/VISSOF.2009.5336418

[38] Steven P. Reiss. 2010. Visualizing the Java Heap. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume 2 (ICSE ’10).
ACM, New York, NY, USA, 251–254. https://doi.org/10.1145/1810295.1810344

[39] Nathan P. Ricci, Samuel Z. Guyer, and J. Eliot B. Moss. 2013. Elephant Tracks:
Portable Production of Complete and Precise Gc Traces. In Proceedings of the
2013 International Symposium on Memory Management (ISMM ’13). ACM, New
York, NY, USA, 109–118. https://doi.org/10.1145/2464157.2466484

[40] C. Ruggieri and T. P. Murtagh. 1988. Lifetime Analysis of Dynamically Allocated
Objects. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’88). ACM, New York, NY, USA, 285–293.
https://doi.org/10.1145/73560.73585

[41] Robert Tarjan. 1971. Depth-first search and linear graph algorithms. In 12th
Annual Symposium on Switching and Automata Theory (swat 1971). IEEE, 114–121.
https://doi.org/10.1109/SWAT.1971.10

[42] Markus Weninger, Philipp Lengauer, and Hanspeter Mössenböck. 2017. User-
centered Offline Analysis of Memory Monitoring Data. In Proc. of the 8th
ACM/SPEC on Int’l. Conference on Performance Engineering (ICPE ’17). 357–360.

[43] Markus Weninger and Hanspeter Mössenböck. 2018. User-defined Classification
and Multi-level Grouping of Objects in Memory Monitoring. In Proceedings of the
9th ACM/SPEC International Conference on Performance Engineering (ICPE 2018)
(ICPE 2018).

https://doi.org/10.1145/3030207.3030221
https://doi.org/10.1145/3030207.3030221
https://doi.org/10.1109/MASCOTS.2015.28
https://doi.org/10.1109/MASCOTS.2015.28
https://doi.org/10.1145/75277.75280
https://doi.org/10.1145/75277.75280
https://doi.org/10.1007/BF00271339
https://doi.org/10.1109/VISSOF.2005.1684311
https://doi.org/10.1109/VISSOF.2005.1684311
https://www.eclipse.org/mat/
https://doi.org/10.1145/3183440.3195032
https://doi.org/10.1109/TOOLS.2000.891370
https://doi.org/10.1109/TOOLS.2000.891370
https://doi.org/10.1145/1190216.1190224
https://doi.org/10.1145/1190216.1190224
https://doi.org/10.1007/BF00289517
https://doi.org/10.1145/3030207.3030211
https://doi.org/10.1145/357062.357071
https://doi.org/10.1109/TSE.2012.69
https://doi.org/10.1007/11785477_5
https://doi.org/10.1007/978-3-642-03013-0_5
https://doi.org/10.1145/1297027.1297046
http://openjdk.java.net/groups/hotspot/
http://openjdk.java.net/groups/hotspot/
https://profiler.netbeans.org/
https://profiler.netbeans.org/
https://visualvm.github.io/
https://doi.org/10.1145/174675.177905
https://doi.org/10.1145/1321631.1321661
https://doi.org/10.1145/1138912.1138924
https://doi.org/10.1109/VISSOF.2009.5336418
https://doi.org/10.1145/1810295.1810344
https://doi.org/10.1145/2464157.2466484
https://doi.org/10.1145/73560.73585
https://doi.org/10.1109/SWAT.1971.10

	Abstract
	1 Introduction
	2 Background
	2.1 AntTracks VM: Trace Recording and Reconstruction
	2.2 AntTracks Analyzer: Memory State Analysis
	2.3 Garbage Collection Roots
	2.4 Running example

	3 Approach
	3.1 Retrieving GC Root Information
	3.2 Heap Object Closures
	3.3 Metrics
	3.4 Utilizing GC Root Information

	4 Implementation
	4.1 Retrieving GC Root Information
	4.2 Closure Algorithms
	4.3 Classifiers
	4.4 Object Group Inspection Window

	5 Evaluation
	5.1 Functional Evaluation
	5.2 Recording Overhead

	6 Related Work and State-of-the-art
	7 Future Work and Threats to Validity
	8 Conclusion
	Acknowledgments
	References

