
Professor Hanspeter Mössenböck is head of the Institute for System Software at the Johannes 
Kepler University, Linz. For more than 10 years, he and his team have been collaborating with Sun 
Microsystems, and then Oracle, on developing compilers for the programming language Java. 
Here, he tells us about just-in-time compilers and the innovative work of his team

Why is it necessary to investigate new 
compilation and optimisation techniques 
for Java just-in-time (JIT) compliers?

Compiler technology is a well-understood 
field. However, traditional compilers 
are batch programs that compile source 
code to machine code before the code 
is executed. With JIT compilation the 
situation has changed. Java programs, for 
example, start to execute in the interpreter 
before parts of them are translated to 
machine code. Compilation happens on the 
fly during program execution. Thus, many 
of the well-known compilation techniques 
cannot be used because they are simply 
too slow. New, faster techniques need 
to be developed that allow compilation 

to happen in the background without 
noticeable overhead.

What are the advantages to using JIT 
compilers over static compilers?

JIT compilation allows us to use profiling 
feedback from the executing program 
in order to optimise the program for its 
current input. This cannot be done in static 
compilation; for example, we can exploit 
knowledge about path frequencies for 
reordering the paths in an optimal way, 
or we can use information about the data 
types seen so far in order to optimise 
for the most frequently occurring types. 
Another advantage of JIT compilers is that 
they can concentrate on the ‘hot spots’ of 

Java on time

PR
O

FE
SS

O
R 

H
AN

SP
ET

ER
 M

Ö
SS

EN
BÖ

CK

	 56	 INTERNATIONAL INNOVATION



JAVA HAS COME a long way since it first 
launched in 1995, and is widely believed 
to be faster than most other programming 
languages. Its popularity is indisputable, 
reporting 10 million users in 2012. However, 
while languages like C, C++ or Fortran are 
directly translated to machine code, Java 
programs are first translated to a compact 
bytecode representation. This representation 
is portable – it can be interpreted by a Java 
virtual machine (VM) on almost any computer 
– but is much slower than pure machine code.

To address this, VMs compile the most frequently 
executed parts of a program to machine code. This 
service is on demand and is known as a just-in-time 
(JIT) compilation. Since JIT compilation happens in 
the background while the program to be compiled 
is interpreted, it has to be as fast as possible, while 
also producing high-quality code. Here, Hanspeter 
Mössenböck, Professor of Computer Science 
and head of the Institute for System Software 
at the Johannes Kepler University Linz, sees an 
enormous research potential. Working alongside 
five PhD and four Master’s students, Mössenböck 
has collaborated with Oracle, the major vendor 
of Java, for over 10 years. Together they work to 
optimise Java JIT compilers and investigate new 
compilation techniques. 

OPTIMISATION

The team’s work centres around 
discovering new intermediate program 
representations as well as program 
analyses and transformations that improve 
the performance of applications running 
on Oracle’s Java Hotspot VM. These 
optimisations are as diverse as developing 
a fast register allocator, a safe check 
elimination technique, algorithms for 
eliminating redundant computations, and 
fast inlining of method calls, among others. 

A special challenge of JIT compiler 
optimisations is that they take effect while 
the compiled program is being executed. For 
example, if the VM decides to merge two 
data types due to a compiler optimisation, all 
existing objects of these data types have to be 
merged in memory. This then has to happen 
transparently in the background while the 
program continues execution. Central to 
the team’s work is that these optimisations 
must be as efficient as possible. Yet the 
optimisations must produce high-quality 
code. Balancing these often conflicting 
goals requires the team to regularly develop 
completely novel algorithms. 

Timely developments
Java is used by over 10 million people worldwide. Nonetheless, its compilation 
process is more complex than for other programming languages, making Java 
more dependent on high-quality compilers. Now, researchers at Johannes 
Kepler University Linz are developing novel optimisation techniques for Java

a program, while static compilers always 
have to compile the whole program. With 
JIT compilation we can even recompile 
a method several times with increasing 
optimisation levels: in the first run we can 
do a rough and quick compilation, and 
when the method becomes ‘hotter’ we 
can recompile it, spending more time on 
sophisticated optimisations.

JIT compilation can also be used to change 
the structure of a program at run time. 
What is the use for such transformations?

Some programs have to run 24/7 and cannot 
be shut down for maintenance. It is therefore 
desirable for maintenance of such programs 
to be done at run time, which requires a 
recompilation of affected methods as well 
as a transformation of already existing data 
in memory. JIT compilation allows us to do 
such recompilations selectively. Replacing 
code and data types at run time is anything 
but trivial because one has to guarantee the 
consistency between old and new code parts.

What are you currently working on?

Since programs are compiled while they 
are executed there is hardly any time for 
optimisation. Some of our subprojects 
therefore aim at developing new 
optimisation techniques that are fast enough 
to be applied during JIT compilation and still 
have significant impact on the execution 
speed. One of our biggest current projects 
is the development of a new compiler 
infrastructure called Graal. Alongside this we 
have a promising project dealing with trace 
compilation, and we are taking an interesting 
research direction on our Truffle framework.

Can you reveal more about the Truffle 
framework?

The Truffle framework is a tree-based 
execution environment to target the efficient 
execution of dynamically typed languages 
such as Javascript, Python or R. The program 
to be executed is translated to an abstract 
syntax tree (AST), which is then interpreted. 
The AST can be modified at run time 
according to type feedback that is collected 
during execution. In Javascript, for example, 
the operand types of an add operation are 
statically unknown, so the interpreter has 
to treat them in a general and inefficient 
way. However, if run time feedback reveals 
that the operands are always integers, the 
subtree of the add operation can be replaced 
with a specialised one in which the operands 
are integers. The operation can then be 
performed much more efficiently. The AST 
in Truffle is therefore a self-optimising 
representation that adapts to the program 
being executed. It can also easily be adapted 
to new languages. Seamless multi-language 
interoperability is one of the goals of Truffle. 
Subtrees can originate from different 
languages, and optimisations on the trees 
can cross-cut language boundaries.

	 WWW.RESEARCHMEDIA.EU	 57

PROFESSOR HANSPETER MÖSSENBÖCK



Mössenböck describes the innovative aspect 
of their work as lying in the aggressiveness 
of their optimisations: “We often generate 
optimised machine code based on optimistic 
assumptions and later fall back to interpreted 
code if those assumptions turn out to be 
wrong”. The group is also faced with the 
challenge that optimisations have to modify 
the code and the data of a running program 
without breaking it – something they would 
not have to face with static compilers.

SUCCESSFUL TRACK RECORD

Over the years the team has developed a 
number of optimisations that have been 
used in the product version of Oracle’s 
HotSpot Java. These 
include a linear scan 
register allocator faster 
than traditional register 
allocators, which were 
traditionally based on a 
graph-colouring approach. 
Other optimisations 
include: escape analysis, 
in which data objects 
that do not escape their 
allocation context can be 
transformed into simple 
variables; object inlining, 
in which closely related data objects are 
automatically merged in memory in order 
to speed up memory management and data 
access; and bounds check elimination, where 
accesses to arrays can be optimised to avoid 
checks if the array index is in the valid range.

CURRENT PROJECTS

Among the latest developments is a new 
compiler infrastructure called Graal, an 
open source project for the OpenJDK 
community. The research aims to develop 
a new Java JIT compiler that allows for 
easier and more aggressive optimisations. 
As such, it is based on a novel intermediate 
program representation and uses optimistic 
assumptions extensively. Written in Java, the 
development of optimisations can benefit 
from the use of a high-level language. 

Alongside Graal, the researchers are also 
developing innovative trace compilation, 
a special form of JIT compilation. Most JIT 
compilers translate frequently executed 
methods; however, a trace compiler translates 
frequently executed paths through a program. 
This enables the compilation unit to be smaller 

and more precise, and therefore the compilation 
to be faster. Paths also carry more context 
information than methods and therefore 
allow more aggressive optimisations. “One of 
the most rewarding compiler optimisations is 
code inlining: instead of invoking a method, 
its code is directly embedded at the call site,” 
Mössenböck explains. Trace compilation 
allows more aggressive inlining than method-
based compilation, because traces are smaller 
and more accurate than methods in the sense 
that they carry more context information.

FUTURE PLANS

In order to continue their innovative work, 
the group hopes to profit from more profiling 

feedback and more context 
information. For example, 
if profiling would tell the 
compiler that a certain 
method is always called 
from the same program 
site and with the same 
range of parameter values, 
the compiler could exploit 
this knowledge for more 
sophisticated optimisations. 

An exciting prospect is the 
planned development of JIT 

compilation of dynamically typed languages 
such as Javascript or Ruby. Compilers have 
traditionally been unable to produce highly 
efficient code as these languages lack static 
type information. However, the team hopes 
to develop runtime feedback, which could 
collect type information during the execution 
of such programs. When enough information 
was available, parts of the programs could 
then be JIT-compiled to code which is as 
efficient as that produced from a statically 
typed language.

Looking towards the longer term impact 
of his group’s work, Mössenböck strikes a 
particularly positive note: “I consider research 
to be particularly exciting if it has potential to 
be used in practice. As we are collaborating 
with Oracle, some of our research results have 
a fair chance of being incorporated into the 
Java product and may therefore be used by 
millions of developers and consumers across 
the world.” It is this translational approach 
that enables the Institute for System Software 
at the Johannes Kepler University Linz to 
attract excellent PhD students from all 
over the world, and to lead the way in their 
collaboration with Oracle. 

The team has developed a 

number of optimisations 

that have been used in the 

product version of Oracle’s 

HotSpot Java

JUST-IN-TIME COMPILATION

OBJECTIVES

To devise novel techniques for just-in-
time compilation and optimisation in 
order to improve the performance of 
applications running on Oracle’s Java 
Hotspot virtual machine. Topics include: 
dynamic and transparent optimisations, 
dynamic code evolution, trace 
compilation, self-optimising interpreters 
and multi-language virtual machines.

KEY COLLABORATORS

Dr Thomas Würthinger, Oracle Labs

Professor Walter Binder, Universitá della 
Svizzera Italiana

FUNDING

Oracle Labs

FWF Austrian Science Fund (P 22493-
N18)

CONTACT

Professor Hanspeter Mössenböck 
Head, Institute for System Software

Johannes Kepler University Linz 
Altenbergerstraße 69 
A-4040 Linz 
Austria

T +43 732 2468 4340 
E hanspeter.moessenboeck@jku.at

www.fwf.ac.at/de/abstracts/abstract.
asp?L=D&PROJ=P22493

HANSPETER MÖSSENBÖCK is a full 
professor of Computer Science and head 
of the Institute for System Software 
at the Johannes Kepler University Linz. 
Before he joined JKU, he was an assistant 
professor at ETH Zurich where he worked 
with Niklaus Wirth on the development 
of the Oberon language and system. 
He is mainly interested in programming 
languages, compilers, system software 
and software architectures, and is the 
author of several books on software 
development. For more than 10 
years he and his team have been 
collaborating with Oracle (previously Sun 
Microsystems) on just-in-time compilers 
and virtual machines. His current project 
team consists of five PhD and four 
Master’s students.

	 58	 INTERNATIONAL INNOVATION

INTELLIGENCE


