

JOHANNES KEPLER

UNIVERSITÄT LINZ

Altenberger Straße 69
4040 Linz, Österreich
jku.at

Submitted by
Osama Mohammad Khalil

Submitted at
Johannes-Kepler-
Universität / Institute for
System Software

Supervisor
a. Univ.-Prof. Dipl.- Ing.
Dr. Herbert Prähofer

December 2022

A NETTY-BASED FILE

SYNCHRONIZATION

SYSTEM

Bachelor Thesis

to obtain the academic degree of

Bachelor of Science

in the Bachelor Program

Computer Science

12. December 2022 AK121271 2/60

Statutory Declaration

declare instead of an oath that I have written this bachelor thesis independently and

without the help of others, that I have not used any sources or aids other than those

specified, or that I have marked the passages taken literally or analogously as such. This

bachelor thesis is identical to the electronically transmitted text document.

Linz, December 2022 Osama Mohammad Khalil

12. December 2022 AK121271 3/60

Kurzfassung

Diese Arbeit beschreibt eine Fallstudie zur Implementierung eines

Dateisynchronisationssystems mit dem Netty-Framework. Diese Art von Systemen

basiert auf einem Client-Server-Modell (Anfrage/Antwort Modell). Die erste Aufgabe

dieser Systeme besteht darin, Dateien vor Verlust zu schützen, indem Kopien von Dateien

auf dem Server gespeichert werden. Die zweite Aufgabe besteht darin, geänderte Dateien

zwischen den verbundenen Clients zu synchronisieren. Netty ist ein Java-Framework, das

auf dem Java NIO-Netzwerkkommunikationsprotokoll basiert. Es ermöglicht eine

asynchrone, nicht-blockierende Ein- und Ausgabe. Der asynchrone, nicht-blockierende

Ansatz ist im Vergleich zu einem blockierenden Thread-basiertem Ansatz effizienter,

insbesondere für Anfrage/Antwort-Modelle, bei denen die Antwortzeit, die Leistung und

die Auslastung der Ressourcen sehr wichtig sind. In dieser Arbeit soll das Netty-

Framework durch die Implementierung eines Dateisynchronisationssystems auf der

Grundlage des Client-Server-Modells evaluiert werden. Die Arbeit soll in dieser Weise

die Vorteile des nicht-blockierenden Ansatzes im Allgemeinen und des Netty

Frameworks im Speziellen bei der Entwicklung solcher Systeme zeigen.

12. December 2022 AK121271 4/60

Abstract

This thesis describes a case study implementing a file synchronization system with

the Netty framework. This type of systems is based on a client-server (request-response)

model. The first task of these systems is to save files from loss by saving copies of files on

the server storage. The second task is to synchronize modified files between the connected

clients. Netty is a Java framework based on Java NIO network communication protocol.

It allows asynchronous non-blocking input and output. The asynchronous non-blocking

approach is more efficient compared to a blocking thread-based approach, especially for

request/response models, where the response time, performance, and utilization of

resources are very important. This thesis aims to evaluate the Netty framework by

implementing a file synchronization system based on the client-server model. It will work

out the advantages of the non-blocking approach in general and the Netty framework in

particular in developing such systems.

12. December 2022 AK121271 5/60

Contents

1 Introduction ... 6

1.1. Outline of this Thesis .. 7

2 File synchronization systems .. 8

2.1. Rsync ... 8

2.2. Google Drive .. 9

2.3. Dropbox .. 10

3 Netty framework ... 12

3.1. Netty Server ... 13

3.2. Netty Client .. 18

3.3. Result .. 19

4 Netty-based file synchronization systems 21

4.1. Separation of concerns.. 21

4.2. Reusability .. 21

4.3. ByteBuf class .. 22

4.4. Memory management .. 22

5 Use Cases and Requirements ... 24

5.1. Use cases ... 24

5.1.1. Single client-server case .. 24

5.1.2. Multiclient-server case ... 26

5.1.3. Case with conflict ... 27

5.2. Requirements ... 28

6 Implementation Description .. 30

6.1. System Design ... 30

6.1.1. System architecture .. 30

6.1.2. State diagrams .. 31

6.2. Implementation ... 35

6.2.1. Main system components ... 35

6.2.2. Server program ... 56

6.2.3. Client program ... 57

7 Conclusion .. 59

References ... 60

12. December 2022 AK121271 6/60

1 Introduction

This thesis describes a case study implementing a file synchronization system with the

Netty framework. Netty [6] is a Java framework based on the Java NIO network

communication protocol. In distinction to previous protocols, Java NIO allows

asynchronous and non-blocking input and output. Thus, the distinction between

synchronous and asynchronous systems is essential for this work. A synchronous system

is a system in which the tasks are executed in sequence, so task B cannot be executed until

task A is finished. This is inefficient for client-server models, where the client sends

requests and must wait (idle time) for the response from the server. In contrast,

asynchronous is a multithreaded model that9s most applicable to networking and

communication systems. The asynchronous non-blocking approach does not block

execution while one or more operations are in progress [10]. The asynchronous non-

blocking approach is very efficient, especially for request/response models, where the

response time, the performance, and the utilization of the resources are very important.

In contrast, the synchronous blocking approach is not effective for these models because

of waiting times, thus wasting of resources and reduction of performance.

According to its definition, Netty is an asynchronous event-driven network application

framework for rapid development of maintainable high-performance protocol servers &

clients [6]. Thus, the Netty framework provides an asynchronous non-blocking event-

driven approach. This is an extremely convenient approach for implementing high-

performance client-server (request/response) models. This is due to its ease of use and

robust design that reduces the waste of resources and time and allows the developers to

focus more on the logic of their applications than network configuration, as we have seen

in the file synchronization system implemented in this thesis.

The goal of this thesis is to evaluate the Netty framework by implementing a file

synchronization system based on the client-server model. The first task of these systems

is to save files from loss by saving copies of files on the server storage. The second task is

to synchronize modified files between the connected clients. In these systems, the server

has to be able to serve multiple clients concurrently. Furthermore, it is also able to

recognize conflicts between clients (when two or more versions of a file have to be

synchronized at the same time).

https://www.techtarget.com/searchnetworking/definition/asynchronous

12. December 2022 AK121271 7/60

1.1. Outline of this Thesis

The thesis is structured as follows:

• In Chapter 2, we will review file synchronization systems like Rsync, Google

Drive, and Dropbox.

• In Chapter 3, we will learn about the Netty framework and how can it be used to

create a client-server system based on a simple example.

• In Chapter 4, we will discuss which advantages the Netty framework provides.

• Chapter 5 multiple use cases of the Netty-based file synchronization system are

described and requirements for its implementation are given.

• In Chapter 6, the design and the implementation of the server-based file

synchronization system are described.

• The thesis concludes with a summary of the work.

12. December 2022 AK121271 8/60

2 File synchronization systems

Cloud-based file synchronization systems like Dropbox or Google Drive allow

synchronizing local file content with the cloud storage. Thus, modern storage technology

has shifted from a traditional offline state to cloud-based technology for some time now.

Synchronization of files and keeping a history of changes are critical parts of any cloud

system [1].

This section will provide an overview of some file synchronization algorithms and tools.

2.1. Rsync

According to Andrew Tridgell and Paul Mackerras [2], Rsync is an algorithm for

synchronizing files between multiple devices connected via a two-way communication

link. Rsync only sends those fragments that don't match by calculating a set of differences

between the target files. Let's imagine this scenario. We have two files f1 and f2 and we

want to update file f2 to be identical to file f1. The clear and simple way is to copy the

content of file f1 to file f2. This is of course if the two files are on the same file system. Now

imagine that these two files are on different connected devices by a slow connection link

e.g., dial-up IP. If file f1 is large, then copying it to file f2 will be slow. To make the sending

and copying process faster, file f1 can be compressed before sending it, but this usually

only gains a factor of 2 to 4.

Assuming the two files are the same and probably both derived from the same original

file to speed things up. We'll need to take advantage of that similarity. One common way

is to send the differences between f1 and f2 and then use this list of differences to rebuild

the file. The traditional methods must access both files to create the differences between

them. Therefore, these algorithms cannot be used if the files are not on the same machine.

The Rsync algorithm calculates the identical parts between files f1 and f2 that should not

be sent. The non-identical parts are sent from the source file to the target file so that the

receiver then creates a copy of the source file using the references to parts of the existing

destination file and the verbatim material.

12. December 2022 AK121271 9/60

The algorithm of Rsync:

Suppose we have two computers c1 with file f1 and c2 with file f2. These two files are the

same and there is a slow connection between the two computers. The Rsync algorithm

works with the following steps:

1. Computer c2 splits the file f2 into a series of non-overlapping fixed-sized blocks of size

S bytes (the value of S between 500 and 1000 is quite good for most purposes). The last

block may be shorter than S bytes.

2. For each of these blocks c2 calculates two checksums: a weak <rolling= 32-bit

checksum and a strong 128-bit MD4 checksum.

Rolling checksum:

This checksum is used as a first level to compare the file's blocks. In practice, it is found

that the probability of this checksum being equal for two non-identical blocks is very

low. Then the strong checksum is calculated. In this case, the rolling checksum must

have the property that it is very cheap to calculate, and the successive values can be

computed very efficiently using the recurrence relation.

3. Then it sends these checksums to computer c1.

4. Computer c1 then searches through f1 to find all blocks of length S bytes (at any offset,

not just multiples of S) that have the same weak and strong checksum as one of the

blocks of f2. This can be done in a single pass very quickly using a special property of

the rolling checksum.

5. Computer c1 then sends c2 a sequence of instructions for constructing a copy of the

file f1. Each instruction is either a reference to a block of f2 or literal data. Literal data

is sent only for those sections of f1 which did not match any of the blocks of f2.

At the end, both computers c1 and c2 will have the same copies of the files f1 and f2. In

case we have several files to be sent, the pipelining process can be used.

2.2. Google Drive

Google Drive is also a cloud storage service. It grants the users the ability to store their

data on the online cloud and to synchronize them between multiple devices or multiple

team members. So that they have the access to these files everywhere they have a

connection to the internet. According to Zhenhua Li, Zhi-Li Zhang, and Yafei Dai [3], each

12. December 2022 AK121271 10/60

user who installed the software, has a so-called sync folder. Where the user can add to or

directly modify a file and it will be automatically synchronized with the cloud.

Sync technique:

Timer-triggered Full-file Sync (TFS) is the mechanism used by Google drive. In this

technique, once a client modifies the content of a file, a timer is set to watch whether there

will be following data updates in the subsequent T seconds (e.g., � ≈ 4.2 for Google

drive). If yes, this data update will be ignored, otherwise, the full updated file is delivered

to the cloud.

2.3. Dropbox

Dropbox is a service used as cloud storage for files and allows users to save their files

online and synchronize their files with several devices. So that the users can access their

files from anywhere, they have a connection to the internet [4]. As Shenglong Li, Quanlu

Zhang, Zhi Yang, and Yafei Dai [5] state, the main function of all cloud storage services is

data synchronization, which synchronizes multiple clients with each other and with the

cloud. According to the Dropbox report, 30% of the home user have more than one

connected device, and 70% of them share at least one folder.

Sync technique:

Dropbox's synchronization architecture provides two types of network traffic from the

client to the server. Metadata transfer and data transfer. The index server is responsible

for authenticating the client data and storing the metadata of the files (such as file name,

creation date, file size, last modified time, file type, author, index data...etc). There is

another data server that provides the file data to the connected client according to the

index information stored in the index server. Dropbox uses the Update-triggered Delta

Sync (UDS) technique. So that once a file � is updated, the difference (∆�) between the

original file and the updated file is calculated and sent to the cloud. This technique

significantly reduces the sync traffic and shortens the sync delay. When � is large and ∆�

is small. Nevertheless, this technique is more complicated than the Google Drive

technique (full-file sync), since the delta sync process involves at least three steps:

a) the client retrieves the metadata from the index server.

12. December 2022 AK121271 11/60

b) The client computes the difference (∆� Ā� "Ā�ÿÿ�� ����") between the

original file and the updated file.

c) The client delivers the ∆� to the cloud.

12. December 2022 AK121271 12/60

3 Netty framework

In this chapter, a brief overview of the Netty framework will be given. We will learn what

the Netty framework is and what it is used for. We will see how to create a Netty

application step by step based on a simple example. According to Netty9s home page [6],

Netty is an asynchronous event-driven network application framework for the rapid

development of maintainable high-performance protocol servers and clients.

Asynchronous and event-driven means:

• Asynchronous: operations return immediately and notify the user when they are

complete.

• Event-driven: every event can be dispatched to a user-implemented method of a

handler class.

In this section, it will be explained how to build the first client & server system using the

Netty framework. The main idea here is to build a server that binds with a specific port

and waits for clients to connect. After establishing the connection, the server task is to

welcome the newly connected client. The clients in their turn welcome the server.

Figure 3.1: Sequence diagram of Netty client-server system

Figure 3.1 illustrates how the client-server system works. In .1. the server application is

started. The successful starting means the server is configured at this point and connected

12. December 2022 AK121271 13/60

with the specific port, waiting for the client9s connection requests. We assume that the

client application is started at some time later .2.. When starting is successful, it will send

a connection request .3. to the server. The server in turn checks the connection .4.. If it is

accepted .5. and the client is online, the server welcomes the client by sending the message

<Hello Client=. When the client receives this message from the server, it responds and

welcomes the server with the message <Hello Server=. Otherwise, if an exception occurs

.6., the client connection will be closed, and the server is waiting for other connection

requests.

3.1. Netty Server

In this section, we will learn how to create the server program using the Netty framework.

Setting up the server

The first step to create a Netty server is to create EventLoopGroup instances as can be seen

in Listing 3.1 in lines 2 and 3.

1 private void start() throws Exception {
2 EventLoopGroup bossGroup = new NioEventLoopGroup();
3 EventLoopGroup workerGroup = new NioEventLoopGroup();
4 . . .
5 }

Listing 3.1: Creating server EventLoopGroup instances

We use NIO transport in this example. Thus, an instance of the class NioEventLoopGroup

must be used to accept and handle new connections. EventLoopGroup is a group of one

or more EventLoops. EventLoop defines Netty9s core abstraction for handling events that

occur during the lifetime of a connection. An EventLoop is handled by one Java thread.

Figure 3.2 illustrates the relationships among Channels, EventLoops, Threads, and

EventLoopGroups:

12. December 2022 AK121271 14/60

Figure 3.2: The relationships between Channels, EventLoops, and EventLoopGroups [7]

1. An EventLoopGroup contains one or more EventLoops.

2. When a connection request from a client is accepted, the client channel is created

3. One of the EventLoops is selected.

4. The created channel is registered for its lifetime with the EventLoop assigned for

it. Note that, a single EventLoop can be assigned to one or more Channels.

5. Since an EventLoop is bound to a single thread for its lifetime, all I/O events

processed by an EventLoop are handled on its dedicated thread.

In this example, two EventLoopGroup instances bossGroup and workerGroup are used.

Figure 3.3 illustrates how both EventLoopGroups collaborate with each other.

Figure 3.3: Server with two EventLoopGroups [7]

12. December 2022 AK121271 15/60

1. The bossGroup on the left side accepts all new incoming connection requests.

2. The workerGroup on the right side assigns an EventLoop for each from bossGroup

accepted client channel.

The next step in creating a Netty server is to create and configure the ServerBootStrap.

This step is shown in Listing 3.2 in lines 4 to 8. In line 4 the ServerBootStrap instance is

created. In line 5 the created EventLoopGroup instances bossGroup and workerGroup are

specified. In line 6 the channel type for new expected clients is specified, which is

NioServerSocketChannel. In line 7 the socket address is specified using the predefined

PORT. The server will bind with this PORT and listen for clients to accept [7]. In line 8 a

special handler class called ChannelInitializer is used. This class will be discussed in

the following.

1 private void start() throws Exception {
2 . . .
3 try {
4 ServerBootstrap serverBootstrap = new ServerBootstrap();
5 serverBootstrap.group(bossGroup, workerGroup);
6 serverBootstrap.channel(NioServerSocketChannel.class);
7 serverBootstrap.localAddress(new InetSocketAddress(PORT));
8 serverBootstrap.childHandler(new ServerChannelInitializer ());
9 . . .
10 }

Listing 3.2: Creating and configuring the ServerBootStrap

Creating ChannelInitializer

As Norman Maurer and Marvin Allen Wolfthal [7] state, when a new connection is

accepted, a new child Channel will be created. As can be seen in Listing 3.3, the custom

ServerChannelInitializer class extends the Netty ChannelInitializer abstract

class. The main task of the ChannelInitializer is to add the custom handler instances

(in this example HelloClientHandler, see in next section) to the ChannelPipeline. A

ChannelPipeline provides a container for a chain of ChannelHandlers and defines an

API for propagating the flow of inbound and outbound events along the chain. When a

Channel is created, it is automatically assigned its ChannelPipeline.

1 public class ServerChannelInitializer extends ChannelInitializer<SocketChannel> {
2 @Override
3 protected void initChannel(SocketChannel channel) throws Exception {
4 ChannelPipeline pipeLine = channel.pipeline();
5 pipeLine.addLast("clientHandler", new HelloClientHandler());
6 }
7 }

Listing 3.3: Server ChannelInitializer for initializing the server channel with custom handlers

12. December 2022 AK121271 16/60

ChannelHandlers are installed in the ChannelPipeline as follows:

• A ChannelInitializer implementation is registered with a ServerBootstrap.

• When method initChannel is called, the ChannelInitializer installs a custom

set of ChannelHandlers in the pipeline. The ChannelInitializer removes itself

from the ChannelPipeline.

Creating ChannelHandler

ChannelHandler has been designed specifically to support a broad range of use cases. We

can think of it as a generic container for any user event handling code. It processes events

through the ChannelPipeline. These handlers receive events and execute the processing

logic for which they have been implemented. When a handler finishes its task, it passes

the data to the next handler in the chain. Figure 3.4 illustrates how the server or client

ChannelPipeline looks like. It has a chain of inbound handlers to address the inbound

events step by step. The output of each handler is the input for the next one. In the same

way for the outbound events, there is a chain of outbound handlers. This approach

increases the code scalability and reusability as can be seen in the next section. The order

in which the handlers are executed is determined by the order in which they were added.

Figure 3.4: Inbound and outbound events flowing through a chain of ChannelHandlers [7]

In our example, the class HelloClientHandler extends the class

ChannelInboundHandlerAdapter. It overrides the following three methods as shown in

Listing 3.4:

• channelActive method is invoked when the client9s request for connection is

accepted. In this method, server welcomes the newly connected client with a

<Hello Client= message.

12. December 2022 AK121271 17/60

• channelRead method is called when the server receives any message from the

connected clients. In our example, the server writes the received client message to

the console.

• exceptionCaught method will be invoked when any exception occurs. The stack

trace is printed, and the connection will be closed.

1 public class HelloClientHandler extends ChannelInboundHandlerAdapter {
2 @Override
3 public void channelActive(ChannelHandlerContext ctx) {
4 Channel clientChannel = ctx.channel();
5 String msgToClnt = "Hello client";
6 System.out.println("--> " + msgToClnt);
7 ByteBuf buf = Unpooled.copiedBuffer(msgToClnt.getBytes(CharsetUtil.UTF_8));
8 clientChannel.writeAndFlush(buf);
9 }
10
11 @Override
12 public void channelRead(ChannelHandlerContext ctx, Object msg) {
13 ByteBuf in = (ByteBuf) msg;
14 System.out.println("<-- " + in.toString(CharsetUtil.UTF_8));
15 }
16
17 @Override
18 public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {
19 cause.printStackTrace();
20 ctx.close();
21 }
22 }

Listing 3.4: Server handler to handle the incoming messages

The last step in creating the server is to bind it to the predefined PORT by calling bind

method as can be seen in Listing 3.5 in line 5. Method sync is called for waiting until the

binding process is done. Method channel returns the server channel. After this code line,

the server is ready to receive client connection requests. Finally, the EventLoopGroup

instances must be shutdown for stopping all threads assigned to its EventLoops when the

server is disconnected.

1 private void start() throws Exception {
2 . . .
3 try {
4 . . .
5 Channel serverChannel = serverBootStrap.bind().sync().channel();
6 . . .
7 } catch (Exception e) {
8 e.printStackTrace();
9 } finally {
10 bossGroup.shutdownGracefully().sync();
11 workerGroup.shutdownGracefully().sync();
12 }
13 }

Figure 3.5: Binding the server to the specified PORT

12. December 2022 AK121271 18/60

3.2. Netty Client

In this section, it is shown how the Netty client program is created and configured.

Setting up the client

In the same way, as for the server, the process for creating a Netty client starts with

creating an EventLoopGroup instance as can be seen in Listing 3.6 in line 2. The next step

is creating a Bootstrap instance. It is used for configuring the Netty client (4-8).

Note that the client-side uses class Bootstrap, while the server-side uses class

ServerBootstrap. In line 4 the client Bootstrap instance is created. In line 5 the

EventLoopGroup is specified doe handle all events for the Channel. In line 6 the Channel

implementation class is specified. In line 7 the InetSocketAddress is specified. In line 8

ClientChannelInitializer is registered with the BootStrap. We see how this is done

in the next section.

1 private void start() throws Exception {
2 EventLoopGroup group = new NioEventLoopGroup();
3 try {
4 Bootstrap clientBootstrap = new Bootstrap();
5 clientBootstrap.group(group);
6 clientBootstrap.channel(NioSocketChannel.class);
7 clientBootstrap.remoteAddress(new InetSocketAddress(HOST, PORT));
8 clientBootstrap.handler(new ClientChannelInitializer());
9 Channel clientChannel = clientBootstrap.connect().sync().channel();
10 . . .
11 } finally {
12 group.shutdownGracefully().sync();
13 }

Figure 3.6: Creating and configuring the Netty client

Creating ChannelInitializer

Listing 3.7 illustrates how to create the ChannelInitializer for the client The

ChannelInitializer is mainly used to initialize the client ChannelPipeline with

specific custom handlers. These handlers are added to the ChannelPipeline when

method initChannel is invoked.

1 public class ClientChannelInitializer extends ChannelInitializer<SocketChannel> {
2 @Override
3 protected void initChannel(SocketChannel channel) throws Exception {
4 ChannelPipeline pipeLine = channel.pipeline();
5 pipeLine.addLast("serverHandler", new HelloServerHandler());
6 }
7 }

Listing 3.7: Client ChannelInitializer for initializing the client channel

12. December 2022 AK121271 19/60

Creating ChannelHandler

Listing 3.8 illustrates how to create the ChannelHandler on the client-side. This handler

is responsible for handling all incoming data from the server. This is done mainly in the

overridden method channelRead0. This method is invoked when a message is received

from the server. The parameter msg contains the server message as a stream of bytes. In

this example, the client writes the received message to the console and welcomes the

server. This is done in lines (6-9). The client message of type String is converted to a

ByteBuf object and is sent to the server by invoking method writeAndFlush.

1 public class HelloServerHandler extends SimpleChannelInboundHandler<ByteBuf>{
2 @Override
3 public void channelRead0(ChannelHandlerContext ctx, ByteBuf msg) {
4 Channel serverChannel = ctx.channel();
5 System.out.println("<-- " + msg.toString(CharsetUtil.UTF_8));
6 String msgToSrvr = "Hello Server";
7 System.out.println("--> " + msgToSrvr);
8 ByteBuf buf = Unpooled.copiedBuffer(msgToSrvr.getBytes(CharsetUtil.UTF_8));
9 serverChannel.writeAndFlush(buf);
10 }
11
12 @Override
13 public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {
14 cause.printStackTrace();
15 ctx.close();
16 }
17 }

Listing 3.8: Netty Client handler to address incoming data from the remote peer

3.3. Result

In the section, the results of executing the server and client applications are represented

as they appear in the Editor console.

Server-side console

The lines 1 and 2 appear on the console window, when the server application is

successfully started. The server can be stopped by pressing any key. After starting, the

server is in a waiting state, i.e., it is waiting for connection requests from clients. When a

client application is started successfully, the connection between server and client is

established. The server welcomes the client with a <Hello Client= message as can be seen

in line 3. The client responds with a <Hello Server= message as can be seen in line 4. In

line 5 the enter key is pressed. The line 6 is the success information for closing the server

application.

12. December 2022 AK121271 20/60

1 start the server ...
2 press any key to exit
3 --> Hello client
4 <-- Hello Server
5
6 the server closed

Client-side console

On the client-side, lines 1 and 2 appear on the console window when the client application

is successfully started. That means the connection is established. To stop the client one can

press any key. Now the client receives a welcome message from the server in line 3. After

that, it welcomes the server in line 4. In line 5 the enter key is pressed. The line 6 is the

success message for closing the client application.

1 start the client ...
2 press any key to exit
3 <-- Hello client
4 --> Hello Server
5
6 the client closed

12. December 2022 AK121271 21/60

4 Netty-based file synchronization systems

 This chapter answers the question why Netty is preferred to create a server-based file

sync system. As we have seen in the second chapter, all cloud storage services are based

on the client-server architecture. The client represents the user and his devices. The server

represents the cloud itself, where the client files are stored. This server synchronizes all

clients with each other to make the state of all connected clients identical. We have seen

in the third chapter an overview of the Netty framework and how it can be used to create

a high-performance client-server system. Netty provides a lot of advantages, which are

discussed in the following.

4.1. Separation of concerns

During the development of network applications, a lot of time is spent in preparing the

network settings. This task can be very complicated for developers. The Netty framework

provides an architecture, which separates the business logic from the network logic of our

applications. Thus, making the developers9 life easier and letting them concentrate on

their applications. This benefit is provided in the Netty framework by using the

ChannelHandlers. These handlers are added to the ChannelPipeline of the server

channel and client channel. They can also be used to think separately about the processing

of incoming and outgoing data in several stages. This is done by adding several handlers

to the ChannelPipeline of server and client, one handler for each task will be applied on

the data.

4.2. Reusability

Netty provides a framework that allows developers to integrate incoming and outgoing

data processing tasks. This is done by implementing both ChannelInboundHandler and

ChannelOutboundHandler interfaces at the same time. Netty also provides the possibility

to separate the tasks of processing incoming and outgoing data. Also, to segment the

processing of incoming data into several stages. As well as for the outgoing data, which

contributes significantly and maximizes code reusability. In [7] the question <Why

would we not use these composite classes all the time in preference to separate decoders

(handlers for addressing the incoming data) and encoders (handlers for addressing the

outgoing data)?= is answered as follows, Because keeping the two functions separate

12. December 2022 AK121271 22/60

wherever possible maximizes code reusability and extensibility, which is the basic

principle of Netty9s design.

4.3. ByteBuf class

Netty provides the ByteBuf API as an alternative to ByteBuffer API in the JDK. Using

class ByteBuf brings a lot of benefits that makes Netty a preferred framework in the

developing network applications field. According to [7] ByteBuf is a powerful

implementation that addresses the limitation of the ByteBuffer of JDK and has these

advantages:

• It9s extensible to user-defined buffer types.

• Transparent zero-copy is achieved by a built-in composite buffer type (It allows to

move data quickly and efficiently from a file system to the network without

copying from kernel space to user space, which can significantly improve

performance in protocols such as FTP or HTTP).

• Switching between reader and writer modes doesn9t require calling ByteBuffer’s

flip method (because ByteBuf has two distinct pointers for reading and writing).

• Method chaining is supported (using the ByteBuf classes as in-output between

ChannelHandlers chain in the ChannelPipeline).

• Reference counting is supported (the ability to know the number of references of

resources and release them).

• Pooling is supported (to create Unpooled ByteBuf instances).

4.4. Memory management

According to [7], Netty provides the reference counting approach. It is a technique for

optimizing memory use and performance. This is done by counting the references

(objects) holding a resource and releasing these resources when the number of its

references is decreased to 0. Netty supports this technique in version 4 for ByteBuf and

ByteBufHolder by implementing the interface ReferenceCounted. Listing 4.1 and

Listing 4.2 illustrate this approach.

12. December 2022 AK121271 23/60

1 Channel channel = ...;
2 ByteBufAllocator allocator = channel.alloc();
3
4 ByteBuf buffer = allocator.directBuffer();
5 assert buffer.refCnt() == 1;

Listing 4.1: Reference counting [7]

In line 1 a Channel instance is created. In line 2 we get the ByteBufAllocator from the

channel. Line 3 represents additional pieces of code. In line 4 ByteBuf is allocated from

ByteBufAllocator. In line 5 the expected reference count of 1 is checked.

1 ByteBuf buffer = ...;
2 boolean released = buffer.release();

Listing 4.2: Release reference-counted object [7]

In line 1 ByteBuf instance is created. In line 2 the active references are decremented by

calling method release of ByteBuf. At reference count 0 the object is released, and the

method returns true.

Netty also provides the automatic release of ByteBuf by extending class

SimpleChannelInboundHandler on the client-side. This class takes care of releasing the

memory references to the ByteBuf that holds the message, by passing them to

ReferenceCountUtil.release(Object). If it is needed to pass the object to the next

handler in the ChannelPipeline, the ReferenceCountUtil.retain(Object) must be

used.

12. December 2022 AK121271 24/60

5 Use Cases and Requirements

In this chapter, it will be explained, how the implemented file synchronization system

works. This is performed in different cases as. Finally, a list of requirements is derived.

5.1. Use cases

5.1.1. Single client-server case

In this case just one client is connected with the server.

The client will perform some changes in his file system registered to be synchronized with

the server. Figure 5.1 illustrates how the synchronization process is performed step by

step.

Figure 5.1: Single client connected with the server

1. The server program is started. The server is now waiting for client connection

requests.

2. Client1 program is started. It sends a connection request to the server. If the

request is accepted, the server creates a status file ".Client1.status" for this

client for the first time as can be seen in Figure 5.1.

3. Client1 pastes the file file1.txt with the content "a" in his monitored directory.

The FileWatcher marks this change and creates event

"file1.txt,1654003111102,Client1,Modify,1". This event is pushed into the

event queue on client-side.

12. December 2022 AK121271 25/60

4. CommandSender of the Client1 takes this event from the event queue in the next

loop. It adds the keyword COMMAND in the front of the event. The event becomes:

"COMMAND,file1.txt,1654003111102,Client1,Modify,1"

5. It receives the event and creates a copy of the file file1.txt called

"file1_1654003111102_Client1.txt" in its storage folder. This name contains

the original file name, the last modification time, and the name of the client, who

modified the file. Then it tells Client1 that it is ready to receive file data. Client1

starts sending data packets. The server writes them into the newly created file.

6. When the sending process is completed, the server tells Client1 that the file is

stored.

7. The server writes the processed event in ".Client1.status".

8. At the end Client1 also writes this processed event in his status file ".status".

Now we assume that Client1 modifies the content of file1.txt from "a" to "abc" on the

date (1657481584506 = Sun Jul 10 21:33:04 CEST 2022). Figure 5.2 illustrates how this event

is processed and shows the result on both sides client and server.

Figure 5.2: Syncing file1.txt after modifying it from "a" to "abc"

The file version "file1_1654003111102_Client1.txt" on the server storage will be

deleted after a specific time (e.g., 7 days).

Note, that in the case of a single client connected, the conflict case cannot occur.

12. December 2022 AK121271 26/60

5.1.2. Multiclient-server case

In this case, there is more than one client connected to the server.

The server will store files and synchronize them with connected clients. Figure 5.3

illustrates the syncing process step by step.

Figure 5.3: Multiclient-server syncing test

At the beginning we assume that the server is online and both clients client1 and client2

are connected.

1. Client1 pastes the file file1.txt with the content "a" on the date (1654003111102

= Tue May 31 15:18:31 CEST 2022) into his monitored directory. This change

(event) is noticed by the client1 FileWatcher that pushes it into the event queue.

2. The client1 CommandSender takes this event from the queue and sends it to the

server.

3. The server creates the empty copy file "file1_1654003111102_client1.txt"

and informs the client1, that it is ready to receive file data. Client1 starts sending

file data as packets. The server writes received data packets into the newly created

file. When the server has received the number of bytes equals to the original file

size, it informs client1 that the file is completely received and stored.

4. The server writes the processed event into the ".client1.status" file. Client1

writes this event to his ".status" file. Now the server compares its status files

12. December 2022 AK121271 27/60

".client1.status" and ".client2.status". As a result of this comparison, it

becomes clear to the server that the file file1.txt modified by client1 on date

1654003111102 is not synchronized with client2 yet.

5. The server sends an event to client2 for syncing the newly stored file.

6. Client2 creates an empty file copy and informs the server that he is ready to receive

file data packets. The server starts sending data packets. When the correct number

of bytes has been received, client2 notifies the server that the file is correctly

synchronized.

7. Client2 writes the processed event into his status file ".status". The server also

writes this event into ".client2.status" file so that the server status files

become identical.

Note: in the next comparison of status files, the server discovers no differences between

them. This means that no changes are made by any client and all files are synchronized

up to the present time.

5.1.3. Case with conflict

The conflict case occurs when the server discovers two unsynchronized versions of the

same file at the same time. Figure 5.4 illustrates how this case occurs and which result has

to be expected.

Figure 5.4: Conflict case between 2 clients

12. December 2022 AK121271 28/60

We assume that the server and both clients are online, and their monitored directories are

empty at the beginning. Client1 pastes file1.txt with content "a" on date

1654003111102 in his directory. This file is stored on the server storage and synchronized

with client2 in the way mentioned previously. Now both clients9 directories are identical

and both status files in the server are identical with this content:

"file1.txt,1654003111102,client1,MODIFY,1".

At this point, we assume that the client2 is disconnected. That means any change done by

client1 will be stored on the server storage but not synchronized with client2.

Client1 modifies file1.txt" content from "a" to "abc" on date 1658693156345. The

modified file is stored on the server. The disconnected client2 modifies the same file from

"a" to "xyz" on another date 1660069372643 and pastes the file other.txt with content

"123" on date 1651249372225 in his monitored directory. Now the conflict case occurs,

two versions of the file file1.txt are changed but not synchronized. At some time in the

future, client2 connects to the server. All changes performed while client2 was offline, are

sent and stored on the server first. There is now more than one connected client. That

means the comparison between its status files will be performed, to specify which events

(file versions) must be synchronized with which client. After that, the server in this system

performs the second level of comparison to detect if there is a conflict case or not. This

includes the following steps, as can be seen in Figure 5.4:

1. In this scenario, the server detects that there are two unsynchronized versions of

file1.txt and reports a conflict case.

2. The server creates the file "file1_conflict_client2.txt" with content "xyz"

to be sent to client1. It also creates file "file1_conflict_client1.txt" with

content "abc" to be sent to client2. All other files are synchronized as usual. At the

end all status files on the server-side are identical.

5.2. Requirements

From the use cases the requirements can be derived. Table 6.1 list the requirements of the

server-based file synchronization system. The clients can go online by sending a

connection request to the server. A specific client directory is registered to be observed.

The modified files in the observed directory are sent to the server to be stored. The server

12. December 2022 AK121271 29/60

sends these files to all clients, who don9t have them or have an old version of them. The

conflicts between clients are recognized (e.g., when two clients change a file at the same

time) and solved. The old versions of the stored files on the server are deleted after a

specific time (except the last version). The modified files by offline clients are sent to the

server once these clients go online (more details in the following sections).

Nr Requirement

1 Clients can register and log in

2 Changes in client directories are observed

3 Changed files are sent to server and stored

4 Changed files are sent by server to other clients

5 Clients store the changed files from other clients

6 Conflicts are recognized

7 The server keeps all changed versions of files for a certain period, after that

only the latest version is kept, all others are deleted

8 Offline changes are considered as soon as the client goes online

Table 5.1: User requirements of the sync system

12. December 2022 AK121271 30/60

6 Implementation Description

In this chapter, the implementation of the server-based synchronization system using the

Netty framework is described. In Section 6.1 the system design is presented and in Section

6.2 the implementation is described.

6.1. System Design

In this section, the system design will be described using UML diagrams (system

architecture, state diagrams).

6.1.1. System architecture

Figure 6.1 illustrates the system architecture of the server-based file sync system and its

main components. The observed directory on the client side is registered with the

FileWatcher. All changes in this directory are added to the Events Queue by the

FileWatcher as commands for the server. The sending service is responsible for sending

these commands and the corresponding modified files to the server. The receiving service

on the server side processes the commands sent by the client and stores the modified files

in the server Storage. When the receiving process is done, the receiving service writes the

processed command in the corresponding status file and notifies the client to write this

command as processed in its own status file. The sending service on the server side

compares the status files. If these files are not equal, the sending service sends the files to

the clients, so that the status files at the end becomes equal. On the other side the client

receiving service receives what the server sends. Following the saving process, the

receiving service writes the processed command in the client status file and informs the

server to write this command as a processed command. Eventually, all clients will be

identical.

12. December 2022 AK121271 31/60

Figure 6.1: System architecture of the server-based file sync system

6.1.2. State diagrams

The state diagrams for server-side and client-side of the server-based file sync system are

presented in this section.

State diagram of the server:

Figure 6.2 illustrates the states, in which the server can be found. When the server goes

online, it waits for client connection requests and remains in this state as long as it is

online. When a connection request is accepted, the server goes at the same time to the

receiving and sending phases. In the receiving phase, the server can be found in one of

the following states:

WELCOME state: In this state, the server welcomes the receiving channel of the newly

connected client. The client in turn welcomes the server. If the welcome messages are

correctly exchanged, the server switches with this client to the COMMANDS state.

COMMANDS state: In this state, the server is ready to receive commands from the client.

These commands contain all required information, that the server needs to process them.

We distinguish between three types of commands:

1. Create file: This command is sent by the client when he creates a file in his observed

directory. The server creates an empty version of this file in its storage.

12. December 2022 AK121271 32/60

2. Delete file: This command is sent by the client when he deletes a file from his

observed directory. The server redirects the command to all connected clients to

delete this file from their observed directories. However, the server keeps at least

one copy (the last one) of the file.

3. Modify file: This command is sent by the client when he modifies the content of a

file in his observed directory. If the file does not exist in the server storage, the

server creates an empty version of it and notifies the client that it is ready to receive

the file data. At this point, the server switches with this client to the DATA state.

DATA state: This state allows the server to receive file data over the network from the

client. During receiving data chunks, the server must be able to distinguish between four

scenarios:

1. First scenario: receiving a number of bytes less than the actual file size. In this case,

the client must continue sending and the server must continue receiving. If the

client stops sending for a certain period (e.g., 10s) although he has not completed

sending file data, the server reports a timeout error and switches back to the

COMMANDS state.

2. Second scenario: receiving a number of bytes more than the actual file size. In this

case, the server reports an error and switches back to the COMMADS state.

3. Third scenario: receiving a number of bytes equals to the actual file size. In this case,

the server notifies the client, that the desired file is stored. Now the server switches

back with this client to the COMMANDS state.

4. Fourth scenario: receiving no data for a specific time. In this case a timeout error

occurs. The server switches back to the COMMANDS state.

In the sending phase, the server can be found in one of the following states:

WELCOME state: In this state, the server welcomes the sending channel of the newly

connected client. The client in turn welcomes the server. If the welcome messages are

correctly exchanged, the server switches to the SENDING_FILES state.

SENDING_FILES state: in this state, the server periodically compares the status files of

all clients. In the case that they are not identical, the server sends the corresponding

12. December 2022 AK121271 33/60

commands and unsynchronized files (data) to the clients. The final result of this state is

keeping all clients identical.

Figure 6.2: State diagram of the server

State diagram of client:

Figure 6.3 illustrates the states, in which the client can be found. When the client starts, it

sends a connection request to the server. If the connection fails, the client goes to the final

state, otherwise the client switches at the same time to the receiving and sending phases.

In the receiving phase, the client can be found in one of the following states:

WELCOME state: In this state, the client receives a welcome message from the receiving

channel of the server and responds with a welcome message. If the process is succeeded,

the client switches to the COMMANDS state, otherwise, the client goes to the final state.

12. December 2022 AK121271 34/60

COMMANDS state: In this state, the client receives commands (create, modify, delete)

from the server. In case the commands (create file, delete file) the client goes back to the

COMMANDS state if the command is successfully handled or if it failed. In case the command

(modify file), the client switches to the DATA state.

DATA state: In this state the client receives the modified files data from the server,

analogous to the server side. After processing all command types, the client switches back

to the COMMANDS state.

In the sending phase the client can be found in one of the following states:

WELCOME state: In this state, the client receives a welcome message from the sending

channel of the server and responds with a welcome message. If the process is succeeded,

the client switches at the same time to the WATCHING and SENDING_FILES states.

WATCHING state: In this state the client FileWatcher is started to monitor the

registered client directory for changes and events. When changes (events) occur in this

observed directory, the FileWatcher adds these events to the events queue.

SENDING_FILES state: In this state, the periodically running CommandSender sends the

commands from the events queue to the server. When the server responds that it is ready

to receive file data, the SendingHandler of the client sends the data to the server.

12. December 2022 AK121271 35/60

Figure 6.3: State diagram of the client

6.2. Implementation

In this section, the implementation of the server-based file sync system using the Netty

framework will be explained. The implementation meets the requirements and the design

presented in the previous sections. The system consists of two main programs, the server

program, and the client program. We will start with the main system components and

their roles in the system.

6.2.1. Main system components

In this section, the main components (classes, enumerations, methods, files) of the whole

system are listed and illustrated.

Server components

Enumeration ProcessingState

In Listing 6.1 the states are defined, in which the server can be found. WELCOME_RECEIVER

state is to welcome the receiving channel of the newly connected client. WELCOME_SENDER

12. December 2022 AK121271 36/60

state is to welcome the sending channel of the newly connected client. COMMANDS state is

to receive and handle the client commands. DATA state, in which the server receives data

(files content) from the client. SENDING_FILES state, in which the server sends commands

and files data to the connected clients.

1 public enum ProcessingState {
2 WELCOME_RECEIVER, WELCOME_SENDER, COMMANDS, DATA, SENDING_FILES;
3 }

Listing 6.1: Processing modes in which the server can be found

Class ReceivingTimeoutHandler & class SendingTimeoutHandler

These classes extend class ReadTimeoutHandler. The overridden method readTimedOut

is invoked, when there is no data to read from the client for a specific time (passed to the

constructor of the class). Listing 6.2 and Listing 6.3 illustrate the implementation of these

classes. We check first if the client channels are still active (9-12). After that we extract the

ReceivingInfo ri (14) and the SendingInfo si (14) objects from the corresponding

maps. Now for the receiving if the server is in DATA state, it sends to the client a

TIMEOUT_SAVE error, and switches to COMMANDS state. But if the server is in

WELCOME_RECIVER state, that means the welcome messages are incorrectly exchanged

and, in this case both client channels are closed (the same logic for WELCOME_SENDER state).

1 private class ReceivingTimeoutHandler extends ReadTimeoutHandler {
2
3 public ReceivingTimeoutHandler(int timeoutSeconds) {
4 super(timeoutSeconds);
5 }
6
7 @Override
8 protected void readTimedOut(ChannelHandlerContext ctx) throws Exception {
9 if (!ctx.channel().isActive()) {
10 Out.println("SERVER ERROR: the client is no longer online");
11 return;
12 }
13
14 ReceivingInfo ri = receivingInfoMap.getReceivingInfo(ctx.channel());
15
16 if (rci.getReceivingState().equals(ProcessingState.DATA)) {
17 Out.println("SERVER ERROR: Timeout while receiving");
18 sendMsg(ctx.channel(), TIMEOUT_SAVE + " " + rci.getFilePathInServer());
19 rci.setReceivingState(ProcessingState.COMMANDS);
20 }
21 if (rci.getReceivingState().equals(ProcessingState.WELCOME_RECEIVER)) {
22 Out.println("SERVER ERROR: Welcome messages are not correctly exchanged");
23 ReceivingHandler.terminate();
24 SendingHandler.terminate();
25 }
26 }
27 }

Listing 6.2: Class ReceivingTimeoutHandler

12. December 2022 AK121271 37/60

1 private class SendingTimeoutHandler extends ReadTimeoutHandler {
2
3 public SendingTimeoutHandler(int timeoutSeconds) {
4 super(timeoutSeconds);
5 }
6
7 @Override
8 protected void readTimedOut(ChannelHandlerContext ctx) throws Exception {
9 if (!ctx.channel().isActive()) {
10 Out.println("SERVER ERROR: the client is no longer online");
11 return;
12 }
13
14 SendingInfo si = sendingInfoMap.getSendingInfo(ctx.channel());
15
16 if (sci.getSendingState().equals(ProcessingState.WELCOME_SENDER)) {
17 Out.println("SERVER ERROR: Welcome messages are not correctly exchanged");
18 ReceivingHandler.terminate();
19 SendingHandler.terminate();
20 }
21 }
22 }

Listing 6.3: Class SendingTimeoutHandler

Class Event

This class is used as a command descriptor which has the commands information sent

between the server and the clients. Listing 6.4 illustrates the class fields and Table 6.2 gives

a short description of them.

1 public class Event {
2
3 private Path filePath;
4 private Long lastModify;
5 private String client;
6 private EventType eventType;
7 private Long fileSize;
8 . . .
9 }

Listing 6.4: Class Event for events sent between server and client

Event content Description

COMMAND The keyword to know that the message is a command.

filePath The path of the modified file.

lastModify The last modification date in milliseconds.

client The name of the client, that has modified the file.

eventType The type of the change which is done on this file (CREATE,

DELETE, MODIFY)

fileSize The size of the file changed(in bytes)

Table 6.1: Event information (commands sent between server and clients)

Example of an event (command):

"COMMAND,D:\Netty\client1\f1.txt,1654003111102,client1,MODIFY,1"

12. December 2022 AK121271 38/60

Status files

For each client there is a file on the server. In these files, the events processed by the server

are stored, as can be seen in Figure 6.4. These files are automatically created using the

client names, which are sent with the welcome messages in the welcome states when the

clients connect for the first time. The name of these files has the signature (.client

name.status).

Figure 6.4: Status file of client1 on the server-side

Class ReceivingInfo

This class contains the most useful receiving information, that the server needs to know

at any time, what is received form the client and the server makes the right decision with

this client accordingly. Listing 6.5 illustrate the class fields and Table 6.3 contains a short

description of these fields respectively.

1 public class ReceivingInfo {
2
3 private final Channel channel;
4 private ProcessingState processingState;
5 private long numReceivedBytes;
6 private Path historyPath;
7 private Path filePathInServer;
8 private long fileSize;
9 private ByteBuf data;
10 private String name;
11 private Event event;
12 . . .
13 }

Listing 6.5: Fields of the class ReceivingInfo

Field Description

channel Client sending channel, through which the server receives data

from the client.

processingState The state in which the server found with this client.

numReceivedBytes The number of bytes received from this client so far.

historyPath The path of the status file of this client.

filePathInServer The processed file path in the server.

fileSize The size of the processed file (Bytes must be received from the

client)

12. December 2022 AK121271 39/60

data The data packet received from the client (Netty ByteBuf)

name The name of the client that the server deals with.

event Client command information explained in the previous section.

Table 6.2: Receiving information needed by the server

Class SendingInfo

This class contains the most useful sending information, that the server needs to know at

any time, what is sent to the client and the server makes the right decision with this client

accordingly. Listing 6.6 illustrate the class fields and Table 6.4 contains a short description

of these fields respectively.

1 public class SendingInfo {
2 private final Channel channel;
3 private Path historyPath;
4 private Path filePath;
5 private ByteBuf data;
6 private String name;
7 . . .
8 }

Listing 6.6: Fields of the class SendingInfo

Field Description

channel Client receiving channel, through which the server sends data to

the client

historyPath The path of the status file of this client

filePath The processed file path in the server

data Data packet sent to the client

name The name of the client
Table 6.3: Sending information needed by the server

ReceivingHandler class

This Class is one of the handlers added to the ChannelPipeline of the first server channel

(receiving data channel). As its name says, the main task of this handler class is to process

the received data from clients and to forward it to the next handler in the

ChannelPipeline. It extends the ChannelInboundHandlerAdapter abstract class in

Netty API to implement the most important methods as can be seen in the following

listings. In Listing 6.7 method channelActive is overridden. This method is invoked once

the client connection request is accepted, and his sending channel gets active. This channel

is stored in the ReceivingInfo class. Each client has an entry in the ReceivingInfoMap.

The key to this map is the sending client channel, and the value is the ReceivingInfo

12. December 2022 AK121271 40/60

instance. The server sends a welcome message in this method over the receiving client

channel.

1 private class ReceivingHandler extends ChannelInboundHandlerAdapter {
2 @Override
3 public void channelActive(ChannelHandlerContext ctx) throws Exception {
4 ReceivingInfo ri = new ReceivingInfo(ctx.channel());
5 receivingInfoMap.addReceivingInfo(ctx.channel(), rci);
6 sendMsg(ctx.channel(), HELO_MSG + " " + SERVER);
7 }
8 . . .
9 }

Listing 6.7: Method channelActive in Server class ReceivingHandler

The second important method is channelRead. This method is invoked once a message is

received from the client. Listing 6.8 illustrates the implementation of this method. First,

the received message object is tested, whether it is an instance of Netty ByteBuf. If it is

not the case, the client channel is closed. After that, the current receiving information

object is extracted from the ReceivingInfoMap. Then, the current message is stored. At

the end, the handling method handleClientMessage is called, where all client messages

are handled.

1 private class ReceivingHandler extends ChannelInboundHandlerAdapter {
2 . . .
3 @Override
4 public void channelRead(ChannelHandlerContext ctx, Object msg) throws
5 IOException, InterruptedException {
6 if (!(msg instanceof ByteBuf)) {
7 Out.println("FATAL ERROR: invalid client message format");
8 ctx.channel().close();
9 return;
10 }
11 ReceivingInfo ri = receivingInfoMap.getReceivingInfo(ctx.channel());
12 ri.setData((ByteBuf) msg);
13 handleClientMessage(ri);
14 }
15 . . .
16 }

Listing 6.8: Method channelRead in Server class ReceivingHandler

Method handleClientMessage illustrated in Listing 6.9 is used to handle all messages

during receiving process depending on the server state. As a parameter ReceivingInfo

instance is passed to this method. Which allows the server to know the receiving

information with the sender client.

If the server is in DATA state, it receives data chunks from client. These chunks are written

into the corresponding file. if the number of received bytes are equal to the size of the file

has to be received, the server sends MODIFIED message to the client to inform him that the

12. December 2022 AK121271 41/60

sent file is stored. Then, the server switches to the COMMANDS state to receive new

commands from this client. If the number of received bytes greater than the file size, the

server sends FAILED_MODIFY message to the client and switches to the COMMADNS state to

receive new commands from the client.

If the server is in COMMANDS state, it receives commands from the client to process them.

These commands are (CREATE, DELETE, MODIFY) file and they have the form we saw in

class EVENT. They have all important information the server needs to process them. If the

commands CREATE and DELETE are correctly processed the server informs the client with

CREATED and DELETED messages and stays in the COMMANDS state. Otherwise, it informs

the client with FAILED_CREATE and FAILED_DELETE messages and stays in COMMANDS

state. For the MODIFY command the server calculates the path of the desired file on the

server. Then, it sets the FileOutputStream with this file. After that the server switches to

the DATA state. At the end it informs the client with READY_TO_RECEIVE message that it is

ready now to receive data of the modified file.

If the server is in WELCOME_RECEIVER state, it receives a welcome message from the client.

This message contains the client name, which is used by the server to create the client

status file if it is not exist. At the end if the welcome message was correctly received, the

server switches to the COMMANDS state. Otherwise, the client channels are closed.

1 private void handleClientMessage(ReceivingInfo ri) throws IOException,
2 InterruptedException {
3 Path filePathInServer = null;
4 String newFileName = null;
5 if (ri.getReceivingState().equals(ProcessingState.DATA)) {
6 try {
7 byte[] chunk = new byte[ri.getData().readableBytes()];
8 ri.addReceivedBytes(ri.getData().readableBytes());
9 ri.getData().readBytes(chunk);
10 fos.write(chunk);
11 fos.flush();
12 if (ri.getNumReceivedBytes() == ri.getFileSize()) {
13 fos.close();
14 sendMsg(ri.getChannel(), MODIFIED);
15 ri.writeToClientTable(event.toString());
16 ri.setReceivingState(ProcessingState.COMMANDS);
17 } else if (ri.getNumReceivedBytes() > ri.getFileSize()) {
18 ri.setNumReceivedBytes(0);
19 sendMsg(ri.getChannel(), FAILED_MODIFY);
20 ri.setReceivingState(ProcessingState.COMMANDS);
21 }
22 } catch (Exception e) {
23 Out.println("SERVER ERROR: error while receiving data");
24 ri.setNumReceivedBytes(0);
25 sendMsg(ri.getChannel(), FAILED_MODIFY);
26 ri.setReceivingState(ProcessingState.COMMANDS);
27 }

12. December 2022 AK121271 42/60

28 } else if (ri.getReceivingState().equals(ProcessingState.COMMANDS)) {
29 if (ri.getData().toString(CharsetUtil.UTF_8).startsWith(COMMAND)) {
30 Out.println("<--- " + ri.getData().toString(CharsetUtil.UTF_8));
31 eventInfos = ri.getData().toString(CharsetUtil.UTF_8).split(",");
32 event = new Event(Paths.get(eventInfos[1]), Long.valueOf(eventInfos[2]),
33 eventInfos[3], getEventType(eventInfos[4]),Long.parseLong(eventInfos[5]));
34 ri.setEvent(event);
35 boolean isDir = Boolean.valueOf(Files.isDirectory(event.getFilePath()));
36 switch (event.getEventType()) {
37 case CREATE:
38 try {
39 filePathInServer = ri.getFilePathInServer();
40 if (isDir && !Files.exists(filePathInServer)) {
41 Files.createDirectory(filePathInServer);
42 sendMsg(ri.getChannel(), CREATED);
43 ri.writeToClientTable(event.toString());
44 }
45 break;
46 } catch (Exception e) {
47 Out.println("SERVER ERROR: error while creating file");
48 sendMsg(ri.getChannel(), FAILED_CREATE);
49 break;
50 }
51 case DELETE:
52 try {
53 filePathInServer = ri.getFilePathInServer();
54 ri.writeToClientTable(event.toString());
55 sendMsg(ri.getChannel(), DELETED);
56 break;
57 } catch (Exception e) {
58 Out.println("SERVER ERROR: error while deleting file");
59 sendMsg(ri.getChannel(), FAILED_DELETE);
60 break;
61 }
62 case MODIFY:
63 try {
64 filePathInServer = ri.getFilePathInServer();
65 String oldFileName = filePathInServer.getFileName().toString();
66 newFileName = oldFileName.split("\\.")[0] + "_" +
67 ri.getEvent().getLastModify() + "_" + ri.getName() + "." +
68 oldFileName.split("\\.")[1];
69 Path newfilePathInServer = Paths.get(filePathInServer.toString()
70 .replace(filePathInServer.getFileName().toString(), newFileName));
71 if (!Files.exists(newfilePathInServer)) {
72 Files.createFile(newfilePathInServer);
73 }
74 ri.startReceiving(ri.getEvent().getFileSize());
75 fos = new FileOutputStream(newfilePathInServer.toFile());
76 ri.setReceivingState(ProcessingState.DATA);
77 sendMsg(ri.getChannel(), READY_TO_RECEIVE);
78 } catch (Exception e) {
79 Out.println("SERVER ERROR: error while modifying file");
80 sendMsg(ri.getChannel(), FAILED_MODIFY);
81 break;
82 }
83 break;
84 default:
85 break;
86 }
87 } else {
88 sendMsg(ri.getChannel(), INVALID_COMMAND);
89 }
90 } else if (ri.getReceivingState().equals(ProcessingState.WELCOME_RECEIVER)) {
91 Out.println("<-- from client_Hello: " + ri.getData().toString());
92 if (ri.getData().toString(CharsetUtil.UTF_8).startsWith(HELO_MSG)) {
93 Out.println("<--- " + ri.getData().toString(CharsetUtil.UTF_8));
94 String[] helloInfos = ri.getData().toString(CharsetUtil.UTF_8).split(" ");

12. December 2022 AK121271 43/60

95 ri.setName(helloInfos[1]);
96 ri.setHistoryPath();
97 if (!Files.exists(ri.getHistoryPath())) {
98 Files.createFile(ri.getHistoryPath());
99 }
100 statusFiles.putIfAbsent(ri.getName(), ri.getHistoryPath());
101 ri.setReceivingState(ProcessingState.COMMANDS);
102 } else {
103 Out.println("SERVER ERROR: welcome message is not correct in receiver");
104 SendingHandler.terminate();
105 terminate();
106 }
107 }
108 if (ReferenceCountUtil.refCnt(ri.getData()) > 0) {
109 ri.getData().release();
110 }
111 }

Listing 6.9: Method handleClientMessage on server receiving channel

Class SendingHandler

This handler is added to the ChannelPipeline of the second server channel (sending

channel). It extends the SimpleChannelInboundHandler<ByteBuf> abstract class in

Netty API. The main task of this class is to make all clients identical after any change. This

process is performed by sending any modified file to all clients over their receiving

channels. These channels and all sending information are stored in class SendingInfo.

Method channelActive is overridden in class SendingHandler as can be seen in Listing

6.10. This method is invoked once the client connection request (receiving channel) is

accepted. At this point, the client receiving channel is passed to SendingInfo constructor.

All clients with sending information are stored in the map sendingInfoMap <Channel,

SendingInfo>. The server welcomes the receiving channel of the newly connected client.

1 private class SendingHandler extends SimpleChannelInboundHandler<ByteBuf> {
2 @Override
3 public void channelActive(ChannelHandlerContext ctx) throws Exception {
4 SendingInfo si = new SendingInfo(ctx.channel());
5 sendingInfoMap.addSendingInfo(ctx.channel(), si);
6 sendMsg(ctx.channel(), HELO_MSG + " " + SERVER);
7 }
8 . . .
9 }

Listing 6.10: Overriding method channelActive

Method channelRead0 illustrated in Listing 6.11 is invoked once a message is received

from the receiving client channel. First, we check if the received msg is an instance of

ByteBuf. If it is not the case the client channel is closed. Otherwise, the SendingInfo

object is extracted to be passed to the method handleClientMessage in Listing 6.12 (see

next).

12. December 2022 AK121271 44/60

1 private class SendingHandler extends SimpleChannelInboundHandler<ByteBuf> {
2 . . .
3 @Override
4 public void channelRead0(ChannelHandlerContext ctx, ByteBuf msg) throws
5 Exception {
6 if (!(msg instanceof ByteBuf)) {
7 Out.println("FATAL ERROR: invalid client message format");
8 ctx.channel().close();
9 return;
10 }
11 SendingInfo si = sendingInfoMap.getSendingInfo(ctx.channel());
12 si.setData((ByteBuf) msg);
13 handleClientMessage(si);
14 }
15 . . .
16 }

Listing 6.11: Overriding method channelRead

Method handleClientMessage in Listing 6.12 is used to handle all messages during

sending process. These messages start with one of these keywords:

In SENDING_FILES state the keywords are:

• CREATED, MODIFIED, DELETED: to notify the server that the processed file is created,

modified, or deleted on the client-side. After that the processed command is

removed from the event queue and is written in the status file. CommandSender is

now allowed to take the next existing command from the queue.

• FAILED_CREATE, FAILED_MODIFY, FAILED_DELETE: these messages mean the

process failed. The command would be resent to the client if he is still active.

otherwise, the server continues handling the rest of commands in the events

queue.

• READY_TO_RECEIVE: is a message to notify the server that the client is ready to

receive file data. Which are sent chunk by chunk by the server.

In WELCOME_SENDER state the keyword is:

• HELO_MSG: is a message to welcome the server once the client connection request

is accepted. The client name is also received with this message and saved in

sendingInfo. The status file path is created using the client name.

1 private void handleClientMessage(SendingInfo si) throws Exception {
2
3 byte[] chunkedfile = new byte[1024 * 1024];
4 ByteBuf buffer = null;
5 String[] clientMsg = si.getData().toString(CharsetUtil.UTF_8).split(" ");
6 if (si.getSendingState().equals(ProcessingState.SENDING_FILES)) {
7 switch (clientMsg[0]) {
8 case CREATED, MODIFIED, DELETED:
9 Out.println("<--- " + si.getData().toString(CharsetUtil.UTF_8));

12. December 2022 AK121271 45/60

10 wlock.lock();
11 try {
12 Pair<Channel, Event> pair = events.remove();
13 si.writeToClientTable(pair.getValue().toString());
14 } finally {
15 wlock.unlock();
16 }
17 commandSender.setNextCommand(true);
18 break;
19 case FAILED_CREATE, FAILED_MODIFY, FAILED_DELETE:
20 Out.println("<--- " + clientMsg[0]);
21 if (si.getChannel().isActive()) {
22 commandSender.setNextCommand(true);
23 } else {
24 Out.println("SERVER INFO: client [" + si.getName()
25 + "] is no longer online next command will be handled");
26 sendNextCommand();
27 }
28 break;
29 case READY_TO_RECEIVE:
30 Out.println("<--- " + si.getData().toString(CharsetUtil.UTF_8));
31 if (getFis() != null) {
32 Channel receiverChannel = null;
33 int r = getFis().read(chunkedfile);
34 while (r >= 0) {
35 buffer = Unpooled.copiedBuffer(chunkedfile, 0, r);
36 receiverChannel = si.getChannel();
37 if (receiverChannel.isActive()) {
38 send(si.getChannel(), buffer);
39 r = getFis().read(chunkedfile);
40 } else {
41 Out.println("SERVER INFO: client [" + si.getName()
42 + "] is no longer online next command will be handled");
43 sendNextCommand();
44 }
45 }
46 getFis().close();
47 }
48 break;
49 default:
50 sendNextCommand();
51 break;
52 }
53 } else if (si.getSendingState().equals(ProcessingState.WELCOME_SENDER)) {
54 if (clientMsg[0].startsWith(HELO_MSG)) {
55 Out.println("Update <--- " + si.getData().toString(CharsetUtil.UTF_8));
56 String[] helloInfos = si.getData().toString(CharsetUtil.UTF_8).split(" ");
57 si.setName(helloInfos[1]);
58 si.setHistoryPath();
59 sendingChannelsMap.put(helloInfos[1], si.getChannel());
60 si.setSendingState(ProcessingState.SENDING_FILES);
61 } else {
62 Out.println("SERVER ERROR: welcome message is not correct in sender");
63 ReceivingHandler.terminate();
64 terminate();
65 }
66 }
67 }

Listing 6.12: Handle client messages during the sending process

Class CommandSender

To synchronize files between clients, the server needs to send events (commands) to these

clients. These events are queued in the events queue as pairs of <Channel, Event>.

12. December 2022 AK121271 46/60

final Queue<Pair<Channel, Event>> events = new ConcurrentLinkedQueue<>();

The pair is used to specify which event must be sent to which channel (client) at any time.

CommandSender is a runnable class. Its run method is periodically executed at fixed rate,

using scheduleAtFixedRate java class.

static final ScheduledExecutorService executor = Executors.newScheduledThreadPool(8);

This can be seen in Listing 6.13 in method startSendingCommands.

The main task of this class is to send the queued events to the corresponding clients. If the

boolean variable next_command is set to true and the events queue is not empty, the first

Pair<Channel, Event> is peeked from the queue. The client receiving channel and the

event to be sent are specified. The keyword COMMAND is added to the event as a prefix. If

the file is not a directory, the file path on the server-side is calculated and an InputStream

fis is built on it. The help function normalizeFilePathForClient gets two parameters

filePath on client-side and clientName. It returns the path of the same file on the server-

side. At the end we check if the channel, through it the event should be sent, is still active

the event is sent. Otherwise, this event is deleted, and the next event will be sent.

1 private class CommandSender {
2
3 public boolean next_command = true;
4
5 public void startSendingCommands() {
6 Runnable task = getRunnable();
7 executor.scheduleAtFixedRate(task, 0, 10, TimeUnit.SECONDS);
8 }
9
10 public CommandSendingTask getRunnable() {
11 return new CommandSendingTask();
12 }
13
14 public void setNextCommand(boolean next) {
15 rlock.lock();
16 try {
17 next_command = next;
18 } finally {
19 rlock.unlock();
20 }
21 }
22 public boolean getNextCommand() {
23 wlock.lock();
24 try {
25 return next_command;
26 } finally {
27 wlock.unlock();
28 }
29 }
30
31 private class CommandSendingTask implements Runnable {
32 @Override
33 public void run() {
34 Pair<Channel, Event> pair = null;
35 if (getNextCommand() && events.size() > 0) {

12. December 2022 AK121271 47/60

36 setNextCommand(false);
37 pair = events.peek();
38 Channel receiverChannel = pair.getKey();
39 Event event = pair.getValue();
40 Path filePath = event.getFilePath();
41 Long lastModificationTime = event.getLastModify();
42 String clientName = event.getClient();
43 String command = COMMAND + "," + event.toString();
44 String oldFileName = filePath.getFileName().toString();
45 boolean isDir = Boolean.valueOf(Files.isDirectory(filePath));
46 if (!isDir) {
47 String[] fnArr = oldFileName.split("\\.");
48 if (fnArr[0].contains("conflict")) {
49 fnArr[0] = fnArr[0].split("_")[0];
50 }
51 String newFileName = fnArr[0] + "_" + lastModificationTime + "_" +
52 clientName + "." + fnArr[fnArr.length - 1];
53 Path serverFilePath = normalizeFilePathForClient(filePath, clientName);
54 serverFilePath = Paths.get(serverFilePath.toString()
55 .replace(serverFilePath.getFileName().toString(), newFileName));
56 if (Files.exists(serverFilePath) && !isDir) {
57 while (true) {
58 try {
59 InputStream fis = Files.newInputStream(serverFilePath);
60 SendingHandler.setFis(fis);
61 break;
62 } catch (IOException e) {
63 try {
64 Thread.sleep(1000);
65 continue;
66 } catch (InterruptedException e1) {
67 Out.println("SERVER ERROR: ");
68 }
69 }
70 }
71 }
72 }
73 if (receiverChannel.isActive()) {
74 sendMsg(receiverChannel, command);
75 } else {
76 Out.println("SERVER INFO: client [" + clientName
77 + "] is no longer online next command will be handled");
78 sendNextCommand();
79 }
80 }
81 }
82 }
83 private Path normalizeFilePathForClient(Path clientFilePath,String clientName) {
84 StringBuilder sb = new StringBuilder();
85 String fileSeparator = Pattern.quote(System.getProperty("file.separator"));
86 String[] serverPathItems = clientFilePath.toString().split(fileSeparator);
87 for (int i = 0; i < serverPathItems.length - 1; i++) {
88 if (serverPathItems[i].equals(clientName)) {
89 for (int j = i + 1; j < serverPathItems.length; j++) {
90 sb.append(serverPathItems[j]);
91 if (j != serverPathItems.length - 1) {
92 sb.append(SEP);
93 }
94 }
95 }
96 }
97 Path filePathInServer = Server.SAVING_DIR.resolve(Paths.get(sb.toString()));
98 return filePathInServer;
99 }
100 }

Listing 6.13: Class CommandSender on server-side

12. December 2022 AK121271 48/60

Class DeleteOldFiles

The main task of this class is to delete the old file copies of all files saved in the server (e.g.,

older than 7 days). This task is runnable. It is periodically executed using

scheduleAtFixedRate java class as can be seen in method startDeleting in Listing

6.14. Iterating through all directories in the server is done in the run method. For each

directory, DeleteOldFiles method is called. This method takes the directory path as a

parameter and iterates through all files in it. All old file versions, but the last one, are

deleted. Note: the last copy of all files should still be stored on the server, even if they are

older than the specified time.

1 private class DeleteOldFiles {
2
3 public void startDeleting() {
4 executor.scheduleAtFixedRate(new Task(), 0, 7, TimeUnit.DAYS);
5 }
6
7 private class Task implements Runnable {
8 @Override
9 public void run() {
10 Out.println("Start deleting...");
11 try (Stream<Path> paths = Files.walk(SAVING_DIR)) {
12 paths.forEach(p -> {
13 if (Files.isDirectory(p)) {
14 deleteOldFiles(p);
15 }
16 });
17 } catch (IOException e) {
18 Out.println("SERVER ERROR: while iterating through server dir...");
19 }
20 }
21 . . .
22 }

Listing 6.14: Class DeleteOldFiles in the server

Class StatusFilesComparer

The main task of this class is the pairwise comparison of status files on the server-side.

This process allows the server to know which events or in other words which files are not

synchronized. This task is periodically executed as can be seen in Listing 6.15 in method

startComparison. The desired result is achieving the identical state of the status files on

the server-side. That means the clients should have the same synchronized file system at

the end, except when a conflict occurs between them. When two or more clients have

modified the same file, the server does not know which version of the file should be

synchronized with other clients.

12. December 2022 AK121271 49/60

Solution of file conflict:

First, the server should recognize the conflict case and show an information message to

the user. Let9s assume that the file "f" is synchronized between clients c1 and c2. That

means, c1 and c2 have the same version of the file "f". Both clients modify "f". That means

there are now 3 versions of "f", the original one in the server and the other two, let9s call

them "c1_f" and "c2_f" are also stored in the server. The server has now two versions of

the same file, which are not synchronized. The server creates two files "c1_f", and "c2_f"

and sends them as new files to the clients so that c1 will have at the end the files "c1_f"

and "c2_f". That means the versions "c1_f" will not be overridden by "c2_f" and vice

versa for c2. Listing 6.15 illustrates the implementation of class StatusFilesComparer.

First, the server makes sure that all clients are ready for the synchronization process. That

means, all status files are in a stable state and there is no client in the mode of sending or

receiving. If that is the case and the number of status files is greater than one, the pairwise

comparison process between all status files starts in the server. The main idea here is that

the comparison takes place in two stages.

The first phase: compares the status files of the two clients and extracts the list of

commands (files) that must be synchronized with each of them.

The second phase: is to compare the results of the first phase. If two not synchronized

versions of the same file are detected, a conflict situation is reported. The server creates

two new files (e.g., conflict in file f.txt, then the file "f_confilct_client1.txt" is sent

to client2, "f_confilct_client2.txt" is sent to client1). At the end, the result is queued

in the events queue to be sent by the CommandSender that we have seen in the previous

section.

1 private class StatusFilesComparer {
2
3 public void startComparison() {
4 executor.scheduleAtFixedRate(new Task(), 0, 15, TimeUnit.SECONDS);
5 }
6
7 private class Task implements Runnable {
8
9 @Override
10 public void run() {
11 try {
12 if (events.size() == 0) {
13 Out.println("STATUS FILES ARE COMPARED NOW");
14 List<String> clientNames = statusFiles.keySet().stream().toList();
15
16 for (String clientName1 : clientNames) {
17 Out.println(clientName1);

12. December 2022 AK121271 50/60

18 Set<Event> eventList1 = new TreeSet<>();
19 List<String> lastChanges1 = new ArrayList<>();
20 List<String> statusAllLines1 = new ArrayList<>();
21 Set<Event> toSyncEvents = new TreeSet<>();
22 Path f1 = statusFiles.get(clientName1);
23 statusAllLines1 = Files.readAllLines(f1);
24 lastChanges1 = getLastChanges(f1);
25
26 for (String clientName2 : clientNames) {
27 if (!clientName1.equals(clientName2)) {
28 Out.println("----" + clientName2);
29 Set<Event> eventList2 = new TreeSet<>();
30 List<String> lastChanges2 = new ArrayList<>();
31 List<String> statusAllLines2 = new ArrayList<>();
32 Path f2 = statusFiles.get(clientName2);
33 statusAllLines2 = Files.readAllLines(f2);
34 lastChanges2 = getLastChanges(f2);
35
36 for (String lg2 : lastChanges2) {
37 String[] ls = lg2.split(",");
38 Event e = new Event(Paths.get(ls[0]), Long.valueOf(ls[1]), ls[2],
39 getEventType(ls[3]), Long.parseLong(ls[4]));
40 if (!statusAllLines1.contains(lg2)) {
41 eventList1.add(e); // what is missing from client i
42 }
43 }
44
45 for (String lg1 : lastChanges1) {
46 String[] ls = lg1.split(",");
47 Event e = new Event(Paths.get(ls[0]), Long.valueOf(ls[1]), ls[2],
48 getEventType(ls[3]), Long.parseLong(ls[4]));
49 if (!statusAllLines2.contains(lg1)) {
50 eventList2.add(e); // what is missing from client j
51 }
52 }
53
54 if (eventList1.size() == 0 && eventList2.size() == 0) {
55 Out.println("---- NO CHANGES between " + clientName1 + " and " +
56 clientName2 + " ----");
57 }
58
59 // compare the results for conflicts
60 for (Event e1 : eventList1) {
61 Event e1Copy = (Event) e1.clone();
62 for (Event e2 : eventList2) {
63 if (e1.getFilePath().getFileName().equals(e2.getFilePath()
64 .getFileName())) {
65 Out.println("CONFLICT: between client " + clientName1 + "
66 and "+ clientName2 + " there are more than one version of
67 file " + e1.getFilePath());
68 String fn1 = e1.getFilePath().getFileName().toString();
69 String[] fnarr1 = e1.getFilePath().getFileName().toString()
70 .split("\\.");
71 Path p1 = Paths.get(e1.getFilePath().toString().replace(fn1,
72 fnarr1[0] + "_conflict_" + clientName2 + "." + fnarr1[1]));
73 e1Copy.setFilePath(p1);
74 }
75 }
76 toSyncEvents.add(e1Copy);
77 }
78 }
79 } // end comparing client i with all clients
80
81 if (toSyncEvents.size() > 0) {
82 Out.println("NEXT FILES MUST BE SENT TO: " + clientName1);
83 toSyncEvents.forEach(p -> Out.println("command: " + p));
84 }

12. December 2022 AK121271 51/60

85
86 // events to be sent to client i
87 if (clientName1 != null && sendingChannelsMap.get(clientName1) != null
88 && sendingChannelsMap.get(clientName1).isActive()) {
89 wlock.lock();
90 try {
91 for (Event e : toSyncEvents) {
92 Pair<Channel, Event> p = new
93 Pair<>(sendingChannelsMap.get(clientName1), e);
94 if (!events.contains(p)) {
95 events.add(p);
96 }
97 }
98 if (events.size() > 0) {
99 Out.println("number of files to be sent: " + events.size());
100 }
101 } finally {
102 wlock.unlock();
103 }
104 }
105 }
106 }
107 } catch (Exception e) {
108 Out.println("SERVER ERROR: during compairing the status files");
109 }
110 }
111 }
112 }

Listing 6.15: Class StatusFileComparer

Client components

In this section, we will see the most important client components.

Enumeration ClientState

The client has the same server states, see Listing 6.16. WELCOME_RECEIVER state is to

welcome the receiving channel of the server. WELCOME_SENDER state is to welcome the

sending channel of the server. COMMANDS state is to receive commands from the server and

to organize the syncing process. DATA state is to receive files data. SENDING_FILES state is

to send commands and files to the server.

1 public enum ClientState {
2 WELCOME_RECEIVER, WELCOME_SENDER, COMMANDS, DATA, SENDING_FILES;
3 }

Listing 6.16: Modes in which the client can be found

Class History

This class is used by the client to save his status. In other words, the changes have been

performed on his files. This class needs just the status file path of the client, which is

passed to the constructor method. Listing 6.17 illustrates class fields, statusFilePath

12. December 2022 AK121271 52/60

represents the path of the status file of the client, and lock is used to handle thread

scheduling while writing into the status file.

1 public class History {
2
3 private final Path statusFilePath;
4 private final Lock lock;
5
6 public History(Path statusFilePath) {
7 this.statusFilePath = statusFilePath;
8 this.lock = new ReentrantLock();
9 }
10 . . .
11 }

Listing 6.17: Class History to manage the client status file

Class ReceivingHandler and class SendingHandler

Since the client should be able to receive from and send files to the server. It is necessary

to implement these two handler classes the same way like for the server-side. The

underlying ideas for these two handler classes are the same ones implemented in the

server. There are some differences. So, the received files on the client-side must not be

synchronized with all other clients. The client receives data only from the server and the

server receives data from all clients.

Class FileWatcher

This class is used by the client to monitor his folder registered to be synchronized. When

the client creates, modifies, or deletes any file stored in his monitored directory, the

FileWatcher creates an appropriate event. This event is pushed to the events queue to be

sent to the server by the client CommandSender. Listing 6.18 illustrates the implementation

of class FileWatcher. Let9s begin with the class fields:

terminate: is a boolean variable used to terminate the watching process when it is set to

true.

watcher: is a java watch service that watches registered objects for changes and events

[8]. The watcher is set in the constructor.

key: is a java watch key created when a watchable object is registered with a watch

service. When an event is detected, the key is signaled and queued so that it can be

retrieved by invoking the watch service's poll or take methods [8].

https://docs.oracle.com/javase/7/docs/api/java/nio/file/WatchService.html#poll()
https://docs.oracle.com/javase/7/docs/api/java/nio/file/WatchService.html#take()

12. December 2022 AK121271 53/60

fileFromServer: used to distinguish between files changed by the client or sent by the

server in the synchronization process, which don9t have to be watched.

fileTimeStamps: is a Map of <Path, Long>. It stores the last modification time for each

processed path as a long value. It is used to guarantee that at any time only one event will

be watched.

Method start is used to execute method watch in a new thread. Method terminate is

used to terminate FileWatcher by setting field terminate to true and closing the

watcher. Method setServerFile is used to set fileFromServer when the client

monitored directory is changed by the server. Method watch is used to watch the client

directory registered with the watcher. Map keysMap stores the keys of all registered inner

directories in the main client folder. In line (59) the watcher waits for changes. Method

pollEvents retrieves and removes all pending events for the watch key, returning a list of

the events that were retrieved. When registering an object with the watch service, you

specify the types of events that you want to monitor [8]. The standard event types are

ENTRY_CREATE, ENTRY_DELETE, and ENTRY_MODIFY. In all cases, a new event is created

and pushed into the events queue to be sent to the server by the client CommandSender. In

the finally block the watch key is reset.

1 private class FileWatcher {
2
3 private static volatile boolean terminate;
4 private WatchKey key;
5 private WatchService watcher;
6 private volatile boolean fileFromServer = false;
7 private Map<Path, Long> fileTimeStamps;
8
9 public FileWatcher() throws IOException {
10 this.watcher = FileSystems.getDefault().newWatchService();
11 this.fileTimeStamps = new ConcurrentHashMap<>();
12 }
13
14 public void startWatching() {
15 new Thread(() -> {
16 try {
17 watch();
18 } catch (InterruptedException | IOException e) {
19 Out.println("CLIENT ERROR: while watching client file system");
20 }
21 }).start();
22 }
23
24 public void terminate() throws IOException {
25 terminate = true;
26 watcher.close();
27 Thread.currentThread().interrupt();
28 }
29

12. December 2022 AK121271 54/60

30 public void setServerFile(boolean fileFromServer) {
31 rlock.lock();
32 try {
33 this.fileFromServer = fileFromServer;
34 } finally {
35 rlock.unlock();
36 }
37 }
38
39 public boolean isServerFile() {
40 wlock.lock();
41 try {
42 return fileFromServer;
43 } finally {
44 wlock.unlock();
45 }
46 }
47
48 @SuppressWarnings({ "unchecked" })
49 private void watch() throws InterruptedException, IOException {
50 key = folderPath.register(watcher, ENTRY_CREATE, ENTRY_DELETE, ENTRY_MODIFY);
51 Map<Path, WatchKey> keysMap = new HashMap<>();
52 keysMap.put(folderPath, key);
53 while (!terminate) {
54 try {
55 Event command = null;
56 boolean dir = false;
57 long oldFileModifiedTimeStamp = 0L;
58 long newFileModifiedTimeStamp = 1L;
59 key = watcher.take(); // blocking
60 List<WatchEvent<?>> watchedEvents = key.pollEvents();
61 for (int i = 0; i < watchedEvents.size(); i++) {
62 WatchEvent<Path> pEvent = (WatchEvent<Path>) watchedEvents.get(i);
63 Path relPath = pEvent.context();
64 Path dirPath = (Path) key.watchable();
65 Path filePath = dirPath.resolve(relPath);
66 if (!filePath.getFileName().toString().equals(".status")) {
67 dir = filePath.toFile().isDirectory() ? true : false;
68 oldFileModifiedTimeStamp = fileTimeStamps.get(filePath) == null ? 0
69 : fileTimeStamps.get(filePath);
70 newFileModifiedTimeStamp =
71 Files.getLastModifiedTime(filePath).toMillis();
72 if (!isServerFile() && newFileModifiedTimeStamp >
73 oldFileModifiedTimeStamp) {
74 Out.println("filePath = " + filePath);
75 Out.println("oldFileModifiedTimeStamp = " + oldFileModifiedTimeStamp
76 + "\nnewFileModifiedTimeStamp = " + newFileModifiedTimeStamp);
77 PathMatcher javaMatcher =
78 FileSystems.getDefault().getPathMatcher("glob:**.{*}");
79 if (pEvent.kind() == ENTRY_CREATE) {
80 if (javaMatcher.matches(filePath.getFileName())) {
81 command = new Event(filePath,
82 Files.getLastModifiedTime(filePath).toMillis(),
83 name, EventType.MODIFY, Files.size(filePath));
84 wlock.lock();
85 try {
86 if (!events.contains(command) && Files.size(filePath) > 0) {
87 events.add(command);
88 }
89 } finally {
90 wlock.unlock();
91 }
92 } else if (pEvent.kind() == ENTRY_CREATE && dir) {
93 WatchKey k = filePath.register(watcher, ENTRY_CREATE,
94 ENTRY_DELETE, ENTRY_MODIFY);
95 keysMap.put(filePath, k);
96 command = new Event(filePath,

12. December 2022 AK121271 55/60

97 Files.getLastModifiedTime(filePath).toMillis(),
98 name, EventType.CREATE, Files.size(filePath));
99 wlock.lock();
100 try {
101 if (!events.contains(command)) {
102 events.add(command);
103 }
104 } finally {
105 wlock.unlock();
106 }
107 }
108 } else if (pEvent.kind() == ENTRY_DELETE) {
109 for (Path p : keysMap.keySet()) {
110 if (!Files.exists(p)) {
111 keysMap.get(p).cancel();
112 }
113 }
114 newFileModifiedTimeStamp = System.currentTimeMillis();
115 command = new Event(filePath, newFileModifiedTimeStamp, name,
116 EventType.DELETE, 0L);
117 wlock.lock();
118 try {
119 if (!events.contains(command)) {
120 events.add(command);
121 }
122 } finally {
123 wlock.unlock();
124 }
125 } else if (pEvent.kind() == ENTRY_MODIFY) {
126 if (!Files.isDirectory(filePath)) {
127 command = new Event(filePath,
128 Files.getLastModifiedTime(filePath).toMillis(), name,
129 EventType.MODIFY, Files.size(filePath));
130 wlock.lock();
131 try {
132 if (!events.contains(command)) {
133 events.add(command);
134 }
135 } finally {
136 wlock.unlock();
137 }
138 }
139 }
140 fileTimeStamps.put(filePath,
141 Files.getLastModifiedTime(filePath).toMillis());
142 }
143 } else {
144 resetKey();
145 }
146 }
147 } catch (Exception cwse) {
148 terminate();
149 break;
150 } finally {
151 resetKey();
152 }
153 }
154 }
155
156 public void resetKey() {
157 if (key != null) {
158 key.reset();
159 }
160 }
161 }

Listing 6.18: Class FileWatcher on client-side

12. December 2022 AK121271 56/60

6.2.2. Server program

In this section, the server program implementation is illustrated. All server components

mentioned above are put together. This is done in method start in Listing 6.19. The

process starts with invoking all periodical tasks. Method startSendingCommands in class

CommandSender, which is responsible for sending the events that were pushed in the event

queue. Method startComparison in class StatusFilesComparer, which is responsible

for comparing the status files on the server. Method startDeleting in class

DeleteOldFiles, which is responsible for deleting the old version of synchronized files.

After that, the EventLoopGroups are created. Two server channels are created and

initialized. receivingChannel is responsible for receiving events and data from clients.

sendingChannel is responsible for sending events and data to the clients. The

ChannelPipeline of newly connected clients (child channels) is initialized with classes

ReceivingTimeoutHandler and ReceivingHandler. At the end, the receivingChannel

is bind with the port (PORT1: 5000) as can be seen (20). Method sync is called for waiting

until the binding process is completed. Method channel returns the desired

receivingChannel of the server. For the sendingChannel, the same steps are done. But

with SendingTimeoutHandler and SendingHandler. This channel is bind with the port

(PORT2: 5001). The program blocks (37). By typing any key, the program is terminated,

and the server channels are closed. In the finally block the EventLoopGroups are

shutdown.

1 private void start() throws Exception {
2 statusFilesComparer.startComparison();
3 commandSender.startSendingCommands();
4 deleteOldFiles.startDeleting();
5 EventLoopGroup bossGroup = new NioEventLoopGroup(1);
6 EventLoopGroup workerGroup = new NioEventLoopGroup();
7 try {
8 Channel receivingChannel = new ServerBootstrap()
9 .group(bossGroup, workerGroup)
10 .channel(NioServerSocketChannel.class)
11 .childHandler(new ChannelInitializer<SocketChannel>() {
12 @Override
13 protected void initChannel(SocketChannel clientChannel1) throws
14 Exception {
15 clientChannel1.pipeline().addLast("receivingTimeoutHandler",
16 new ReceivingTimeoutHandler(5));
17 clientChannel1.pipeline().addLast("messageHandler", new
18 ReceivingHandler());
19 }
20 }).bind(PORT1).sync().channel();
21
22 Channel sendingChannel = new ServerBootstrap()
23 .group(bossGroup, workerGroup)
24 .channel(NioServerSocketChannel.class)

12. December 2022 AK121271 57/60

25 .childHandler(new ChannelInitializer<SocketChannel>() {
26 @Override
27 protected void initChannel(SocketChannel clientChannel2) throws
28 Exception {
29 clientChannel2.pipeline().addLast("sendingTimeoutHandler", new
30 SendingTimeoutHandler(5));
31 clientChannel2.pipeline().addLast("sendingHandler", new
32 SendingHandler());
33 }
34 }).bind(PORT2).sync().channel();
35
36 Out.println("Server terminate by typing any key...");
37 In.readLine();
38 terminate();
39 receivingChannel.close().syncUninterruptibly();
40 sendingChannel.close().syncUninterruptibly();
41
42 } finally {
43 bossGroup.shutdownGracefully();
44 workerGroup.shutdownGracefully();
45 }
46 }

Listing 6.19: Server program

6.2.3. Client program

In this section, the client program implementation is illustrated. All client components

mentioned above are put together. This is done in method start in Listing 6.20. The

process starts with invoking all periodical tasks. Method startSending in class

CommandSender, which is responsible for sending the events that were pushed in the event

queue. Method startWatching in class FileWatcher, which is responsible for

monitoring the client file system. After that, an EventLoopGroup is created. Two client

channels are then created and initialized. sendingChannel is responsible for sending

events and data to the server. receivingChannel is responsible for receiving events and

data from the server. The ChannelPipeline of server channels is initialized with classes

SendingHandler and ReceivingHandler. At the end, the sendingChannel is connected

with the port (PORT1: 5000). For the receivingChannel the same steps are done. But it

is initialized with the ReceivingHandler. This channel is connected to the port (PORT2:

5001). The main thread of the program blocks in line (29). By typing any key, the program

is terminated, and CommandSender and FileWatcher are closed. In finally block the

EventLoopGroup is shutdown.

1 private void start() throws Exception {
2 SendingHandler sendingHandler = new SendingHandler();
3 ReceivingHandler receivingHandler = new ReceivingHandler();
4 EventLoopGroup group = new NioEventLoopGroup();
5 try {
6 Channel sendingChannel = new Bootstrap()
7 .group(group)

12. December 2022 AK121271 58/60

8 .channel(NioSocketChannel.class)
9 .handler(new ChannelInitializer<SocketChannel>() {
10 @Override
11 protected void initChannel(SocketChannel clientChannel) throws Exception
12 {
13 clientChannel.pipeline().addLast(sendingHandler);
14 }
15 }).connect(HOST, PORT1).sync().channel();
16
17 Channel receivingChannel = new Bootstrap()
18 .group(group)
19 .channel(NioSocketChannel.class)
20 .handler(new ChannelInitializer<SocketChannel>() {
21 @Override
22 protected void initChannel(SocketChannel clientChannel) throws Exception
23 {
24 clientChannel.pipeline().addLast(receivingHandler);
25 }
26 }).connect(HOST, PORT2).sync().channel();
27
28 Out.println("Client application terminate with typing any key...");
29 In.readLine();
30 commandSender.terminate();
31 fileWatcher.terminate();
32 sendingChannel.close().syncUninterruptibly();
33 receivingChannel.close().syncUninterruptibly();
34
35 } finally {
36 group.shutdownGracefully();
37 }
38 }

Listing 6.20: Client program

12. December 2022 AK121271 59/60

7 Conclusion

The synchronous blocking approach is not effective for client-server models due to

waiting times for responses, thus resulting in waste of resources and reduction of

performance. In contrast, the asynchronous non-blocking approach is more efficient,

especially for request/response models, where the response time, the performance, and

the utilization of the resources are very important.

Synchronization of files and keeping a history of changes are critical parts of any cloud-

based file synchronization system. This thesis has described an implementation of a

simple file synchronization system based on the Netty framework. Netty is a Java

framework based on Java NIO network communication protocol. Which allows an

asynchronous non-blocking input and output. The Netty framework is used for

developing of maintainable high-performance client-server systems. It provides an

architecture, which separates the business logic from the network logic of applications.

Netty also provides the possibility to separate the tasks of processing incoming and

outgoing data into several stages, which contributes significantly and maximizes code

reusability.

The main goal of the thesis was the analysis and evaluation of the Netty non-blocking

approach for the implementation of client-server systems. As a case study for evaluation,

a file synchronization system has been implemented. This system is a client-server

(request-response) model. The files changed by any client are stored on the server storage.

After that, the server synchronizes these files with the rest of the clients. This system has

the ability to recognize the conflict cases, that occurs when two or more versions of the

same file have to be synchronized at the same time. The case study has shown that Netty

is an effective and convenient Java framework for the rapid development of client-server

systems.

12. December 2022 AK121271 60/60

References

[1] <Khan, MD Ibrahim, et al. "Using blockchain technology for file synchronization."

IOP Conference Series: Materials Science and Engineering. Vol. 561. No. 1. IOP

Publishing, 2019=.

[2] <Tridgell, Andrew, and Paul Mackerras. "The rsync algorithm." (1996)=.

[3] <Z. Li, Z. Zhang and Y. Dai, "Coarse-grained cloud synchronization mechanism

design may lead to severe traffic overuse," in Tsinghua Science and Technology,

vol. 18, no. 3, pp. 286-297, June 2013, doi: 10.1109/TST.2013.6522587=.

[4] <Dropbox,= [Online]. Available: https://www.dropbox.com/features/sync.

[5] <S. Li, Q. Zhang, Z. Yang and Y. Dai, "Understanding and Surpassing Dropbox:

Efficient Incremental Synchronization in Cloud Storage Services," 2015 IEEE Global

Communications Conference (GLOBECOM), 2015, pp. 1-7, doi:

10.1109/GLOCOM.2015.7417235=.

[6] <Netty project,= [Online]. Available: https://netty.io/.

[7] Norman Maurer and Marvin Allen Wolfthal. Netty in Action. Manning

Publications, 2015. ISBN 9781617291470.

[8] <https://docs.oracle.com/javase/7/docs/api/java,= [Online].

[9] <TutorialPoint,= [Online]. Available:

https://www.tutorialspoint.com/software_engineering/software_requirements.htm.

[10] <Mendix,= [Online]. Available: https://www.mendix.com/blog/asynchronous-vs-

synchronous-programming/.

