D

Compiler Construction

Hanspeter Mdssenbock
University of Linz

http://ssw.jku.at/Misc/CC/
© 2002-2024 Hanspeter Mdssenbock, JKU Linz

Text Book

N.Wirth: Compiler Construction, Addison-Wesley 1996
https://people.inf.ethz.ch/wirth/CompilerConstruction/CompilerConstructionl.pdf
https://people.inf.ethz.ch/wirth/CompilerConstruction/CompilerConstruction2.pdf

1. Overview

1.1 Motivation

1.2 Structure of a Compiler

1.3 Grammars

1.4 Chomsky's Classification of Grammars
1.5 The MicroJava Language

D

Why should | learn about compilers? m

It's part of the general background of any software engineer

* How do compilers work?

How do computers work?
(instruction set, registers, addressing modes, run-time data structures, ...)

What machine code is generated for certain language constructs?
(efficiency considerations)

What is good language design?
Opportunity for a non-trivial programming project

Also useful for general software development

» Reading syntactically structured command-line arguments
Reading structured data (e.g. XML files, part lists, image files, ...)
Searching in hierarchical namespaces

Interpretation of command codes

1. Overview

1.1 Motivation

1.2 Structure of a Compiler

1.3 Grammars

1.4 Chomsky's Classification of Grammars
1.5 The MicroJava Language

Dynamic Structure of a Compiler @

character stream val = 10 * wval + i

U

lexical analysis (scanning)

U

ident assign number times ident plus ident

token stream 1 3 2 4 1 5 1 |«— token number
"val" 10 "val" "i" |«<— token value

U

syntax analysis (parsing)

U

Statement
|

syntax tree]
Expression

Term

B

ident = number * ident + ident

Dynamic Structure of a Compiler m

Statement

syntax tree ! |
Expression

Term

]

ident = number * ident + ident

=

semantic analysis (type checking, ...)

-

intermediate

: syntax tree, symbol table, ...
representation

=

optimization

-

code generation

a

: const 10
machine code load 1

mul

Compiler versus Interpreter @

Compiler translates to machine code

=
o

Ej* scanner —* parser —> ... > code generator *Ej* loader > =

source code machine code

Interpreter executes source code "directly"

« statements in a loop are
— scanner —> parser = e scanned and parsed

again and again
source code interpretation

Variant: interpretation of intermediate code

Ej_’ iler . - Ej e source code is translated into the
e COMPIET... VM code of a virtual machine (VM)

source code intermediate code « VM interprets the code
(e.g. Java bytecode) simulating the physical machine

7

Static Structure of a Compiler

e

Ej—> scanner

provides tokens from
the source code

——*> UuSes

— data flow

parser &
sem. analysis

A\ 4 v

symbol table

"main program"

D

directs the whole compilation

code generation

—

generates machine code

maintains information about
declared names and types

1. Overview

1.1 Motivation

1.2 Structure of a Compiler

1.3 Grammars

1.4 Chomsky's Classification of Grammars
1.5 The MicroJava Language

What Is a grammar?

D

Example | statement = "if" "(" Condition ")" Statement ["else" Statement].

Four components

terminal symbols

nonterminal symbols

productions

start symbol

are atomic

are decomposed
into smaller units

rules how to decom-
pose nonterminals

topmost nonterminal

“if", ">=", ident, number, ...

Statement, Condition, Type, ...
Statement = Designator "=" Expr ";".

Designator = ident ["." ident].

Java

10

EBNF Notation

Extended Backus-Naur form
for writing grammars

D)
John Backus: developed the first Fortran compiler
Peter Naur: edited the Algol60 report

_ terminal nonterminal terminates
Productions literal symbol symbol a production
Statement = ‘"write" ident "," Expression ";" .
H/—/

left-hand side

by convention

right-hand side

« terminal symbols start with lower-case letters
» nonterminal symbols start with upper-case letters

Metasymbols

separates alternatives

|

(...) groups alternatives
[...] optional part

{.} iterative part

alb|c =aorborc
a(b|c) =ab]ac

[a] b =ab|Db

{a}b =D |ab|aab|aaab| ...

11

Example: Grammar for Arithmetic Expressions @

Productions F%):g_
Expr =["+"|"-"] Term {("+" | "-") Term}. (:)
Term = Factor {("*" | "/") Factor}. Expr f Term

Factor = ident | number | "(" Expr ")". EL+C:}I

Terminal symbols F%:%_
simple TS: B Y A G I Term —2.|Factor

(just 1 instance)

ident
terminal classes: ident, number ———
(multiple instances)
Factor (1)

©

(L) Expr

Nonterminal symbols

Expr, Term, Factor

Start symbol
Expr
12

Terminal Start Symbols of Nonterminals @

What are the terminal symbols with which a nonterminal can start?

Expr = ["+"| "] Term {("+"| "-") Term}.
Term = Factor {("*" | "/") Factor}.
Factor = ident | number | "(" Expr ")".

First(Factor) = ident, number, "("

First(Term) = First(Factor)
= ident, number, "("

First(Expr) = "+ - First(Term)
="+","-" ident, number, "("

14

Terminal Successors of Nonterminals @

Which terminal symbols can follow a nonterminal in the grammar?

Expr =["+"|"-"] Term {("+" | "-") Term}.
Term = Factor {("*" | "/") Factor}.
Factor = ident | number | "(" Expr ")".

Where does Expr occur on the
Follow(Expr) =)", eof right-hand side of a production?
What terminal symbols can
follow there?

Follow(Term) = "+, """ Follow(Expr)
="+)" eof
Follow(Factor) = "*", "/, Follow(Term)
= "*"1 "/"1 "+"1 "_"l ")"l eOf

15

Strings and Derivations @

String

A finite sequence of symbols from an alphabet.
Alphabet: all terminal and nonterminal symbols of a grammar.

Strings are denoted by greek letters (o, B, v, ...)
e.g: a =ident + number
B = - Term + Factor * number

Empty String
The string that contains no symbol (denoted by ¢).

Derivation

'3 B

a= [(direct derivation) Term + Factor * Factor = Term + ident * Factor
H_J . H_{

NTS right-hand side of a

production of NTS

a =" (indirect derivation) Ay DY = 2V =B
16

Recursion 'ssW)

A production is recursive if | X =* o, X o,

Can be used to express repetitions and nested structures

Direct recursion X = o, X o,
Left recursion X=b|Xa. X=>Xa=>Xaa=Xaaa=baaaaa..
Right recursion X=b|aX. X=>aX=aaX=aaaX=..aaaaab

Central recursion X=b|"("X")". X=X)=(X)= (X)) = (.. (b)...)

Indirect recursion X =* o, X o,

Example

Expr =Term {"+" Term}. Expr = Term = Factor = "(" Expr)"
Term = Factor {"*" Factor}.
Factor =id | "(" Expr ")".

17

How to Remove Left Recursion @

Left recursion cannot be handled in topdown parsing

X=b|Xa. Both alternatives start with b.
The parser cannot decide which one to choose

Left recursion can always be transformed into iteration

X = baaaa...a X=b{a}.

Another example

E=T|E"+"T.

What phrases can be derived?

E/'T T+T
~E+T] _r T+T+T
E+T+T ..
E+T+T+T \
Thus
E=T{"+"T}

18

1. Overview

1.1 Motivation

1.2 Structure of a Compiler

1.3 Grammars

1.4 Chomsky's Classification of Grammars
1.5 The MicroJava Language

D

19

Classification of Grammars

Due to Noam Chomsky (1956)

Grammars are sets of productions of the form a = .

class 0

class 1

class 2

class 3

Unrestricted grammars (o and B arbitrary)
e.g: X=aXb|YcY.

D

aYc=d. X = aXb = aYcYb = dYb = bbb

dY=bbh.
Recognized by Turing machines

Context-sensitive grammars (Jo < |B])
e.g: aX=abc.
Recognized by linear bounded automata

Context-free grammars (o = NT, B arbitrary)
e.g: X=abc.
Recognized by push-down automata

Regular grammars (a =NT, =T or T NT)
eg. X=b|bY.
Recognized by finite automata

”

Only these two classes
are relevant in compiler
construction

20

1. Overview

1.1 Motivation

1.2 Structure of a Compiler

1.3 Grammars

1.4 Chomsky's Classification of Grammars
1.5 The MicroJava Language

21

Sample MicroJava Program m

program P main program; no separate compilation
final int size = 10;

class Table { classes (without methods)
int[] pos;

int[] neg;
}

{ Table val; global variables

void main()

int x, i; local variables
{ /]---mmemmm- initialize val ----------

val = new Table;

val.pos = new int[size];

val.neg = new int[size];

i=0;

while (i < size) {

val.pos][i] = 0; val.neg[i] = 0; i =1+ 1;

}

J]mmmemee- read values ----------
read(x);

while (x 1= 0) {

If (x >=0) val.pos[x] = val.pos[x] + 1;
else if (x < 0) val.neg[-x] = val.neg[-X] + 1,
read(x);

}

}
} 22

Lexical Structure of MicroJava @

Identifiers ident = letter {letter | digit | '_'}.
Numbers number = digit {digit}. all numbers are of type int
Char constants charConst ="\" char '\". all character constants are of type char
_ (may contain \r, \n, \t)
no strings
Keywords program class
if else while read print return void
final new
Operators + - * / %
== I= > >= < <=
() [] { }
Comments Il ... eol
Types int char arrays classes

23

Syntactical Structure of MicroJava @

Programs
Program = "program" ident program P
{ConstDecl | VarDecl | ClassDecl} ... declarations ...
"{" {MethodDecl} "}". { ... methods ...
}

Declarations

ConstDecl = "final" Type ident "=" (number | charConst) ";".
VarDecl = Type ident {"," ident} ";".
MethodDecl = (Type | "void") ident "(" [FormPars] ")"
{VarDecl} Block.
Type = ident ["[""]"]. just one-dimensional arrays
FormPars = Type ident {"," Type ident]}.

24

Syntactical Structure of MicroJava @

Statements
Block = "{" {Statement} "}".
Statement = Designator ("=" Expr";"
| "(" [ActPars])" ";"
)
| "if" "(" Condition ")" Statement ["else" Statement]
| "while" "(" Condition ")" Statement
| "return" [Expr] ";"
| "read""(" Designator ")"";" * input from System.in
| “print” "(" Expr [*," number] *)" *}" e output to System.out
| Block
[
ActPars = Expr {"," Expr}.

25

Syntactical Structure of MicroJava @

EXxpressions

Condition = Expr Relop Expr.
Relop = U= ET ST SE | | <=
Expr = [*-"] Term {Addop Term}.
Term = Factor {Mulop Factor}.
Factor = Designator ["(" [ActPars] ")"]
| number
| charConst
| "new"ident ["[" Expr "]"] no constructors
| (" Expr)"
Designator = ident { "." ident | "[" Expr "]" }.
Addop = "+
Mulop = " "%

26

The MicroJava Compiler

Package structure
IJVA

_1SymTab _1CodeGen

Compiler.java
Scanner.java
Parser.java

1 SymTab

Tab.java Code.java
Obj.java Operand.java
Struct.java Decoder.java
Scope.java

L0]

1 CodeGen
Run.java
Decode.java

Compilation of a MicroJava program

java MJ.Compiler myProg.mj

myProg.mj =

compiler

Execution

java MJ.Run myProg.obj -debug

myProg.obj —

interpreter

——> myProg.obj

Decoding

myProg.obj] —

java MJ.Decode myProg.obj

decoder

D

—> myProg.code

	Compiler Construction
	Foliennummer 2
	Why should I learn about compilers?
	Foliennummer 4
	Dynamic Structure of a Compiler
	Dynamic Structure of a Compiler
	Compiler versus Interpreter
	Static Structure of a Compiler
	Foliennummer 9
	What is a grammar?
	EBNF Notation
	Example: Grammar for Arithmetic Expressions
	Terminal Start Symbols of Nonterminals
	Terminal Successors of Nonterminals
	Strings and Derivations
	Recursion
	How to Remove Left Recursion
	Foliennummer 19
	Classification of Grammars
	Foliennummer 21
	Sample MicroJava Program
	Lexical Structure of MicroJava
	Syntactical Structure of MicroJava
	Syntactical Structure of MicroJava
	Syntactical Structure of MicroJava
	The MicroJava Compiler

