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Why should | learn about compilers? m

It's part of the general background of any software engineer

* How do compilers work?

How do computers work?
(instruction set, registers, addressing modes, run-time data structures, ...)

What machine code is generated for certain language constructs?
(efficiency considerations)

What is good language design?
Opportunity for a non-trivial programming project

Also useful for general software development

» Reading syntactically structured command-line arguments
Reading structured data (e.g. XML files, part lists, image files, ...)
Searching in hierarchical namespaces

Interpretation of command codes
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Dynamic Structure of a Compiler @

character stream val = 10 * wval + i

U

lexical analysis (scanning)
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ident  assign number times ident  plus ident

token stream 1 3 2 4 1 5 1 |«— token number
"val" 10 "val" "i" |«<— token value
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syntax analysis (parsing)
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Dynamic Structure of a Compiler m

Statement

syntax tree ! |
Expression

Term

]

ident = number * ident + ident

=

semantic analysis (type checking, ...)
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intermediate
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representation
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optimization
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Compiler versus Interpreter @

Compiler translates to machine code

=
o

Ej* scanner —* parser —> ... > code generator *Ej* loader > =

source code machine code

Interpreter  executes source code "directly"

« statements in a loop are
— scanner —> parser = e scanned and parsed

again and again
source code interpretation

Variant: interpretation of intermediate code

Ej_’ iler . - Ej e source code is translated into the
e COMPIET... VM code of a virtual machine (VM)

source code intermediate code « VM interprets the code
(e.g. Java bytecode) simulating the physical machine
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Static Structure of a Compiler

e

Ej—> scanner

provides tokens from
the source code

——*> UuSes

—  data flow

parser &
sem. analysis

A\ 4 v

symbol table

"main program"

D

directs the whole compilation

code generation

—

generates machine code

maintains information about
declared names and types
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What Is a grammar?

D

Example | statement = "if" "(" Condition ")" Statement ["else" Statement].

Four components

terminal symbols

nonterminal symbols

productions

start symbol

are atomic

are decomposed
into smaller units

rules how to decom-
pose nonterminals

topmost nonterminal

“if", ">=", ident, number, ...

Statement, Condition, Type, ...
Statement = Designator "=" Expr ";".

Designator = ident ["." ident].

Java
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EBNF Notation

Extended Backus-Naur form
for writing grammars

D)
John Backus: developed the first Fortran compiler
Peter Naur: edited the Algol60 report

_ terminal nonterminal terminates
Productions literal  symbol symbol a production
Statement = ‘"write" ident "," Expression ";" .
H/—/

left-hand side

by convention

right-hand side

« terminal symbols start with lower-case letters
» nonterminal symbols start with upper-case letters

Metasymbols

separates alternatives

|

(...) groups alternatives
[...] optional part

{.} iterative part

alb|c =aorborc
a(b|c) =ab]ac

[a] b =ab|Db

{a}b =D |ab|aab|aaab| ...
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Example: Grammar for Arithmetic Expressions @

Productions F%):g_
Expr =["+"|"-"] Term {("+" | "-") Term}. (:)
Term = Factor {("*" | "/") Factor}. Expr f Term

Factor = ident | number | "(" Expr ")". EL+C:}I

Terminal symbols F%:%_
simple TS: B Y A G I Term —2.|Factor

(just 1 instance)

ident
terminal classes: ident, number ———
(multiple instances)
Factor (1)

©

(L) Expr

Nonterminal symbols

Expr, Term, Factor

Start symbol
Expr
12



Terminal Start Symbols of Nonterminals @

What are the terminal symbols with which a nonterminal can start?

Expr = ["+"| "] Term {("+"| "-") Term}.
Term = Factor {("*" | "/") Factor}.
Factor = ident | number | "(" Expr ")".

First(Factor) = ident, number, "("

First(Term) = First(Factor)
= ident, number, "("

First(Expr) = "+ - First(Term)
="+","-" ident, number, "("
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Terminal Successors of Nonterminals @

Which terminal symbols can follow a nonterminal in the grammar?

Expr =["+"|"-"] Term {("+" | "-") Term}.
Term = Factor {("*" | "/") Factor}.
Factor = ident | number | "(" Expr ")".

Where does Expr occur on the
Follow(Expr) = )", eof right-hand side of a production?
What terminal symbols can
follow there?

Follow(Term) = "+, """ Follow(Expr)
="+ )" eof
Follow(Factor) =  "*", "/, Follow(Term)
= "*"1 "/"1 "+"1 "_"l ")"l eOf
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Strings and Derivations @

String

A finite sequence of symbols from an alphabet.
Alphabet: all terminal and nonterminal symbols of a grammar.

Strings are denoted by greek letters (o, B, v, ...)
e.g: a =ident + number
B = - Term + Factor * number

Empty String
The string that contains no symbol (denoted by ¢).

Derivation

'3 B

a= [ (direct derivation) Term + Factor * Factor = Term + ident * Factor
H_J . H_{

NTS right-hand side of a

production of NTS

a =" (indirect derivation) Ay DY = 2V =B
16



Recursion 'ssW)

A production is recursive if | X =* o, X o,

Can be used to express repetitions and nested structures

Direct recursion X = o, X o,
Left recursion X=b|Xa. X=>Xa=>Xaa=Xaaa=baaaaa..
Right recursion X=b|aX. X=>aX=aaX=aaaX=..aaaaab

Central recursion X=b|"("X")". X=X)=(X)= (X)) = (.. (b)...)

Indirect recursion X =* o, X o,

Example

Expr =Term {"+" Term}. Expr = Term = Factor = "(" Expr )"
Term = Factor {"*" Factor}.
Factor =id | "(" Expr ")".
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How to Remove Left Recursion @

Left recursion cannot be handled in topdown parsing

X=b|Xa. Both alternatives start with b.
The parser cannot decide which one to choose

Left recursion can always be transformed into iteration

X = baaaa...a X=b{a}.

Another example

E=T|E"+"T.

What phrases can be derived?

E/'T T+T
~E+T] _r T+T+T
E+T+T ..
E+T+T+T \
Thus
E=T{"+"T}

18



1. Overview

1.1 Motivation

1.2 Structure of a Compiler

1.3 Grammars

1.4 Chomsky's Classification of Grammars
1.5 The MicroJava Language

D

19



Classification of Grammars

Due to Noam Chomsky (1956)

Grammars are sets of productions of the form a = .

class 0

class 1

class 2

class 3

Unrestricted grammars (o and B arbitrary)
e.g: X=aXb|YcY.

D

aYc=d. X = aXb = aYcYb = dYb = bbb

dY=bbh.
Recognized by Turing machines

Context-sensitive grammars (Jo < |B])
e.g: aX=abc.
Recognized by linear bounded automata

Context-free grammars (o = NT, B arbitrary)
e.g: X=abc.
Recognized by push-down automata

Regular grammars (a =NT, =T or T NT)
eg. X=b|bY.
Recognized by finite automata

”

Only these two classes
are relevant in compiler
construction
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Sample MicroJava Program m

program P main program; no separate compilation
final int size = 10;

class Table { classes (without methods)
int[] pos;

int[] neg;
}

{ Table val; global variables

void main()

int x, i; local variables
{ /]---mmemmm- initialize val ----------

val = new Table;

val.pos = new int[size];

val.neg = new int[size];

i=0;

while (i < size) {

val.pos][i] = 0; val.neg[i] = 0; i =1+ 1;

}

J]mmmemee- read values ----------
read(x);

while (x 1= 0) {

If (x >=0) val.pos[x] = val.pos[x] + 1;
else if (x < 0) val.neg[-x] = val.neg[-X] + 1,
read(x);

}

}
} 22



Lexical Structure of MicroJava @

Identifiers ident = letter {letter | digit | '_'}.
Numbers number = digit {digit}. all numbers are of type int
Char constants charConst ="\" char '\". all character constants are of type char
_ (may contain \r, \n, \t)
no strings
Keywords program class
if else while read print return  void
final new
Operators + - * / %
== I= > >= < <=
( ) [ ] { }
Comments Il ... eol
Types int char arrays  classes

23



Syntactical Structure of MicroJava @

Programs
Program = "program" ident program P
{ConstDecl | VarDecl | ClassDecl} ... declarations ...
"{" {MethodDecl} "}". { ... methods ...
}

Declarations

ConstDecl = "final" Type ident "=" (number | charConst) ";".
VarDecl = Type ident {"," ident} ";".
MethodDecl = (Type | "void") ident "(" [FormPars] ")"
{VarDecl} Block.
Type = ident ["[""]"]. just one-dimensional arrays
FormPars = Type ident {"," Type ident]}.
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Syntactical Structure of MicroJava @

Statements
Block = "{" {Statement} "}".
Statement = Designator ( "=" Expr";"
| "(" [ActPars] )" ";"
)
| "if" "(" Condition ")" Statement ["else" Statement]
| "while" "(" Condition ")" Statement
| "return" [Expr] ";"
| "read""(" Designator ")"";" * input from System.in
| “print” "(" Expr [*," number] *)" *}" e output to System.out
| Block
[
ActPars = Expr {"," Expr}.
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Syntactical Structure of MicroJava @

EXxpressions

Condition = Expr Relop Expr.
Relop = U= ET ST SE | | <=
Expr = [*-"] Term {Addop Term}.
Term = Factor {Mulop Factor}.
Factor = Designator [ "(" [ActPars] ")" ]
| number
| charConst
| "new"ident [ "[" Expr "]"] no constructors
| (" Expr )"
Designator = ident { "." ident | "[" Expr "]" }.
Addop = "+
Mulop = " "%
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The MicroJava Compiler

Package structure
IJVA

_1SymTab _1CodeGen

Compiler.java
Scanner.java
Parser.java

1 SymTab

Tab.java Code.java
Obj.java Operand.java
Struct.java Decoder.java
Scope.java

L0 ]

1 CodeGen
Run.java
Decode.java

Compilation of a MicroJava program

java MJ.Compiler myProg.mj

myProg.mj =

compiler

Execution

java MJ.Run myProg.obj -debug

myProg.obj —

interpreter

——> myProg.obj

Decoding

myProg.obj] —

java MJ.Decode myProg.obj

decoder

D

—> myProg.code
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