
Design Patterns in
Oberon-2 and Component Pascal

translated excerpts from

Objektorientierte Programmierung in
Oberon-2

by

Hanspeter Mössenböck
English translation: Bernhard Treutwein , last c ha nge s :

Authorized translation of Chapter 9 "Entwurfsmuster" of Hanspeter Mössenböck:
Objektorientierte Programmierung in Oberon-2, 3rd Edition, 1998.
Permission granted by Springer, Heidelberg. S e e: E m be dde d Emai ls (g e r ma n)

The t h i r d edi t ion o f th is bo ok was a m aj or ove r hau l but t he Engl ish tr ans l a t i on was ne ve r up d a te d . Especi al ly t he C hapt er on des i gn pa t t e r n s was only avai l able in G e r m a n . Enc odi ng l ist:

9 Design Patterns

Experienced programmers distinguish themselves by having a pool of
solutions for recurring problems. This specifies their expert
knowledge. If they are assigned a certain task, they do not have to
work out the solution at hand, but they can refer to a proven solution
from their experience.

Such standard solutions are called design patterns. They provide
schematic solutions for common recurring problems. In the world of
object oriented programming, design patterns were introduced by the
excellent book of Gamma et al. [GHJV96] (see also [Pre95] and
[BMRSS96]). Design patterns are neither restricted to nor an invention
of object oriented programming. Design patterns are nothing other
than the algorithms and data structures of object oriented
programming. Object-structures would be a well-suited synonym.

1 0 . M r z 2 0 1 1 (0 0 7 3)

ð ï

è ç

Design Patterns 1

9.1 Motivation

Patterns in Conventional Programs

We want to look briefly into the properties and advantages of design
patterns before reviewing a collection of useful patterns. We choose a
well known example from conventional programming: The structure of
a binary tree shown in Fig. 9.1. It represents a typical pattern. Binary
trees are known for being efficient in searching large data sets. If you
want an efficient search, a binary tree is a proven way to solve this
task.

Fig. 9.1: A binary tree as an example of a design pattern

Constituents of a Design Pattern

What are the constituents of a pattern? Essentially it has a name, a
description of the problem, and a solution.

The name presents a handy and familiar terminology, which can be
used by developers for communication. It is easier to say "take a
binary tree" than "setup your elements in such a way that every
element has up to two children and the value of its left child is less than
or equal to the value of its right child".

The description of the problem for the binary tree could be: Use a

2 Object Oriented Programming in Oberon-2

binary tree, if you have a large data set in main memory and you want
to efficiently insert, delete, and search it. The description of the
problem may hint at restrictions and dangers. For example, binary
trees are not well suited if the data changes frequently. In this case
there is a danger that the tree will degenerate.

The third component of a pattern is its solution or implementation,
which is quite often deliberately abstract and does not dive into the
details. This makes the pattern independent of specific
implementation languages or concrete data structures. The realization
of a binary tree depends solely on the relations defined between the
nodes and children of the tree.

Patterns in Object-Oriented Programs

Design patterns in the object-oriented meaning describe the
cooperation of classes, and/or objects, when working on the solution
of a particular problem. They are therefore most often described with
the help of class-diagrams. Since it is frequently necessary to sketch
the dynamic cooperation of the classes, the class-diagrams are
augmented with code fragments or a description of their behavior via
interaction-diagrams.

Gamma et al. (1995) gave a catalogue of some 25 design patterns.
Here we want to mention only the more important ones, since some
patterns are quite similar. We also want to show some other patterns,
which are not included in Gamma et al., that appear quite useful.

Gamma et al. separate the patterns into three main categories:
Creational patterns are about the flexible creation of objects and/or
object-structures (classes); Structural patterns are about frequently
occurring aggregations of objects to larger structures; Behavioral
patterns finally are about frequently occurring dynamic behavior of
objects.

Design Patterns 3

9.2 Creational Patterns

Objects are almost always allocated dynamically. For this purpose the
standard procedure NEW exists in Oberon-2. Other programming
languages offer similar constructors. But the simple creation is
frequently not that simple. Sometimes it is necessary to have
additional actions (e.g., initialization), often it is a-priori unknown,
which type the object will be. In this chapter we will introduce three
creational patterns, which can handle such situations:

• Constructor Creation and initialization of objects
• Factory Creation of object with a variable type
• Prototype Creation of object with a variable type

9.2.1 Constructor

When creating an object it is desirable to initialize its fields. If you do
not want to forget the initialization, it is reasonable to combine creation
and initialization into a single action. This is the purpose of the
constructor pattern.

Many programming languages (e.g. C++ or Java) have contructors
already as a feature of the language. Oberon-2 and Component
Pascal do not have constructors, but they can be easily modelled with
the constructor pattern. Component Pascal additionally offers the
record attribute LIMITED, which explicitely forbids allocation, with
NEW, outside the declaring module.

Fig. 9.2 A class with a method for initialization

4 Object Oriented Programming in Oberon-2

Let us consider a class T with an attribute a and a method InitT, which
initializes a (Fig. 9.2). A constructor for T will be implemented as a
function-procedure NewT, which creates an object of type T and calls
the initialization-procedure InitT:

Now whenever a T-object is needed, it can be created and initialized
with a call to its constructor:

obj := NewT(x)

This pattern is easily applied to arbitrary classes by substituting T with
the particular class-name (e.g. NewRectangle and InitRectangle).

If an object of a subclass is created, it is not only necessary to ???
initialize both, the attributes of this (sub)class, and the attributes of the
baseclass(es). The constructor-pattern can be modified to suite this
purpose. S being a subclass of T, a constructor NewS is
implemented:

obj := NewS(x,y)

TYPE
T* = POINTER TO RECORD

a- : REAL
END;

PROCEDURE (t : T) InitT* (x : REAL);
BEGIN

t.a := x
END InitT;

PROCEDURE NewT* (x : REAL) : T;
VAR t : T;
BEGIN

NEW(t); t.InitT(x);
RETURN t

END NewT;

Design Patterns 5

which creates a new S object. This new S object is initialzed by a call
to InitS, which in turn initializes the baseclass attributes by a call to
InitT.

Fig. 9.3 Constructor of a base class

The compilable example code can be found here: Constructor

9.2.2 Factory

The purpose of the factory design pattern is the creation of objects,
where the dynamic type of the object is not a priori fixed (statically
determined) in the program.

This is best seen in the following example. Let us assume that there
exist different kinds of texts, which are derived from an abstract class
Text (Fig. 9.4). SimpleText are simple ASCII-texts and StyledText
can also have different fonts and styles.

TYPE
S* = POINTER TO RECORD(T)

b- : REAL
END;

PROCEDURE (s: S)InitS* (x, y : REAL);
BEGIN

s.b := x; s.InitT(x)
END InitS;

PROCEDURE NewS* (x, y : REAL) : S;
VAR s : S;
BEGIN

NEW(s); s.InitS(x, y);
RETURN s

END NewS;

6 Object Oriented Programming in Oberon-2

Fig. 9.4 Different kinds of texts

Let us now imagine that an editor is supposed to work either with
SimpleText or StyledText at the decision of the user. Therefore the
editor has an attribute t of the abstract class Text, which can hold
either a SimpleText or a StyledText object (Fig. 9.5).

Fig. 9.5 The dynamic type of t is fixed statically

A new Text-object is allocated when an editor window with the
method Open is opened. The editor must decide which kind of object
will be created. In Fig. 9.5 the editor creates a SimpleText-object.
This decision is burned into the code without any possibility to change
it. If you want to create StyledText-objects, you have to change the
code.

Design Patterns 7

This problem can be solved with the factory design-pattern. Instead
of statically fixing the type of the text, the generation of the text is left
over to a a factory-object. For every kind of text, there is a special
factory (SimpleFactory, StyledFactory, etc.), which generates the
corresponding Text-object. All factories are derived from an abstract
factory-class leading to the pattern in Fig. 9.6.

Fig. 9.6 Generation of a text by a factory-object

When the editor is initialized, a SimpleFactory or a StyledFactory
object is assigned to the attribute factory of the editor. If a
StyledFactory object is chosen, the call of the method Open yields a
call of the New-method of the StyledFactory. Therefore a StyledText-

8 Object Oriented Programming in Oberon-2

object is generated and returned to the editor.
The code of Open does not nail down which kind of text is

generated. The text is produced by a factory, which can be chosen
during initialization of the editor and can later be changed during
runtime.

Summarizing: if objects have to be generated whose dynamic type
should be flexible, they are not directly allocated but are requested
from a factory-object. There can be different kinds of factories which
generate different objects. The desired type of the factory is chosen
during the initialization of the system.

9.2.3 Prototype

The purpose of the prototype-pattern is similar to the factory-pattern. It
is used to create objects, when it is necessary to be flexible regarding
their dynamic type. The concrete realization of a prototype is quite
different compared to a factory and is simpler in many aspects.

If you need a new object of a certain type, it is not created on its
own, but it is copied from a prototype-object, which already has the
desired type.

Let us stick to the editor example from Chap. 9.2.2. In this case
there are different kinds of texts, which can be used interchangeably in
the editor. For each kind of text a prototype-object is created (i.e. a
SimpleText-object and a StyledText-object). One of these prototype-
objects is stored during the initialization of the editor in the attribute
protoText. In the Open-method of the editor a copy of protoText is
created and this copy is used as text in the editor's window.

Design Patterns 9

Fig. 9.7 Generation of a text by copying a prototype-object

What is the difference between the prototype-pattern and the factory-
patter? The prototype-pattern requires the candidate objects (here the
Text-objects) to clone themselves, i.e. they have a Copy-method. This
does not present a large restriction, but may be unfeasible for an
existing class-hierarchy. The factory-pattern does not have this
restriction and can do a suitable initialization of the newly created ???
(well-suited) object, which may depend on the current state of the
program. The drawback of the factory-pattern is that it requires a
complete class-hierarchy for factories, which complicates the whole
system.

Another advantage of the prototype-pattern is that it is not only
possible to create a copy of a single object, but also a copy of a
complete subsystem consisting of multiple objects. Such subsystems
can be assembled during runtime and each Copy-operation can yield
a copy of the subsystem as a whole. This might be difficult with a
factory-object.

10 Object Oriented Programming in Oberon-2

9.3 Structural Patterns

Objects rarely exist in isolation, but collaborate with other objects to
solve a given task. For that purpose they build certain structures, which
often occur in this special form. These forms will be described here
under the category of structural patterns. We restrict ourselves here to
the following patterns:

• Family Building up class-hierarchies
• Adapter Fitting a foreign class to a family
• Composite Aggregation of parts to a new part
• Decorator Serial connection of functionality
• Twin Avoiding multiple inheritance

9.3.1 Family

The family is a very simple - almost trivial - pattern. We mention it here
just to introduce a name for this pattern. A family consists of an
abstract class and its subclasses. Fig. 9.8 shows a family of GUI-
objects and Fig. 9.4 is a family of text objects.

All members of a family have the same interface as its abstract
base-class. Therefore the particular members of a family are
exchangeable with each other. A program, which works with GUI-
objects, can also work with Checkbox, Button and Scrollbar.

Design Patterns 11

Fig. 9.8 Family of GUI-objects

9.3.2 Adapter

Sometimes you want to make an existing class compatible with a
special family. In other words: you want to look at that class as a
member of that family. For this purpose it would be necessary to
derive it from the abstract base-class of the family. This is often
impossible, because the class is derived from another base-class and
you do not want, or you are not allowed to use, multiple inheritance.
Moreover it may be possible that you do not have the source code and
therefore you cannot change their inheritance relationships.

The solution for this problem is to introduce a new member of the
family which works as an adapter to the foreign class. It implemements
the messages of the family by translating the messages to the foreign
class and redirecting them.

Let us consider an example: A graphic-editor manages a family of
figures (lines, rectangles, circles, etc.). It should also be possible to
work on texts in the graphic-editor. Let us assume that there exists a
class Text, but it is not a member of the figure family. The latter implies
that Text cannot be handled like a figure. Therefore we have to
introduce a TextAdapter, which maps Figure-messages to Text-

12 Object Oriented Programming in Oberon-2

messages (see Fig. 9.9). For example, the method Draw of the text-
adaptor will be implemented by reading the text character by character
and drawing the characters on the screen.

Fig. 9.9 Wrapping a Text-class into the Figure-family with the help of
a Text-adaptor

A text-adaptor can also be considered as a tier, which encloses the
Text-class and gives it a different interface. For that reason it is
sometimes also called Wrapper.

The Adaptor design pattern is one of the most frequently used
patterns. The problem of making two not yet related classes
compatible with each other arises in almost all object-oriented
programs. The Adaptor solves this problem quite easily.

Design Patterns 13

9.3.2 Composite

It is often necessary to collect several single objects in a larger object,
which behaves again as a single object, which in turn can be
aggregated with other objects to an even larger object.

The structure, which results from a recursive grouping of single
objects, is called Composite. It can be found e.g. in a graphic-editor,
where several individual figures can be merged into a group, which
can can be drawn, moved, or copied like a single part. Fig. 9.10
shows this situation.

Fig. 9.10 Composite used for grouping of figures in a grafic-editor

Composite is a subclass of Figure, so it can be handled like a
figure. It consists of a set of figures (parts), where these parts in turn
can be themselves Composites. Messages sent to Composites are

14 Object Oriented Programming in Oberon-2

mapped to messages to the sub-objects. A Draw-message to the
group yields several Draw-messages to the parts. It is often useful to
also have a pointer from the parts to the composite. This pointer is
advantageously an attribute of Figure.

Composite has an Add- and a Remove-method for adding and
removing parts to and from the group. In GoF [GHJV95] Add and
Remove are methods of the abstract base class of Composite, but
this appears to be a bit artificial, since both cannot be implemented
meaningfully for single objects.

There are many applications for the composite-pattern. It is useful
for window management, where single frames can have subframes.
Yet another example is an editor for mathematical (or chemical)
formulae, where a term (e.g. an integral) can consist of subterms (e.g.
fractions) and these in turn have other terms as components.

9.3.4 Decorator

The Decorator pattern is used to add new behavior to a class without
changing the class or subclassing it. The new behavior is put in front
of the class and might be added or removed during runtime.

We choose an example from the GoF [GHJV95] for illustrating this
pattern. A window system uses Frames as rectangular drawing-areas
for text or graphics. There exists a Frame-family with subclasses like
TextFrame or GraphicFrame. You want to add properties to these
frames, e.g., you want to have scrollbars for moving the contents of the
frame or you want to have a different style for the borders of the frame.

If these properties are realized by subclassing the class hierarchy it
would be very complex due to the large number of possible
combinations. Fig. 9.11 shows what happens, if frames with scrollbars
and frames with borders are implemented as separate subclasses.

Design Patterns 15

Fig. 9.11 Explosion of the number of classes if new properties are
implemented as subclasses

The idea of the Decorator-pattern is to implement the properties
with a class, which is put in front of the main class instead of
subclassing it. Fig. 9.12 shows how this can be done for this example.
In front of the TextFrame object there is a ScrollDecorator object. If
this object receives a Draw-message, it paints a scrollbar and
forwards the Draw-message to the TextFrame-object so that the latter
can draw its text.

Fig. 9.12 ScrollDecorator object put in front of a TextFrame

All clients, which worked with a TextFrame-object must send their
messages now to the ScrollDecorator-object. This works like a proxy

16 Object Oriented Programming in Oberon-2

of the TextFrame-object and the ScrollDecorator-object must have
the same interface, or, in other words, it must belong to the same
family as the TextFrame-object. So we get the class-diagram shown
in Fig. 9.13 for the decorator-pattern.

Fig. 9.13 ScrollDecorator object put in front of a TextFrame

The class Decorator belongs to the Frame-family and can therefore
be handled as any other frame. With the attribute component a
Decorator can be be connected to any other member of the Frame-
family, especially with another Decorator.

Therefore it is possible to have before a GraphicFrame both a
BorderedDecorator and a ScrollDecorator, in which case both
properties are combined. When BorderedDecorator receives a Draw-
message, it draws a border and forwards the Draw-message to the
ScrollDecorator, which in turn draws a scrollbar and forwards the

Design Patterns 17

Draw-message to the GraphicFrame-object.
You should note that not only can all properties be combined

arbitrarily without creating an immense number of subclasses, but also
that the combination may be changed during runtime. For example, it
is possible to put borders on the frame only if the mouse pointer is
over this frame. Inheritance is less flexible in this aspect. An
inheritance relation cannot be changed during runtime.

The main problem of the decorator pattern is that the identity of the
decorated object is lost. Clients do not refer to the Frame-object but to
the Decorator-object. If it is dynamically connected upstream, you have
to pay attention that all existing client-references to the Frame-object
are adjusted. Clients have no way to access the attributes of the
Frame-object directly, since they do not have a reference to that
object.

The decorator-pattern is very powerfull. A slightly modified
application of this pattern allows to extend a class in several directions
(orthogonal). Let us look at another example:

In Chap. 6 we talked about an abstract Stream-class, which has
several extensions like Terminal, File or Network. This presents an
extension in one direction namely the output media. If we now want to
have a second direction, which allows for different modes of
encryption (e.g. RSA-, DES-encryption etc.) then we have a second
(orthogonal) dimension. As can be seen in Fig. 9.14, every output-
media may be combined with any encryption method. If this
combination was to be implemented by subclassing, for every
crossing-point on the grid we would need a separate subclass of
Stream (i.e., RSATerminal, RSAFile, RSANetwork etc). The
extensibility would be quite difficult. Introducing a new output medium,
it would be necessary to combine it with every possible encryption
method, which would yield a large number of new subclasses.

18 Object Oriented Programming in Oberon-2

Fig. 9.14 Extension of a Stream-class for different media an
encryption methods

The explosion of the number of classes can be avoided with the help
of the decorator-pattern. The encryption method is put as decorator in
front of the Stream-class. In Fig. 9.15 Encoder-takes the role of the
decorator.

To combine a DES-encryption with a File, the DESEncoder-object
is put in front of the File-object. If a Write-message is sent to the
DESEncoder, the character ch is encrypted and afterwards with
stream.Write(ch) forwarded to the File-object. It is possible to add
new media (e.g. MemoryFile) or new encryption methods and
nevertheless you can combine every output medium with every
encryption method.

Design Patterns 19

Fig. 9.15 Decorator pattern for extending Stream in two dimensions

9.3.5 Twin

Some languages like C++ or Eiffel offer multiple inheritance. As seen
in Chapter 5, this allows on the one hand for inheriting attributes and
methods from more than one base-class and - this might even be
more important - make a subclass compatible with more than one
base-class. On the other hand multiple inheritance also poses
problems, like conflicting names or complex class-hierarchies.
Therefore it is often tried to avoid multiple inheritance and to rely only
on single inheritance. Languages like Oberon-2 and Component
Pascal do not support multiple inheritance. Therefore we have to live
with single inheritance. In this case, the Twin-pattern can be of some
help.

20 Object Oriented Programming in Oberon-2

Fig. 9.16 Multiple inheritance

Fig. 9.16 shows the basic structure of multiple inheritance. A class
C is derived from two classes A and B and inherits the attributes a
and b together with the methods MA and MB. C is compatible with
both A and B. C objects can be linked into a list of A objects and/or a
list of B objects.

The twin-pattern is based on the idea to divide the class C into two
twin-classes CA and CB, which are mutually linked with pointers (Fig.
9.17). CA is derived from A and CB is derived from B, for which single
inheritance is sufficient. Attributes and methods of C are attached to
one of the two twin-classes, e.g. CA.

Design Patterns 21

Fig. 9.17 Twin-classes CA and CB

Instead of the C-object a pair of a CA- and a CB-object is created.
The CA-object can be inserted in a list of A-objects, the CB-object can
be inserted in a list of B-objects. Therefore the twin-class is
compatible with both A and B similar to the situation with multiple
inheritance. If you want to override MA, you can do so in CA, if you
want override MB, you can do so in CB.

Inherited attributes and methods can be accessed in the following
way:

ca.a
ca.twin.b
ca.MA
ca.twin.MB

To access the components of B, you have to accept an indirection.
This is the price to pay to avoid multiple inheritance, but it does not
cost too much in most cases. It is possible to avoid the one level of
indirection for calling MB, if you declare MB as a method of CA, which
forwards the message to CB (Fig. 9.18).

22 Object Oriented Programming in Oberon-2

Fig. 9.18 Twin-pattern

The following example shows the twin-pattern again in a concrete
application. Let us assume, a computer game has artifacts like balls
and paddles, which are derived from a common class Item. Balls are
active artifacts, which are in continous movement. Such artifacts are
derived from a base-class Process; this yields a class-diagram shown
in Fig. 9.19, which shows the multiple inheritance implementation.
Balls can be members of a list of artifacts and of a list of processes.

Design Patterns 23

Fig. 9.19 Ball-game with multiple inheritance

Objects derived from Process receive a Run-message several times
a second. A ball will move in reaction to this message. With these
many Run-messages an impression of a continous movement of the
ball on the screen is elicited. If the user hits any key, all processes get
a Suspend-message. A ball reacts by freezing and changing color.

Fig. 9.20 Separation of class Ball into a twin-class pair BallItem and
BallProcess

Let us now model this situation with the help of the Twin-pattern.
The class Ball is separated into two classes BallItem and
BallProcess (Fig. 9.20). BallItem-objects are linked into the list of
artifacts, BallProcess-objects are linked into the list of active
processes. If the BallProcess-object receives a Run-message, it
acesses its twin-object item and moves it on a bit. If the complete
board is redrawn, all objects in the list of artifacts (including the
BallItems) receive a Draw-message.

In this example, we were able to go without multiple inheritance and
we fullfilled all requirements of compatibility between artifacts and
processes.

24 Object Oriented Programming in Oberon-2

9.4 Behavioral Patterns

The third category of design patterns covers the so-called behavioral
patterns. These are several methods for solving problems around
objects. We will address the following patterns here:

• Message object Looking at a message as an object
• Iterator Iterating over a set of objects
• Observer Reacting on a state-change
• Template Algorithm with intervention handles
• Clone Cloning objects
• Persistence Input and output of objects
• Extension System extension at runtime

9.4.1 Message Object

Methods are only one possibility to handle messages. Another way is
to take the term "send a message" literally: In this case a message is
a data-packet (a message-object), which is sent over to another
object for handling. For doing that, we need different kinds of
message-objects and a method, which interprets these message-
objects.

Let us return to our example with figures, rectangles and circles.
Figures can receive the messages Draw, Store or Move. If we
implement these messages as objects, the following structure results:

TYPE
Message* = ABSTRACT RECORD END (* base type of all messages *)

DrawMsg* = RECORD (Messge) END;
StoreMsg* = RECORD (Messge) rider: OS.Rider END;
MoveMsg* = RECORD (Messge) dx, dy: INTEGER END;

Design Patterns 25

The concrete messages are extensions of the abstract class
Message and contain the actual parameters as attributes (record-
fields). Records of this type can be handed over to a so-called
message-handler, which is, as shown in Fig. 9.21 a method of Figure:

Fig. 9.21 Class Figure with message-handler

The message-handler Handle analyzes the incoming message-object
according to its dynamic type and reacts. Every Figure-class
overrides it accordingly. For the class Rectangle this is shown in
Fig. 9.22:

Fig. 9.22 Implementation of the message-handler in class Rectangle

For handling the message m a WITH-statement with variants is used,
which can be interpreted in the following way: If m is of the dynamic
type DrawMsg, the statement sequence following the first DO-symbol
is executed; if m is of the dynamic type MoveMsg, the statement
sequence following the second DO-symbol is executed; if no variant
matches, the ELSE-branch is executed. If the latter is missing, a
runtime error is generated.

26 Object Oriented Programming in Oberon-2

In this example Handle ignores unknown messages: The ELSE
branch of the WITH statement is empty. But it would be possible to
emit an error message or send unknown messages to a handler of the
base class.

If you want to send a message to a figure, you set up an
appropriate message-object and send it to the handler of the figure:

Depending on the dynamic type f, the message interpreter handles the
move-message differently.

Return values of a message are stored in the message-object. If it
is necessary to calculate the area of a figure, we can send a message
getArea. The message interpreter returns the area in the attribute
getArea.value.

Object-oriented programming using message-objects is similar to the
way Smalltalk handles messages. In Smalltalk a runtime handler
interprets messages and takes care of calling the corresponding
method. But the message handler in Smalltalk is built into the system;

VAR
t : Figure; move : MoveMsg;

...
move.dx := 10; move.dy := 20;
f.Handle(move);

TYPE
GetAreaMsg = RECORD (Message) value : INTEGER END;

VAR
getArea : GetAreaMsg;
area : INTEGER;

f.Handle(getArea);
area := getArea.value;

Design Patterns 27

in Oberon it must be implemented by the programmer. The event-
model of Java also uses message-objects.

The whole Oberon-system was implemented using message-
objects. Also the Oberon0-system, which will be presented in Chap.
12 uses message-objects for handling windows on the screen.

Message-objects have the following advantages over methods:

• Message-objects are data-packets. They can be stored and
sent later.

• A message-object can be handed to a procedure, which
distributes the message to several objects (which may be
unknown to sender). This is called a broadcast. Broadcasts are
easily realized with methods, with only one exception: the
sender knows every receiver and takes care that every receiver
gets the message.

• Sometimes it is easier for the sender of a message that he
does not have to care, if the receiver understands the message.
Assume a list of different figures, where only rectangles and
circles understand the Fill-message, lines don't. It is easier (but
also more expensive) to send a Fill-message to all objects and
leave it up to the objects, if they want to react. Otherwise it
would be necessary to check first if it is possible to send that
message to this object. With methods this approach is
impossible, since the compiler already checks if a
corresponding method exists in the class of the receiver.

• Finally it is possible to implement the handler not as a method
but as a procedure-variable. In this case the handler can be
substituted during runtime and the behaviour of the object can
vary dynamically.

Message-objects also have drawbacks:

• You can't see, by looking at a class, which messages you are
allowed to send to it. Although you can guess it by the different

28 Object Oriented Programming in Oberon-2

types of message records, it is not necessary that all message-
record types are declared in the same module. To be sure, you
have to look at the implementation of the message-handler.

• The message handler analyses the messages at runtime with a
WITH-statement. The branches of this WITH statement are
processed sequentially. This is generally slower than a method
call, which is usually implemented by a direct access to a
method table (see Appendix A.12.4).

• Sending a message with message-objects involves writing
more code than a method call. First the input parameters have
to be packed into the message record, then the message-
handler is called, and finally the results have to be fetched from
the record.

• What has been seen as an advantage, can also be a drawback:
the compiler cannot check if an object understands a particular
message. The following code fragment is completely correct for
the compiler:

During runtime f won't understand the message nonsense. The
object will (hopefully) ignore the message. In the worst case the
program will terminate with an error message. Such an error

msg.inPar :=;
obj.Handle(msg);
... := msg.outPar

TYPE
NonsenseMsg = RECORD (Message) END;

VAR
t : Figure;
nonsense: NonsenseMsg;
...
f.Handle(nonsense);
...

Design Patterns 29

may not occur for months and will be difficult to track down.

Message objects have advantages and disadvantages. Generally you
should work with methods because this is more efficient, safer and
more readable. In some situations (e.g. broadcasts) it can make
sense to use the greater flexibility offered by message objects.

9.4.2 Iterator

You often want to apply a certain operation to a set of objects, but you
don't know how to iterate through this set of objects due to the data-
abstraction, which hides the concrete implementation (array, linear list,
tree, etc.). An example of this is the class Directory, which manages a
set of objects of the class Element (Fig. 9.23).

Fig. 9.23 Set of objects with unknown implementation

You don't know how Dictionary is implemented. What possibilities
do you have for printing all elements of Dictionary ?

The simplistic approach is to provide a method PrintAll in
Dicitonary, which prints all elements:

The method PrintAll is local to Dictionary and therefore has access to
its implementation. But this solution is unsatisfactory. For any other
operation you need yet another method, e.g. StoreAll to store all

PROCEDURE (VAR d: Dictionary) PrintAll;
VAR e: Element;

BEGIN
e := d.firstElem;
WHILE e # NIL DO e.Print; e := e.next END

END PrintAll;

30 Object Oriented Programming in Oberon-2

elements or SelectAll to select all elements for which a key matches a
certain criterion. Additionally, these methods cannot use operations,
which are defined in subclasses of Element.

Another solution is to declare an Iterator-class in the same module
as Dictionary, as shown in Fig. 9.24

Fig. 9.24 Iterator-class

An Iterator is an object which can be moved through a data-structure.
SetTo sets the iterator to the start of the data-structure and Next yields
the next element of it. With the aid of an iterator all elements of
Dictionary can be visited sequentially and arbitrary operations can be
applied.

This second solution is universal, but it requires that the code for
iterating be implemented in each client. A problem results when the
data-structure is e.g., a tree, which is efficiently visited recursively. In
this case it is difficult to implement Next efficiently.

The result-type of Next is Element. The actual type of the result
might be an extension of Element (e.g. MyElement). By applying a
type-guard, it is possible to send MyElement-messages also to the
result of Next, which were not foreseen in Element:

Iterator.SetTo(dictionary);
elem := Iterator.Next();
WHILE elem # NIL DO

elem.Print;
elem := Iterator.Next()

END

Design Patterns 31

A third possibilty is to use message-objects. You call the dictionary
with a message-object, which implements the operation to be applied
to the elements. The message-object is then sent to all elements.
Each element must have an interpreter which reacts to the message-
object. But this solution appears to be too costly for simple
applications like printing all elements.

Finally it is possible to provide in Dictionary a universal method
ForAll with a procedure parameter. This procedure will be called for all
elements:

A call of this method may look like:

where Print and Store are procedures of the client:

Iterator.SetTo(dictionary);
elem := Iterator.Next();
WHILE elem # NIL DO

IF elem IS MyElement THEN
elem(MyElement).Store(rider)

END;
elem := Iterator.Next()

END

PROCEDURE (VAR d: Dictionary) ForAll (P: PROCEDURE(e: Element);
VAR e : Element;
BEGIN

e := d.firstElem;
WHILE e # NIL DO P(e); e := e.next END

END ForAll;

dictionary.ForAll(Print);
dictionary.ForAll(Store);

32 Object Oriented Programming in Oberon-2

In this way it is possible to apply almost any operation to the
elements of the set.

This last solution is the most simple and readable solution for
Oberon-2 and Component Pascal. Some other languages (e.g.
Sather) have special iterator constructs or so-called block-objects
(e.g. Smalltalk), which allow iterators to be implemented even more
simply.

9.4.3 Observer

An observer is an object which is interested in the state of another
object. It registers itself at the other object as an observer and it will be
informed when the state of the observed object changes.

The observer pattern occurs frequently with graphical user
interfaces. Fig. 9.25 shows an example of a measurement-object,
which represents a number between 0 and 100. Two graphical objects
- a slider and a meter - are registered as observers of the value of the
measurement. If this value changes, the slider and the meter are
notified and refresh their graphical representation accordingly.

PROCEDURE Print (e: Element);
BEGIN

e.Print
END Print;

PROCEDURE Store (e: Element);
BEGIN

e(MyElement).Store(rider)
END Print;

Design Patterns 33

Fig. 9.25 Slider and meter as observer of a measurement

The observer-pattern serves another purpose. It guarantees the
consistency of all observers of an object. Since the the observers are
immediately notified of any state change of the object, they know at
any time its actual state and are therefore consistent among each
other.

34 Object Oriented Programming in Oberon-2

Fig. 9.26 Observer pattern

The class-diagram in Fig. 9.26 shows the observer pattern together
with its class and its relations. Subject (the observed object) sends
itself a Notify, when its state changes. The Notify-method in turn sends
all registered observers an Update. The observers fetch the current
state from Subject by calling GetState and refresh their own state.

Please note that observers can dynamically register and unregister
themselves (with Attach and Detach). The relation between Subject
and its observers is therefore only a temporary one and can be
changed during runtime. It may be the case that no observers at all are
registered. In this case Notify will be a no-op and nobody will be
notified of a contingent change of state.

If an observer gets notfied of a state-change, he needs information
about what has changed. There are two possible solutions: the new
state can be handed over by Update as a parameter (Push-model),
or the observer only gets information about which aspect of the state
changed. In the latter case, the observer has to retrieve the information
relevant for him by calling GetState or a similar method (Pull-model).
Pushing is obviously better suited for simple state changes, and
pulling for complex ones.

Fig. 9.27 shows the interactions between a subject and its
observers with the help of an interaction-diagram. The vertical lines
represent objects, the horizontal arrows represent messages. The
bars on the object lines represent the lifetime of the methods called.
Interaction diagrams like this one are well suited to describe dynamic
properties of programs.

Design Patterns 35

Fig. 9.27 Interactions in the observer pattern

9.4.4 Template Method

A template method defines an algorithm by a sequence of calls to
abstract methods. It thereby fixes a series of steps, but the
implementation of these steps is left open; the latter is done by
implementing the abstract methods in subclasses.

Let us consider as an example a class Frame for windows on a
screen. When a certain region of the window should be redrawn, it is
necessary to remove a possible selection, to define a clipping area
and then to redraw the contents of the window. These three steps are
not dependent on the window being a text or a graphic window. They
can be merged into a template method Restore, as shown in
Fig. 9.28.

36 Object Oriented Programming in Oberon-2

Fig. 9.28 Template method Restore

Needless to say, the methods called by Restore can not yet be
implemented in the abstract class Frame, since they will be different
for text frames and graphic frames. An example of the implementation
might be in the subclass TextFrame. Nevertheless Restore already
has fixed the correct sequence of calling them. It is now possible to
send a Restore message to a text-frame and it is not necessary to
care about the individual sub-steps. Additionally, the template method
ensures that all Frame-classes undergo these sub-steps in the same
sequence.

It is not necessary that the sub-steps are purely abstract. Some of
them can implement a particular algorithm and only call empty
methods at distinct places. The programmer has the opportunity to
override these (empty) methods and to gear into the course of the
template method. These empty methods are called hooks, since they
provide a chance to hook own code into an existing algorithm.

Let us look again at an example: a graphic window has a method
TrackMouse, which tracks mouse movements and draws the mouse
pointer. If you want to restrict the movement of the mouse-pointer to a

Design Patterns 37

fixed grid, you can call an empty method Constrain by default. But it is
possible to override this empty method Constrain by sub-classing in
such a way that the provided mouse-coordinates are constrained to
the nearest grid-point (Fig. 9.29).

Fig. 9.29 Constrain as a hook in the method TrackMouse

Providing as many hooks as possible is a usual technique to make an
algorithm as flexible as possible. If you provide too many hooks, the
efficiency of the algorithm may suffer and the interface of the template
method may become unmanageable.

9.4.5 Clone

It appears to be a trivial task to copy or clone objects. But if you don't
know the dynamic type of the copy source, the task is not that trivial.
How to proceed?

An obvious solution is to send the object a copy message. With the
help of dynamic binding, the Copy-method of the runtime-type of the
object is called. The Copy-method allocates a new object and
initializes the attributes with the values of the original. This apparently

38 Object Oriented Programming in Oberon-2

simple solution has its own pitfalls, as shown in Fig. 9.30.

Fig. 9.30 Problems when copying objects

The Copy-method of Circle has to copy not only its own attributes, but
also the attributes of the base-class Figure. This is only possible for
the exported attributes of Figure. It is not possible to use the Copy-
method of Figure, since this method will create a new object instead
of copying only the base-attributes to the new object c.

The solution here is a simple trick: hand the new object over to
Copy in an additional VAR parameter. If this parameter is NIL, the
Copy-method knows that a new object has to be allocated before
copying the attributes, otherwise the input object is recycled. This
behaviour is illustrated in Fig 9.31.

Design Patterns 39

Fig. 9.31 Copying of objects

To instantiate a copy f of an object g you write:

f := NIL; g.Copy(f)

If g has the dynamic type Circle the Copy-method of Circle is called.
Since f has a value of NIL, a new Circle-object is allocated. When
calling the base-class Copy-method, the value is different from NIL.
Therefore no new object is allocated, and only the color-attributeis
copied. Example code

It is slightly awkward to be forced to set the parameter of the Copy-
method to NIL. It is possible to avoid this necessity if the runtime
system provides operations for working with types and for the creation
of objects of certain types. The Oberon-System provides such
operations in module Types (see App. B). BlackBox offers them in
module Kernel. The relevant parts of these modules are:

BlackBox:ð

40 Object Oriented Programming in Oberon-2

Type is a type-descriptor, i.e., Type describes certain properties of a
type like its name or the module in which it is declared. If p is a pointer
to a record of type T the TypeOf(p) returns the type-descriptor of T
(SYSTEM.PTR is a type, which is compatible with any pointer type).
NewObj(t, obj) creates a new object obj of the type descibed by the
type-descriptor t. In the Oberon System This(m, name) and in
BlackBox ThisType(m, name) returns the type-descriptor of the type
with name name declared in module m.

With the aid of the low-level module Types or Kernel, Copy can be
implemented more elegantly:

DEFINITION Kernel;

TYPE
Name = ARRAY 256 OF SHORTCHAR;
Module = POINTER TO RECORD

....
name-: Name

END;
Type = POINTER TO RECORD

mod-: Module;
id-: INTEGER;
base-: ARRAY 16 OF Type;
fields-: Directory;
ptroffs-: ARRAY 1000000 OF INTEGER

END;

PROCEDURE TypeOf(IN rec: ANYREC): Type;
PROCEDURE NewObj(VAR obj: SYSTEM.PTR; t: Type);
PROCEDURE ThisType(mod: Module;

name: ARRAY OF SHORTCHAR): Type;
PROCEDURE GetTypeName(t: Type; VAR name: Name);
...

END Kernel. ï

Design Patterns 41

Fig. 9.32 Copying of objects with means of the runtime system
(Types in the Oberon-System, in BlackBox: IMPORT Types := Kernel)

To create a new object g the following suffices:

If g has the runtime type Circle, the Copy-method of circle is called,
which in turn calls the Copy-method of the base-class. With the help of
module Types a new object f with the same type as the receiver g is
created, in our case therefore a Circle-object. After copying the
attribute color, f is returned to the Copy-method of Circle. The
remaining attributes are copied in Circle. The WITH-statement
changes the static type of f to Circle, therefore the attributes f.x, f.y,
and f.radius are accessible for the copy-operation. Example code

9.4.6 Persistence: Input/Output of Objects

In almost every program it is eventually necessary to write objects to a
file and read them again later. In this situation a similar problem arises
as in the case of cloning objects: How is it possible to read and write

f := g.Copy()

42 Object Oriented Programming in Oberon-2

objetcs of unknown dynamic type?
Writing such objects is not really that difficult. Simply send an object

a Store-message and trust that the object itself knows which attributes
it has to write to a file. Reading objects is significantly more difficult:
Before you can read an object, you have to create it. But do you know
the type of the object which is to be created? You don't have any idea
about the dynamic type of that object.

The solution is to store in the file not only the attributes of an object,
but also its type-name. By using module Types (BlackBox: Kernel) it
is possible to retrieve the name of any type from an object and in turn
to create any object by its type-name. The following two procedures
StoreObj and LoadObj write an arbitrary object including its type-
name to a file and read it back:

BlackBox:

Both methods assume that all objects under consideration are derived
from a class Object, which support the messages Load and Store.
The type OS.Rider represents a read/write-position in a file (see also

ð
PROCEDURE (VAR r: OS.Rider) StoreObj* (x: Object);

VAR type: Kernel.Type; name : Kernel.Name;
BEGIN

IF x = NIL THEN r.Write(0X)
ELSE type := Kernel.TypeOf(x); Kernel.GetTypeName(type, name);

r.WriteString(type.name); r.WriteString(type.name); x.Store(r)
END

END StoreObj;

PROCEDURE (VAR r: OS.Rider) LoadObj* (VAR x: Object);
VAR name1, name2: ARRAY 32 OF CHAR; type: Types.Type;

BEGIN r.ReadString(name1);
IF name1 = "" THEN x := NIL
ELSE r.ReadString(name2);

type := Kernel.ThisType(Kernel.ThisMod(name1), name2);
Kernel.NewObj(x, type); x.Load(r)

END
END LoadObj;

ï

Design Patterns 43

App. B.5). StoreObj fetches the type-descriptor of obj and writes the
module name (type.module.name) and its type-name (Oberon
System: type.name; BlackBox: Kernel.GetTypeName) to the file.
LoadObj reads module- and type-name, fetches the module-
descriptor mod and the type-descriptor type and generates a new
object of this type with NewObj.

Whereas StoreObj could be implemented in principle also as a
method of Object, this cannot be achieved with LoadObj because it is
impossible to send a message to an object, which does not (yet) exist.

Fig. 9.33 shows how the Load- and Store-methods of a class A and
its subclass B can be implemented in such a way that all attributes can
be correctly read and written. Please note that B has an attribute b,
which is itself an object. Therefore this attribute is output by StoreObj
and read back with LoadObj. Reading back needs a type-guard since
LoadObj returns a parameter of static type Object.

44 Object Oriented Programming in Oberon-2

Fig. 9.33 Implementation of Load- and Store-methods

If the runtime system does not provide means to convert an object into
its type-name and vice versa, the following workaround can be used:
Each object must support a message GetTypeName, which returns
the type-name of the object. Furthermore a table must be allocated,
where for each used type a prototype is stored together with its type-
name. If you need an object with a certain type-name, the table is
searched and the corresponding prototype is cloned. Clearly this
needs more effort on the side of the programmer than the solution
sketched above.

Reading and writing objects is the basis of the implementation of
persistent objects. An object is called persistent if it survives the
program which has created it. Persistent objects are used in
database-like applications. They are often interweaved with other
objects to a graph-like web. Reading and writing such a web needs
attention to ensure that each object is written only once, even if there
are several pointers to that object. Techniques for such applications
can be found in the standard literature on graph-algorithms.

9.4.7 Runtime Extension of a System

In Chap. 8.3 we have seen that a graphic-editor can be extended at
runtime to support new objects (rectangles, circles, lines) which are
unknown at the time of the initial implementation of the editor. Here we
want to take a look at how this can be achieved in Oberon without the
requirement to unload, re-link, and re-load the program which is to be
extended.

Design Patterns 45

Fig. 9.34 Figure-family in a graphic-editor

Let us recall the example of Chap. 8.3: the graphic-editor works with a
Figure-family consisting of rectangles, circles or other figures
(Fig. 9.34). We assume that all classes of this family are declared in a
module Figures. One of the modules of the editor is FigureFrames
with a class Frame, which is responsible for managing the figures and
displaying them on the screen. There is a method Add for adding new
figures.

That is the core of the editor. During implementation it is not (yet)
necessary to know, which kind of figures will come later. The editor
can handle any sub-classes of Figure.

If we now want to extend the editor with ellipses, the following needs
to be done:

1. Define a class Ellipse as sub-class of Figure and override the
inherited methods (Fig. 9.35)

2. Implement a command New, which creates an Ellipse-object
and inserts it into the list of the other figures in the actual frame.

46 Object Oriented Programming in Oberon-2

Fig. 9.35 Deriving a new subclass Ellipse from Figure

The class Ellipse and the command New are wrapped in a new
module Ellipses. It is not necessary to touch the existing modules of
the editor. To install a new Ellipse-object in an editor window, call the
command New. The following happens:

1. If module Ellipses is not yet loaded, it will be loaded now and
added to the editor, thereby extending the editor at runtime with
a new module.

2. The command New is executed. It creates a new Ellipse-object
and inserts it into the figure-list of the actual frame.

3. The frame sends the newly inserted figure (where the editor
does not have know the new figure's type) a Draw-message,
which causes the ellipse to be drawn.

PROCEDURE New;
VAR e: Ellipse;
BEGIN

NEW(e);
... (* fille e.x, e.y, e.a, and e.b *)
FigureFrames.currentFrame.Add(e)

END New;

Design Patterns 47

It should be noted that the module Ellipses will be loaded on
demand and bound to an already running editor-core. Neither Figures
nor FigureFrames know (i.e., import) Ellipses. Therefore both can be
compiled and used long before Ellipses is created. Conversely
Ellipses imports Figures and FigureFrames. Ellipses builds up on
these modules and extends them.

The editor-core can use the unknown module Ellipses as a result of
the dynamic binding. The editor-core sees the Ellipse-object as an
incarnation of the abstract class Figure and communicates with it via
messages, which yield to calls to methods from module Ellipses,
which is higher up in the import hierarchy. Therefore these calls are
called up-calls.

The chance to extend a system during runtime without unloading,
re-compiling, and re-linking is one of the main advantages of object-
oriented programming and build its strength. The Oberon-System (and
the BlackBox component framework), with its commands and the
dynamic loading of modules, offer the preconditions for this
extensibility.

48 Object Oriented Programming in Oberon-2

