Plux.NET

A Platform for Building Plug-in Systems Under .NET
Quick Tutorial

Plux.NET is a plug-in platform for .NET which allows you to build extensible applications
consisting of an ultra-thin core and a set of extensions that can be plugged into designated
slots of the core or other extensions at run time.

>extensions
| _—slot
L <— core

Plux.NET uses the metaphor of slots and extensions. A slot specifies a contract for extend-
ing a piece of software (called the 4ost), and an extension is a plug-in component (i.e. a
NET assembly) that fills a slot. In essence, a slot declares the kind of information a host
expects and extensions provide this information.

In its simplest form, a slot declares an interface as well as a list of parameters with their
names and types. An extension provides a class implementing this interface as well as a list
of values for the parameters. The host will rely on these parameters to load and integrate
the extension. Slots and extensions are specified using .NET attributes.

Let's assume that our host is an application with a graphical user interface that allows menu
commands to be installed as extensions. It opens a slot specifying an interface /Menultem
as well as two parameters: Text (for the name of the menu item) and Icon (for the icon to be
used in the menu item). An extension is a class implementing /Menultem. It also provides
values for the parameters, e.g. "Print" for the Text parameter and "Print.gif" for the Icon
parameter.

Extension

"Print"
"Print.gif"

Printltem

AN
AN
\

[SlotDefinition("Menultem")] [Extension("Printltem")]
[Param("Text", typeof(string))] [Plug("Menultem")]
[Param("lcon", typeof(string))] [ParamValue("Text", "Print")]
interface IMenultem { [ParamValue("lcon", "Print.gif")]

class Printltem : IMenultem {

-

For every open slot the platform detects available extensions, loads them, assigns the pa-
rameter values to the parameters and notifies the host that owns this slot. The host can then
take actions for integrating the extension, e.g., by inserting a new menu item into its menus
and linking it to the extension class.

-



A Simple Example Step by Step

Let's look at a simple example. Assume that we want to write an application that performs
some actions and logs them. Since the logging should be kept flexible we do not implement
it as part of the application but rather as an extension. For every action to be logged the
application will pass to the extension a log message with a time stamp.

Step 1: Define a slot Logger

First we define a slot into which extensions can be plugged:

using Plux;

[SlotDefinition ("Logger") ]
[Param ("TimeFormat", typeof (string))]
public interface ILogger {

void Print (string msg);

}

A slot is an interface tagged with a [SlotDefinition] attribute specifying the name of the slot
("Logger"). A slot can have parameters defined by /Param] attributes. In our case we have
just a single parameter TimeFormat of type string, which is to be filled by the extension.
We compile this interface to an assembly /Logger.dll.

csc /t:library /out:ILogger.dll /r:Plux.dll ILogger.cs

Step 2: Write an extension for the Logger slot

Now we write an extension that fits into the Logger slot:

using System;
using Plux;

[Extension ("ConsoleLogger") ]
[Plug ("Logger") ]
[ParamValue ("TimeFormat", "hh:mm:ss") ]
public class Consolelogger: ILogger {
public void Print(string msg) {
Console.WriteLine (msq) ;
}
}

An extension is a class tagged with an /Extension] attribute and implementing the interface
of the corresponding slot. In our example the /Extension] attribute defines an extension
ConsoleLogger. The [Plug] attribute defines a plug that fits into the Logger slot. The [Pa-
ramValue] attribute assigns the value "hh:mm:ss" to the parameter TimeFormat. We com-
pile this class to an assembly ConsoleLogger.dll.

csc /t:library /out:ConsolelLogger.dll /r:Plux.dll,ILogger.dll ConsolelLogger.cs



Step 3: Open the Logger slot in the application

Our application runs under Plux.NET, so it has to be implemented as a plug-in itself ex-

tending the core. The core has a slot Starfup into which our application should plug. So we
need something like this:

using System;
using Plux;

[Extension ("MyApp") ]

[Plug ("Startup") ]
public class MyApp: IStartup {...}

The application has to open a Logger slot. This is done with an /Slot/ attribute as shown
below:

using System;
using System.Threading;
using Plux;

[Extension ("MyApp") ]

[Plug ("Startup") ]

[Slot ("Logger", OnPlugged="AddLogger") ]
public class MyApp: IStartup {

ILogger logger = null; // the logger extension
string timeFormat; // parameter of the logger extension

public void Run() {
string msg;
while (true) {
DoSomeAction (out msg) ;

if (logger != null) {
string time = DateTime.Now.ToString(timeFormat) ;
logger.Print (time + ": " + msqg);

}
Thread.Sleep (1500) ;

}

public void AddLogger (object s, PlugEventArgs args) {
logger = (ILogger) args.Extension;
timeFormat = (string) args.GetParamValue ("TimeFormat");

}

void DoSomeAction (out string msg) {
msg = "Hello";
}

}

The /Slot] attribute specifies that MyApp opens a Logger slot. Whenever the runtime finds
an extension that fits into this slot it loads it and throws an Plug event, which causes
AddLogger to be invoked.

AddLogger stores a reference to the attached extension in the field logger. It also retrieves
the value of the TimeFormat parameter and stores it in the field timeFormat. In that way the
extension is integrated with the host.

The Run method is called by the runtime core, because it is part of the Startup slot contract.

It repeatedly performs some action and calls logger. Print (if a logger extension has been
plugged in).



We compile this class to an assembly MyApp.dIl.
csc /t:library /out:MyApp.dll /r:Plux.dll,ILogger.dll MyApp.cs

Step 4: Run the plug-in application

We have two plug-ins now (MyApp.dll and ConsoleLogger.dll) and one contract (/Log-
ger.dll). All three assemblies are moved into a common directory together with the runtime
core Plux.dll and the runtime starter Plux.exe. By default plug-ins and contracts that reside
in the same directory as Plux.exe are discovered at startup. If your plug-ins reside in direc-
tories separate from Plux.exe use the command line arguments /discovery and /base (enter
plux /2 for help).

If we start Plux (enter plux.exe) it searches the application directory for an extension that
fits into the Startup slot. It finds MyApp.dll and installs it. Since MyApp opens a Logger
slot the runtime again searches for a matching extension. It finds ConsoleLogger.dll and
plugs it in.

Hot Plugging

Adding plug-ins. Plux.NET supports hot plugging, i.e. extensions can not only be added to
an application at startup but also at any later time without disrupting its execution. Hot
plugging requires a plug-in such as Cerberus.dll, which is a discovery component that
monitors the application directory to detect any additions or removals of plug-ins. Although
the discovery can replaced by a custom discovery component later, Cerberus.dll has to be
there in the beginning.

In order to demonstrate hot plugging, let us start P/ux from a directory containing only
Cerberus.dll. The discovery plug-in Cerberus.dll is plugged into a dedicated Discovery slot
of the runtime. We don't see any effects yet, but the discovery plug-in now monitors the
directory for additions. If we now move MyApp.dIl into the directory it will be detected as a
valid extension and plugged into the Startup slot of the core. MyApp is running now per-
forming its actions but without logging them. If we move also ConsoleLogger.dll into the
directory it will be plugged into the Logger slot of MyApp, causing logging to take effect.

Removing plug-ins. Plux NET allows you not only to add extensions but also to remove
them at run time. In order to do so we have to provide a handler for the Unplug event:

[Extension ("MyApp") ]
[Plug ("Startup") ]
[Slot ("Logger", OnPlugged="AddLogger", OnUnplugged="RemoveLogger") ]

public class MyApp: IStartup {

public void Removelogger (object source, PlugEventArgs args) {
logger = null;
timeFormat = null;
}
}

If we now remove ConsoleLogger.dll from the directory this will throw an Unplug event
and RemoveLogger will be invoked. MyApp continues to run but it will not log its actions
any more.



