
1

2. Lexical Analysis
2.1 Tasks of a Scanner
2.2 Regular Grammars and Finite Automata
2.3 Scanner Implementation

© 2002-2024 Hanspeter Mössenböck, JKU Linz

2

Tasks of a Scanner

1. Recognizes tokens

i f (x = 3)=

character stream

scanner if, lpar, ident, eql, number, rpar, ..., eof

token stream
(must end with eof)

2. Skips meaningless characters
• blanks
• tabulator characters
• end-of-line characters (CR, LF)
• comments

Tokens have a syntactical structure
So, why are they not handled by the parser?

Why is Scanning not Part of Parsing?

3

Tokens have a syntactical structure, e.g.

ident = letter {letter | digit | '_'}.
number = digit {digit}.
if = "i" "f".
eql = "=" "=".
...

Why is scanning not part of parsing?

E.g., why is ident considered to be a terminal symbol and not a nonterminal symbol?

4

Why is Scanning not Part of Parsing?
It would make parsing more complicated
(e.g. difficult distinction between keywords and identifiers)

Statement = ident "=" Expr ";"
| "if" "(" Expr ")"

One would have to write this as follows:
Statement = "i" ("f" "(" Expr ")" ...

| notF {letter | digit} "=" Expr ";"
)

| notI {letter | digit} "=" Expr ";".

The scanner must eliminate blanks, tabs, end-of-line characters and comments
(these characters can occur anywhere => would lead to very complex grammars)

Statement = "if" {Blank} "(" {Blank} Expr {Blank} ")" {Blank}
Blank = " " | "\r" | "\n" | "\t" | Comment.

Tokens can be described with regular grammars
(simpler and more efficient than context-free grammars)

5

2. Lexical Analysis
2.1 Tasks of a Scanner
2.2 Regular Grammars and Finite Automata
2.3 Scanner Implementation

6

Regular Grammars
Definition
A grammar is called regular if it can be described by productions of the form:

X = a.
X = b Y.

a, b ∈ TS
X, Y ∈ NTS

Example Regular grammar for identifiers

Ident = letter.
Ident = letter Rest.
Rest = letter.
Rest = digit.
Rest = '_'.
Rest = letter Rest.
Rest = digit Rest.
Rest = '_' Rest.

e.g., derivation of the name xy3

Ident ⇒ letter Rest ⇒ letter letter Rest ⇒ letter letter digit

Alternative definition
A grammar is called regular if it can be described by a single non-recursive EBNF production.

Example Regular grammar for identifiers
Ident = letter {letter | digit | '_'}.

7

Examples

Can we transform the following grammar into a regular grammar?

E = T {"+" T}.
T = F {"*" F}.
F = id.

After substitution of F in T
T = id {"*" id}.

Can we transform the following grammar into a regular grammar?

E = F {"*" F}.
F = id | "(" E ")".

After substitution of F in E
E = (id | "(" E ")") { "*" (id | "(" E ")") }.

Substituting E in E does not help any more.
Central recursion cannot be eliminated.
The grammar is not regular.

After substitution of T in E
E = id {"*" id} {"+" id {"*" id}}.

The grammar is regular

8

Limitations of Regular Grammars
Regular grammars cannot deal with nested structures
because they cannot handle central recursion!

But central recursion is important in most programming languages

Class ⇒ "class" "{" ... Class ... "}"

• nested expressions
• nested statements
• nested classes

Expr ⇒ * ... "(" Expr ")" ...

Statement ⇒ "do" Statement "while" "(" Expr ")"

For productions like these we need context-free grammars

But most lexical structures are regular
identifiers letter {letter | digit}
numbers digit {digit}
strings "\"" {noQuote} "\""
keywords letter {letter}
operators ">" "="

Exception: nested comments
/* /* ... */ */

The scanner must treat them in
a special way

9

Deterministic Finite Automaton (DFA)
Can be used to analyze regular languages

Example

0 1
final state

digit

letter
letter

start state is always
state 0 by convention

State transition function as a table

letter digit

s0
s1

δ

s1 error
s1 s1

"finite", because δ
can be written down
explicitly

Definition
A deterministic finite automaton is a 5 tuple (S, I, δ, s0, F)
• S set of states
• I set of input symbols
• δ: S x I → S state transition function
• s0 start state
• F set of final states

A DFA has recognized a sentence of its language
• if it is in a final state
• and if the input is totally consumed or there is no possible transition with the next input symbol

The language recognized by a DFA is
the set of all symbol sequences that lead
from the start state into one of the
final states

10

The Scanner as a DFA
The scanner can be viewed as a big DFA

0

" "

1letter
letter

digit

2digit digit

3
(

4
>

5
=

...

Example input: max >= 30

After every recognized token the scanner starts in s0 again

ident

number

lpar

gtr geq

s0 s1
• no transition with " " in s1
• ident recognized

s1 s1
m a x

s0 s5
• skips blanks at the beginning
• does not stop in s4
• no transition with " " in s5
• geq recognized

> s4s0 " " =

• skips blanks at the beginning
• no transition with " " in s2
• number recognized

s0 s23 s2s0 " " 0

11

2. Lexical Analysis
2.1 Tasks of a Scanner
2.2 Regular Grammars and Finite Automata
2.3 Scanner Implementation

12

Scanner Interface

class Scanner {
static void init (Reader r) {...}
static Token next () {...}

}

For efficiency reasons methods are static
(there is just one scanner per compiler)

InputStream s = new FileInputStream("myfile.mj");
Reader r = new InputStreamReader(s);
Scanner.init(r);

Example: Initializing the scanner

for (;;) {
Token t = Scanner.next();
...

}

Example: Reading the token stream

13

Tokens
class Token {

int kind; // token code
int line; // token line (for error messages)
int col; // token column (for error messages)
String val; // token value
int numVal; // numeric token value (for number and charCon)

}

Token codes for MicroJava

static final int
none = 0, ident = 1,

number = 2,
charCon = 3,

plus = 4, /* + */
minus = 5, /* - */
times = 6, /* * */
slash = 7, /* / */
rem = 8, /* % */
eql = 9, /* == */
neq = 10, /* != */
lss = 11, /* < */
leq = 12, /* <= */
gtr = 13, /* > */
geq = 14, /* >= */

assign = 15, /* = */
semicolon = 16, /* ; */
comma = 17, /* , */
period = 18, /* . */
lpar = 19, /* (*/
rpar = 20, /*) */
lbrack = 21, /* [*/
rbrack = 22, /*] */
lbrace = 23, /* { */
rbrace = 24, /* } */

class_ = 25,
else_ = 26,
final_ = 27,
if_ = 28,
new_ = 29,
print_ = 30,
program_ = 31,
read_ = 32,
return_ = 33,
void_ = 34,
while_ = 35,

eof = 36;

error token token classes operators and special characters keywords end of file

14

Scanner Implementation
Static fields in class Scanner

static Reader in; // input stream
static char ch; // next input character (still unprocessed)
static int line, col; // line and column number of the character ch
static final int eofCh = '\u0080'; // character that is returned at the end of the file

init()
public static void init (Reader r) {

in = r;
line = 1; col = 0;
nextCh(); // reads the first character into ch and increments col to 1

}

nextCh()
private static void nextCh() {

try {
ch = (char) in.read(); col++;
if (ch == '\n') { line++; col = 0; }
else if (ch == '\uffff') ch = eofCh;

} catch (IOException e) { ch = eofCh; }
}

• ch = next input character
• returns eofCh at the end of the file
• increments line and col

15

public static Token next() {
while (ch <= ' ') nextCh(); // skip blanks, tabs, eols
Token t = new Token(); t.line = line; t.col = col;
switch (ch) {

case 'a': case 'b': ... case 'z': case 'A': case 'B': ... case 'Z':
readName(t); break;

case '0': case '1': ... case '9':
readNumber(t); break;

case ';': nextCh(); t.kind = semicolon; break;
case '.': nextCh(); t.kind = period; break;
case eofCh: t.kind = eof; break; // no nextCh() any more
...
case '=': nextCh();

if (ch == '=') { nextCh(); t.kind = eql; } else t.kind = assign;
break;

...
case '/': nextCh();

if (ch == '/') {
do nextCh(); while (ch != '\n' && ch != eofCh);
t = next(); // call scanner recursively

} else t.kind = slash;
break;

default: nextCh(); t.kind = none; break;
}
return t;

} // ch holds the next character that is still unprocessed

next()

names, keywords

numbers

simple tokens

compound tokens

comments

invalid character

16

Further Methods

private static void readName(Token t)

• At the beginning ch holds the first letter of the name
• Reads further letters and digits and stores them in t.val
• Looks up the name in a keyword table (using hashing or binary search)

if found: t.kind = token number of the keyword;
otherwise: t.kind = ident;

• At the end ch holds the first character after the name

private static void readNumber(Token t)

• At the beginning ch holds the first digit of the number
• Reads further digits, converts them to a number and stores the number value to t.numVal.

if overflow: report an error
• t.kind = number;

• At the end ch holds the first character after the number

Further Methods

17

private static void readCharCon(Token t)

• At the beginning ch holds a single quote
• Reads further characters up to the closing quote and stores them in t.val
• At the end ch holds the first character after the closing quote
• Sets the following token fields:

t.kind = charCon;
t.numVal = numeric char value;

valid char constants
'x'
'\r'
'\n'
'\t'

invalid char constants
'xy'
''
'x

Scanner reports an error,
but returns a charCon

What you should do in the lab

18

1. Study the specification of MicroJava carefully (Appendix A of the handouts).

2. Create a package MJ;
Download Scanner.java and Token.java from http://ssw.jku.at/Misc/CC/ into this package.
Try to understand what they do.

3. Complete Scanner.java according to the slides of the course;
Compile Token.java and Scanner.java.

4. Download TestScanner.java into the package MJ and compile it.

5. Download the MicroJava source program sample.mj and run TestScanner on it.

6. Download the MicroJava source program BuggyScannerInput.mj and run TestScanner on it

	Foliennummer 1
	Tasks of a Scanner
	Why is Scanning not Part of Parsing?
	Why is Scanning not Part of Parsing?
	Foliennummer 5
	Regular Grammars
	Examples
	Limitations of Regular Grammars
	Deterministic Finite Automaton (DFA)
	The Scanner as a DFA
	Foliennummer 11
	Scanner Interface
	Tokens
	Scanner Implementation
	next()
	Further Methods
	Further Methods
	What you should do in the lab

