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Abstract

A typical process of a compiler involves translating source code into an intermediate repre-
sentation, e.g. an Abstract Syntax Tree (AST). This intermediate representation can then be
further processed. However, the conversion from source code to an AST as well as how the
program is interpreted can be challenging to follow. This thesis addresses this issue by develop-
ing an AST interpreter and visualizing the corresponding program in its AST representation.
During compilation, the program is translated into an AST. For program execution, this AST
is traversed, with the interpreter embedded directly within the nodes of the AST. As the tree is
traversed, it is also translated to a graph description string. By visualizing this AST alongside
the source code, an interactive AST viewer is implemented, providing greater insight into how
an AST interpreter operates. In this thesis, an AST interpreter and visualizer for MicroJava,
a simplified version of Java, were implemented.



Contents 3

Contents

1 Introduction 5

2 Background 6
2.1 Abstract Syntax Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 CoCo/R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 DOT Language and Graphviz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 JavaFX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 MicroJava 10
3.1 MicroJava VM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Implementation 13
4.1 Node Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Expression Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 Leaf Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 UnaryExpr Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.3 BinExpr Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.4 Load Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.5 Allocation Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.6 Call Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Statement Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 Assignment Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2 BinOpAssignment Node . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.3 Block Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.4 Print and Read Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.5 CallStat Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.6 Return Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.7 ElseIf and If Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



Contents 4

4.3.8 While Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.9 Break Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.10 Semicolon Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Control Flow Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Attributed Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 JavaFX GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Demo 37

6 Conclusion and Future Work 41

Bibliography 44



Introduction 5

Chapter 1

Introduction

In today’s modern world, technology is advancing at a tremendous pace, expanding the selection
of programming languages. One language is MicroJava, a simplified version of Java used at
JKU for educational purposes. Like Java, MicroJava is typically compiled to byte code [1].
However, in a different approach, MicroJava will be compiled using an abstract syntax tree
(AST). The basis of the approach in this thesis is the book “Compilerbau” [2] by Hanspeter
Mössenböck. In his book he presents the approach of building up an AST based on source code
and traversing the tree to interpret the program directly without the usage of byte code. Such
a process can be complex and difficult to follow, particularly for those new to the field.

This thesis aims to address that issue. To create a compiler skeleton for MicroJava, the compiler
generator CoCo/R is used to automatically generate the scanner and parser. Along with a
semantic specification, the parser inserts the appropriate nodes for the corresponding code
segments to construct the AST. By traversing the entire tree, the AST generates a graph
representation, which is then visualized using Graphviz and JavaFX.

The following chapters are structured as follows: Chapter 2 introduces the background, includ-
ing existing concepts and frameworks. Chapter 3 provides an introduction to the MicroJava
language. Chapter 4 focuses on the implementation, particularly how the different types of
graph nodes were implemented. Chapter 5 demonstrates the entire implementation through a
usage example. Finally, Chapter 6 discusses the conclusions of this thesis and potential future
optimizations.
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Chapter 2

Background

For the implementation of the AST compiler, the interpreter and the visualisation of the AST,
some existing concepts and frameworks are used and will be presented in the following.

2.1 Abstract Syntax Tree

Abstract Syntax Trees (ASTs) serve as an intermediate representation of program code during
the compilation process and are also commonly used for visualization [3, 4]. In general, ASTs
simplify the process of analysing and transforming code by organizing it hierarchically according
to its syntactic structure. Each node in the AST represents a syntactic element of the source
code, such as variables, operators, or control structures (like loops and conditionals). The tree
structure reflects the nesting and ordering of these elements in the code.

The AST can be created by defining a fixed order of priory. The lowest priority is the outermost
node and the deeper it is nested, the higher is the priority. The expression a = b+c, for example,
can be expressed as an AST as shown in Figure 2.1. The lowest priory has the = sign, which
assigns the left child a with the result of the right child. The right child + is the parent of b

and c which applies the operator on these child nodes. So, at first, addition must be executed
before the assignment can be done, which preserves the order of execution.
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=

a +

b c

Figure 2.1: AST resulting from the statement a = b + c

2.2 CoCo/R

CoCo/R [5] (a compiler compiler that generates recursive descent parsers) is a compiler gener-
ator originally developed by Hanspeter Mössenböck. As shown in Figure 2.2, CoCo/R takes an
EBNF-grammar as compiler description and automatically generates the foundational structure
of the scanner and parser.

The resulting structure can verify the lexical and syntactical correctness of an input program.
However, it is not yet capable of interpreting the code or checking for semantic errors, as
these aspects heavily depend on the specific language specification. To achieve the desired
functionality, CoCo/R must be attributed. This can be done by not only providing an EBNF-
grammar as input, but an attributed grammar (ATG) [6]. These specifications are formalized
in an .atg file. The atg file used in this thesis is referred in Section 4.5. A detailed explanation
of CoCo/R is available in the user manual [7].

Figure 2.2: Description of CoCo/R [7]
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2.3 DOT Language and Graphviz

The DOT language is a plain-text graph description language [8]. It allows users to define
graphs, nodes and edges, specifying their properties and relationships. DOT supports directed
and undirected graphs. An example of a DOT specification of a directed graph is shown in
Figure 2.3a: Various properties can be defined like background colour, shape of nodes, and
custom label names for nodes. Edges are declared in lines 2 to 4, whereas nodes and their
properties are written in lines 5 to 8.

To draw such a DOT graph, Graphviz can be used. Graphviz is an open-source graph visualiza-
tion software tool that generates visual representations of graphs based on graphs specification
in the DOT language format. It comes with several layout engines and allows to export the
resulting graph in various output formats [9]. Applying Graphviz to the DOT specification
example in Figure 2.3a results in the graph in Figure 2.3b.

1 digraph G {
2 A -> {B, C}
3 B -> {C, D}
4 C -> D
5 A[shape=rectangle , style=filled , fillcolor =green]
6 B[shape=diamond , style=filled , fillcolor =red]
7 C[shape= pentagon ]
8 D[label=" custom text"]
9 }

(a) Example graph in DOT language

A

B

C

custom text

(b) Resulting graph

Figure 2.3: DOT example and its resulting graph generated by Graphviz

2.4 JavaFX

JavaFX is an open-source client application platform for desktop built on Java and is the
standard for building an interactive GUI interface in Java [10]. The concept of JavaFX is
based on a scene graph. Every element of a JavaFX application is defined as a node. By
appending a JavaFX element to another element, a graph hierarchy is built. One of many
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elements are for example buttons, text fields or image viewers. Each of those elements can
handle various events like detecting key strokes or mouse clicks. On those events functions can
be called to achieve interactive logic. Though it is possible to build the scene graph entirely
by hand in source code, external visualization tools like SceneBuilder can be used for designing
the application [11]. Figure 2.4 illustrates a basic GUI of a JavaFX application. The root node
is a VBox, which arranges its child nodes vertically within the scene. In this example, a Label,
a Button and a TextField are added to the VBox.

Figure 2.4: Basic JavaFX GUI with four elements
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Chapter 3

MicroJava

MicroJava is a lightweight version of Java used to teach the fundamentals of compiler design.
It shares many similarities with Java, including the use of byte code and a virtual machine
for execution, but it simplifies several aspects to make it easier for beginners to grasp. It is
mainly used for educational purposes at Johannes Kepler University. The MicroJava language
is defined using an EBNF grammar [12] for its syntax and by the corresponding semantic
specification [13]. The grammar is attached at the end of this thesis. In MicroJava it is
possible to

• define global variables as well as local variables
• store values in two primitive types, int and char
• define custom classes
• define arrays of all types
• call methods with arbitrary parameters and primitive return types.
• do conditional jumps with if-else and while statements
• use in-build methods like print and read for user interaction

As mentioned before, the MicroJava compiler generates byte code. This code is a command
set of elementary operations, like memory manipulation or arithmetic operations. MicroJava
is specified with a command set of 57 byte codes [13].
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3.1 MicroJava VM

The MicroJava VM is a virtual machine (VM) which executes the byte code of a MicroJava
program. Like the Java VM, it is a stack machine, i.e. temporary values are loaded onto
an expression stack. The MicroJava VM is primarily based on the code skeleton from the
exercise class of the compiler construction lecture. Its main task is to manage the memory for
MicroJava. There are five different memory regions as shown in Figure 3.1.

• Code array
The code array provides the program, described in MicroJava byte code format. The
virtual machine interprets each command and executes the corresponding task.

• Data stack
This stack stores global variables. Since the number of global variables does not change
during execution, the stack size is fixed.

• Heap
The heap stores reference objects. It has space for 10,000 values, with the zero address
reserved for the null reference.

• Proc or method stack
The method stack stores the local variables of the currently executed method. When a
method is called, the VM allocates space for all variables of the callee and frees it upon
return. In MicroJava, there is space for 4,000 variables.

• Expression stack
The expression stack is used for temporarily storing intermediate results. For example,
when performing addition, the two numbers are loaded onto the stack and then combined
to a single result. As the stack has space for only 30 values, no value should remain on
the stack after computation (a critical detail for Section 4.3.5).
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Figure 3.1: MicroJava memory layout [13]
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Chapter 4

Implementation

MicroJava le

Scanner
Parser

Run
(Debug)

CoCo/R

Graphviz

TreeView

AST

Figure 4.1: Workflow of the implementation

The primary objective of this thesis is to construct the syntax tree for the programming language
MicroJava. The structure of the implementation is shown in Figure 4.1. As input, the program
receives a MicroJava file. The scanner and parser check if the file is a valid MicroJava program.
As mentioned in Section 2.2, for generating the scanner and parser, CoCo/R is used. With
the attributed grammar, the parser is capable of setting the right nodes at the needed position
to build up the AST. Based on the AST, a DOT representation of the AST can be generated
and with the Graphviz engine converted to an image. Additionally, the AST will be translated
to a JavaFX TreeView element. An interpreter can either execute the AST all at once, or by
entering the debug mode and executing the program step by step. During this, the current
program line as well as the current node gets highlighted in both AST visualizations.
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4.1 Node Hierarchy

The node hierarchy defines the inheritance order of all nodes used in the AST. In an AST,
every expression and statement is represented as a node object as shown in Figure 4.2. The
base class for all these nodes is shown in Listing 4.1. The fundamental operations of every node
are described in the following:

• The execute method receives an interpreter instance as parameter. The interpreter man-
ages the memory and provides access to the program’s heap, stack, global variables, and
expression stack. For this, the MicroJava VM mentioned in Section 3.1 is used. However
the code array is not used, since the code instructions are given by the context of the graph
execution. Depending on the current node, the implementation of the execute method
defines the correct instruction. For control flow purposes, every execute method must be
capable of throwing a ControlFlowException, which will be discussed in Section 4.4.

• The toDOTString method traverses the tree and generates a string representation of
the AST in the graph description language DOT. The string gets inserted into the
StringBuilder object sb. As shown in Listing 2.3a, the edges between nodes are de-
fined by parentName -> childName. Given the parameter parentName, each node can
introduce its child relation to the string description. Because the name of each node must
be unique, the names are defined in the constructor as consecutive numbers, given by the
static count variable of the Node class. On every node instance count gets incremented.

• The toTreeView method builds up a TreeItem tree, for the JavaFX TreeView element.
Each node calls its child nodes to retrieve their TreeItem. After adding the child to the
tree a new TreeItem is returned.

• Every node must implement the getName method to define its name. The names of the
nodes in the visualization are given by this method.
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(Node)

IntCon

CharCon

Ident

UnaryExpr

BinExpr

Designator

LoadElem

LoadFld

New

NewArray

Call

Assignment

BinOpAssignment

Block

(Print)

CallStat

(Read)

Return

If

ElseIf

While

Break

Semicolon

CharPrint

IntPrint

CharRead

IntRead

(Expr)

(Stat)

Figure 4.2: Class Hierarchy of the AST nodes
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1 public abstract class Node {
2 ...
3 public void execute ( Interpreter interpreter ) throws ControlFlowException

{ ... }
4 public void toDOTString ( StringBuilder sb , String parentName ) { ... }
5 public TreeItem <Node > toTreeView () { ... }
6 public abstract String getName ();
7 ...
8 }

Listing 4.1: Abstract base class for all nodes

4.2 Expression Nodes

Expression nodes represent different kind of expressions. When computing expressions, one
critical aspect is the data type. The class Expr, as shown in Listing 4.2, has the following
fields:

• type
In MicroJava, it is not possible to add an int and a char together, and implicit type
casting is not available in MicroJava. Therefore, for the compiler to verify the correct
types of an expression, information about the object type must be provided. To facilitate
this, every expression node has a Struct field that contains all the necessary information
for type checking.

• offset
The offset field is required to calculate the absolute memory address.

• kind
Since not every variable address can be accessed using the same procedure, like an array,
the kind of the variable must be stored.

4.2.1 Leaf Node

Leaf nodes are nodes that do not have child nodes themselves. They represent atomic expres-
sions like constants and variables.
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1 public abstract class Expr implements Node {
2 public enum Kind {
3 Con , Local , Static , Fld , Elem , Meth , None
4 }
5 public Struct type;
6 public int offset ;
7 public Kind kind;
8 ...
9 }

Listing 4.2: Expression node

• Primitive Con
During the parsing process, when a constant token of type int or char is encountered
in the code, the parser inserts an IntCon node or a CharCon node, respectively. Their
primary purpose is to store the corresponding value as well as the string representation,
which will be used for tree visualization. The execute method simply loads the value onto
the expression stack, where it will be further processed by its parent nodes.

• Ident
Ident nodes represent variable accesses, methods and the start node of the program. An
Ident node wraps an Obj node, which contains all the necessary information about the
variable. The program node executes the main node, as shown in Listing 4.3 at line 7. All
methods execute their block node, as shown in line 10. A constant node pushes its value
onto the expression stack in line 13. There are four kinds of variables: locals, globals,
fields, and arrays. In all cases, the execute method of the node loads the value stored in
the variable onto the expression stack, which depends on the type of the variable. For
instance, if the variable is an array, the node expects that both the address and the index
are already on the stack, so it can retrieve them in lines 24 to 25 and push the correct
element back onto the stack in line 26.
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1 public class Ident extends Expr {
2 ...
3 @Override
4 public void execute ( Interpreter interpreter ) throws ControlFlowException {
5 super . execute ( interpreter );
6 switch (obj.kind) {
7 case Prog: main. execute ( interpreter );
8 break ;
9 case Meth: ...

10 block. execute ( interpreter );
11 ...
12 break ;
13 case Con: interpreter .push(obj.val);
14 break ;
15 case Var: int adr , idx;
16 switch (kind) {
17 case Local: interpreter .push( interpreter . getLocal (var.adr));
18 break ;
19 case Static : interpreter .push( interpreter . getData (var.adr));
20 break ;
21 case Fld: adr = interpreter .pop ();
22 interpreter .push( interpreter . getHeap (adr + var.adr));
23 break ;
24 case Elem: adr = interpreter .pop ();
25 idx = interpreter .pop ();
26 interpreter .push( interpreter . getHeap (adr +1+ idx));
27 break ;
28 ...
29 }
30 ...
31 }
32 }
33 }

Listing 4.3: Execute method of Ident node
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4.2.2 UnaryExpr Node

1 program Unary {
2 void main () int a; {
3 a = - 4;
4 }
5 }

(a) Example MicroJava code

Program (Unary)

Method (main)

...

IntCon (4)

(b) AST representation

Figure 4.3: Unary example

The task of the UnaryExpr node is to apply an unary operation to an expression. In MicroJava,
the only unary expression is negation with a minus sign, but in theory, additional operations
such as logical not or bitwise negation could be supported the same way. In Figure 4.3, an
example program is shown.

4.2.3 BinExpr Node

1 program Binary {
2 void main () int a; {
3 a = 4 / 2;
4 }
5 }

(a) Example MicroJava code

Program (Binary)

Method (main)

...

IntCon (4) IntCon (2)

(b) AST representation

Figure 4.4: Binary example
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The BinExpr node is one of the most frequently used node in MicroJava and represents a
binary expression. Additionally, it handles logical evaluations when the operator represents a
condition operation. The node is assigned by the parser with two expressions and an operator.
When the execute method is called (Listing 4.4), the BinExpr node first executes its left child,
retrieving one value from the expression stack as seen in lines 5 to 6. There are two types of
expressions:

• Numerical expression
The computation is straightforward: the appropriate operation is applied, and the result
is pushed onto the expression stack for further execution as for example for addition
operation in line 21. In case of division or modulo operations, it is essential to check that
the divisor is not zero. Otherwise, a “division by zero” exception is raised, like in line 25.
MicroJava also includes a built-in power operation for positive integer exponents, which
is computed using a loop.

• Condition
When the operator is a logical expression, such as and, the results on the expression stack
must be interpreted as boolean values. The convention used in this thesis follows the
classical interpretation: 1 represents true, and 0 represents false. During evaluation,
short circuit evaluation is applied. It is important to be aware of this technique, as it
may prevent certain evaluations from being executed, even if they were intended to be by
the programmer.

For example, the expression a = 4/2 from Listing 4.4a gets translated to the AST from Figure
4.4b. The BinExpr evaluates the left child and the right child by calling their execute methods.
This is where the advantage of the AST becomes evident: regardless of the complexity of the
left child’s expression, the BinExpr node does not need to be aware of it. It simply receives the
final value from its child, in this example the value 4. The same process applies to the right
expression. The subsequent computation is then performed based on the assigned operator, in
this example the division operator.
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1 public class BinExpr extends Expr {
2 ...
3 @Override
4 public void execute ( Interpreter interpreter ) throws ControlFlowException {
5 left. execute ( interpreter );
6 int lval = interpreter .pop ();
7 boolean blval = (lval == 1);
8 if (op == Operator .OR && blval) {
9 interpreter .push (1);

10 return ;
11 }
12 else if (op == Operator .AND && !blval) {
13 interpreter .push (0);
14 return ;
15 }
16 right. execute ( interpreter );
17 int rval = interpreter .pop ();
18 boolean brval = (rval == 1);
19
20 switch (op) {
21 case ADD: interpreter .push(lval + rval);
22 break ;
23 ...
24 case DIV: if (rval == 0) {
25 throw new IllegalStateException (" division by zero");
26 }
27 interpreter .push(lval / rval);
28 break ;
29 ...
30 case EQL: interpreter .push (( lval == rval)? 1:0);
31 break ;
32 ...
33 default : throw new IllegalStateException (" Operator not implemented ");
34 }
35 }
36 ...
37 }

Listing 4.4: Execute method of BinExpr node
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4.2.4 Load Nodes

1 program Load
2 class B { int [] a; }
3 {
4 void main () B[] b; {
5 b = new B[1];
6 b[0] = new B;
7 b[0].a = new int [1];
8 b[0].a[0] = 4;
9 }

10 }

(a) Example MicroJava code

Program (Load)

Method (main)

...

(b) AST representation

Figure 4.5: Load example

Load nodes load values of reference-typed variables onto the expression stack. Reference types
are accessed via their addresses on the heap. When a class node or an array node is executed,
it places its address on the expression stack to grant access to the data. However, if a class
instance has a field that needs to be accessed, the address is required only to retrieve the value
stored in the field. There are three different types of Load nodes:

• Designator node:
This node represents the entire object chain of a reference variable, for example a.b[2].c.d[5].
It contains a list of expression nodes arranged from left to right. In the execute method,
all child nodes are looped through and executed sequentially.

• LoadElem node:
To access an array element, two pieces of information are always required: the address of
the array on the heap and the index of the element. The task of this node is to combine
these two pieces of information and load the corresponding value from the array.

• LoadFld node:
For accessing a field from an object, the LoadFld node is necessary. The LoadFld node
retrieves the address from the expression stack and, with the help of the symbol table,
returns the correct value from the object’s field.
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For example, in line 8 of Listing 4.5a, the zero element of the field in the zero element of the
class B array is assigned the value 4. First, the local variable b, which is an array of class
B, is accessed at position 0. Note that these two operations are represented by the Ident node
and the IntCon node. The issue here is that the expression stack now contains the address of
b and the value 0 as the index. However, for the next step, the address of the field array a
is required. Therefore, both the address and the array index must be combined to access the
instance of class B, which will yield another address. To achieve this, a load node is inserted
at this position during the build up process of the AST. Since the outer construct is an array, a
LoadElem node is inserted. During runtime, this places the address of an instance of B on the
stack. However, the value required is the address of a, not the address of the instance itself.
Since a is a field of B, a LoadFld node is used here. Finally, the index for a is also placed on
the stack.

In this example, the reference type is assigned a value, so no further loading is necessary. The
remaining work is handled by the Assignment node. However, if the same expression were on
the right-hand side of an assignment, the entire expression would need to be loaded again with
a LoadElem node, as the assignment would require the value to be stored in the variable, not
its address and index.

4.2.5 Allocation Nodes

Allocation nodes allocate the memory of classes and arrays and push the assigned address
onto the expression stack. The keyword new, like in Figure 4.5, indicates that space on the
heap should be allocated for the corresponding data type. There are two types of Allocation
nodes:

• New node
This node is used for class objects. It allocates memory according to the number of
fields in the data type and pushes the corresponding address onto the expression stack.

• NewArray node
When a NewArray node is executed, the size of the array is evaluated. Subsequently, size
+ 1 units of space are allocated, with the size being stored at position 0. The address
immediately following the size is then pushed onto the expression stack.
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4.2.6 Call Node

1 program Call {
2 int foo(int a, int b) {
3 return a + b;
4 }
5 void main () int s; {
6 s = foo (4, 5);
7 }
8 }

(a) Example MicroJava code

Program (Call)

Method (foo) Method (main)

Var (a) Var (b) Block

Return

BinExpr (+)

Designator (Kind: Local) Designator (Kind: Local)

Ident (a [Local]) Ident (b [Local])

Var (s) Block

Assignment

Designator (Kind: Local)

Ident (s [Local]) IntCon (4) IntCon (5)

(b) AST representation

Figure 4.6: Call example

To call a function, a Call node is inserted into the AST. Its tasks are to load the function’s
parameters onto the expression stack, set up the method stack, execute the function, and free
the method stack upon returning. In Figure 4.6 the function foo is called. Consequently,
the AST has the Call node foo with two constant nodes, 4 and 5, as the right child of the
Assignment node. After loading these values onto the stack, the left box in Figure 4.6b is
executed. The variables a and b are assigned from the expression stack. The function executes
the Return node. In this example, the return value is the result of a BinExpr node. When
the Return node executes the expression, the result will be on the expression stack for further
processing in the main method.

By executing the Call node, the parameters are processed and subsequently loaded onto the
expression stack, as shown in Listing 4.5 in line 7. After this, the methods are classified into
four types, which are organized into three distinct cases:

• ord method and chr method
These are built-in functions in MicroJava. The ord method converts a char type to an
int type, while the chr method converts an int type back to a char. If the callee is
either of these methods, the execute method does not perform any additional operations.
The parameter itself serves as return value, only interpreted as a different data type.
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1 public class Call extends Expr {
2 ...
3 @Override
4 public void execute ( Interpreter interpreter ) throws ControlFlowException {
5 ...
6 for (Expr para : paras) {
7 para. execute ( interpreter );
8 }
9 if ( methodToCall . getObj () == Tab. ordObj ||

10 methodToCall . getObj () == Tab. chrObj ) {
11 // nothing -> parameter is return value
12 }
13 else if ( methodToCall . getObj () == Tab. lenObj ) {
14 int adr = interpreter .pop ();
15 if (adr == 0) {
16 throw new IllegalStateException ("null reference used");
17 }
18 interpreter .push( interpreter . getHeap (adr - 1));
19 }
20 else {
21 int psize = methodToCall . getObj ().nPars;
22 int lsize = methodToCall . getObj (). locals .size ();
23 interpreter . allocMethodStack (psize , lsize);
24 try {
25 methodToCall . execute ( interpreter );
26 } catch ( ReturnException exp) {
27 // return case
28 interpreter . freeMethodStack ();
29 return ;
30 }
31 if ( methodToCall .type != Tab. noType ) {
32 throw new TrapException (" Method " + methodToCall . getObj ().name + "

has no return statement ");
33 }
34 else {
35 interpreter . freeMethodStack ();
36 }
37 }
38 }
39 ...
40 }

Listing 4.5: Execute method of Call node
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• len method
In line 13, the execute method checks if the Call node corresponds to the len method,
which returns the length of an array. If this is the case, the array address must already
lay on the expression stack, which is stored in line 14. As noted in Section 4.2.5, the
array size is stored at the address immediately preceding the array reference. The size is
retrieved and then pushed onto the expression stack in line 18.

• custom method
For any other scenario, a custom function is called. In lines 21 to 23, the method stack
is populated with the parameters and local variables, after which the actual method is
invoked. When a ReturnException is caught by the try-catch block (as discussed in
Section 4.4), the return value has already been placed onto the expression stack, and
the method stack is subsequently freed. If no exception is raised but the method has a
return type other than void, a TrapException is thrown in line 32. If the method has
no return value, meaning the caller executed the node as a statement (see Section 4.3.5),
the method stack is freed in line 35.

4.3 Statement Nodes

Unlike Expr nodes, which evaluate and return values, Stat nodes represent program statements
like assigning values to variables and altering the program’s control flow, such as through if
conditions or loops by manipulating the state of the virtual machine.

4.3.1 Assignment Node

One of the most frequently used features in any programming language is the ability to assign
specific values to variables. The tasks of the Assignment node are to set-up the left side,
evaluate the right side and assigning the expression to the left side. In the execute method, the
expression on the ride hand side is executed. Next, the result gets removed from the expression
stack. In the next step, the left hand side of the assignment must be prepared. In case of
local or static variables all needed information is given by the relative offset variable, so no
preparation is needed. For arrays and fields, the left hand side must be resolved. By calling
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1 public class Interpreter {
2 ...
3 public void assign ( Designator var , int val) throws ControlFlowException {
4 int adr , idx;
5 switch (var.kind) {
6 case Local: interpreter . setLocal (var.offset , val);
7 break ;
8 case Static : interpreter . setData (var.offset , val);
9 break ;

10 case Fld: adr = interpreter .pop ();
11 if (adr == 0) {
12 throw new IllegalStateException ("null reference used");
13 }
14 interpreter . setHeap (adr + var.offset , val);
15 break ;
16 case Elem: idx = interpreter .pop ();
17 adr = interpreter .pop ();
18 if (adr == 0) {
19 throw new IllegalStateException ("null reference used");
20 }
21 int len = interpreter . getHeap (adr - 1);
22 if (idx < 0 || idx >= len) {
23 throw new IllegalStateException ("index out of bounds ");
24 }
25 interpreter . setHeap (adr + idx , val);
26 }
27 ...
28 }
29 }

Listing 4.6: Assign method

the execute method of a variable, the address and index are pushed on the expression stack.
At the end the assign method is executed to store the value.

Listing 4.6 shows the assign method. There are 4 different kinds of variables in MicroJava,
where each of them requires its own way of performing assignments:

• Local variables
If the variable var is stored on the method stack, the correct memory address can be
determined by adding the offset of the variable to the frame pointer.

• Static variables
Global variables get accessed in a similar way. Instead of the method stack, the data
stack is used.
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• Field variables
By assigning a value to a field, the assign method expects the address of the variable
already resolved and pushed on the expression stack. The address is received in line 10
and a check in line 11 against null references is preformed. Finally, the interpreter receives
all the necessary information to perform the assignment, i.e. which value to write into
which address of the heap.

• Element variables
The memory access to array elements is comparable to field variables. Note that in
case of an array two values are now expected, its address and the index of the element.
After checking against null references and index out of bounds exceptions, the value gets
assigned at the correct location on the heap.

4.3.2 BinOpAssignment Node

The BinOpAssignment node represents composition assignments like += or ++. On those state-
ments, the variable occurs on the left hand side as well as on the right hand side of the
assignment. For example, the statement a[idx()]+=4 might seem equivalent to a[idx()] =
a[idx()] + 4, but this is not the case. In a naive implementation, one would first evaluate the
expression by adding 4 to the loaded a[idx()] variable. The same variable is executed again
to resolve it for the assign method shown in Listing 4.6. So, a[idx()] got evaluated twice.
This can lead to a dangerous side effect. If the idx method has side effects (i.e. if its execution
changes global variables), the assignment violates the execution semantics. This can be seen
directly if idx() returns different values for different calls (e.g. 0 for the first call and 1 for the
second call). Since the expression is computed with for example a[0]+4, the left hand side of
the assignment leads to a[1], which results to the wrong statement a[1]=a[0]+4.

To overcome this issue, the BinOpAssignment only executes the left hand side of the composition
once. For example, in case of an array, after executing the left hand side, the address and index
are on the stack. Those values are used to load the corresponding value of the array element
and performing the computation of the expression, based on the given operator. After that,
both values are pushed back on the stack, leading to the same variable used for computation
in the assign method instead of calling the left hand side of the composition again.
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4.3.3 Block Node

1 program Block {
2 void main () int a; int b; {
3 a = 5;
4 print(a);
5 read(b);
6 }
7 }

(a) Example MicroJava code

Program (Block)

Method (main)

Assignment IntPrint (width = 0) IntRead

... ... ... ...

(b) AST representation

Figure 4.7: Block example

The Block node represents the curly braces for example of a method. The node contains all
Statement nodes within the block, as shown in Figure 4.7, and executes them from top to
bottom (or in case of an AST representation from left to right).

4.3.4 Print and Read Node

1 program PrintAndRead {
2 void main () int a; char b;{
3 read (a);
4 print (a, 4);

5 read (b);
6 print (b);

7 }
8 }

(a) Example MicroJava code

Program (PrintAndRead)

Method (main)

...

Designator (Kind: Local)

Ident (a [Local])

Designator (Kind: Local)

Ident (a [Local])

Designator (Kind: Local)

Ident (b [Local])

Designator (Kind: Local)

Ident (b [Local])

(b) AST representation

Figure 4.8: Print and Read example

In MicroJava, it is possible to print values using the built-in print method, which is implemented
as two kinds of Print nodes, as shown in Figure 4.8. The two print nodes are IntPrint, which
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is used for printing integer values and CharPrint for printing characters. Optionally to the
printing values, a second integer argument can be provided to specify the number of whitespace
characters to include in the output. Similarly, there are two kind of nodes for reading user input
from the console. The IntRead node reads an integer value, the CharRead reads a character.

4.3.5 CallStat Node

A CallStat node represents a function, called as a statement. If the called function returns a
value, this value is ignored.

The execute method of the CallStat node is shown in Listing 4.7. Since the core functionality
is identical to the Call node, the CallStat node simply wraps an expression Call node and
executes it, as shown in line 5. If the method returns a value, it must be removed from
the expression stack, as shown in line 7. Because the difference is purely logical, the AST
representation of a statement call prints the Call node similarly to Figure 4.6b.

1 public class CallStat extends Stat {
2 ...
3 @Override
4 public void execute ( Interpreter interpreter ) throws ControlFlowException {
5 methodToCall . execute ( interpreter );
6 if ( methodToCall .type != Tab. noType ) {
7 interpreter .pop ();
8 }
9 }

10 ...
11 }

Listing 4.7: Execute method of CallStat node

4.3.6 Return Node

The Return node is used to leave the called method and to optionally push the return value
onto the expression stack by executing the given expression node. To jump back to the caller,
a ReturnException is used, which will be explained in Section 4.4 in more detail.
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4.3.7 ElseIf and If Node

1 program ElseIf {
2 void main () {
3 if (2 < 4) {
4 //do something
5 }
6 else {
7 //do something else
8 }
9 }

10 }

(a) Example MicroJava code

Program (ElseIf)

Method (main)

Block

If Block

BinExpr (<) Block

IntCon (2) IntCon (4) ...

...

(b) AST representation

Figure 4.9: ElseIf example

The ElseIf node is used for conditional checks. The node contains both an If node and a
Stat node, where a Stat node represents the else-statement. First, the condition of the If
node is evaluated. The result is interpreted as a truth value. Based on the result, either the
statement block of the If node, as shown in Listing 4.9a in line 4, or the Stat node, as shown
in 4.9a in line 7, gets executed. If the If condition does not have an associated else statement,
only the If node is inserted into the AST (left child of the ElseIf node in Figure 4.9b).

4.3.8 While Node

The While node evaluates the loop condition and executes its Statement node repeatedly until
the condition is no longer satisfied.

4.3.9 Break Node

The Break node represents a break statement within a loop. When the Break node is executed
within a while loop, a BreakException is thrown. In the case of nested loops, this exception is
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caught by the innermost While node, causing it to terminate, which will be explained in more
detail in Section 4.4.

4.3.10 Semicolon Node

By the definition of MicroJava, a semicolon by itself is considered a valid statement. For
consistency, a corresponding node is inserted into the AST. However, since a semicolon has no
operational effect, the execute method for this node is left empty.

4.4 Control Flow Exceptions

ControlFlowExceptions are used to deal with control flow statements. In cases of normal
termination, execution returns to the caller due to the natural behaviour of recursive calls.
However, if the flow is interrupted by, for example, a return statement, the execute method must
jump back and continue executing in the previous execution branch. Therefore it is necessary
to deviate from the standard tree traversal. One approach is to set a flag and check before
each node whether a return statement has been raised. If so, the method should not execute
further. In this thesis, the properties of exceptions are utilized. By throwing an exception at
the return site, future statements are ignored until the node representing the call site catches it
and continues execution from that point on. This technique is also used in Truffle, a framework
for implementing managed language interpreter in Java [14].

There are three types of exceptions, derived from the ControlFlowException class, as shown
in Figure 4.10. While the purpose of break and return exceptions, used in while loops and
methods, is to control the program flow, the trap exception is raised when a function fails
to execute a return statement. In such cases, the trap exception is triggered, terminating
the execution. For example when a Return node is reached, the execute method throws a
ReturnException, as shown in Listing 4.11a. The thrown exception is caught in Listing 4.11b
by the Call node, which executed the method. The BreakException follows the same principle
for break statements and while loops.
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(ControlFlowException)

BreakException

ReturnException

TrapException

Figure 4.10: ControlFlowException Hierarchy

1 public class Return extends Stat {
2 ...
3 @Override
4 public void execute ( Interpreter interpreter ) throws ControlFlowException {
5 ...
6 throw new ReturnException ();
7 }
8 ...
9 }

(a) Execute method of Return node

1 public class Call extends Expr {
2 ...
3 @Override
4 public void execute ( Interpreter interpreter ) throws ControlFlowException {
5 ...
6 try {
7 methodToCall . execute ( interpreter );
8 }
9 catch ( ReturnException ex) {

10 ...
11 }
12 ...
13 }

(b) Catch block of Call node

Figure 4.11: Throw and Catch example of a ControlFlowException
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4.5 Attributed Grammar

An attributed grammar (ATG) is used to define the context for a grammar. The language of
MicroJava is defined by a context free EBNF grammar, which specifies its syntactic structure.
However, semantic context is also required, along with a specification of where each node should
be inserted into the AST. Therefore, the purpose of the ATG is to perform semantic checks and
facilitate the construction of the AST. This is achieved by embedding Java statements within
the EBNF grammar, indicated by parentheses and dots, as shown in Listing 4.8. Based on this
definition, CoCo/R automatically generates a parser that constructs a valid AST, which can
then be executed.

1 Term<out Expr expr> (. Operator op; Expr expr2; .)
2 = Factor <out expr>
3 {
4 Mulop <out op>
5 Factor <out expr2> (. if (expr.type != Tab. intType ||
6 expr2.type != Tab. intType ) {
7 SemErr (" operand (s) must be of type int ");
8 }
9 expr = new BinExpr (load(expr), op , load(expr2));

10 .)
11 |
12 "**"
13 number (. expr = load(expr);
14 if (expr.type != Tab. intType ) {
15 SemErr (" operand (s) must be of type int ");
16 }
17 expr = new BinExpr (expr , Operator .EXP , new IntCon (

t.val));
18 .)
19 }
20 .

Listing 4.8: Attributed grammar for Term

For example, Listing 4.8 shows a portion of the grammar for the non-terminal symbol Term. A
Term returns an Expr node to the caller, indicated by the out keyword and the type Expr in
line 1. A term is defined as a factor, followed by zero or more factors or exponential statements
connected via multiplication operations. In line 2, the Factor production reads a factor and
returns it as an Expr node. In case the next token is a Mulop, a second Factor is read in line
5. In case of a ** token, a number is read in line 13. In both cases, the Expr node is replaced
by a BinExpr node, in line 9 and 17. Note that in line 9 and 13, the expressions are wrapped
around the helper method load, which inserts the correct load node as discussed in Section 4.2.4.
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Additionally, during the AST construction process, the parser generated from the ATG checks
in lines 5 to 8 that the two expressions are of type int. Otherwise a semantic error is raised.
Similarly, lines 14 to 16 ensure the exponent is also an integer. The whole process repeats,
until the next token is neither a Mulop or a ** operation. In that case, the Term production is
finished and returns the Expr node as a valid Term. This principle is applied throughout the
MicroJava grammar specification, where the parser constructs the AST until the root node is
returned.

4.6 JavaFX GUI

The GUI allows to load the source code, compiling it, visualize the corresponding AST and
observe variables during runtime. The interface is shown in Figure 4.12.

Figure 4.12: Interface of the AST interpreter implementation

The leftmost section contains a ListView element, which displays the source code line by line,
along with corresponding line numbers. The second section features a TreeView element, which
displays the nodes of the AST in a hierarchical structure. In the upper-right corner is a WebView
element. By providing an HTML string, the WebView displays the .svg file generated by the
Graphviz engine. Below the WebView element are two TableView elements that display the
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current state of both global and local variables by observing the interpreter instance during
runtime. At the bottom, four buttons are available. The Compile button compiles the program.
The Run button executes the program. The Debug button enters single step execution mode,
where the program halts at each node. By pressing the Step button, the program executes one
node at a time. In Debug mode, the AST is executed on a separate Thread. All nodes inherit
the execute method from the abstract Node class, as shown in Listing 4.9.

1 public abstract class Node {
2 ...
3 public void execute ( Interpreter interpreter ) throws ControlFlowException {
4 if ( interpreter . isDebug ()) {
5 interpreter . setLineOfExecution (line);
6 Object lock = interpreter . getLock ();
7 synchronized (lock) {
8 try {
9 isBreakpoint = true;

10 AbstractSyntaxTree . writeASTToFile ( interpreter . getRoot ());
11 lock.wait ();
12 }
13 catch ( InterruptedException e) {
14 throw new RuntimeException (e);
15 }
16 finally {
17 isBreakpoint = false ;
18 }
19 }
20 }
21 }
22 ...
23 }

Listing 4.9: Single step implementation for all nodes

All nodes have a field line, which links the node to its corresponding source code statement. In
line 5, the line of execution is set. This information is necessary for the ListView element to
highlight the current line in the source code. In line 7, the execution Thread synchronizes on
the shared lock object. In line 9 the current node marks itself so that the DOT string of the
current node is highlighted, as well as the TreeView element. To display the highlighted AST
graph, the AST is updated in line 10. In line 11, the execution Thread puts itself to sleep until
the Step button wakes the Thread by using the shared lock object.
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Chapter 5

Demo

In this section, a brief demonstration of the AST interpreter implementation is presented. The
example program in Listing 5.1 implements the max function in MicroJava, which returns the
larger value of two variables.

1 program Max
2 int ref;
3 {
4 int max(int a, int b) {
5 if (a > b) {
6 return a;
7 } else {
8 return b;
9 }

10 }
11 void main () int val; int result ; {
12 ref = 5;
13 read(val);
14 result = max(ref , val);
15 print( result );
16 }
17 }

Listing 5.1: Demo code of max function in MicroJava

After starting the application, a .mj file can be selected by clicking on the File button in
the top-left corner. A FileChooser is used to navigate and select the desired file. When the
MicroJava program is open, the source code is displayed on the left side of the interface. The
only available action is pressing the Compile button, as shown in Figure 5.1.
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Figure 5.1: Interface after loading max.mj

Only after successful compilation, the source code is visualized as an AST, both as a TreeView
and in a graph representation, as shown in Figure 5.2. The program can then be executed by
pressing the Run button. The output is displayed in Figure 5.3

Figure 5.2: Interface after compiling max.mj
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Figure 5.3: Console output of max.mj with val = 4

Optionally, the program can be executed in debug mode by pressing the Debug button. In this
mode, the AST interprets the code node by node, with each step initiated by pressing the Step
button. In each step the current code line, TreeView item and graph node are highlighted, as
shown in Figure 5.4. Additionally, the runtime values of both global and local variables can
be observed in the two TableView elements. The complete graph representation of max.mj is
shown in Figure 5.5.
To generate the graph file, the implementation runs a console command that converts the
DOT string stored in a .dot file into an .svg file using the Graphviz engine. For this process,
the Graphviz engine must be installed on the local machine and can be downloaded from the
following source [15].

Figure 5.4: Program state at Return node of max function
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Chapter 6

Conclusion and Future Work

In this thesis, an AST interpreter was implemented for the programming language MicroJava.
The language is defined as an EBNF grammar along with a semantic specification. Using Co-
Co/R and an attributed grammar, the scanner and parser classes were generated. Through the
attributed grammar, the parser constructs an abstract syntax tree. This tree can be interpreted
by traversing it and executing the execute method of each node. Traversal of the tree also allows
for the generation of a string representation and a TreeView. Both representations are utilized
to visualize the AST in a JavaFX application. Additionally, a debug mode was implemented
to traverse the tree step by step. In this mode, the current code segment is highlighted in all
source code representations. The current state of both global and local variables can also be
observed. The implementation described by this thesis is available on GitHub [16].

For further optimization, based on the existing project, one could implement constant ex-
pression reduction, where numerical expressions are simplified to a single Con node during
compilation. Additionally, enhancing interactivity could involve transitioning to JavaScript.
Utilizing web compatibility, JavaScript could interact directly with the .svg file of the AST,
rather than generating a new file each time. This approach could also facilitate the creation
of an interactive graph, where nodes respond to user interactions, such as expanding to show
child nodes or displaying internal values.
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MicroJava – Grammar 2023
Program = "program" ident { ConstDecl | VarDecl | ClassDecl }

"{" {MethodDecl} "}".

ConstDecl = "final" Type ident "=" ( number | charConst ) ";".

VarDecl = Type ident { "," ident } ";".

ClassDecl = "class" ident "{" { VarDecl  } "}".

MethodDecl = ( Type | "void" ) ident "(" [ FormPars ] ")"
{ VarDecl } Block.

FormPars = Type ident { "," Type ident }.

Type = ident [ "[" "]" ].

Block = "{" { Statement } "}".

Statement = Designator ( Assignop Expr | ActPars | "++" | "--" ) ";"
| "if" "(" Condition ")" Statement [ "else" Statement ]
| "while" "(" Condition ")" Statement
| "break" ";"
| "return" [ Expr ] ";"
| "read" "(" Designator ")" ";"
| "print" "(" Expr [ "," number ] ")" ";"
| Block
| ";".

Assignop = "=" | "+=" | "-=" | "*=" | "/=" | "%=".

ActPars = "(" [ Expr { "," Expr } ] ")".

Condition = CondTerm { "||" CondTerm }.

CondTerm = CondFact { "&&" CondFact }.

CondFact = Expr Relop Expr.

Relop = "==" | "!=" | ">" | ">=" | "<" | "<=".

Expr = [ "–" ] Term { Addop Term }.

Term = Factor { Mulop Factor | "**" number }.

Factor = Designator [ ActPars ]
| number 
| charConst
| "new" ident [ "[" Expr "]" ]
| "(" Expr ")".

Designator = ident { "." ident | "[" Expr "]" }.

Addop = "+" | "–".

Mulop = "*" | "/" | "%".
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