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Abstract

In the exercise course Compilerbau at the Johannes Kepler University Linz, a typical task is
to create a LALR(1) parser table and simulate an example input on it. The task of creating
a homework with an appropriate level of difficulty is often time-consuming and tedious for the
lecturers. This is where the idea of automation comes in. The main goal is to extract a generalized
algorithm for this task and to create said tables for a given grammar. The simulation involves
running inputs against the grammar and performing error recovery in the case of an invalid
symbol. The result allows estimation of the workload and also automatically provides an example
solution, which can then be distributed to the students. This saves the lecturers valuable time
and effort, which can be redirected to developing engaging teaching materials and delivering
lectures.

Kurzfassung

In der Lehrveranstaltung Compilerbau an der Johannes Kepler Universität Linz besteht eine
typische Aufgabe darin, eine LALR(1) Parsertabelle zu erstellen und darauf Beispieleingaben
zu simulieren. Für Lehrende ist es oft zeitaufwändig und mühsam, eine Hausaufgabe mit
angemessenem Schwierigkeitsgrad zu erstellen. Hier setzt die Idee der Automatisierung an. Das
Hauptziel besteht darin, einen verallgemeinerten Algorithmus für die Tabellenerstellung und
Simulation zu extrahieren und zu implementieren. Die Simulation besteht darin, Eingaben auf
einer Grammatik laufen zu lassen und im Falle eines ungültigen Symbols eine Fehlerbehand-
lung durchzuführen. Dies erlaubt es, den Arbeitsaufwand abzuschätzen und liefert automatisch
eine Beispiellösung, die an die Studierenden verteilt werden kann. Dies erspart den Lehrenden
wertvolle Zeit und Mühe, die für die Erstellung interessanter Lehrmaterialien und die Abhaltung
von Lehrveranstaltungen verwendet werden kann.
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1 Introduction

In the field of programming languages and compiler construction, the process of transforming
source code into executable programs using compilers relies heavily on efficient parsing tech-
niques. Parsing is a crucial phase that takes place after the source code has been lexically
processed. The parser analyzes the syntactic structure of a program according to a given lan-
guage’s grammar. Parsing is a fundamental process that enables compilers to understand and
interpret syntactic elements of a programming language.

There are several approaches to parsing a grammar within a compiler. The output of parsing
a grammar are syntax trees, and typical methods for generating them include top-down parsing
or bottom-up parsing. The former creates a tree by starting at a program entry and recursively
descending through parts, such as methods and expressions. It ends with leaves that represent
symbols that cannot be broken down further, i.e., terminal symbols. With bottom-up parsing,
the exact opposite is performed. Here, the parser starts at the leaves and works its way up to
the program entry.

The Compiler Construction course at Johannes Kepler University (JKU) teaches how such
bottom-up Look-Ahead, Left-to-Right, Rightmost derivation (LALR) parsers work. More pre-
cisely, they teach about LALR(1) parsers, which are bottom-up parers that use a single look-
ahead token. The homework for this topic includes the creation of the state-transition-table,
simulation of example sentences and perform error recovery when necessary. The same work has
to be done by the lecturers in order to prepare the homework and a sample solution. This task
is very time-consuming and error-prone, as it requires several iterations to obtain a grammar of
appropriate difficulty.

The tool developed for this thesis reads a user-specified grammar from a text file and trans-
forms it into a representative internal structure, that reflects the user’s intended representation.
The loaded data is used to generate an intermediate parser table, and from this the state-
transition-table. The parser table holds the unfolded built grammar, which is used to derive the
state-transition-table. The state-transition-table then holds the transitions between states for
a given symbol. The simulation of example sentences is based on an algorithm taught in the
corresponding lecture. It makes it possible to determine whether a sentence gets accepted by the
grammar or in case of rejection a recovery is performed based on guide symbols. Finally, it is
possible to export the generated tables and simulation steps as Comma-Separated Values (CSV)
files, and the simulation log as a simple text file. These files can then be handed out as sample
solutions.
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2 Background

Before diving into the development of the tool itself, it is important to establish foundational
knowledge. This chapter introduces key concepts for comprehending LALR parsing. These
concepts include the Backus-Naur Form (BNF) grammar in Section 2.1, the extendend BNF
(EBNF) grammar in Section 2.2, and the operation of different parsing strategies in Section 2.3.

2.1 BNF Grammar

The BNF is a meta language for formal notation and is typically used to describe the syntax
of programming languages [3]. BNF provides an easy-to-understand format and consists of four
basic blocks as described:

• Terminal Sysmbol (TS) – Represents an atomic unit that cannot be broken down any
further. It either consists of a literal, which is typically enclosed by double-quotes, or is a
terminal class, e.g., ident, number or a combination in the form of an alpha-numeric (an).

• Non-Terminal Symbol (NTS) – Serve as placeholders which can be expanded or decomposed
further into other NTS and/or TS.

• Production – Rule that specifies how a NTS can be decomposed into NTS and TS. For marking
the end of a production, there is typically a designated character. To be consistent with
the lecture, a simple dot will be used in this paper. Here is an example that specifies a
production to represent the current directory: Dir = "." "/" .

• Start symbol – Symbol from which every sentence of the grammar’s language can be derived
from, analogous to a main-method in programming. It serves as the root of a grammar,
from which valid derivations and expansions of the language begin.

For the purpose of simplifying the notation within this paper, NTS are denoted by an initial
capital letter, while TS are represented with an initial lowercase letter.

If there are several possible derivations of an NTS, several productions with the same NTS can
be created. Consider file paths as an example. The possible actions are to stay relative to the
current path (./) or to go one step back relative to the current path ("../"). A description in
BNF results in the grammar, as shown in Figure 1.

Dir = "." "/" .
Dir = "." "." "/" .

Figure 1: Example for a grammar that represents a directory, either the current one or the parent
one.

To have constructs such as loops, recursion is used in combination with multiple productions.
This means that there is a recursion termination condition and a recursive call with some extra.
In the case of a name that can be several characters long, a grammar as shown in Figure 2 results.

A BNF grammar can be visualized in several ways to enhance its comprehensibility. Two
commonly used techniques are Railroad Diagrams or Syntax Trees. These visualizations serve

3



Name = an .
Name = Name an .

Figure 2: Example for a grammar that represents a Name that can be arbitrary many alpha-
numeric (an) due to recursion.

as valuable tools for understanding and analyzing BNF grammars. These diagrams provide a
concise representation that highlights important elements and relationships within a grammar.
As a general rule of thumb, NTS are typically shown in a box with sharp corners, while TS are
shown in a box with rounded corners.

Railroad diagrams provide a visual representation that makes it easy to see optional branches,
merges and loops within a grammar. This enables clear identification of the hierarchical structure
and facilitates understanding of how different elements relate and interact with each other. By
providing a graphical depiction of the grammar’s flow, railroad diagrams enhance the intuitive
understanding of the structure of a grammar and aid in its analysis and interpretation. Figure 3
shows the grammars with branches and recursions clearly visible.

an

Name:

"."

"."

"/"

Dir:

Figure 3: The left railroad diagram shows the recursive nature of Name. The right diagram shows
an optional branch in the production Dir.

Syntax trees are a way to visualize the derivation of a sentence from a grammar. The nodes
are comprised of the NTS and TS of the grammar, with the NTS being the inner nodes and the TS
being the leaf nodes. The edges represent the relationship between the nodes. The root node is
the start symbol of the grammar. Figure 5 shows the syntax tree for the sentence ./etc with
the grammar shown in Figure 4. The figure shows how the Dir is created from ".", "/" and a
Name. The name itself is recursively constructed from Name and an, with the three an being e, t
and c.

Dir = "." "/" Name .
Name = an .
Name = Name an .

Figure 4: Example grammar for a syntax tree.

The railroad diagram provides a high-level overview and intuitive understanding for the gram-
mar while the syntax tree allows for more detailed analysis of the constitution of a specific
sentence.
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Dir

"." "/" Name

Name an
(c)

Name an
(t)

an
(e)

Figure 5: Syntax tree for the sentence ./etc with the grammar shown in Figure 4.

2.2 Extended BNF

The extendend BNF (EBNF) is a superset of the BNF explained in Section 2.1. EBNF provides
additional features to efficiently describe more complex grammars. For this reason, it is often
used to describe programming languages or markup languages. The new features include the
ones listed:

• Repetition – Specify a part in the grammar which is repeated zero or more times.

• Alteration – Specifies an alternative choice within a production.

• Optional – Specifies a part in the grammar which is not required, i.e., which can be present
in a sentence zero or one times.

• Grouping – Specify groups of elements.

These EBNF features are typically used instead of certain BNF patterns to make the language
definition more readable, as shown in Table 1
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Feature BNF EBNF
Repetition Recursive definitions { ... }
Alteration Multiple definitions ...|...
Optional Multiple definitions [ ... ]
Grouping Multiple definitions ( ... )

Table 1: Comparison of BNF patterns and EBNF features.

2.3 LL(1), LR(1) and LALR(1)

Having now addressed the subjects of BNF and EBNF, the next important terms are Left-
to-Right, Leftmost derivation (LL), Left-to-Right, Rightmost derivation (LR) and Look-Ahead,
Left-to-Right, Rightmost derivation (LALR). To be more precise, the version with one look-ahead
token will be explained in more detail (i.e., LL(1), LR(1) and LALR(1)). These parsing strategies
typically use BNF or EBNF grammars as input and produce some sort of state-transition-table
as output. The examples described in this thesis, and many more, are described in great detail
in Parsing Techniques - A Practical Guide by D. Grune et al. [2].

2.3.1 LL(1)

This section begins with an exploration of LL(1) parsing, a top-down parsing strategy that uses
left-to-right, leftmost derivation. However, to understand the advantages of bottom-up parsing,
it is helpful to mention LL(1) top-down parsing as well. The definition of LL(1) are as listed:

1. The parser must be able to decide between two alternatives only by using one look-ahead
token.

2. This achieves (1), the first symbols of alternative routes in the grammar must be pairwise
disjoint.

To explain the LL(1), we will use the basic path grammar shown in Figure 6. The grammar
allows paths such as ./folder/file.csv and ./folder1/../folder2/file.txt.

Path = "." "/" Step {"/" Step} "/" File .
Step = an {an} .
Step = "." "." .
File = an {an} "." an an an .

Figure 6: Example path grammar written in EBNF.

The acronym LL already tells a lot about how the parsing strategy works. The algorithm
starts with the topmost symbol, which the example is the start symbol Path. From there the
algorithm moves from left to right, performing a derivation when it encounters an NTS in the
grammar. To infer a leftmost NTS, the algorithm uses the look-ahead token to select an appropri-
ate production. The derivation results in a recursive descent to expand all required productions.
Figure 7 shows the input ./folder/file.csv being processed by the LL(1). The final path then
consists of TS only.
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Path -> "."
Path -> "." "/"
Path -> "." "/" Step

Step -> f o l d e r
Path -> "." "/" f o l d e r "/"
Path -> "." "/" f o l d e r "/" File

File -> f i l e "." csv
Path -> "." "/" f o l d e r "/" f i l e "." csv

Figure 7: Application of LL(1) on ./folder/file.csv with the grammar from Figure 6.

However, there are some drawbacks to LL(1) that are very important to consider in terms of
grammar. A common cause of LL(1)-conflicts, i.e., situations in which the starts of alternatives
are not disjunctive, are left-recursions. Left-recursions occur in situations where an NTS can
directly or indirectly produce a sequence that calls itself on the leftmost position. The LL(1)
approach causes indecisive branching, where the algorithm cannot decide whether to descend
recursively or not. Looking again at the grammar in Figure 2, it is clear that there is a left
recursion in the second production. The presence of such a left-recursion must be resolved
either by replacing it with another pattern that does not cause an LL(1)-conflict, or by using
another parsing strategy that works even when LL(1) does not, such as LR(1) or LALR(1),
which are described in the following chapters. Even with these drawbacks, LL(1) can still be
considered favorable for certain grammars that don’t contain conflicting alternative starts, since
it is relatively easy to implement.

2.3.2 LR(1)

LR(1) stands for Left-to-Right, Rightmost derivation with a single look-ahead token and is a
bottom-up parsing strategy. As the name implies, the parser moves from left to right, performing
the rightmost derivation. A bottom-up parser typically uses a Pushdown-Automaton, which
internally uses four actions to mark what to do. These three more important actions are SHIFT,
REDUCE, ACCEPT and will be explained shortly.

Before explaining the theoretical idea of the algorithm, we need to introduce some information
about its structure and terminology, as shown in the following list:

• Each production has one or more followers. These followers consist of NTS and TS that may
come after the respective production. For example, the follower of the production Step
shown in Figure 6, is the literal "/". The reason is that after a Step only a "/" can follow.
If the next symbol is a NTS, the first symbol of its production is used. In the latter case, it
may happen that the follower is a few levels into another NTS before a TS is reached.

• When the parser is working at a specific place of the production, it is called an Item.

• Depending on the position of the parser in an item, there are different actions possible:

- SHIFT – The parser is not yet at the end of the production and encounters a symbol
with which it can continue in the production. Read the symbol from the input and
move forward with the item.
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- REDUCE – The parser has reached the end of the production and encounters a suitable
symbol on the input. The NTS of the production is put on the input.

- ACCEPT – Indicates a successful parsing process, i.e., a full sentence has been read (for
this, EOF is represented with a special TS typically ’#’, which has to be encountered
at the correct location).

- ERROR – Indicates that the look-ahead symbol could not be processed.

These actions are also the reason why bottom-up parsers are also called Shift-Reduce-
Parser.

• The dot in an item indicates the current position of the parser. This is different to the dot
at the end of a production that was mentioned in Section 2.1.

• The parser represents the progress in so-called States, which represent a snapshot of the
processed information.

• When the parser processes several productions at the same time, such a state can consist of
multiple items. This is the case when the parser is not able to distinguish between multiple
items by using the look-ahead token. An example is an {an}, which is the beginning of
File and the first part of Step.

• Each state contains so-called core items. Items are called so, if the parser is not at index
zero. In other words, at least one symbol of an item has already been processed. An
exception is the start symbol, which is a core item even if the parser is still at the beginning.
In Table 2 are examples of some core items and some that are not.

• The core items of a state are always known and are used to derive the hull of a state. The
hull of a state are all corresponding items that the parser can use to perform actions on,
based on the look-ahead token.

Core Item No Core Item
Path = . "." "/" . . . Step = . an an
Path = "." . "/" . . . Step = . "." "."
File = an . an . . . File = . an an . . .

Table 2: Examples of core items and non-core-items.

Another important thing to think about is the grammar compliance. A grammar is LR(1)
compliant, when in every state the look-ahead symbols allows the parser to decide

• if it is a SHIFT or REDUCE action,

• and in the case of a REDUCE action to which NTS it gets reduced.

The following is a theoretical introduction to how the LL(1) actually works. The technical
implementation details are explained in Section 4.3. For the theoretical explanation the grammar
shown in Figure 6 is reused.
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The first goal is to create the parser table, which consists of all possible states for the grammar.
First, the initial state is created, which consists of the production of the start symbol with the
parser at index zero, as shown in Figure 8. Note the ’#’ at the end of the production. It makes
it easier to detect of the end of the start symbol’s production.

Path = . "." "/" Step {"/" Step} "/" File #

Figure 8: Initial state of LR(1) for the grammar shown in Figure 6.

The next step is to build the hull from all the core items in the state. Since this is the
first state, the start symbol’s production is also a core item. If the symbol to the right of the
current parser position is a NTS, the algorithm recursively derives through the corresponding
production(s). In the case of the example, the initial state doesn’t change after the hull is built.
The reason is that the symbol to the right of the parser position is the TS with the literal ".".

Now assume that the parser is between the literal "/" and the NTS for the Step. The state
before and after building the hull is shown in Figure 9. There the algorithm recursively descended
into the Step and stopped at both versions, because there are no more NTS for derivation to the
right of the parser position inside the Step.

Before:
Path = "." "/" . Step {"/" Step} "/" File #

After:
Path = "." "/" . Step {"/" Step} "/" File #
Step = . an {an}
Step = . "." "."

Figure 9: Hull building if parser is in front of the first Step.

The built hull is the base for the algorithm to detect the next action to be performed. The
ACCEPT is the most basic action to check for. The action is performed when the parser is at the
end of the production for the start symbol and the look-ahead token is the special TS for ’#’.
Similarly easy is the detection of REDUCE, which is only possible when the parser is at the end
of an item. The action indicates which production is used to perform the reduce operation. The
SHIFT action is the most complex, as it requires several checks to find a match or create a new
state. The checks are not as trivial as the others and are explained in Section 4.3.2, but in simple
terms the algorithm does one of the following in the order listed:

1. Search for reusable action in the local state.

2. Search for reusable action in all other states.

3. Create a new state.

When using the state shown in Figure 8 again, it was already clarified why nothing changes
when the hull is built. However, the action still needs to be detected. In this case, the action
would be a SHIFT with the TS ".". Since this is the first and only item in the initial state,
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there are no other actions yet. So the algorithm creates a new state. Into this new state, the
algorithm copies the item from the current state and moves the parser one step forward, as shown
in Figure 10.

(Initial) State 0:
Path = . "." "/" Step {"/" Step} "/" File # | SHIFT "." 1

(Created) State 1:
Path = "." . "/" Step {"/" Step} "/" File #

Figure 10: Detection of SHIFT and creation of a new state.

Building the hull and finding a feasible action is performed iteratively for each state until all
states have been processed. This includes new states that arise during the process.

When this is done, a state-transition-table is created, which is used to perform the actual
simulation of a sentence. The table is not strictly necessary, but it is much easier to look up
information from the state-transition table. The creation of the table is not too difficult, since it
is just a mapping from a state and a look-ahead token to an action. The state is represented by
a number, which is the index of the state in the list of states. The action is typically represented
by a string naming the action and varying additional information. The beginning of the state-
transition-table for the example is shown in Table 3. In addition to state 0, the action for the
single item in state 1 has been added to the table.

State # "." "/" an Path Step File
0 SHIFT 1
1 SHIFT 2

...

Table 3: State-transition-table for state 0 and state 1 of grammar Figure 6.

2.3.3 LALR(1)

Look-Ahead, Left-to-Right, Rightmost derivation (LALR)(1) is a variation of LR(1) which allows
smaller parser states and thus a smaller resulting parser table. The reduction in states is achieved
by merging states with identical core items that have identical look-ahead tokens. During the
combination, the followers must also be merged. The example shown in Figure 11 contains two
states of a fictional, but similar grammar to the one used before. The symbols after the ’/’
represent followers of the given item. The example shows that state 1 and state 2 share the same
core item (Step = "." . "."). Therefore, the two states can be combined into one state and
the followers can be merged.
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State 1:
Step = "." . "." / an
File = . "." an an an / "#"

State 2:
Step = "." . "." / "/"

State 1-2:
Step = "." . "." / an, "/"
File = . "." an an an / "#"

Figure 11: Combinations of two states with equal core items.



3 Overview

The internal structure of the program is in most parts similar to what is taught in the course.
A simplified overview of the data flow in the program is shown in Figure 12.

Input-File

LALR(1) Table Generator

Simulator

Generate
Table

Tokenizer

Syntax (BNF)

Lexical
grammar

Simulate
Sentences

Tokenize
Sentences

Tokenized
Sentences

Simulation Log

Simulation Steps

State-Transition-Table
Simulation Sentences

optional
Parameters

Parser Table

Figure 12: The program flow starts at an input file that is read and split into chunks. These
chunks are processed by different sub-processes and then reassembled for simulation. At the end,
the program outputs four files to the user.

The input file resembles a homework specification, which contains the necessary grammar,
the definition of the lexical structure and inputs that should be checked against the grammar.
An example of such a file is shown in figure Figure 13. The tool loads this input file and splits
the content into the different parts for further use. As an input for the grammar and lexical
structure, a basic BNF is used.

Path = Dirs Name .
Dirs = Dir .
Dirs = Dirs Dir .
Dir = Name "/" .
Name = an .
Name = Name an .

an = letter | digit .

home/user/file
etc/config

Figure 13: Example content of an input file.

The input sentences in the last block can’t be processed directly by the program. To convert
them into the internally used TS, the tool uses Coco/R as another parser. However, because this
tool supports different atomic TS that are not known at compile time, the other parser must be
created and loaded at runtime. Figure 14 shows a sentence converted into a list of TS for further
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processing. In the figure it is visible that the words used for names are converted into a series of
an. It is also shown that the slashes are converted into the literal "/".

Input:
home/user/file

Converted:
an an an an "/" an an an an "/" an an an an

Figure 14: Example sentence converted into a list of TS by additional parser.

The simulation stage takes the parsed simulation sentences and the state-transition-table to
perform the simulation itself. The individual steps are stored in a human-readable file for the
user. If the simulation encounters an error, e.g., an unexpected TS, the error handling algorithm
from the lecture is applied. The error handling also produces a log with all error messages, e.g.,
"X inserted at position Y", which makes it easier to follow the steps taken by the algorithm.

In summary, the tool takes one input file and produces four output files. The four output files
consist of parser table, state-transition-table, simulation steps and simulation log. In addition
to the input file, optional parameters can be passed, i.e., output directory, action format (how
the actions are indicated, e.g., all lowercase, all uppercase or just a single character) and a Java
binary (to execute the Coco/R dependency). These optional parameters are then taken into
account at the stages where these properties are used, e.g., the action formatting in the output
tables.
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4 Implementation

Since the previous sections have presented the background and an overview of the tool, this
section will delve into the implementation with greater detail. The implementation will cover
theoretical aspects and be illustrated with an example, that extends until the end.

4.1 Internal Data Structure

Before getting into the actual implementation of the algorithm and other functionalities, this
chapter provides some information about the internal data structure used. Since the internals
are quite extensive, only the more relevant parts will be explained.

4.1.1 Symbol, TS and NTS

Starting with the very basic structure of a grammar, the TS and NTS. More specifically, the
Symbol-class, which abstracts common parts of TS and NTS, as shown in Figure 15.

The abstract class holds the name of the symbol, e.g., Expression, Term or Identifier. The
boolean flag isExpandable indicates whether a symbol or an inheritor is expandable, i.e., it
is true for NTS and false for TS. The reason for this is that a symbol is only expandable if it
can be replaced by its children, which is only possible for NTS. The flag is hard-coded into the
constructors of TS and NTS. Next to the fields, an abstract function first is declared, which in
its implementation should return the terminal beginners. These terminal beginners are nothing
more than the symbols that an NTS or a TS can start with. Another advantage of the abstract
class is that both TS and NTS can be stored in lists and other data structures at the same time.

TS

- actualValue: String

+ first: new Symbol[] {this}

NTS

- productions: List<Production>

+ first(): Symbol[]

Extends Extends

Symbol

+ name: String

+ isExpandable: boolean

+ first: Symbol[]

Figure 15: UML diagram for Symbol, TS and NTS.

The class for TS contains an extra field that holds the effective value of a symbol. The effective
value is needed for terminal classes such as numbers. For example, the name of a TS is number
and the effective value is 6. Next to the field, the class overrides the first method, which returns
the first symbol of the Symbol-object. In the case of a TS, this is itself.
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The NTS class also provides an extra field. It is used to store the productions that can be
used to create the NTS. The main use is to make it easier to traverse the data structure, since
the NTS is aware which productions can be used to create it. It also overrides the first method.
Unlike the TS class, the method of the NTS class must look in each of its productions. On each
production’s NTS, the first method is called, which causes a recursive descent until a TS is hit.

These are the very basic classes, which are used to form more complex structures, that are
explained next.

4.1.2 Production and Item

The next two structures are the Production shown in Figure 16 and the Item shown in Figure 17.
They can be created by the knowledge from the data structures explained in Section 4.1.1.

The Production class consists of three important fields. The first one is the number of the
production, i.e., the position in the input grammar. The Symbol[] symbols stores all symbols
of the production’s right-hand side. For example, the production X = a B c, symbols stores
three Symbol-objects, the TS a, the NTS B and finally the TS c. The stored NTS in nts is a
reference back to the corresponding NTS instance from Section 4.1.1. The reference allows us to
also traverse the data structure in the other direction.

Production

- num: int

- symbols: Symbol[]

- nts: NTS

Figure 16: UML diagram for the production class.

An Item is an "evolution" to the production, but behaves different enough that the decision
was made to not use inheritance. Instead, the item has a dedicated field that stores the production
it represents. Other than that, the item has a few more fields. The flag isCore indicates if the
item is a core item of its respective state. The position indicates the position of the parser
within the item, with the initial value being 0, or in a more figurative description, right before
the first symbol of the production. The action needed to process further through the item is
also stored here (for example SHIFT a, but the actual detection is performed later on and is
explained in Section 4.3.2. The last field contains the item’s follower set, i.e., which look-aheads
are valid for the item’s final REDUCE action. The set is passed at construction, but may gain
additional followers during the processing stage when the table is transformed from an LR(1) to
an LALR(1) table. The moveStep() function creates a copy of the item, and moves the position
one step forward (which updates the position and the action). At last, the class contains a
calculateFollow() function, which calculates followers for the item and will be described in
more detail in Section 4.3.1. However, as a brief explanation, the calculateFollow calculates
the followers for a moved item based on the current context, i.e., position of parser and followers
of the item.
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Item

+ isCore: boolean

- production: Production

- position: int

- action: Action

- followers: Set<Symbol>

+ moveStep: Item

+ calculateFollow: Set<Symbol>

Figure 17: UML diagram for the item class.

4.1.3 State and Parser Table

Following, we explain the State class and the ParserTable class. These classes represent the
top of the entire data structure.

The State class consists of two fields, as illustrated in Figure 18. The first field denotes the
state number to be able to tell different states appart. The latter field, items, comprises a list
that holds all items that make up the state. Additionally, the class offers a public method called
buildHull along the corresponding private method for recursive descent. These two methods
will be further elaborated upon in Section 4.3.1. The setGuide method is used and explained
in Section 4.3.2. The final method is getAnchor, which returns a set of TS that is used for error
handling. This process is explained in Section 4.8.1.

State

+ number: int

+ items: List<Item>

+ buildHull: void

+ setGuide: void

+ getAnchor: Set<TS>

- buildHull(item)

Figure 18: UML diagram for the state class.

The parser table class exists as a single instance, responsible for all direct and indirect compu-
tation regarding table generation. The class consists of two fields and three functions, as depicted
in Figure 19. The first field is for the grammar (represented as an array of Production objects).
This is demonstrated in Section 4.2. The other field, states, is the list of the table’s states
that fills up during table generation, as described in Section 4.3. The detectAction method
detects the possible action for each item in a state, and it is placed in the parser table class, as it
requires information from all other states. The createShift method also requires insight on all
other states in order to create a correct result, and is therefore also placed in the parser table. A
more detailed explanation is given in Section 4.3.2. At last, the build method is called by the
constructor and internally utilizes a loop to build the hull and detect actions for each state.
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ParserTable

+ grammar: Production[]

+ states: List<State>

- detectAction(nr): void

- createShift(state, item): Action

- build: void

Figure 19: UML diagram for the parser table class.

4.1.4 Action and Simulation Step

Last but not least, there are two additional classes that serve as a wrapper to bundle up infor-
mation.

Action

+ type: Type

+ tokens: Symbol[]

+ number: int

«Enumeration» Type

REDUCE

SHIFT

ACCEPT

ERROR

Figure 20: UML diagram for the action class.

The Action class represents an action and includes three fields, as shown in Figure 20. The
Enumeration distinguishes between the different types of actions, i.e., SHIFT, REDUCE, ACCEPT
or ERROR. The tokens field holds symbols depending on the specific type of action. For a SHIFT
and ACCEPT the symbol to consume is stored, while for REDUCE all possible TS for the reduction,
derived from an item’s followers, are stored. The number has varying meaning depending on the
type of the action. When performing a SHIFT, the number represents the number of the target
state. When performing a REDUCE, then the number represents the number of the production
based on which we reduce.

SimulationStep

+ stack: Stack<Integer>

+ input: List<Symbol>

+ anchors: Set<TS>

+ action: Action

Figure 21: UML diagram for the simulation step class.

The SimulationStep class ends this chapter. The class holds all relevant information for a
simulation step taken in Section 4.7 and contains four fields as shown in Figure 21. The stack
holds the taken path up to the current step, simulating the input. The input list contains the
remaining input during normal simulation or the guide symbols when performing error recovery.
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The anchors set contains the anchor symbol during error recovery, and the last field holds the
action performed in the step.

4.2 Import from File

The input is a simple text file (.txt) and uses a special format for input, as already briefly
mentioned in Section 3. The sections are grammar, lexical structure and simulation inputs.
These different blocks are shown in Figure 22 and are differentiated by the empty line separating
the individual blocks.

Path = Dirs Name .
Dirs = Dir .
Dirs = Dirs Dir .
Dir = Name "/" .
Name = an .
Name = Name an .

an = letter | digit .

home/user/file
etc/config

Figure 22: Example content of an input file

The input is read as a regular text file and gets split by the empty lines. Afterwards the
special TS ’#’, mentioned in Section 2.3.2, is added at the end of each simulation inputs. Then
the input is passed to Section 4.2.1 for conversion to the internal object structure.

4.2.1 Converting Text-based Grammar to Object-based Grammar

Since the tool itself can’t perform the task of generating a parser table and state-transition-table
from the text, the text must be converted into the object structure shown in Section 4.1. This
means that the text must be converted into TS and NTS, which can then be used to create a
production for each line of the grammar. It is important to note, that productions for the same
NTS must be sorted by their length. The reason for this is that the whole creation of the parser
table depends on this order and will therefore produce different results.

To accomplish the task of converting the input, the tool must first know which NTS exist in
the grammar. Finding the NTS is easy because they must be defined in a production, and the
fact that the left-hand side and the right-hand side of a production are separated by an equal
sign makes it easy to extract. It is a matter of looping through all the lines of the grammar,
splitting at an equal sign, taking the object at index zero, and then removing potential whitespace
characters with a .trim() command. This process results in an array of NTS, which are then
used to parse the productions.

To build the productions, the grammar is looped again, but already with the knowledge of
the existing NTS. This time, the right side of the equal sign is split by whitespace characters
to get individual symbols. The individual symbols are then compared to the list of NTS, and if
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found, the symbol is a NTS and is treated as such. However, if the symbol is not in the list, it is
treated as a TS. The symbol (which is either a NTS or a TS) is then added to the list of symbols
on the right side of the corresponding production.

At the end, the so-called synthetic start symbol is created. It is simply a new production of
an NTS, which is the start-NTS with an apostrophe added. An example of such a synthetic start
NTS is shown in Figure 23. This synthetic start symbol will be added at the top production, to
be used as the new start for building the parser table. The corresponding definition is then the
start NTS followed by the hash sign. The main idea behind the synthetic start symbol is, that it
is easier to detect if the simulation on an input ended successfully.

Path' = Path # .

Figure 23: Example of a synthetic start NTS created from Path = Dirs Name .

The complete result is now the complete grammar in an object-based form, which is used in
Section 4.3 and Section 4.4 to create the tables.

4.3 Generate Parser Table

In this chapter, the focus is on generating the parser table again. Instead of the theoretical part,
which was covered in Section 3, the focus will be the explanation based on a concrete example.
The productions are shown in Figure 24, which are imported using the technique presented in
Section 4.2. To facilitate easy reference and comprehension, take note of the numbering in the
parenthesis at the beginning of each production.

(0) Path' = Path # .
(1) Path = Dirs Name .
(2) Dirs = Dir .
(3) Dirs = Dirs Dir .
(4) Dir = Name "/" .
(5) Name = an .
(6) Name = Name an .

Figure 24: Example productions for the explanation of parser table and state-transition-table
generation.

From the productions, the parser table is generated. The algorithm can be divided into two
blocks, one for building the hull and the other one for the detection of possible actions. The
two blocks are sequentially applied for each existing and/or newly created state, as visualized in
Figure 25.

4.3.1 Building the Hull

In the following, we will explain the hull building algorithm. An overview in the form of a
flowchart diagram is shown in Figure 26. For ease of understanding, this section will use several
examples based on the input from Figure 24.
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build hull for states[i] detect actions for
states[i].items

if state[i + 1] exist: repeat with i = i + 1

Start with
i = 0

Initial
State

finished
Parser Table

Figure 25: Visualization of building the parser table.

builtItems = [ ]

state.buildHull()

for item in state.item

add item to builtItems
state.buildHull(item)

set state.items to builtItems

exit recursion if item is:
(1) at end                             
OR                                       

 (2) item.next not expandable

enter recursion

exit recursion

state.buildHull(item)

for prod in item.next.productions

create newItem 
skip if newItem in builtItems
add newItem to builtItems
state.buildHull(newItem)

recursive call

Figure 26: Visualization of the algorithm to build the hull of a State.

At the beginning of the hull-algorithm, an empty list called builtItems is created. The list
will contain all the original and derived items of the state at the end. Initially, the list contains
all the core items of the state from which the hull is built. The initial state zero, before the hull
is built, is shown in Table 4. Only the start symbol Path’ can be seen, because the algorithm
has not performed any major actions yet.

Core Production Follower Action Guide
| Path’ = . Path # #

Table 4: Initial state zero with only the start symbol Path’ as a core item.
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To fill said list, the algorithm iterates over all core items already in the newly created list.
The first step is to mark the item as built to avoid duplicate processing. Then the algorithm
enters a recursive descent by calling the buildHull function with the currently iterated item.
The first step within the recursive descent is a series of checks. The checks include the following
exit conditions:

• The parser has reached the end of the item.

• The next symbol (which is the symbol after the dot) is not a NTS and therefore not ex-
pandable.

Otherwise, the next symbol is a valid NTS. Therefore, the algorithm expands the NTS by
iterating over the productions for the given NTS. The rest of this chappter provides a step-by-

state.buildHull()

builtItems = [ ]1

state.items = [ (| Path' = . Path #) ]

buildItems.add(item)
call buildHull(item)

1st iteration
item = (| Path' = . Path #)
builtItems = [ (| Path' = . Path #) ]2

nextSymbol = item.next3 nextSymbol = Path

newItem = Item(prod, 0,
item.calculateFollow())4

builtItems.add(newItem)
call buildHull(newItem)5

nextSymbol.productions = [ (Path = Dirs Name .) ]

prod = (Path = Dirs Name .)
newItem = (Path = . Dirs Name) 

builtItems = [ (| Path' = . Path #), (Path = . Dirs Name) ]

for item in state.items

for prod in nextSymbol.productions

1st iteration

Figure 27: Flow of buildHull for start and first two recursive descents.

step walk-through of the hull build phase based on the state hero from Table 4. The complete
diagram is shown in Section 9 as Figure 40 and Figure 41. A part of with the first two recursive
steps are shown in Figure 27 and is split up into the following parts:

1. Create an empty list builtItems which is used to mark items as built and avoid duplicated
executions. Afterwards, the algorithm starts iterating over all items in state. The only
item of state.items is the core item itself, which implies that only a single iteration is
performed for this loop.
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2. The core item | Path’ = . Path # gets added to the list of processed items and starts
the recursive descent by calling buildHull(item).

3. Store the symbol that gets processed next, which at the current step is Path. The algorithm
checks if the symbol triggers any exit conditions. As none are triggered here, the algorithm
starts iterating over the products that make up said NTS. Since there is only the product
Path = Dirs Name . for Path, the loop also performs one iteration.

4. Create a new item for the iterated product. The item has to start at position zero, and
the followers are calculated with the algorithm from Figure 28.

5. Add the newly created item into the builtItems list, which at this step now holds two
entries. Afterwards, another level of recursive descent gets entered by calling buildHull
with the new item from step 4.

steppedItem =
item.moveStep()

item.calculateFollow()

return
HashSet(item.followSet)

return 
HashSet(nextSymbol)

followers =
HashSet(nextSymbol.first)

steppedItem
is at end

nextSymbol = steppedItem.
nextSymbol()

else

nextSymbol 
is TS

nextSymbol
is NTS

return followers

followers
.add(item.followSet()

any production
.length == 0

else

2

4

6

7

3

5

1

Figure 28: Flow of the calculation of followers for a certain item.

As already mentioned in the fourth step of Figure 27, the followers are calculated with the
algorithm from Figure 28. The followers depend on the context of the item, i.e., in which state
the item is in. The algorithm is shown in Figure 28 and is split up into the following steps:

1. Temporarily store the item as if the parser had moved forward by one step.
E.g., Path = . Dirs Name results in Path = Dirs . Name being stored.

2. If the parser’s position is at the end, the follower set of the production.
E.g., Path = Dirs Name . returns # as the single entry in a set.
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3. If the parser’s position is at the end, then the algorithm fetches the next symbol from the
temporary item and performs a type check.
E.g., in the temporary variable from step 1, the checked symbol is Name.

4. If the symbol is a TS, then the symbol is returned as part of a set.
E.g., the temporary item Dir = Name . "/" returns the literal "/".

5. If the symbol is a NTS, then the followers of the next symbol are stored into a temporary
variable. The reason is, that the follower set may get expanded in step 6.

6. If there exist any production for the NTS, where the length is zero, it is called a deletable
production. In this case, the followers of said symbol are also added to the set stored in
step 5.

7. The temporary variable from step 5 is returned.

The descent with steps 6 to 11 is very similar to step 3 to 5 performed twice in each other. At
step 12, the recursion reaches the loop with the symbol Name as shown in Figure 29. In the first
iteration processes production Name = an . where steps 13 and 14 are similar to the ones seen in
the explanations before. The exception here is step 15, which retrieves the TS alpha-numeric (an).
The symbol triggers the second exit condition, as it cannot be expanded any further.

nextSymbol = item.next12 nextSymbol = Name

newItem = Item(prod, 0,
item.calculateFollow())13

builtItems.add(newItem)
call buildHull(newItem)14

for prod in nextSymbol.productions

nextSymbol = item.next15

1st iteration

nextSymbol.productions = [ (Name = an .), (Name = Name an .) ]

prod = (Name = an .)
newItem = (Name = . an) 

builtItems = [ (| Path' = . Path #), (Path = . Dirs Name),
                      (Dirs = . Dir), Dir = . Name "/"),
                      (Name = . an) ]

nextSymbol = an

nextSymbol is not expandable

Figure 29: Flow of buildHull for the loop over Name.

The second iteration shown in Figure 30 processes Name = Name an . with another recursive
descent due to the left recursion in the production. The recursion processes the NTS Name and it’s
productions again. There both iterations are stopped prematurly, as each iteration’s newItem is
already contained in builtItems. If this check would not be in place, it would cause an infinite
recursion and eventually cause a crash of the tool.
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newItem = Item(prod, 0,
item.calculateFollow())16

builtItems.add(newItem)
call buildHull(newItem)17

nextSymbol = item.next18

2nd iteration
prod = (Name = Name an .)
newItem = (Name = . Name an) 

for prod in nextSymbol.productions nextSymbol.productions = [ (Name = an .), (Name = Name an .) ]

nextSymbol = Name

newItem = Item(prod, 0,
item.calculateFollow())

1st iteration

19

newItem already in builtItems

prod = (Name = an .)
newItem = (Name = . an) 

newItem = Item(prod, 0,
item.calculateFollow())

2nd iteration

20

newItem already in builtItems

prod = (Name = Name an .)
newItem = (Name = . Name an) 

Figure 30: Flow of buildHull for the loop over Name with already built items.

Similar to Figure 30, the second iteration of Dirs also contains a left recursion. The recursion
in step 23 also performs loops over already built items. From here on, the recursive part of the
algorithm fully retreats and the algorithm exits the the loop created in step 1.

After step 15 every relevant item of state zero has been processed. After the loop, the
algorithm exchanges the existing items of the state, with the ones from the builtItems list.
Table 5 shows the items of state zero from what has been performed up until now.

However, the table is not done yet. When looking at the rows of the productions for the
Name, there seems to be missing something with the followers. The missing part is the TS for
the alpha-numeric (an). The symbol is missing due to the recursion being present within the
production Name = Name an .. To fix such issues, the algorithm has to perform an action called
merging. This takes advantage of the properties from the LALR(1). Instead of expanding the
recursive part again, the algorithm expands and then merges the item’s followers with the already
existing item. Despite that, the implemented algorithm performs things a bit different, due to
issues with finding indirect recursions.

The implemented algorithm shown in Figure 31 runs a loop-based-check with a didChange-
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Core Production Followers Action Guide
| Path’ = . Path #

Path = . Dirs Name #
Dirs = . Dir an
Dir = . Name "/" an
Name = . an "/"
Name = . Name an "/"
Dirs = . Dirs Dir an

Table 5: State zero after running recursive part of buildHull().

flag. The main loop runs as long as changes have been made. Inside the main loop, two
other cascaded loops span over the state’s items. The two cascaded loops form a matrix of all
combinations of source and targets for merges. Within the loop for the source, the algorithm
filters out any items that are core items, since these items are the base of building a hull and
therefore were already a source. At the same position, it is also checked if the item’s next symbol
is a NTS. This check is performed as merging is not required if the next symbol is a TS. On the
very inside, the actual check for the compatibility to merge are performed. The algorithm checks
if the next symbol of the source matches the NTS of the target and if the compatibility is verified,
the actual merging is performed. The merge process takes the source’s next symbol and from
that calculates the followers. These followers are then added to the target’s follower set. After
adding the followers to the target, the flag is set to allow for another round of merging. This
approach is definitely not very efficient and there are better strategies to accomplish merging.
But as the amount of productions used in the lecture’s homework manageable, the explained
method is acceptable.

When applying the merging on the output from Table 5, the algorithm detects that the
followers of the item Name = . Name an can be merged into Name = . an, which in this case is
the symbol for an alpha-numeric (an). The same is true for the target Name = . Name an. The
result after the merge operation is shown in Table 6.

Core Production Followers Action Guide
| Path’ = . Path #

Path = . Dirs Name #
Dirs = . Dir an
Dir = . Name "/" an
Name = . an "/", an
Name = . Name an "/", an
Dirs = . Dirs Dir an

Table 6: State zero after building the hull and merge operation.
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while didChange

for src in items

for dest in items

if !src.core           AND
src.next is NTS   AND
dest.NTS == src.next 

if !src.core           AND
src.next is NTS   AND
dest.NTS == src.next 

didChange = false

didChange = true

Figure 31: Flow of merge process after recursive buildHull calls.

4.3.2 Detect Possible Actions

With the hull built in the last chapter, in this one the focus is on detecting the possible actions.
Furthermore, the so-called guide symbol is also detected in this part of the process. The guide
symbol is used for error handling and is explained in Section 4.8.

An overview of the detection step is shown in Figure 32. The examples that the explanation
uses, are based on the grammar from Figure 24 and state zero with a completed hull from Table 6.
The function, which performs the detection, is placed in the ParserTable-class. The reason is,
that the internally used function createShift requires access to the whole parser table in order
to find and reuse existing actions in other states.

The process starts by retrieving the state that gets processed. The state (curState) is the
same that the hull was built, as shown in Figure 25. Then the algorithm starts iterating over the
items contained in the state. Inside the loop, the item’s next symbol is stored into the temporary
variable nextSym, and three checks are performed on it as listed:

1. If the nextSym is the indicator symbol #, then the end of the synthetic start symbol has
been reached. The only action here is the ACCEPT, which does not need any parameters.

2. If the parser’s position of the curItem is at the end of item, a REDUCE action is possible.
To get the index of the production, the algorithm uses the .indexOf(...) function on the
array with the loaded grammar. The passed argument is the production of curItem. The
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followers of curItem are used as the guide symbols. Both the index and the guide symbols
are used to create a REDUCE action.

3. In any other case create a SHIFT action. The implementation uses the helper function
createShift. The function takes the current state and current item as arguments and is

for curItem in curState.items

curState = states[nr]

curItem.pos
is at end else

nextSym = curItem.next
IF …

curItem.action = ACCEPT
index = grammar.
indexOf(curItem.

production)

curItem.action =
REDUCE(index,
curItem.follow)

curItem.action = createShift
(curState, curItem)

nextSym == TS(#)

1 2 3

detectAction(nr)

Figure 32: Overview for detecting actions.

Creating the SHIFT action is not as straightforward, as the other two actions, as already
briefly mentioned in Section 2.3.2. For this reason, the algorithm works in three phases to find
a suitable action. The first one is to check if there is already a reusable action in the local state.
The second phase checks if there is a reusable action in the parser table. The last phase creates
a new state and matching action.

Let’s start with the first phase, which checks if there is already a reusable action in the local
state. Figure 33 shows how the phase handles the process and is split up into the following steps:

1. Create a flag called found and set it to false by default. The flag indicates if a reusable
action has been found. Afterwards, start iterating over all items of curState.

2. Check if other has an action, and if the next symbol of other is equal to the next symbol
of curItem. Only continue if both checks are successful.

3. At this step, a reusable action has been found. The flag is set to true and set the action
of curItem to the action of other. Temporary store a moved version of curItem as next.
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4. Check if next is already contained in the successor state. If this is not the case, continue
with step 5.

5. Add next to the successor state.

6. After the loop, the flag is checked. If the flag is set, no further action is required and the
createShift function returns. Otherwise, the algorithm continues with phase 2.

for other in curState.items

found = false

if (other.action ≠ null)
AND

(other.next == curItem.next)

true

found = true
curItem.action = other.action
next = curItem.moveStep()

true

if next is contained
in successor state of other

add next to
successor state of other

false

2

3

4

5

if found

EXIT

TRUE

Check other
states for reuse

FALSE

61

createShift(curState,curItem)

Figure 33: Phase 1 – Search for reusable action in local state.

Phase two is shown in Figure 34 and begins by creating a temporary state for the moved
curItem. The algorithm then iterates over all states but skips the curState because it has
already been processed by phase one. The temporary state is then used to search for similar
states that already exist in the parser table. A state is similar to another state if both contain
the same core. The term same core for states means, that at least one core item exists in both
states. However, the items must be identical only from the beginning to the position of the
parser on the item.

Table 7 shows an example of two states with an equal core. The example table is based on a
different grammar, since the grammar of Figure 24 does not contain such a case. Nevertheless,
the example shows that both states do indeed contain a core item that satisfies the requirement
of being equal from the beginning to the parser position. In other words, the part between the
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for other in states

moved = curItem.moveStep()

tmpState =

State(states.size, moved)

Check other
states for reuse

if tmpState has the same
core items compared to other

similar = find item similar to
moved in tmpState

false

Create new state

add moved.follow to

similar.follow

return SHIFT(curItem.next, other)

Figure 34: Phase 2 – Search for reusable state in parser table.

equal sign and the parser position is the same. With this terminology cleared, the algorithm
reuses the state that satisfies the equal core. The temporary state is dropped because it is no
longer needed. Instead, the reused state is used for further operations. The moved curItem from
the beginning of phase two is added to the reused state at the end of the phase.

StateNr Core Production
1 | Dir = "." . "/"
2 | Dir = "." . "." "/"

Table 7: Example, for two states with the same core.

Phase three is a very quick one, as the only option left is to create a new state. The new
state is the same as the temporary one from phase two. But this time, the state is stored into
the list of states in the parser table. Last but not least, the SHIFT action that references the
newly created state is created returned, to be set as the action for curItem.

The result of applying the detection on Table 6 is shown in Table 8. A new state has
been created for each item except the last one. In phase one, the algorithm is able to detect
the action for Dir = . Name "/" and reuse it for Name = . Name an. The same is true for
Path = . Dirs Name and Dirs = . Dirs Dir.
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Core Production Followers Action Guide
| Path’ = . Path # SHIFT Path 1

Path = . Dirs Name # SHIFT Dirs 2
Dirs = . Dir an SHIFT Dir 3
Dir = . Name "/" an SHIFT Name 4
Name = . an "/", an SHIFT an 5
Name = . Name an "/", an SHIFT Name 4
Dirs = . Dirs Dir an SHIFT Dirs 2

Table 8: State zero after building the hull and merge operation.

The last thing to fill in is the Guide column. These symbols are used to calculate the escape
route while the simulation performs error handling, which is described in Section 4.8. Since
these guide symbols are the fastest way to escape the state, the algorithm takes advantage of the
implicit sorting of items in a state. The implicit sorting is a result of the input grammar being
sorted by length when a NTS has more than one production.

Figure 35 provides an overview of the process. The algorithm loops over all items of the given
state until a suitable guide symbol is found. Otherwise, the algorithm ran into a problem and
the tool exits with an exception. A guide symbol is suitable if

• the action is an ACCEPT.

• the action is a REDUCE.

• the action is a SHIFT, with the symbol being a TS.

If the action is an ACCEPT or a SHIFT with a TS symbol, the stored symbol is returned as the
guide symbol. If the action is a REDUCE, then the algorithm has to check if one of the symbols
contained in the action is a TS with the value #. The reason for this is that the fastest exit is
desired, and the exit of the synthetic production is most desired. So if such a # is found, it will
be used as the guide symbol. Otherwise, similar to the other actions, the first symbol of the
action is used.
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for item in state.items

action = item.action
if …

throw Exception

if '#' in
action.symbols

action == REDUCE

state.guide
= action.symbols[0]

return

(action == SHIFT  AND
action.symbols[0] is TS)
OR action == ACCEPT

state.guide = '#'
return

state.guide =
action.symbols[0]

return

true false

state.setGuide()

Figure 35: Detection of the guide symbol

Table 9 shows the zero state from Table 8, but with the guide symbol also detected and set.
The loop iterated over the first and second item without finding a suitable guide. The reason
was the NTS used for the SHIFT action. The same is the case for the second, third and fourth
item. The fifth item is found suitable because the symbol of the SHIFT is a TS. Therefore, the
TS with the value an is used as the guide symbol for the whole state zero.

Core Production Followers Action Guide
| Path’ = . Path # SHIFT Path 1 an

Path = . Dirs Name # SHIFT Dirs 2 an
Dirs = . Dir an SHIFT Dir 3 an
Dir = . Name "/" an SHIFT Name 4 an
Name = . an "/", an SHIFT an 5 an
Name = . Name an "/", an SHIFT Name 4 an
Dirs = . Dirs Dir an SHIFT Dirs 2 an

Table 9: State zero after the complete state is built.

4.4 Generate State-Transition-Table

The generation of the state-transition-table starts off with calculating how much columns are
needed. Compared to the parser table explained in Section 4.3, the state-transition-tables has a
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variable amount of columns. The amount depends on the amount of TS and NTS. In addition to
the columns for the symbols, two columns are certain, namely the columns for the state number
and the guide. Each row represents a state, and each column is dedicated to a potential symbol
found. The combination of the rows and columns shows certain transition depending on the
action in a cell.

To populate the state-transition-table, the algorithm proceeded in an iterative fashion, com-
pared to the recursive approach of the Section 4.3. In the iteration, the already known state
number and guide are set. Next, the algorithm iterates over all items of the processed state.
For each item, the action is looked at, and then decided where to put which entry. The actual
format depends on a program argument, but the basic schema is the same for all. In the case of
ACCEPT, the entry is a simple "accept". Almost the same is done for SHIFT, which is a "shift"
followed by the number of the state it references to. If the action happens to be a REDUCE, there
is not only one entry to be made. Potentially, multiple REDUCE can be performed within a single
state. Therefore, each symbol contained in the REDUCE is looped over, and for each single one
an entry. Such an entry is indicated by a "reduce" followed by the number of the production
in parantheses. The formatting options include all upper-case, all lower-case, or the first letter
upper-case.

The algorithm applied on state zero from Table 9 is shown in Table 10. It can be clearly seen
which SHIFT occurs depending on the look-ahead symbol.

StateNr "/" an # Dir Dirs Name Path Path’ Guide
0 shift 5 shift 3 shift 2 shift 4 shift 1 an

Table 10: State-transition-table for state zero.

4.5 Parser for Simulation Sentences

As already briefly mentioned in Section 3 the simulation sentences have to be parsed into com-
patible TS. However, these TS are not fixed at compile-time of the tool and are subject to change
depending on the assignment the lecturer wants to create. For this reason, the tool creates a
scanner and parser at run time.

4.5.1 Using Coco/R for Sentence Parsing

To make life easier, the program Compiler Compiler generator Recursive descent (Coco/R) by
H. Mössenböck et al. [4] is used. Coco/R is able to generate a scanner and a parser from an
Attributed Grammar (ATG) that describes the grammar to be parsed. Most of the structure
stays the same, so a template for the ATG is used. This template contains a Record that holds
a single TS and an ArrayList that holds all parsed TS records for later use. Since the TSs must
be based on some characters, three atomic TS are declared by default. These declared values
include a single letter, a single digit and a sign, that hold their respective set of symbols.
The TS that are created from these atomic TS are placed in the TOKENS section of the ATG file
without changing anything. The valid symbols consist of all TS and all literals that need to be
added into the ATG and is explained in Section 4.5.2.
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4.5.2 Injection of TS and Literals

The injection of TS and literals is relatively straight forward as they are easily extracted from
the input. The symbols can be extracted from the second input block, that contains the user-
provided TS. From every symbol on the left side of the equals-sign gets extracted. Filtering the
literals from the input grammar is equally simple, since they are encapsulated by double-quotes
by the convention used in the course.

The production that matches all these TS and literals requires them to be in a OR-chain, with
each part having a special ATG code snipped. Each snipped creates and adds a corresponding
record-instance, that holds information about the kind, if it is a literal and the actual value.
An example of such an entry is shown in Figure 36 that matches all idents or literals that
are an exclamation mark. The SimTS in the example is the record and the tss is the list of
Record-objects mentioned in Section 4.5.1

X = {
ident (. tss.add(new SimTS("ident", false , t.val)); .)
| "!" (. tss.add(new SimTS("!", true , t.val )); .)

} .

Figure 36: Example for a production in Coco/R that matches an ident and an exclamation
mark literal

To avoid errors when parsing a sentence that contains unexpected symbols, the catch-all type
ANY is used. This special type is added at the very end of the OR-chain, and matches everything
that was not recognized until the end. Matching the ANY allows parsing to continue and also
stores information about which symbol was not expected. This information is then used for error
handling, which is explained in Section 4.8.

The generated OR-chain production is then placed in the PRODUCTIONS section of the ATG
file. The ATG file is now ready to be used by Coco/R, which is explained in Section 4.5.3.

4.5.3 Applying Coco/R to ATG file

To get the scanner and parser from Coco/R, two additional files are needed, namely Scanner.frame
and Parser.frame. These files contain the basic structure from which the actual scanner and
parser are generated. In order to avoid problems with duplicate files, accidental overwriting etc.,
the generation with Coco/R is performed in a temporary directory provided by the Operating
System (OS). All necessary files are copied into such a directory. This includes the .frame
files mentioned before, the Coco.jar and the generated ATG file. To execute the Coco.jar, a
Process-object with arguments to the temporary directory is used.

4.5.4 Compile and Load at Run Time

After the generation of Scanner.java and Parser.java with Coco/R in Section 4.5.3, these
files must be compiled and loaded into the current Java Virtual Machine (JVM) on which the
tool is currently running.
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To accomplish the task of compiling a .java file at run time in Java, the JavaCompiler class
provides a convenient solution with its CompilationTask feature. This feature allows dynamic
compilation of Java source code from a JVM. Such a task is created by specifying the path with
the .java files. The compiled .class files are then stored in the same specified path and are
ready for loading.

To load the Scanner.class and Parser.class at run time, another feature of Java is very
convenient. The URLClassLoader allows loading classes by simply pointing to the required
files. Loading a .class file returns a corresponding Class<?> instance. To use the scanner
and parser, an instance of the classes must be created by using a reflection-like approach. The
Parse() method can be extracted from the instance of the parser class. This method is used in
Section 4.6 to parse the simulation sentences.

4.6 Parsing the Simulation Sentences

The scanner created by Coco/R offers two ways to pass a sentence. Either by a file which contains
a sentence, or via a InputStream. For simplicity and some issues with InputStreams the chosen
method for this tool is the file with a single sentence. A simulation sentence, which is initially
loaded from the general input file, is saved into a text file in the temporary directory. With this
temporary file, a scanner instance is created, which then is used to create a parser instance. The
final step for parsing is to invoke the Parse() method of the parser instance.

The simulation sentence gets parsed and the list with the record-objects are now available
and ready for further use. To get objects of the list, the records and the records’ entries, another
round of reflection-like access is required. These SimTS records are then transformed into actual
TS objects by extracting the kind and the val fields. The actual TS objects are packed into a
list and then used in Section 4.7 to simulate the sentence on the given grammar.

4.7 Simulating a Sentence

The simulation uses the state-transition-table generated in Section 4.4 and the parsed sentences
from Section 4.6. The flow for the simulation of a single is shown in Figure 37.

The individual steps of the algorithm are as follows:

1. Create a new list stepList, which will hold all steps of the simulation. Furthermore, create
an initial step with a stack that holds the initial state, the whole sentence as an input and
the action for the initial state. Afterwards, start loop that runs as long as the action of
curStep is not an ACCEPT.

2. Add the current step to the list of steps and start preparations for new step. The prepara-
tions include creating a copy of the stack and the input. The reason for creating copies is
that changes later on would otherwise propagate back and cause incorrect results.

3. If the action of curStep is a SHIFT, the state of the action is pushed onto the stack and
the first symbol of the input is consumed by dropping it.

4. If the action is a REDUCE, then the algorithm pops as many states from the stack as the
production of the REDUCE has symbols. The NTS of the production is then added to the
front of the input.
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while curStep.action is not ACCEPT

stepList = [ ]
curStep = initial state

REDUCESHIFT

add curStep to stepList
nStack copy curStep.stack
nInput copy curStep.input

if curStep.action is …

push action.state onto nStack
drop nInput[0]

pop action.length
from stack

add NTS as input[0]

1

2

3 4

generate new Step Error Handling 6

add curStep to stepList

5

7

simulateSentence(sentence)

Figure 37: Program flow for the Simulation

5. With the nStack and nInput the algorithm creates a new step and adds it to the list
of steps. The action of the new step is determined by the state-transition-table. The
algorithm looks at the cell that is defined by the state of the stack and the first symbol of
the input.

6. If the cell in step 5 is empty, the algorithm transitions to an error handling mode, which is
explained in Section 4.8. The error handling then produces a new step which can be used
for the next iteration.

7. After the loop, the last step is added to stepList, which is the ACCEPT step. The simulation
is now finished and ready for export as explained in Section 4.9.1.

4.8 Simulation Error Handling

The lecture on Compiler Construction introduces an algorithm specifically designed to address
exception handling. The taught algorithm is divided, into three parts. The algorithms structure
can be briefly summarized as follows:
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1. Search for Escape Path:
Replace the input with the guide-symbol to navigate to the escape-state as fast as possible.
Add the anchors of each step into a set for later.

2. Delete Faulty TS:
Skip and remove all TS from the input until a valid symbol from the set of anchors is found.

3. Insert missing TS:
Adds all read guide-symbols until a valid state is reached to the front of the input.

For explanation, the example input "h!me/user" is used. The faulty symbol in the input is
the exclamation mark (!) at position 1, where a alpha-numeric (an) is expected.

The simulation steps up to the error are shown in Table 11 and has a single SHIFT to the fifth
state. The next action already fails because of the exclamation mark. At this point, the exception
handling starts with the calculation of the escape route, which is explained in Section 4.8.1.

Stack Input Action
0 an ! an an "/" an an an an # SHIFT 5
0 5 ! an an "/" an an an an # ERROR

Table 11: Simulation Steps until failure due to unexpected exclamation mark.

4.8.1 Calculate Escape Route

From a programming point of view, the calculation of the escape route is very similar to the
simulation itself. However, instead of sticking to the input, the escape route uses the guide
symbol to find the shortest route to the end. This mainly means that the normal input is
swapped with the guide symbols for the corresponding state. So the first step of processing is
the step that led to the error, but with an "#" as input as seen in Table 12. In the case of
escape route calculation, a REDUCE and a directly following SHIFT are combined into one step.
In code, the merging of these Actions is done by a second iteration after the whole escape route
computation.

Stack Guide Action Anchor
*0 5 # reduce (5), shift 4 "/", an, #
0 4 "/" shift 8 "/", an
0 4 8 an reduce (4), shift 3 an
0 3 an reduce (2), shift 2 an
0 2 an shift 5 an
0 2 5 # reduce (5), shift 6 "/", an, #
0 2 6 # reduce (1), shift 1 "/", an, #
0 1 # accept "/", an, #

Table 12: Escape route calculation for input "h!me/user".

The set of anchor symbols can be easily derived, from the calculated escape route. This
important for removing invalid symbols as described in Section 4.8.2. In the example, the anchor
set contains "/", an and #.
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4.8.2 Remove Invalid Symbols

Removing invalid input symbols is straightforward. The input is looped over, and if the current
TS is not in the set of anchors, the TS is removed from the input. Applying the information to the
example in Table 11, the second step is to remove the exclamation mark from the input, resulting
in the repaired input "an an "/" an an an an #". The repaired input is used to continue with
step 3 of the recovery process.

4.8.3 Insert Missing Symbols

To see if and which symbols to add to get a working input again, the algorithm has to check at
which point it can reattach. This is done by iterating over the escape route again and checking
at which step the next input symbol is included in the anchors of that step.

In the case of the example, the next input symbol is an "an" as calculated in Section 4.8.2.
The symbol already appears in the anchors of the first step and can therefore be used as a
reattachment point, as also indicated with an asterisk (*) in Table 12. Since there are no SHIFTs
without a preceding REDUCE, no TS need be added. If there would be a SHIFT without a preceding
REDUCE, the algorithm would have to add the symbol of the SHIFT to the input.

The modified input is used to create a new simulation step that has been reattached at the
position of the error. The simulation is now able to continue as normal according to the algorithm
in Section 4.7, which is partially shown in Table 13.

State Input Action
0 5 an an "/" an an an an # reduce (5)
0 Name an an "/" an an an an # shift 4
0 4 an an "/" an an an an # shift 9
0 4 9 an "/" an an an an # reduce (6)
0 Name an "/" an an an an # shift 4
0 4 an "/" an an an an # shift 9

Table 13: Simulation after reattachment

4.9 Export to File

Exporting is the last step performed by the tool and is explained in this section. The export is
divided into two parts. First, the actual output of the tables and steps in the form of CSV and
text files. The latter is the simulation log, which helps to understand the simulation process.

4.9.1 Export Parser Table, State-Transition-Table and Simulation Steps

The parser table from Section 4.3, the state-transition-table from Section 4.4, and the simulation
steps from Section 4.7 are saved in a CSV format to allow a tabular view without the need for
additional programs. The parser table from the example generated in Section 4.3 in form of an
CSV is partially shown in Figure 38. The complete CSV is shown in Figure 42 Keep in mind
that the CSV is formatted a bit to make it easier to look at.

In order to make concentrate on the implementation of the actual tool, the OpenCSV library
by G. Smith et al. [5] is used to perform the write operations for the CSV files. The library allows
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"Nr", "Core", "Item", "Successor", "Action", "Guide"
"0", "|", "Path' = . Path #", "", "SHIFT Path 1", "an"
"0", "", "Path = . Dirs Name", "#", "SHIFT Dirs 2", "an"
"0", "", "Dirs = . Dir", "an", "SHIFT Dir 3", "an"
"0", "", "Dir = . Name ""/""", "an", "SHIFT Name 4", "an"
"0", "", "Name = . an", """/"", an", "SHIFT an 5", "an"
"0", "", "Name = . Name an", """/"", an", "SHIFT Name 4", "an"
"0", "", "Dirs = . Dirs Dir", "an", "SHIFT Dirs 2", "an"

Figure 38: Partial parser table from Section 4.3 in CSV format.

easy implementation of CSV operations, and handles character escaping and different separators
in the background as well. The usage of the library is straight forward, as the table has to consist
of a list that holds a String[].

The array represents the columns, and each entry in the list is a row. In case of the parser
table and the simulation steps, the amount of columns is known at compilation of the tool, as
for these the column are a fixed amount. For the state-transition-table the amount of columns is
already calculated in Section 4.4 which can be reused here. With this knowledge, it is as simple
as iterating the states and placing the desired values in the correct spot of the Array.

4.9.2 Export Simulation Error Log

The log files for the simulation consist of messages such as "Removed ’!’ from input at position
1" and "No symbol was inserted into input". The messages are generated during the simula-
tion of each individual input. The strings for the messages are concatenated with the help a
StringBuilder and then saved into a plain text file at the end of a simulation run with the use
of a basic FileWriter from Java.
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5 Usage

The usage of the developed tool is simple and uses a Command-line interface (CLI) for controls.
The tool provides several options to customize its behavior, which can be set using the CLI
arguments. The simplest way to run the program is to just pass the input file as an argument
via -i or --input. However, there are additional options available to tailor the functionality of
the program according to the specific needs of the user. The following list shows all available
options that can be used with the tool.

• -i, --input <file>: Specifies the input file containing the grammar, TS and simulation
sentences. This option is required, and expected to be correct

• -o, --output <dir>: Sets the output directory for the generated CSV files. By default,
the tool uses the same directory as the input file is in.

• -a, --actionformat <str>: Determines the format of the action symbols in the generated
parsing table. The supported formats include UPPER_CASE, LOWER_CASE and SHORT. By
default, the format UPPER_CASE is used.

• -j, --java <path>: Specifies the Java runtime used for running Coco/R. By default, the
tool uses the "java" environment variable to locate the Java runtime. However, with this
argument, the user can provide the path to a specific Java runtime if necessary.

An example is the command shown in Figure 39, which takes a local grammar.txt as the
input, sets the output directory to /tmp, and uses the SHORT format to display only the first
letter of the action.

java -jar lalr1_table_generator.jar
--input ./ grammar.txt
--output /tmp/
--actionformat SHORT

Figure 39: Example command for running lalr_table_generator.jar with options.

After executing the command, the tool performs all the necessary steps to generate a LALR(1)
parser table, state-transition-table. The tool also performs the simulation and produces the
simulation steps and a simulation log. In addition to the output files, the program also prints
some information about the current state. So, all the steps which are explained in Section 4 are
performed.
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6 Related Work

The field of related work is not that large, when it comes to the requirements demanded for the
tool described in this paper. Nevertheless, there are some papers worth mentioning.

The paper "Implementation of an LALR(1) Parser Generator" by G. Svenheim [6] is more
than 40 years old and accomplishes almost everything that is required for today’s tool. One
of the few parts limiting its use is the fact that the input grammar used, and the algorithm
used, are slightly different from those used in the course. However, the main obstacle is the used
language. G. Svenheim’s implementation is based on Programming Language One (PL/1), an
IBM language first published in 1964 and is therefore impractical to use today.

Another work that can still be used today is a web-based "LALR(1) Parser Generator by
G. Apou [1]. The tool offers similar input, output and simulation as the tool described in this
paper. The only disadvantage is that the formatting is a bit different and would not work as
well for use as a sample solution. Also, the simulation part does not perform error handling at
all and sometimes locks up the browser

In conclusion, the field of related work to the requirements described in this paper may
not be extensive, but there are notable works worth mentioning. While these works contribute
valuable insights and functionalities, the tool presented in this paper aims to provide the specific
implementation for the requirements given by the lecturers of the Compiler Construction course.
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7 Lessons Learned

During the process of developing the LALR(1) Parser Table Generator, several valuable lessons
were learned that significantly contributed to the successful implementation of the tool, or will
contribute in future projects. This section summarizes the key takeaways and insights gained
from the project and are listed below:

• Thorough Understanding of the Parsing Algorithm: The development of the tool was based
on existing, but fundamental, knowledge of the LALR(1) algorithm. This prior knowledge
served as a crucial foundation for the project and guided the implementation process. Nev-
ertheless, the knowledge deepened as many things came up during development that were
not on the radar before. Much of this knowledge was gained during the development pro-
cess itself, creating issues of understanding that led to the task of rewriting. In subsequent
endeavors, our approach will involve a proper understanding of an algorithm and process
prior to the development of a tool.

• Test-Driven Development (TDD): The use of TDD proved to be a successful instrument
in the development of the tool. TDD helps to ensure that the functionality of the tool is
thoroughly validated throughout the development process, with tests implemented before-
hand. It helped to keep the focus on the desired outcomes and encourages incremental
development. However, we learned the importance of validating the accuracy of the test
cases, as faulty or incomplete tests could mislead our understanding of the tool’s behavior
and lead to incorrect implementations. This realization led us to re-evaluate and refine the
tests later in development to ensure proper validation of the tool.

• Approaching a Bigger Project : Taking on a larger project has taught us the importance of a
systematic approach with some planning up front. Whether it was clearly defined goals such
as the topic description, or clear milestones with set due dates. Regular meetings with our
supervisor also played an important role, providing valuable feedback and guidance for the
development process. This experience highlighted the significance of planning and efficient
communication between individuals, to achieve a successful outcome when tackling larger
projects.

Overall, the work on the tool and this paper has provided valuable insights and reflection
on the challenges and successes encountered. By emphasizing the importance of a thorough
understanding of the algorithms, proper planning and effective communication, this experience
has highlighted the importance of a structured approach successfully to tackle larger projects.
By applying the lessons learned, we are confident in our ability to address future challenges with
a proactive mindset to achieve a positive outcome.
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8 Limitations and Future Work

Finally, it is important to acknowledge some limitations and shortcomings of the tool developed
in this paper. Although the tool is able to perform the tasks required, it falls short in some
important areas. These limitations, along with other extensions and a final conclusion, are
elaborated in this section.

8.1 Limitations

First, the tool lacks certain features that are considered standard. One such limitation is the
lack of support for the EBNF grammar as an input. The absence of EBNF in the tool limits
compatibility to normal BNF-based grammar. This means that the handed out EBNF grammar
must first be manually converted into a valid BNF.

Furthermore, the tool also does not perform any input validation. The lack of such validation
makes the tool fragile if a non-conforming input is passed. In particular, validation of the input
BNF grammar, or the lack thereof, can cause unintended side effects such as incorrect results,
freezes or crashes. Besides missing validation, the tool also expects that the input grammar is
already correctly ordered. This means that the user has to make sure that the grammar is free
of syntax errors and that the grammar follows an appropriate hierarchical structure. Such a
limitation places the burden on the user to ensure the correctness of the grammar before using
the tool.

Moreover, the tool has not undergone extensive testing to validate its correctness and ro-
bustness. Although test-driven development principles were used during the development of the
tool, the test coverage remains very limited. The tests performed during the development phase
focused mainly on individual components and their functionality. The lack of more comprehen-
sive testing in the later stages of development may result in undetected problems and limitations
that could affect the stability and overall reliability of the tool.

8.2 Future Work

There are several areas of improvement and future work that can be based on the tool described
in this paper. Improvements include, but are not limited to, increasing functionality, reliability
and overall effectiveness. This also includes addressing the limitations mentioned in Section 8.1.

One important aspect to address is the tool’s heavy reliance on correct input. In addition to
proper input validation, the tool could be enabled to perform proper sorting and ordering of the
input grammar itself. This would improve the usability of the tool and save the user the effort
of manually arranging the grammar in the desired order.

Another notable improvement would be to extend the input grammar to support EBNF over
the current BNF. This would eliminate the need for manual conversion to BNF and improve
usability. This change would indirectly reduce the risk of subsequent errors due to incorrect
conversions. Supporting EBNF would also make the tool less cumbersome to use for more
complex grammars.
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9 Conclusion

In this paper, we presented our LALR(1) Parser Table Generator tool, that allows the generation
of a parser table, a state-transition-table and the simulation of sentences on a given grammar.
We have discussed the general structure of the tool, followed by the implementation. In the
implementation, for the generation of a parser table and a state-transition-table are elaborated.
The use of Coco/R to parse simulation sentences is also discussed. Finally, the simulation of
sentences and the error handling with the algorithm learned in the Compilerbau course are
explained.

While our tool is not without limitations, we consider it a solid foundation upon which future
improvements can be built. The tool is implemented as a command-line application in Java. We
believe that this tool can save time for lecturers, allowing them to allocate their time and effort
elsewhere. Furthermore, we anticipate that the sample solution provided will serve as a valuable
resource for future students seeking to grasp the concepts of bottom-up parsing.

In conclusion, the developed tool provides a simple solution for generating the required tables
from a given grammar. While further refinements and enhancements can be made, we are
confident that the tool serves as a valuable contribution to provide a helpful resource for both
the lecturers at Institute for System Software (SSW) and the students at JKU.
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Appendix

state.buildHull()

builtItems = [ ]1

state.items = [ (| Path' = . Path #) ]

buildItems.add(item)
call buildHull(item)

1st iteration

item = (| Path' = . Path #)
builtItems = [ (| Path' = . Path #) ]

2

nextSymbol = item.next3 nextSymbol = Path

newItem = Item(prod, 0,
item.calculateFollow())4

builtItems.add(newItem)
call buildHull(newItem)5

nextSymbol.productions = [ (Path = Dirs Name .) ]

prod = (Path = Dirs Name .)
newItem = (Path = . Dirs Name) 

builtItems = [ (| Path' = . Path #), (Path = . Dirs Name) ]

for item in state.items

for prod in nextSymbol.productions

nextSymbol = item.next

newItem = Item(prod, 0,
item.calculateFollow())7

builtItems.add(newItem)
call buildHull(newItem)8

for prod in nextSymbol.productions

nextSymbol = item.next

6

9

1st iteration

1st iteration

nextSymbol = Dirs

nextSymbol.productions = [ (Dirs = Dir .), (Dirs = Dirs Dir .) ]

prod = (Dirs = Dir .)
newItem = (Dirs = . Dir) 

builtItems = [ (| Path' = . Path #), (Path = . Dirs Name), (Dirs = . Dir) ]

nextSymbol = Dir

newItem = Item(prod, 0,
item.calculateFollow())10

builtItems.add(newItem)
call buildHull(newItem)11

for prod in nextSymbol.productions

nextSymbol = item.next12

1st iteration

nextSymbol.productions = [ (Dir = Name "/" .) ]

prod = (Dir = Name "/" .)
newItem = (Dir = . Name "/") 

builtItems = [ (| Path' = . Path #), (Path = . Dirs Name), (Dirs = . Dir),
      (Dir = . Name "/") ]

nextSymbol = Name

newItem = Item(prod, 0,
item.calculateFollow())13

builtItems.add(newItem)
call buildHull(newItem)14

for prod in nextSymbol.productions

nextSymbol = item.next15

1st iteration

nextSymbol.productions = [ (Name = an .), (Name = Name an .) ]

prod = (Name = an .)
newItem = (Name = . an) 

builtItems = [ (| Path' = . Path #), (Path = . Dirs Name), (Dirs = . Dir),
      (Dir = . Name "/"), (Name = . an) ]

nextSymbol = an

nextSymbol is not expandable

Figure 40: Part one of omplete flow for buildHull for state zero.
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newItem = Item(prod, 0,
item.calculateFollow())16

builtItems.add(newItem)
call buildHull(newItem)17

nextSymbol = item.next18

2nd iteration
prod = (Name = Name an .)
newItem = (Name = . Name an) 

builtItems = [ (| Path' = . Path #), (Path = . Dirs Name), (Dirs = . Dir),
      (Dir = . Name "/"), (Name = . an), (Name = . Name an) ]

for prod in nextSymbol.productions nextSymbol.productions = [ (Name = an .), (Name = Name an .) ]

nextSymbol = Name

newItem = Item(prod, 0,
item.calculateFollow())

1st iteration

19

newItem already in builtItems

prod = (Name = an .)
newItem = (Name = . an) 

newItem = Item(prod, 0,
item.calculateFollow())

2nd iteration

20

newItem already in builtItems

prod = (Name = Name an .)
newItem = (Name = . Name an) 

newItem = Item(prod, 0,
item.calculateFollow())21

builtItems.add(newItem)
call buildHull(newItem)22

nextSymbol = item.next23

2nd iteration
prod = (Dirs = Dirs Dir.)
newItem = (Dirs = . Dirs Dir) 

builtItems = [ (| Path' = . Path #), (Path = . Dirs Name), (Dirs = . Dir),
      (Dir = . Name "/"), (Name = . an), (Name = . Name an),
      (Dirs = . Dirs Dir) ]

nextSymbol = Dirs

for prod in nextSymbol.productions

newItem = Item(prod, 0,
item.calculateFollow())

1st iteration

24

newItem = Item(prod, 0,
item.calculateFollow())

2nd iteration

25

newItem already in builtItems

prod = (Dirs = Dir .)
newItem = (Dirs = . Dir) 

newItem already in builtItems

prod = (Dirs = Dirs Dir .)
newItem = (Dirs = . Dirs Dir) 

nextSymbol.productions = [ (Dirs = Dir .), (Dirs = Dirs Dir .) ]

Figure 41: Part two of complete flow for buildHull for state zero.



"Nr", "Core", "Item", "Successor", "Action", "Guide"
"0", "|", "Path' = . Path #", "", "SHIFT Path 1", "an"
"0", "", "Path = . Dirs Name", "#", "SHIFT Dirs 2", "an"
"0", "", "Dirs = . Dir", "an", "SHIFT Dir 3", "an"
"0", "", "Dir = . Name ""/""", "an", "SHIFT Name 4", "an"
"0", "", "Name = . an", """/"", an", "SHIFT an 5", "an"
"0", "", "Name = . Name an", """/"", an", "SHIFT Name 4", "an"
"0", "", "Dirs = . Dirs Dir", "an", "SHIFT Dirs 2", "an"
"1", "|", "Path' = Path . #", "", "ACCEPT #", "#"
"2", "|", "Path = Dirs . Name", "#", "SHIFT Name 6", "an"
"2", "", "Name = . an", "#, an , ""/""", "SHIFT an 5", "an"
"2", "", "Name = . Name an", "#, an, ""/""", "SHIFT Name 6", "an"
"2", "|", "Dirs = Dirs . Dir", "an", "SHIFT Dir 7", "an"
"2", "", "Dir = . Name ""/""", "an", "SHIFT Name 6", "an"
"3", "|", "Dirs = Dir .", "an", "REDUCE an (2)", "an"
"4", "|", "Dir = Name . ""/""", "an", "SHIFT ""/"" 8", """/"""
"4", "|", "Name = Name . an", """/"", an", "SHIFT an 9", """/"""
"5", "|", "Name = an .", """/"", an , #", "REDUCE ""/"", an, # (5)", "#"
"6", "|", "Path = Dirs Name .", "#", "REDUCE # (1)", "#"
"6", "|", "Name = Name . an", "#, an, ""/""", "SHIFT an 9", "#"
"6", "|", "Dir = Name . ""/""", "an", "SHIFT ""/"" 8", "#"
"7", "|", "Dirs = Dirs Dir .", "an", "REDUCE an (3)", "an"
"8", "|", "Dir = Name ""/"" .", "an", "REDUCE an (4)", "an"
"9", "|", "Name = Name an .", """/"", an, #", "REDUCE ""/"", an , # (6)", "#"

Figure 42: Complete parser table from Section 4.3 in CSV format.
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