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AntTracks, developed at the Institute for System Software at the Johannes Kepler University, is a
memory monitoring tool that is used to detect and analyze memory anomalies such as memory leaks.
Often, memory leaks are related to data structure misuse, e.g., programming errors leading to growing
data structures (such as lists, maps, sets, etc.). Yet, memory analysis tools are by default not aware of
the concept of data structures but only see the heap as an object graph, i.e., separate objects that
reference each other (thereby keeping each other alive). Since modern applications may contain more
than 100 million objects in their heap, analysis on the object level is often too fine-grained and complex.

The goal of this project is to automatically identify data structures in the heap, for example, to
automatically identify that LinkedList objects are data structures that internally consist of
LinkedList$Node objects that point to data objects. Such detected data structures can then be used
to perform less fine-grained analyses, instead providing a more top-level view of the memory behavior
of the application. It is not a goal of this thesis to develop new analysis approaches bases on detected
data structures.

To become familiar with automatic data structure detection, the student should thoroughly explore and
summarize existing literature on data structure detection and aggregation. Existing approaches often
classify heap objects based on their roles in data structures, such as “recursive backbones” or “array
backbones” (for example “Patterns of Memory Inefficiency” by Chis et al., https://doi.org/10.1007/978-3-
642-22655-7_18 and various work by Mitchell et al.). Yet, such approaches often rely on external
information which tells them, for example, where data structures start, i.e., which objects are “data
structure heads” (for example *“Analyzing Growth Over Time to Facilitate Memory Leak Detection” by
Weninger et al., https://doi.org/10.1145/3297663.3310297).

The thesis should contain a comprehensive presentation of existing approaches, discussing their
similarities and differences. Based on these observations, the student should devise at least one own
novel detection algorithm that focuses on not relying on external information. The algorithm should use
suitable heuristics to decide where data structures start, which other objects are “internal” parts of the
data structure, and where data structures end. Ideas for such an algorithm should regularly be
discussed with the supervisor. Finally, the algorithm should be implemented as a prototype in AntTracks
to show its feasibility and applicability.

The thesis should present how the new algorithm works in general, and which kinds of data structures
can be detected with it. More specifically, corner cases should be discussed. For example, the thesis
should highlight how the devised algorithm behaves when deciding which object is a data structure
head (for example, in Java, a HashSet internally contains a HashMap to store its data, and existing
approach often detect the HashMap as data structure, but not the overall HashSet). Also, the thesis
should present how the algorithm handles data structures that are contained in other data structures
(such as a HashMap that in turn contains ArrayLists as values).

Modalities:

The progress of the project should be discussed at least every three weeks with the advisor. A time schedule and
a milestone plan must be set up within the first 3 weeks and discussed with the advisor and the supervisor. It
should be continuously refined and monitored to make sure that the thesis will be completed in time. The final
version of the thesis must be submitted not later than 30.09.2022.



Abstract

Memory is one of the most important and limited resources for developers. Data structure
detection is used by developers to either discover memory inefficiencies or to gain a better un-
derstanding of complex run-time interactions. In order to comprehend inefficient or consistently
crashing software behavior, the most straightforward approach is to directly examine the mem-
ory’s activity. Existing approaches utilize additional knowledge, such as dictionaries including
data structure heads, to be able to detect data structures. It follows that, in order for the
approaches to work as intended, mentioned information needs to be included. This makes the
process more tedious and less flexible. In this thesis, we present an approach for automatically
detecting data structures without the need for additional knowledge. We based our approach on
similarities and differences we found in related work. However, we also addressed some short-
comings that existed in these approaches. Eleven data structure-specific functionalities called
roles were introduced to fully and accurately describe data structures. These roles were created
to identify common structures as well as unique cases that the current were unable to do without
the help of the additional information. The entire approach is outlined and explained in this
thesis and has also been implemented as a prototype in AntTracks[19], a memory monitoring
tool, to demonstrate its feasibility.



Kurzfassung

Arbeitsspeicher ist einer der wichtigsten, aber auch einer der beschrinktesten Ressourcen fiir
Entwickler. Die Datenstrukturerkennung wird von Entwicklern entweder genutzt, um Speicher-
ineffizienzen zu entdecken oder um ein besseres Verstdndnis fiir komplexe Laufzeitinteraktionen
zu erhalten. Der einfachste Weg, um ineffizientes oder wiederholt abstiirzendes Softwareverhal-
ten zu verstehen, ist die Aktivitdten des Speichers direkt zu untersuchen. Existierende Ansétze
nutzen zusédtzliche Informationen, wie beispielsweise Listen mit Datenstrukturképfe, um Daten-
strukturen erkennen zu kénnen. Damit der Ansatz wie vorgesehen funktionieren kann, miissen
diese genannten Informationen erstellen und eingebunden werden. Dies macht den Prozess lang-
wieriger und weniger flexibel. In dieser Bachelorarbeit stellen wir einen Ansatz zur automa-
tischen Datenstrukturerkennung vor, der auf keine zusétzlichen Informationen angewiesen ist.
Unser Ansatz basiert auf Ubereinstimmungen und Unterschiede, die wir aus #hnlichen Arbeiten
entnommen haben. Jedoch wurden auch einige Schwéchen dieser Ansétze behoben. Die Ein-
fiihrung von elf datenstrukturspezifischen Funktionalitdten, auch bekannt als Rollen, ermdoglicht
eine umfassende und prézise Beschreibung von Datenstrukturen. Diese Rollen wurden entwickelt,
um sowohl allgemeine Strukturen als auch spezifische Einzelfélle zu identifizieren, die bisher ohne
zusétzliche Informationen nicht erfasst werden konnten. Die vorliegende Bachelorarbeit enthélt
eine umfassende Beschreibung und Erlduterung des gesamten Ansatzes, der auch als Prototyp
in AntTracks[19], einem Tool zur Speicheriiberwachung, implementiert wurde, um seine Mach-
barkeit praktisch zu demonstrieren.
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1 Introduction

Memory is a crucial resources in modern times. Depending on the size and complexity of the
software, there tends to be an increase in memory usage. The heap stores all live objects that
are needed for the software to function. In fact, many tens of millions of objects are stored
in memory for any sizeable program. Hence, it is very important to use memory as efficient as
possible. Yet, unintentional memory inefficiencies introduced by developers lead to an increase in
usage. Such inefficiencies are difficult to uncover because they require knowledge of how objects
are managed at run-time [11].

The easiest way to comprehend what happens in an application is to look at the heap state.
It shows which objects are stored without having to understand all of the operations in the
program itself. Detecting the underlying structure of heap objects would greatly aid in removing
these inefficiencies. For starters, it would allow us to view the heap by grouping and expressing
the enormous amount of objects depending on their structure. This visual representation would
aid in the discovery of problems or inefficiencies, or act as a starting point for problem-solving
[2, 5]. The question now is how to find these inefficiencies among the millions of nodes stored in
the heap. The solution lies is data structure detection.

The operation begins by collecting all of the heap objects used by the application into heap
traces or heap dumps. The only difference between them is that a heap dump contains the heap
state at a single point in time, while the heap traces contain heap state over a period of time
[9, 20]. In any case, the most important information we can get from from any object is a unique
ID, a type name, and the references the object has to other objects. This allows us to identify
the data structure (DS) that these objects are a part of or define.

Two main concepts are currently applied for data structure detection. The first one consists of
creating a domain-specific language (DSL) [20]. This DSL is then used to create definitions that
describe all the data structures contained within the program. This method’s main advantage is
that it is accurate as long as the desired DS definitions are provided. Needing a definition also
makes this approach adaptable. No matter what DS is written or used, even if it is a framework,
a fitting definition can be provided. At the same time, this also creates the biggest drawback.
Without any definition, this method is not able to identify any structural elements. The second
approach, is an automatic detection, that uses structural information to assign roles to a object.
We will discuss this in more detail in Section 3. As this approach relies on various heuristics
to decide the roles, it is also less accurate in its detection than the previous approach. One
significant disadvantage of the current automatic approaches is that they depend on additional
knowledge, such as a dictionary containing the names of the data structure heads, to define the
start of an DS or to be able to handle corner cases. The main benefit is that it can detect data
structures automatically, not needing the clear definition of all the classes, but it also comes with
the drawback of reducing the accuracy.

As a result, both the existing DSL and the automatic concepts of data structure detection
rely on the use of additional information. This is especially troublesome in the case of automatic
data structure detection, as classes from frameworks or custom-made ones would be unable to
be discovered because they would require additional knowledge. Thus, we created a general
approach that does not rely on any additional information. This approach could be easily imple-
mented in a variety of memory analysis tools. By doing that, the user experience would improve



as no additional information needs to be created and entered for data structure analysis. The
implementation into other memory analysis tools would also not limit or change the function-
ality of the analysis tools itself. This feature is crucial as it helps memory analysis tools create
clear visualizations of memory usage and identify the reasons behind memory inefficiencies. For
example, with the help of data structure detection, we know what objects are part of the DS as
well as what roles they play within them. With that information, we could calculate the over-
head of the DS. A data structures overhead is based on how many objects contain genuine data
compared to how many objects are need internally to build the DS [14, 4]. This lets developers
make appropriate changes to the given DS to fix the memory inefficiency|2, 5].

The contributions of this thesis are:

e An in-depth summary of existing detection approaches, including their functionality, roles
that are used for data structure detection, as well as their application to a running example.

e The identification of similarities and differences between existing approaches, as well as the
overall flaws they contain.

e A thorough description of our automatic data structure detection approach, including the
roles, their assignments, the complete pseudo code, and testing procedure.

The thesis is organized as follows: Section 2 gives important background information for our
work as well as an introduction to the running example used in this thesis. Section 3 discusses
existing approaches, in particular how they function and how they detect data structures in the
running example. Additionally, the section also includes similarities and differences between the
approaches, along with their general problems. Section 4 thoroughly describes our approach in
all its parts. Section 5 outlines possible future work, and Section 6 concludes the thesis.






2 Background

This section provides a thorough explanation of the fundamental concepts and theories that serve
as the foundation for this thesis.

2.1 Memory Inefficiencies

There are a wide variety of memory inefficiencies. However, certain inefficiencies, such as churn!,
are not observable using memory structural information alone. So, we will focus on the two kinds
of inefficiency that can only be found by looking at structural information: Memory bloat and

memory leaks.

Memory bloat is defined as a sudden increase in memory usage due to unnecessary memory
usage [15], as showcased on the left hand side of Figure 1. In most cases, this happens when
data structures have a large overhead. Ouverhead is a substantial difference between the number
of data-containing data structures and the overall objects. In other words, the structure takes
up a lot more memory than the data itself does. Changing the DS to one that can store them
more efficiently is the best method to address memory bloat.

Memory Memory
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Figure 1: Memory consumption of Bloat and Leak.

Memory leak is the other type memory inefficiency. A memory leak is a steady rise in the
amount of memory being used due to objects being kept alive that are not needed anymore
[16], as seen on the right hand side of Figure 1. The cause most often is that there exists a
garbage collector that automatically collects memory objects that are no longer kept alive by
so-called garbage collection roots [1]. Objects that are directly or indirectly referenced will not
be collected. An example for garbage collection roots are static or local variables. A memory
leak is caused by those objects that are needlessly kept alive. They can be found by examining
if objects point to empty values such as null. The developer must then either change how the
object is declared or release it when it is no longer needed.

IMemory churn is time-specific. It describes high-frequent allocation of objects shortly followed by their
deallocation. For example, creating objects inside a loop that are collected before the loop ends.



2.2 Object Reference Graph

In the introduction, we mentioned that heap traces and heap dumps offer all the information
needed for data structure detection. The most crucial information they provide is [7]:

e a unique ID: This ID is very important, as there are many objects of the same type.
Without it, we could not distinguish between these objects.

e a type name or class name: Current detection algorithms make use of the type name
to increase detection quality. It is also needed to help the user identify which type of data
structure is causing memory inefficiencies or occupying the memory.

e references to other objects: References to other objects are required for the construction
of an object reference graph. They reveal the interactions between objects within a data
structure and aid in program understanding [21].

Moreover, there is a handful of other information that is provided for every object, such as its
size or memory address. These can also be used, but they are significantly less essential than the
three information types stated above. However, an important question still remains: how can we
combine this information in an meaningfully way to be able to use heuristics on it? The most
common solution comes in the form of the object reference graph. One of the first occurrences
was by Zimmermann and Zeller in the paper, Visualizing Memory Graphs [21].

The basic idea behind the Object Reference graph is that each object represents a node in
the graph, and every reference is an edge to another node. This creates a directed graph that
shows all the information provided. It is worth mentioning that not all objects in memory that
are collected are necessarily linked with each other. As a result, the graph is not a connected
graph. Additionally, the graph is not a flow graph, which means that there is no dedicated root
node from which all other nodes can be reached.

The object reference graph also has some shortcomings. One of the most noticeable ones is
that the structure can be quite complicated. Because nodes can contain multiple edges, including
back edges, it makes it challenging to traverse the graph.

2.3 Dominator Relation

Many current approaches rely on the extremely helpful concept of the dominator relation [8]. It
establishes a hierarchy between the nodes by defining the following two rules [18, 3]:

e (strict) Dominator: a node d dominates a node n iff for every path (from the start node)
d must be visited to reach n. Additionally, node d and n can not be the same node.

e Immediate Dominator (idom): a node i dominates n but does not dominate other
nodes that dominate n.

Furthermore every node, except the artificial starting node (GC roots), has exactly one immediate
dominator.



These two rules are very powerful and can therefore be quite confusing. It is more easily
explainable with an example. In Figure 2, we can see an object reference graph and the cor-
responding dominator tree. The node @ represents the Start node, or more precisely, in this
case, the artificially added root node of the graph. Using the dominator rule, we see that to
reach any of the other nodes @ through @ we need to visit @ Therefore, @ dominates all
the other nodes of the graph. Now @ is the idom of of @, @ and @ For nodes @ and @
this is obvious, as from every path of the start node, to reach them the path needs to go through
@. In addition, it also does not violate the second part of the rule as it does not dominate @
On the other hand, for @ it may not be that understandable at first glance. However, when
we consider that @ can be reached by either @ or @, they both disqualify from dominating
the node. This means that the only node that can still fulfil these conditions is @ for the same

reason as with nodes @ and @ The rest of the nodes follow the same logic, leading to our
complete dominator tree.

With that the dominator relation creates a directed tree. This is helpful because eliminating
the back edges makes it easier to traverse. At the same time, it also rearranges the structure of
the object reference graph, removing important structural information. As we saw in our last
example, @ in the object reference graph never directly refers to @, but in the dominator tree,
it does. Data structure detection may be impacted by these reorganizations and the elimination
of back edges. However, in addition to converting a graph to a tree, it also offers another useful
feature, particularly in the context of memory analysis. When we take our example nodes to
represent parts of a data structure or the data structure itself, the dominating node owns the
nodes below. Since @ dominates @ it also implies that @ has ownership over @, indicating

that if @ is collected by the GC, @ will be collected as well [1, 6].

Object Reference Graph Dominator Tree

909 :> @

Figure 2: Object Reference graph to dominator tree.




2.4 Data Structure Roles

A (data structure) "role" is defined as a label provided to objects? depending on their specific
purposes. The label Primitive Array can, for example, be assigned to any object that contains
primitives of the same type. Additionally you could also introduce a role Container that requires
the object that should receive the role to point to an object assigned the Primitive Array role.

Any role can be assigned to an object or to a node within an Object Reference Graph or
Dominator Tree. Essentially both have the same meaning as in this case, any node serves as
a representation of the heap object itself. The concept or roles, is important because it helps
to identify other objects referred by the role-labeled object or that refer to objects labeled with
a specific role. Each approach provided in this thesis has its own definitions and names for an
assortment of roles. Some crucial concepts remain the same or have just minor differences, but
others are unique to their approach.

2.5 Running Example

This section introduces a running example. We will use the running example to demonstrate
each existing approach as well as our own. Applying different approaches to the same example
helps to better understand each technique. As they can be compared via the result, further
similarities, differences, benefits, and drawbacks can be seen. Additionally, we included as many
edge cases as we could without making the example too difficult to comprehend. The edge cases
are interesting because they highlight faulty behavior in some of the approaches.

The running example consists of very popular data structures included in the Java Collection
framework. Since most applications contain self-developed classes, we also provide custom classes
in the example. Therefore, three classes were implemented, each containing essential constructs.
The first class, called Company, is a basic class that will function as a container for other data
structures. The second class, Department, represents a custom recursive structure. The final
class, Employee, contains a primitive array as well as strings. These three classes cover the most
useful functions that any custom class will fulfill. For a better understanding of the example
construction, we also included some Java like pseudo-code for all the classes in Listing 1.

The setup of the example shown in Figure 3 is not designed to be efficient in terms of opera-
tion, space, or memory. Its primary goal is to include many standard programming structures.
In this specific example, we have a main container company that consists of an ArrayList and a
LinkedList. The LinkedList stores all the company’s employees. Each employee has a name and
an email that are both saved as strings. Additionally, the employee also contains a character
array containing the overall access rights. The companies ArrayList, on the other hand, contains
the departments of the company. Each department consists of a HashSet containing the employ-
ees that work in that department as well as a reference to another department they work with.

2That themselves can be a Data structure.



Additionally, we have also included the Dominator Tree of our running example, as shown in
Figure 4. The reason for its inclusion lies in the fact that some of the approaches we present in
this thesis utilize the dominator tree to identify data structures.
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Figure 3: Running Example of a Company.
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Listing 1: Running Example Code

class Company {
ArrayList<Department> departments;
LinkedList <Employee> allEmployees;

}

class Department {

HashSet<Employee> departmentEmployees;
Department associatedDepartment ;

}

class Employee {
String name;
String email;

char [] accessRights;
}
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Figure 4: Dominator tree of our Running Example.







3 Existing Approaches

Before discussing the current methods, we wanted to briefly touch on two key components of
any detection. That is the detection of array elements and recursive elements. Both of them are
determined in the same way in every approach that we will present (even our own).

Arrays are identified by their type, which follows the format elementType[]. They can
contain either primitives of the same type or reference objects/instances of the same type. We
often differentiate between primitive and reference arrays. Primitive arrays exclusively store the
language-defined primitive data types’ values directly in memory. On the other hand, reference
arrays store only the references to objects in memory.

The recursive nodes, on the other hand, are identified by checking if the node contains a
reference to an object of the same type as itself. This rule is effective for any kind of recursive
data structure. Both can be seen below in Figure 5.

Array Recursion

Data Structure
Head Object

O Simple Object

Figure 5: Memory representation of recursive structures and arrays.

Array

These two components are important as the combination of them is nearly contained in any
other DS.
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3.1 Data Structure Health

This approach by Mitchell et al. [13, 14] focuses on determining the health of data structures
i.e., they provide a variety of heuristics and metrics to determine and compute memory bloat in
data structures. The identification of data structures is essential in order to accurately assess
the memory overhead of data structures.

Four roles were developed for this approach. The first two roles are quite self-explanatory, as
they both were already described at the beginning of Section 3. One would be the Array role,
which is assigned to every reference array. The other would be the Entry role that is given to
recursive structures. The next one is the Head role, which is used with objects that point to
either to primitive arrays or to Array/Entry roles. Primitive arrays themselves are not marked
as primitive or Array but instead are defined by the role of its immediately dominating node.
The Head role denotes the beginning of a DS, with the nodes below being part of that DS. The
last role is referred to as Contained. It serves as a general role for all the nodes that were not
given a role.

They start their data structure detection approach by creating a spanning forest from the
object reference graph. This forest is based on the dominator relation, thus also gaining all the
benefits that we already mentioned. Furthermore, each spanning tree in the spanning forest is
a proper dominator tree. Now, the roles can be applied inside each dominator tree to start the
data structure detection. To ensure that roles are assigned correctly, there is a role hierarchy
(Array , Entry) > Head > Contained. That means that the Array and Entry roles are assigned
first, then the Head, and lastly, the Contained role.

Figure 6 shows the result of the data structure detection approach. It is worth to mention
that we created a dominator tree out of the running example and mapped the results back to
the original object reference graph. Most of the things we see in the figure are predictable, with
only a few unexpected assignments. One of them is the Company class being identified as a
Contained node. This is easily understandable when we look at the rules of the roles. Another
example we would have seen, if no additional knowledge was used, was that the HashSet would
also be detected as Contained. However, in the actual implementation, the authors note that
each class from the Java Collections framework has been added specifically so that it would be
appropriately assigned the best fitting role. The last thing that is interesting to mention is that
Name and Email nodes are both counted as the head of a DS.

After a complete DS has been identified, each object is further examined to determine how
many primitives, headers, pointers, or null pointers it contains in order to improve the bloat cal-
culation. We will not go into more detail, as it is no longer part of the data structure detection
but part of the health calculation for the data structures.

12
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Figure 6: The Running Example identified by the Data Structure Health Approach.

3.2 Backbones

Nick Mitchell first introduced this strategy in his paper titled "The Runtime Structure of Object
Ownership" [10]. Its main objective was to create a condensed summary of the heap dump. This
swiftly produced report would state the most significant areas of the memory footprint in terms
of memory usage. Developers could then make use of this information to alter data structures in
order to reduce memory usage. Aside from that, it also aids in understanding how applications
behave during runtime. Thus, a large part of the paper is also about graph summerization, which
will only be mentioned briefly in this section.

This approach uses a wide variety of so-called graph edits which are algorithms that are
applied to the object ownership graph to simplify it. They are even used multiple times in a
certain order to achieve better results. They are specifically made to reduce huge numbers of
nodes into a few representative nodes. This resulting reduced graph is called the Ownership
graph. Each node of the Ownership graph is either a dominator tree of nodes or of other
dominator trees. The content within the trees can be summarized based on their assigned role.

13



The paper introduces the following six roles:

e Array backbone: Is assigned to any node that is a reference array. It describes the
horizontal growth of the DS.

e Recursive backbone: Is given to any node that is identified as recursive. It describes the
vertical growth of the DS.

e Non-Recursive backbone: Every node that lies sandwiched between Recursive back-
bone nodes.

e Container: The node that is above any other role is assigned the Container role. The
container is regarded as the main head of the DS. It implies that all the nodes below are
part of the DS that starts with the nearest container node.

e Container Sandwich: Similar to non-recursive, it describes nodes that lie on a path that
starts with a Container, Array, or Recursive role and ends with a Container node.

e Data: Marks every other node, mainly those directly referenced by a Recursive or Array
backbone. They dominate the actual data of the DS. For completeness this role also acts
as a safety role that is assigned to any node that was not given a node.

The general priority of the roles is (Array, Recursive) > (Container, Non-Recursive) >
Container Sandwich > Data. This approach also coined the term backbones. They are the key
parts of any DS, as they describe the parts of a DS that allow it to grow and shrink.

14
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In Figure 7, we have the corresponding running example (again mapped from the dominator
tree as the so called Dominator edit would create one). Some of the objects are identified as
expected. ArrayList and LinkedList are both recognized as a Container. The backbones are
also identified as they should be in our custom recursive class Department. The HashSet is where
we start to see some changes, compared to Section 3.1. Only the internal HashMap is identified
as a Container while the genuine head, the HashSet, is marked as a Container Sandwich node.
Finally, we can notably see that all of the other objects, namely Employee, Name, Email and also
our Company objects, have been assigned the Data role as there are no other heuristic present
to further identify them.

3.3 Container or Contained

The approach from Chris et al. [4] is also mainly focused on using data structure detection to
remove memory inefficiency. This is done by detecting patterns in the heap that only present
themselves if memory inefficiencies occur. Finding and gathering patterns that met this criteria
was therefore a significant portion of their effort. The discovery of data structures that display

15



these patterns and their aggregation makes up the other essential component.

The method locates the head of a Java Collection class by using additional knowledge in the
form of a dictionary. As soon as a node is identified as the head, the nodes below are assigned
one of six roles.

The Container-Contained Transition role is first assigned to each recursive node. After
that, the role is also given to any reference array that does not point to a Container-Contained
Transition role itself. Every node that is pointed to by a Container-Contained Transition
node is now assigned as Head of Contained. On the other hand, nodes that point to reference
arrays or recursive objects are marked as Head of Container. Nodes that point to primitive
arrays are assigned the Points to Primitive Array role.

The last two roles are not explained in great detail by the authors. The first one, Collection
Implementation Details, is intended to identify nodes that belong to a Java Collection class.
A HashMap node, for instance, will point to an array of nodes of type HashMap$Node that,
in turn, contains all the data kept in the HashMap. This reference array would be regarded
as a collection implementation detail. However, the paper does not explicitly state whether
these collection implementation details are determined only through additional knowledge or
not. It is possible to construct fairly accurate approximations that would work for the Java
Collection framework. For instance, starting from the Head of Container/root node, all nodes
until a reference array or Container-Contained Transition object are marked as collection
implementation details.

The other role, Contained Implementation Details, is defined as everything else that is
contained in the Java Collection class that has not yet received a role. The complete role hier-
archy would look like this:

Container-Contained Transition > (Head of Contained, Head of Container) > Points
to Primitive Array > (Collection Implementation Details, Contained Implementation
Details).
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Figure 8: The Running Example identified by the Container or Contained Approach.

In Figure 8, we can see how our running example would be classified with the given heuristics.
There are some noticeable differences that we have not observed before. The first one is that for
the Employee node, we can see that it is assigned two colors. This expresses that the object was
assigned two different roles. The HashSet containing the HashMap is also only partly assigned
right, as the HashSet is considered the Head of Contained while the HashMap inside is consid-
ered Head of Container. Given their role definition it would be more appropirate to consider
the HashSet the both Head of Container and Head of Contained at the same time while the
HashMap functions just as an Head of Contained or even an Collection Implementation
Detail.

The last major difference we can see is that the Company node was not assigned any role
at all. This is to be expected, as the detection only starts with a Java Collection class. The
authors mention that this was specifically done so because their findings indicated that most of
the memory inefliciencies are closely related to ineffective use of Java Collection classes.
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3.4 Domain-Specific Language

The domain specific language approach was mentioned briefly in the introduction. But since it
differs greatly from the others, we felt the need to go into further detail about how it operates.

To begin with, the DSL is a core concept that needs to be developed. It needs to be able
to describe any kind of DS as well as its components. Furthermore, it should be able to mark
a construct as the head of the DS and allow representation of recursiveness. To demonstrate
how such a DSL would look like, we will use the one developed by Weninger et al. [20]. List-
ing 2 shows an example of how our custom classes as well as the LinkedList would be described as.

Listing 2: A DSL example describing all the structures of the running example.

DS Company {
java.util.Arraylist;
java.util.LinkedList;

DS Department {
java.util.HashSet;
Department;

DS Employee {
java.lang.String;
java.lang.String;
java.util.Arrays;

DS java.util.LinkedList {
java.util.LinkedList$Node;

java.util.LinkedList$Node {
java.util.LinkedList$Node;
(*) 5

The optional keyword DS marks the element as a data structure head. Following that is the
name including the complete path. After that, each of the enclosed data structures is listed in
between the curly brackets with its complete path, followed by a semicolon.
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The final element that is still used is the asterisk. It can be used as either a wildcard within
the name of a pointed type or if it is encapsulated in round brackets, it denotes a leaf? of any

type.

All this functionality fulfills the requirements for the DSL mentioned at the beginning. It
even has the added quality of life functionality such as wildcards and leaf nodes.

Now that the definitions are provided (for everything that should be detected), we come to
the data structure detection. This approach begins by identifying the DS heads using the type
information. It does not require heuristics as it can simply look up which types are considered
heads in the definition. After declaring a node as a head, it iterates recursively through each
pointer to determine whether it is still a member of the DS. As long as the pointed objects
overlap with the given definitions, it continues to assign them to the current DS. Also, if an
object is defined as a leaf, it is not only assigned but also marked as a leaf, which stops the
recursive descent. With that, all the nodes can be grouped into their respective data structures.

We excluded the running example from this approach since, provided the definition is stated
correctly, it always perfectly detects the data structures. In fact, this method of detection is
the most precise one. The requirement for definitions and the fact that detection is impossible
without them are the only real drawbacks.

3.5 Similarities and Differences

One of the core similarities we found in all the existing heuristic-based approaches was the
detection of arrays and recursive structures. They contain some very useful features that make
them essential. First of all, is that they are simple to detect. At the start of the Existing
Approaches Section 3, we showed how they are identified and this generally was the go-to way for
each approach. Furthermore, they are truly essential parts of any DS as they control horizontal
and vertical growth.

Even with the more complicated roles, there were some similarities between them. The node
above? any reference array or recursive structure is always assigned as the head of the DS. From
the perspective of general programming practices, it makes a lot of sense to be that way. Since
their main purpose is to hold other objects that a DS could use in an effective way, they are rarely
structures that stand on their own. It is also common to see roles that are a bit more generalized
that contain data or even data structures. Their precision varies in between the approaches. The
Backbone and Health approaches keep them extremely vague, not making a difference if the data
structures themselves are contained or not. The Container or Contained approach has more well-
defined definitions. It differentiates between external (Head of Container) and internal (Head
of Contained) structures. Additionally, it also identifies some basic objects or structures within
with the inclusion of roles such as Points to Primitive Array and Container/Contained
Implementation Details. It should be noted that the Health approach does a little bit of
extra identification too. It should be noted that the Health approach also includes some extra
identification between the objects, such as identifying primitive arrays. They do not, however,
assign these roles during data structure detection and only use them during bloat computation.

3]s regarded as a node that holds data and does not need further examination.
4The node that references to the current object that is also not an array or recursive structure
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Another interesting similarity between the approaches is the usage of the dominator relation.
Both the Health and Backbones approaches identify structures use the dominator relationship.
Interestingly enough, the Container or Contained approach, on the other hand, decided not to
use the dominator relation. They concluded that the benefits did not outweigh the drawbacks
particularly the decrease in detection accuracy.

3.6 General Problems

Generally, many of the approaches have the same shortcomings. The most notable one is the
reliance on additional knowledge. It is time- and effort-consuming to have to define all the data
structures that are used or at least keep a dictionary of their data structure heads. Even more so
when we think about how applications can have many different frameworks, libraries and custom
classes that also need to be defined.

Another notable shortcoming is that the detection is often done only on the basis of popular
framework classes. Not that it is done without a reason. In most cases, even custom classes will
include some types of framework classes that will have a majority of the saved data within them.
Even so, using a more broad strategy may not significantly alter the detection accuracy. Many
principles are embedded in the principles of object-oriented programming. Arrays and recursive
structures are the cornerstones of programming. It is very important to find heuristics that
explain their purpose and how they relate to the other nodes around them. A good example that
we could see by the results of the approaches we presented was that they all failed to properly
identify the HashSet containing a HashMap without using additional knowledge.

Lastly, Dominator relation-based methods also have a major weakness. Although it is fre-
quently employed to preserve unique ownership while simultaneously getting rid of back edges
and simplifying the graph to a tree structure. This simplification also has a huge drawback when
considering shared ownership. We provided an example of how shared ownership is handled in
Section 2.3. At first glance, this may not seem so significant. But when the primary means
of detection relies on structural indicators, this becomes problematic. Artificial connections are
formed between previously unrelated objects. While, on the other hand, genuine connections
are removed. This can cause a misinterpretation of how data structures truly interact with one
another. As a result, memory analysis tools in general become less accurate and could even
mislead the developer using them.
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4 Approach

The other main part of this thesis was the development and identification of roles that are able to

describe data structures. We analyzed the existing approaches and extracted important concepts

from them to develop our own roles.

4.1

Roles

We wanted to be able to assign one or more roles to each node that indicate their current function
while also providing more general information. Therefore, we created a total of eleven roles that

are split into basic and complex types.

The four basic types are:

Recursive: The Recursive role is assigned to any node that has a from or to pointer of
the same type as the node itself (one hop recursion).

Reference Array: Is assigned to objects that are reference arrays.

Transition: Is assigned to Recursive objects or Reference Arrays that do not point to
Recursive objects.

Primitive Array: Is assigned to nodes that are arrays containing the same primitive
types.

These four roles are extremely important as they build the backbones of data structures as
well as contain important information about where actual data begins.

The seven complex roles are:

MContainer: MContainer stands for main container and represents the stand-alone class.
Any node that is not referenced at all but references another node is assigned this role.

Container: The Container role represents a DS that either contains other data struc-
tures or data itself. In other words, it represents the head or the start of a DS. Nodes
that point to Recursive, Reference Arrays, IContainer, True Data, or even Container
nodes themselves are assigned this role. They have a further restriction in that they need
to be referenced by at least one other node.

IContainer: IContainer stands for intermediate container. It performs a similar function
to the Collection Implementation Details role from the Container or Contained approach.
Because it contains objects that are technically containers but are simply utilized as a
preliminary step. For example, a HashSet always directly contains a HashMap that contains
a reference array containing all the data. The data structure head is the HashSet, and
the reference array contains the data, but the HashMap itself is only an intermediate
structure.This role is assigned to every node that points to exactly one node of the type
Recursive, Reference Array, IContainer, Container, or True Data. Additionally, the
node itself has to be pointed to by only one other node.
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e HContainer: HContainer stands for head container and represents a more self-sufficient
DS. However, it is not entirely independent like the MContainer. It is assigned to nodes
that are referenced by Reference Arrays, Recursive or MContiner objects. Furthermore,
it has to have objects that it refers to that are not completely empty.

e EStructure: Empty structures are considered to be objects that cannot be identified
properly. Neither the nodes they reference nor the nodes they are referenced by give
further information on their purposes. They are quite literally an empty data structure.

e Container Impl. Detail: Container Implementation Details is a single node without
any other nodes to refer to. Additionally, it must directly be pointed by a node of the
container type, such as Container, IContainer, HContainer or MContainer or alterna-
tively, by Reference Arrays or Recursive objects. They are either objects that represent
commonly found data types (integer, string, etc.) or class instances.

e True Data: True Data, as the name suggests, contains the data that is stored in a DS.
This role is given to nodes that directly reference objects that are Primitive Arrays. It
should also only reference a single other node.

We found that these roles do a great job of describing data structures and all their parts.
They also provide a useful indicator of what the purpose of a DS is.

4.2 Role Assignments

It is hard to understand the roles completely by only seeing the basic definitions of the roles.
Therefore, we use this section to show how the detection approach would behave step-for-step as
well as what the priority hierarchy of the roles looks like. Additionally, we have put the entire
algorithm as a pseudo-code for better understanding in Listing 3. For the sake of code readability
in this example, we did not include filtering of the to and from pointers. Specifically, self-pointers
and null-pointers need to be filtered as they do not provide any meaningful information.

We start off by checking if the node should be assigned a basic role. Recursive and Reference
Array roles have the highest priority as they are the backbone of data structures. Primitive
Arrays are also in the same priority ranking as there is not much difference between their
detection approaches. However, the Transition role is slightly below the other in terms of
priority as its detection relies on the backbones already being detected. (Recursive, Reference
Array, Primitive Arrays) > Transition.

In Table 1, we see some examples that are expected to receive these roles.

Recursive LinkedList$Node,
Transition | HashMap$Node,Department
String]], ine[]]
Referance Array HashMap$Node[], Thread[], Hashtable$SEntry]]
Primitive Array char|], int|], boolean]|, double||

Table 1: Common examples of basic roles
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If the node is not a basic role, we know that it must be a complex role (Line 32-34). Therefore,
all the roles the node references are being identified recursively to see what type of complex role
the node should be assigned.

The complex roles are all of less priority than the basic roles. Of the complex roles, the
highest priority is given to the MContainer role. It only needs to check that it is never referenced
but contains references to other objects of any kind (Lines 44-46). The next steps in terms of
ranking would be the Container, True Data, and the IContainer roles. Their detection relies
on the existence of the basic roles. Nodes that have referenced nodes that are either Recursive,
Reference Arrays, IContainer, Container, True Data or ContainerImplDetail are assigned
either the Container or IContainer role. As long as they are exactly referenced by one node
and only reference one other node, they are considered an IContainer. If it does not fulfill that
condition, they are assigned the Container role (Lines 49-61). The True Data role is assigned to
nodes that reference an object of the type Primitive Array but also only that one object (Lines
63-65). If it references multiple objects and only one of those is considered a Primitive Array,
they are assigned the Container role instead (Line 67). Finally, if the referenced nodes cannot
be identified or are identified as an EStructure, we also assign the current node the EStructure
role (Line 70-78).

Now that we have extracted the maximum amount of information from the referenced nodes,
we try to gather information from the objects that refer to our current node. If the current
node was not given a role until now, we gather all the basic roles from the nodes above (Lines
83-88). Otherwise, we gather all the roles from the nodes above. Now that we have them, we first
find HContainer nodes. If the object is referenced by either Recursive, Reference Array, or
MContainer objects, the current node receives the HContainer role (Lines 91-94). Additionally,
we want to mention that the current node should not be of type True Data or EStructure.

The final role we can assign is the Container Impl Detail Role, which is given to the
current node if it is referenced by either a MContainer, IContainer, HContainer, Container,
Reference Array, or Recursive role. In addition, the node is not allowed to reference any other
node. If everything is fulfilled, the current node is assigned the Container Implementation Detail
and HContainer or EStructure roles are removed if they exist (Lines 97-104). The roles are
saved with the correct id as the final step, so they can be reused if the node is mentioned again
in the future (Line 108). A listing of the general role hierarchy is not clearly definable due to
the recursive nature.
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Listing 3— Pseudo-code for the whole role assignment algorithm

function getBasicRoles (heap, id){
toPointers = heap.getToPointers (id)

if (detected recursion){
return (Recursive, Transition)

}

if (detected reference array){
if (toPointers OF id IS Recursive){
return (RefArray, Transition)

}

return RefArray

}

if (detected primitive array){
return PrimitiveArray

}
}

function getRoles(heap, id, stops){
if (id IN processed){
return processed[id]

}

if (id IN stops){
return

}

stops.add (id)
roles.add(getBasicRoles (heap, id))
if (roles.size IS 0){

toPointers = heap.getToPointers (id)
toNodeRoles = for point

IN toPointer

CALL getRoles(heap, point, stops)

fromPointers =
heap.getFromPointers (id)

if (fromPointers.size IS O
AND toPointers.size IS 0){
roles.add (MContainer)

}

if (toNodeRoles IS Recursive
OR RefArray OR IContainer
OR Container OR TrueData
OR ContainerImplDetail){

if (fromPointers.size IS 1
AND toPointer.size IS 1

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
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88
89
90
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92
93
94
95
96
97
98
99
100
101
102
103
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AND heap.getToPointers (
fromPointers [0]).size IS 1){
roles.add(IContainer)

Yelseq{

roles.add(Container)

}

}else if (toNodeRoles IS PrimitiveArray){
if (toPointers.size IS 1){
roles.add(TrueData)

Yelseq{
roles.add (Container)

}

}else if (toNodeRoles.size IS 0
OR toNodeRoles.size IS 1

AND toNodeRoles IS EStructure){
roles.add (EStructure)
}

if (toNodeRoles IS EStructure
AND roles.size IS 0){
roles.add (EStructure)

}

fromNodeRoles = null

if (roles.size IS 0){
fromNodeRoles = for point IN fromPointers
CALL getRoles (heap, point, stops)
}else{
fromNodeRoles = for point IN fromPointers
CALL getBasicRoles(heap, point, stops)

if (fromNodeRoles

IS (Recursive OR RefArray OR MContainer)
AND roles IS NOT TrueData OR EStructure){
roles.add (HContainer)

}

if (fromNodeRoles IS MContainer
OR IContainer
OR HContainer OR Container
OR RefArray OR Recursive){
if (fromPointers.size IS 0){
roles.add(ContainerImplDetail)
roles.remove (HContainer)
roles.remove (EStructure)
}
}
}
processed[id] = roles
return roles



We did not include examples of what objects would be given what roles as it is very context
specific. For instance, a HashMap could be considered either an IContainer, HContainer, or
only a Container depending on the context. The Hashmap would be counted as an IContainer
if it fulfills only an intermediate role, most commonly in the form of a HashSet. On the other
hand, if it is part of a nested data structure such as a HashMap within a HashMap it would be
counted as an HContainer. Or if it was part of a class with other data structures within the

class, it would only receive the Container role. In either case, we include the running example

to be able to show how it would identify a specific example.

—> HM ——>

[:] Recursive D Container D MContainer

Reference Array Transition IContainer

D Primitive Array D True Data D HContainer

Figure 9: The Running Example identified by our Approach.
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In Figure 9, we can first of all see that every object was assigned a role. Some objects
even received multiple roles displayed in the form of a two color scheme. The Company object
received the MContainer as well as the Container role. In our example, the Company node
is a self-standing structure, explaining the MContainer role. The Container role is also ex-
pected as it contains two other Container nodes. The LinkedList is a Container, as it directly
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references Recursive (as well as Transition) nodes. The ArrayList and its content are also
self-explanatorily, but it gets interesting when considering the content of our self made recursive
class Department.

The HashSet was assigned both the HContainer as well as the Container role. However, the
HashMap inside it was only given the IContainer role. The reason is only an internal part of
the complete data structure, which is the HashSet. The final interesting part can be seen in the
Employee objects as they are assigned the HContainer and Container roles. As it is referenced
by Recursive nodes, the HContainer role is typical. The Container role is assigned as multiple
references to True Data exist. The Name and Email of the Employee are assigned as True Data
as they both only reference a Primitive Array(in this case char[]).

4.3 Benefits

Our main goal with our approach was to eliminate the general problems we mentioned for the
existing approaches. Therefore, we thought up roles that are able to identify data structures
that do not depend on additional knowledge or the dominator relationship. In this section, we
want to mention what features actually help in removing these shortcomings.

In the existing approaches, we see that the HashSet is either misidentified or only correctly
identified by using additional knowledge. This happens due to the special structure that a
HashSet has, as the genuine regarded head of the data structure only directly refers to another
data structure head, the HashMap. This fake data structure head will be referred to as a proxy
object. In fact, this proxy principle is quite common, with any class that should only change
a few properties of an existing data structure. Since proxy objects only have one reference to
and from another object, they can be identified solely based on structural data. Even shared
ownership does not change this heuristic, as the proxy object is not referenced in that case.
Either the node that directly references the proxy is shared or the nodes the proxy references
but never the proxy itself. In our approach, we introduced the IContainer role that represents
such proxy objects. The rules for its detection are also based on this defined proxy structure.

The other difficulty that the existing approaches had with detection was the Company class.
It is only a simple container class that does not have any specific data itself but only enhouses
other data structures. This is primarily due to the fact that the existing approaches use data
structure detection to identify memory inefficiencies. This missing correspondence can be ac-
cepted regarding how much aggregation is done. On the other hand, we went as far as possible
with the data structure detection to make it as complete as we could. Even if it is later aggre-
gated, this inclusion of extra roles such as the MContainer role can be helpful. Our roles are
typically much more fine-grained than those of others to allow for more defined data structure
detection. Of course, this has the disadvantage of being computationally intensive in contrast.
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4.4 Testing

We implemented a prototype in the AntTracks Analyzer [19] to aid in the development process
and demonstrate the feasibility of our approach.

Throughout the development process, we produced a number of quick Java applications that
provided edge-cases for our detection to be tested on. The workflow for these edge-case tests
was always the same. We can take the running example that was used throughout this thesis as
an example. Firstly, the basic Java classes such as Company, Employee, and Department were
developed. A method that generates test data is a further crucial part that must be included.

In the current example, this test data method creates multiple Employees, assigns them to
a Department. After that, it creates multiple Sub-Departments and Departments that can then
be assigned to the Company. The last step now is to create a main method and initialize and
generate the needed classes. As this is all written in Java, we are also able to call the garbage
collector with the System.gc(); command to ensure our instances are collected at an expected
point in time [6, 17].

Now that we have a functioning program, we are able to export the Java application as a
runnable JAR file. This file is then used in combination with the AntTracks VM [19] to generate
memory traces and encode them into a trace file. This trace file can then be opened by the
AntTracks Analyzer, which then provides the data needed to apply our approach.

The output that our approach generates is a text file where each line contains the object id,
type name, and the assigned role. Existing references to the object are printed directly below
with an indent to show their relationship. In addition, this pairing algorithm also prints shared
objects so the given roles can be understood more easily. The whole printing algorithm is a
simple recursive function that marks printed objects and is called for each referenced object.
By also determining if the printed object was assigned the Container or IContainer role, an
exception can be made when printing already printed nodes — in other words, shared data.

Nevertheless, we also included tests on a trace file created from the large-scale Dynatrace
easyTravel® application. A variety of selected and random objects were taken to apply our
approach to. Depending on the size of the result, we checked every object for correctness.

When there were too many objects or lines® to examine them all individually, we performed a
rough check of the overall assignment before moving on to check complex structures and complex
role assignments.

Overall, we were satisfied with the assigned roles and confirmed that they accurately portray
data structures. The only observation we made that would need further development in the
future was the case of auto-generated objects. Build-in Class Loaders are a prominent example
of such auto-generated objects. In the case of Java, they are created to dynamically load classes
into the Java Virtual Machine. In a sense, they obstruct the result, as they are not really
implemented by the developer but recognized as data structure heads. Detecting them without
additional knowledge is a difficult task and an interesting topic for further study.

Shttps://community.dynatrace.com/t5/Getting-started/easyTravel-Documentation-and-Download/td-p/
181271 (last accessed September 24, 2022)
6They can easily reach hundreds of thousands to millions of lines.
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5 Future Work

There were a couple of interesting ideas that were created while researching for and developing
this thesis.

The first would be the inclusion of metrics to increase data structure detection accuracy and
even rule out misleading or auto-generated classes such as class-loaders. Existing approaches still
use additional information to be able to remove these auto-generated classes from the detection.
It would also be a useful addition to our approach, because it currently cannot distinguish
between these artificial constructs and regular classes. The concept of these metrics came up
when reading a paper by Mitchell and Sevitsky [12] which used metrics to detect leaking data
structure heads. An adapted version particularly developed for these language specific constructs
would remove the need for additional knowledge. For example, class loaders typically contain
incredibly many references to other heads of data structures. The identification of these auto-
generated classes could also provide a good starting point to apply our approach to. As at the
current state, the only way to identify the whole heap state would be to begin at the GC roots.
Developing appropriate metrics for such features would require extensive research, as they would
also need to include class-loaders from frameworks or even custom-made ones.

The other aspect of the future work would be the complete integration of our approach
into memory analysis tools. Currently, we have only shown the feasibility with a prototype in
AntTracks [19]. Our implementation could be integrated using a number of tools, including
AntTracks, VisualVm’, and Eclipse Memory Analyzer®. In the integration process, a couple
of refinements would be applied to minimize the memory consumption of the application. For
example, switching from the map containing the roles of the processed nodes to multiple BitSets
for each role to save memory. It would also be useful to improve the efficiency of the approach
itself. Making the method parallel-processable using suitable algorithms, such as divide and

conquer, could accomplish this.

"https://visualvm.github.io/ (last accessed June 30, 2023)
8https://www.eclipse.org/mat/ (last accessed June 30, 2023)
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6 Conclusion

Data structure detection is used in a range of applications to help reduce memory usage and
provide developers with better insight into the applications’ runtime behavior.

Existing approaches rely on external knowledge such as dictionaries with class names, to
be able to detect data structures heads. This reduces adaptability and user experience as this
knowledge needs to be created and applied. To address these issues, we thoughtfully summarized
existing approaches and identified similarities / differences between them as well as their general
shortcomings. Using this information as a basis, we developed our own approach that only relies
on purely structural information. Our approach incorporates eleven roles that can exhaustively
define data structures and their individual components. They are directly identified in the Object
Reference Graph by recursively traversing references, completely removing the dependency on
the dominator relationship. In addition, we extensively discussed how these roles are identified
and assigned, providing the entire pseudo-code and a working example. The developed automatic
data structure detection approach has the benefit of not relying on external knowledge, which
makes it more general applicable as no definitions of frameworks, libraries, or custom classes
need to be provided. Popular algorithms, such as the dominator relation, were removed to create
more precise identifications.

With some efficiency improvements and additional logic for recognizing auto-generated ob-
jects, our approach could be applied to a variety of other memory analysis tools to provide all
of the benefits without sacrificing much detection accuracy.
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