Eclipse (1/3)

Deepak Dhungana
dhungana@ase.jku.at
Institute for System Engineering and Automation

Thomas Wuerthinger
wuerthinger@ssw.jku.at
Institute for System Software

ohannes Kepler University Linz, Austria
ttp://www.jku.at

What is Eclipse?

* Eclipse is an extensible platform
— And not an extensible IDE
— Everything is a plug-in
— Plug-in = Component = Bundle (= Module)
— Plug-ins build on other plug-ins
» EXxplicit dependencies

Platform Extensible IDE
B | O
T

run-time

What Is the Eclipse Runtime?

e Java component (plug-in) model

— dependency management requires requires
— activation management |
requires

— classloaders requires
requires

e extension registry manages
— extension points
— corresponding extensions

 OSGI based
— dynamic install / uninstall / update of bundles (= plug-ins)

What is a Plug-in?

plug-in = component

set of contributions

smallest unit of eclipse functionality
details spelled out in plug-in manifest
large example: mail client

small example: spam filter

extension point

named entity for collecting contributions
example: extension point to add spam filters

extension — a contribution

example: a specific spam filter

runtime — controls and manages contributions

plug-in

OO

o

plug-in

QO

Y

plug-in

runtime

(O extension
extension point

Eclipse Plug-in Architecture

Typical arrangement

plug-in A plug-in B
. corftributes
imqemenls f .
interface | <€ | l class C]
Plug-in A creates, calls T

— Declares extension point P

— Declares interface | to go with P
Plug-in B

— Implements interface | with its own class C
— Contributes class C to extension point P

Plug-in A instantiates C and calls its | methods

Manifest Files

MANIFEST.MF
— Contains the OSGi part of the plug-in specification

— Plug-in name and version
— Lifecycle information, e.g. activator class
— Required Plug-ins
* When these dependencies are not fulfilled, the plug-in is not started
— Exported Packages
* Only these packages are visible for other plug-ins

plugin.xml

— Contains the Eclipse-specific part of the plug-in specification
— Extension point definitions

— Extension definitions

Plug-in Manifest
plugin.xmi

<plugin
id =“com.example.tool”
name = “Example Plug-in Tool"
class = "com.example.tool.ToolPlugin"> .
<requires> Other plug-ins needed
<import plugin ="org.eclipse.core.resources"/>
<import plugin ="org.eclipse.ui"/>
</requires>

Plug-in identification

sruntime= | — Location of plug-in’s code
<library name = “tool.jar"/>
</runtime>
<extension
point ="org.eclipse.ui.preferencepages"> DeCIa_re _
<page id ="com.example.tool.preferences” contribution
icon ="icons/knob.gif" this plug_in makes

title = “Tool Knobs"
class = "com.example.tool.ToolPreferenceWizard“/> _
</extension> Declare new extension

<extension-point point open to contributions

name = “Frob Providers*
id = "com.example.tool.frobProvider"/>
</plugin>

from other plug-ins

Declaration vs. Implementation

<action
toolbarPath=*“search
toolTip="“Open Type”
1con=""1cons/opentyp
class

Declarative
Definition
(manifest)

Lazy loading! Procedural

Implementation

lazily instantiated (Java JAR)
using reflection

ﬂ@m*&

Open Type

Plug-in Activation

e Each plug-in gets its own Java class loader
— Delegates to required plug-ins
— Restricts class visibility to exported APIs

« Contributions processed without plug-in activation

— Example: Menu constructed from manifest info for contributed
items

* Plug-ins are activated only as needed
— Example: Plug-in activated only when user selects its menu item
— Scalable for large base of installed plug-ins
— Helps avoid long start up times

Demonstration

Architecture (since Eclipse 3.0)

Help

(optional)

Update

(optional)

Text

IDE
Text

Compare| Debug

Search

Team/
CVS

(optional)

IDE Views

Generic Workbench

IDE (optional)

_ primary

JFace

SWT

Resources
(optional)

Runtime (OSGi)

~ application

SWT, JFace & Workbench

Standard Widget Toolkit (SWT)

— Alternative to Swing
» Completely independent of AWT and Swing
— Thin and portable layer on top of native widgets
* No pluggable look&feels
* Lower overhead than Swing
— Graphics and drawing
 GC, Image, Color, Font, ...
— Complete set of widgets

» Button, Text, List, Label, Group, Menu, ToolBar, TabFolder, ...

» Table, Tree, StyledText, Browser, ...
* Widgets not supported by a platform are emulated in Java

http://www.java2s.com/Code/Java/SWT-JFace-Eclipse/CatalogSWT-JFace-Eclipse.htm

SWT, JFace & Workbench

 JFace
— Builds on SWT
— Adds viewers following the Model-View-Control pattern
» Connects widgets to model elements
« TableViewer, TreeViewer, TextViewer

— Higher level application support
» Actions, Commands, Dialogs, Preferences, ...
 Management of SWT resources

» Workbench

— Workbench parts: Editors and Views
* Don’t mix the terms “Viewer” and “View”

— “The typical Eclipse look”

— Declarative definition of menus and toolbars
« Extension points for contributions to the Ul

SWT, JFace & Workbench

Workbench
MyViewPart MyTextEditor
I I
WorkbenchPart
JFace A 4 Y
Object < TreeViewer TextViewer —> IDocument
IContentProvider <€ | 47 I v | v
ILabelProvider <« Viewer ITextStore ILineTracker
SWT A\ 4 Y
Treeltem [€— Tree StyledText > StyledTextContent

—> StyleRange

Widget

SWT - Drawing

e Resource management
— SWT objects directly encapsulate operation system resources
— Must be explicitly freed by calling “dispose”
— Examples: “Color”, “Font”, “Image”, “GC”

— Objects are bound to a specific device
* Do not re-use e.g. a display-color for printing

* Device-independent data classes

— Occupy no operating system resources
— Examples: “RGB”, “FontData”, “ImageData”

 Class “org.eclipse.swt.graphics.GC”
— Offers all standard methods for drawing lines, figures, text, ...
— Some features: antialiasing, clipping, transformation

— Constructor for creating a “GC” for any “Drawable”
« All controls
» Devices: “Display” and “Printer”
* Images

— For paint events, a suitable GC is passed as an argument

http://www.eclipse.org/swt/snippets/

SWT — Widgets

 Programming similar to Swing
— Composite-pattern
— Event-oriented: Listeners are notified when user performs input
» “SelectionListener”, “MouseListener”, “KeyListener”
« Adapter available if a listener has multiple methods
— Sizing and positioning of widgets done by “Layout”
* “RowLayout”, “GridLayout”, “FormLayout”

« Differences
— Parent widget must be specified in constructor
* Not possible to change parent later

— Style-bits in constructor
» Possible values are constants in class “SWT”
» Most styles cannot be changed later
o Example: “READ_ONLY”, “SINGLE” — “MULTI", “WRAP”

— User-defined painting is done by adding a “PaintListener”

SWT — Widgets

“Shell” e “Composite”
— The top-level window — For grouping of widgets
— Style-bits determine the trimming « “ScrolledComposite”
(resizable, dialog, ...) — For Scrolling of widgets
“Labeln ° HTableH
“Button” e “Tree”

— Check-boxes and Radio-buttons are
special styles

“Text’ « “Toolbar”

— With all Windows-features

— Multi-line is a special style e “Coolbar’
“List” — User-movable toolbars
“Combo”

o “StyledText”

“Menu” — The Eclipse text editor
“Canvas”

— User-drawn control * “Browser”
“Tray” — The system web-browser

— Icons shown in the system tray — Only if available

SWT - Example (1)

private Display display;
private Shell shell;

Create the display
public void mainQ) { ‘&/————,,,,’,,,,—»—”””,”’ hell
display = new Display(Q); Open asS"?je)(see next
openshell(); Event loop: Process
while (!shell.isDisposed(Q)) {/ window Bvents Unti the
if (!display-readAndDispatch())‘{$-,__§§~§~§§-§§§
3 dlsplay.sleep();\ Process the next event
} : :
dieptay.diposeQi < Sleep if nothing to do
¥ Dispose the display
The shell and all widgets

My SWT dialog X are already disposed
.Y

Item 1
Item 2
Ikem 3
Item 4
Item S
Ikeme

Ikem 7
Tharm &

Close

private SelectionListener buttonListener ew SelectionAdapter() {
public void widgetSeIected(SeIectionEvéﬁIngj\{\\\\\\\

shell.close(); Listener when button is
3 \ selected, i.e. pressed
}s

Close the shell

public void openShell() { _
shell = new Shell(display, SWT.DIALOG_TRIM); «— Create atop level window
shell .setText('"My SWT dialog'); with dialog trimmings
shell.setLayout(new RowLayout(SWT.VERTICAL)); €«—— Layout for child widgets

List list = new List(shell, SWT.BORDER | SWT.V_SCROLL);

list.setLayoutData(new RowData(200, 100));

for (int 1 = 1; 1 < 20; i++) {
list.add("ltem " + 1);

} Layout data (class accor-

ding to layout of parent

Create a list with a border
and a vertical scrollbar

Button button = new Button(shell, SWT.PUSHZ;
button.setText(*'"Close™); - Create a push button and
button.addSelectionListener(buttonListener); add a selection listener

Apply the layout and show
the window

shell _pack(Q);
shell.open();

SWT — Threading issues

« Each display is bound to a thread
— Called the “user-interface thread”

— This thread executes the main event loop
» Dispatch of operating system events

« SWT is not thread-safe
— Resource objects must only be accessed by user interface thread

— “SWTEXxception” when method called from wrong thread
» Better than an unexpected behavior

« Execute code from a non-Ul thread
— *“display.syncExec(runnable)” or “display.asyncExec(runnable)”
— The run-method of the “Runnable” is executed in the Ul thread

Develop and Run SWT Applications

« SWT is independent from Eclipse
— No dependency on OSGi or the Eclipse runtime

 Download the SWT-bundle from the Eclipse homepage
— Or: use the files from the plug-in org.eclipse.swt

« SWT consists of Java classes and a native library
— swt.jar must be on the classpath
— swt*.dll (on Windows) must be in the native library path

http://wiki.eclipse.org/index.php/JFaceSnippets

JFace — Viewer

* Viewer connect widgets to a model
— For the more complex SWT widgets like tables and trees

e SWT
— Add “Tableltem” or “Treeltem” objects to a “Table” or “Tree”
— One method for structure, labels, sorting and filtering

— Difficult to update when domain objects changed
e Re-build the whole content

 JFace
— Configure a “TableViewer” or “TreeViewer”
— Adapter on domain objects for structure and labels
— Strategy objects for sorting and filtering
— Adapters and Strategies are re-useable for multiple viewers

— Simple to update when domain objects are changed
» Efficient handling included in viewer

JFace — TreeViewer

ITreeContentProvider
1 hasChildren()
getChildren()
getParent()
TreeViewer Zﬁ
setContentProvider()
setLabelProvider() 1 DrawingContentProvider
setSorter() N
addFilter() AN
setinput() 1 P
1 1 ILabelProvider Domain objects
0.1 * getText() l
V 1 |getimage() //
ViewerSorter ViewerFilter Y
sort() select() /
A AN DrawingLabelProvider 7

JFace — TreeViewer

Content provider

— Example: “DrawingContentProvider”

— Given an input object, returns a set of corresponding domain objects
Label provider

— Example: “DrawingLabelProvider”

— Returns a string and icon for presenting a domain object

Sorter
— Sort a set of domain objects

Filter
— Determine the domain objects that should be shown in the viewer
— Multiple filters can be applied

Update when domain objects change
— Content and label provider add a listener on domain objects

Workbench

Workbench Window

— The top level window

— User can open multiple windows

Menu Bar, Tool Bar

— Shared area where all plug-ins can contribute actions
Status line

— Shared area
Editors

— Editor tool bar is integrated in main tool bar
Views

— Views have their own tool bar
Page

— Area where editors and views are shown

— One workbench window has exactly one page

Editors vs. Views

o Editors
— Opened by the user on a specific element
— Open-modify-safe life cycle
— Explicit input data (instance of “IEditorInput”)
— Multiple editors of the same kind can be open
— Always shown in the editor area
— Contribute to the global tool bar and menu

 Views
— Opened without specifying an input
— Views know where to fetch its input
— Changes are immediately applied
— Open at most once (usually)
— Can be moved around by the user
— Have their own tool bars and menus

Kinds of Views

Navigator views
— Present hierarchical structures
— Allow to open an editor for a selected element
— Example: Navigator, Package Explorer

Outline views
— Present the structure of the contents of the active editor
— Example: Outline

Information / Detail views
— Provide additional information about the selected objects
— Usually track the current selection
— Example: Properties

Result / Output views
— Show the result or output of an operation
— Example: Search, Console

Collector views
— Collect particular artifacts
— Allow navigation to the original location
— Example: Tasks, Bookmarks, Problems

Basic Extension Points

org.eclipse.ui.views
— Add a view that can be opened using “Show View”
— Views are grouped in categories
org.eclipse.ui.editors
— Add an editor for a specific file type or extension

org.eclipse.ui.actionSets
— Add actions to the main menu or toolbar

org.eclipse.ui.viewActions
— Add declarative actions to the menu or toolbar of a view

org.eclipse.ui.editorActions
— Add declarative actions to an editor

org.eclipse.ui.popupMenus
— Contribute to the popup menu of a view or editor
— The popup menu itself must be provided by the part
— Viewer contribution
* Entry is shown in popup menu of a specified part

— Object contribution
« Entry is shown if an entry of a specific class is selected

|ID-Strings

* Used to identify extensions in the manifest
— Used by Java code to reference an extension
— Normal string constants in Java code

« Naming conventions
— All id-strings should be unique

— Use naming conventions of packages
* Avoids problems if tools of different vendors are combined

e Strings are not checked by the compiler

— Be sure to always change all references
* Frequent bug

— Use one string constant per id-string

Actions

e Defined in JFace
— Basic interfaces and classes
— Label, image, run-method
— Can be added to menus, toolbars and status lines

 Workbench specifies how to add actions to
— Main menu and toolbar
— View menu and toolbar
— Editor specific menu and toolbar
— Context menu
— Status line

 Programmatic vs. declarative actions
— Programmatic: Action instantiated in Java source code

— Declarative: Action specified in plugin.xml
« Contribute actions to parts declared in other plug-ins
« Part must support extension

