
Eclipse (1/3)Eclipse (1/3)

Deepak Dhungana
dhungana@ase.jku.at

Institute for System Engineering and Automation

Thomas Wuerthinger
wuerthinger@ssw.jku.at

Institute for System Software

Johannes Kepler University Linz, Austria
http://www.jku.at



What is Eclipse?What is Eclipse?

• Eclipse is an extensible platform
– And not an extensible IDE
– Everything is a plug-in
– Plug-in = Component = Bundle (= Module)
– Plug-ins build on other plug-ins

• Explicit dependencies

Platform

run-time

plug-ins

IDE

plug-ins

Extensible IDE



What is the Eclipse Runtime?What is the Eclipse Runtime?

• Java component (plug-in) model
– dependency management
– activation management
– classloaders

• extension registry manages
– extension points
– corresponding extensions

• OSGI based
– dynamic install / uninstall / update of bundles (= plug-ins)

mail tool

UI

resources

SMTPrequires

requires
requires

requires

requires



What is a PlugWhat is a Plug--in?in?

• plug-in = component
– set of contributions
– smallest unit of eclipse functionality
– details spelled out in plug-in manifest
– large example: mail client
– small example: spam filter

• extension point 
– named entity for collecting contributions
– example: extension point to add spam filters

• extension – a contribution
– example: a specific spam filter

• runtime – controls and manages contributions

plug-in

plug-in

plug-in

extension
extension point

runtime



Eclipse PlugEclipse Plug--in Architecturein Architecture

• Plug-in A
– Declares extension point P
– Declares interface I to go with P

• Plug-in B
– Implements interface I with its own class C
– Contributes class C to extension point P

• Plug-in A instantiates C and calls its I methods

plug-in A plug-in B

class Cinterface I

extension
point P

extension

• Typical arrangement

contributes

creates, calls

implements



Manifest FilesManifest Files

• MANIFEST.MF
– Contains the OSGi part of the plug-in specification

– Plug-in name and version
– Lifecycle information, e.g. activator class
– Required Plug-ins

• When these dependencies are not fulfilled, the plug-in is not started
– Exported Packages

• Only these packages are visible for other plug-ins

• plugin.xml
– Contains the Eclipse-specific part of the plug-in specification
– Extension point definitions
– Extension definitions



PlugPlug--in Manifestin Manifest

<plugin
id = “com.example.tool"
name = “Example Plug-in Tool"
class = "com.example.tool.ToolPlugin">

<requires>
<import plugin = "org.eclipse.core.resources"/>
<import plugin = "org.eclipse.ui"/>

</requires>
<runtime>

<library name = “tool.jar"/> 
</runtime>
<extension

point = "org.eclipse.ui.preferencepages">
<page id = "com.example.tool.preferences"

icon = "icons/knob.gif"
title = “Tool Knobs"
class = "com.example.tool.ToolPreferenceWizard“/>

</extension>
<extension-point

name = “Frob Providers“
id = "com.example.tool.frobProvider"/>

</plugin>

Declare 
contribution
this plug-in makes

Declare new extension 
point open to contributions 
from other plug-ins

Location of plug-in’s code

Other plug-ins needed

Plug-in identification

plugin.xml



Declaration vs. ImplementationDeclaration vs. Implementation

org/eclipse/jdt/OpenTypeAction.class

Lazy loading!

lazily instantiated 
using reflection

<action
toolbarPath=“search"
toolTip=“Open Type”
icon="icons/opentype.gif"
class="org.eclipse.jdt.OpenTypeAction"/>



PlugPlug--in Activationin Activation

• Each plug-in gets its own Java class loader
– Delegates to required plug-ins
– Restricts class visibility to exported APIs

• Contributions processed without plug-in activation
– Example: Menu constructed from manifest info for contributed 

items

• Plug-ins are activated only as needed
– Example: Plug-in activated only when user selects its menu item
– Scalable for large base of installed plug-ins
– Helps avoid long start up times



DemonstrationDemonstration



Architecture (since Eclipse 3.0)Architecture (since Eclipse 3.0)

Runtime (OSGi)

JFace

Resources
(optional)

Compare Debug Search Team/
CVS

SWT

Generic Workbench

Help
(optional)

Update
(optional)

Text
(optional)

IDE
Text

IDE (optional)IDE Views primary
application



SWT, SWT, JFaceJFace & Workbench& Workbench

• Standard Widget Toolkit (SWT)
– Alternative to Swing

• Completely independent of AWT and Swing
– Thin and portable layer on top of native widgets

• No pluggable look&feels
• Lower overhead than Swing

– Graphics and drawing
• GC, Image, Color, Font, ...

– Complete set of widgets
• Button, Text, List, Label, Group, Menu, ToolBar, TabFolder, ...
• Table, Tree, StyledText, Browser, ...
• Widgets not supported by a platform are emulated in Java



SWT, SWT, JFaceJFace & Workbench& Workbench

• JFace
– Builds on SWT
– Adds viewers following the Model-View-Control pattern

• Connects widgets to model elements
• TableViewer, TreeViewer, TextViewer

– Higher level application support
• Actions, Commands, Dialogs, Preferences, ...
• Management of SWT resources

• Workbench
– Workbench parts: Editors and Views

• Don’t mix the terms “Viewer” and “View”
– “The typical Eclipse look”
– Declarative definition of menus and toolbars

• Extension points for contributions to the UI

http://www.java2s.com/Code/Java/SWT-JFace-Eclipse/CatalogSWT-JFace-Eclipse.htm



SWT, SWT, JFaceJFace & Workbench& Workbench
Workbench

JFace

SWT
StyledTextTreeTreeItem StyledTextContent

Widget

Viewer

IDocumentObject

IContentProvider

ILabelProvider ITextStore ILineTracker

TextViewerTreeViewer

WorkbenchPart

MyTextEditorMyViewPart

StyleRange



SWT SWT –– DrawingDrawing

• Resource management
– SWT objects directly encapsulate operation system resources
– Must be explicitly freed by calling “dispose”
– Examples: “Color”, “Font”, “Image”, “GC”
– Objects are bound to a specific device

• Do not re-use e.g. a display-color for printing

• Device-independent data classes
– Occupy no operating system resources
– Examples: “RGB”, “FontData”, “ImageData”

• Class “org.eclipse.swt.graphics.GC”
– Offers all standard methods for drawing lines, figures, text, ...
– Some features: antialiasing, clipping, transformation
– Constructor for creating a “GC” for any “Drawable”

• All controls
• Devices: “Display” and “Printer”
• Images

– For paint events, a suitable GC is passed as an argument



SWT SWT –– WidgetsWidgets

• Programming similar to Swing
– Composite-pattern
– Event-oriented: Listeners are notified when user performs input

• “SelectionListener”, “MouseListener”, “KeyListener”
• Adapter available if a listener has multiple methods

– Sizing and positioning of widgets done by “Layout”
• “RowLayout”, “GridLayout”, “FormLayout”

• Differences
– Parent widget must be specified in constructor

• Not possible to change parent later
– Style-bits in constructor

• Possible values are constants in class “SWT”
• Most styles cannot be changed later
• Example: “READ_ONLY”, “SINGLE” – “MULTI”, “WRAP”

– User-defined painting is done by adding a “PaintListener”

http://www.eclipse.org/swt/snippets/



SWT SWT –– WidgetsWidgets

• “Shell”
– The top-level window
– Style-bits determine the trimming 

(resizable, dialog, ...)

• “Label”
• “Button”

– Check-boxes and Radio-buttons are 
special styles

• “Text”
– Multi-line is a special style

• “List”
• “Combo”

• “Menu”
• “Canvas”

– User-drawn control
• “Tray”

– Icons shown in the system tray

• “Composite”
– For grouping of widgets

• “ScrolledComposite”
– For Scrolling of widgets

• “Table”
• “Tree”

– With all Windows-features

• “Toolbar”
• “Coolbar”

– User-movable toolbars

• “StyledText”
– The Eclipse text editor

• “Browser”
– The system web-browser
– Only if available



SWT SWT –– Example (1)Example (1)
private Display display;
private Shell shell;

public void main() {
display = new Display();

openShell();

while (!shell.isDisposed()) {
if (!display.readAndDispatch()) {
display.sleep();

}
}
display.dispose();

}

Create the display

Open a shell (see next 
slide)

Event loop: Process 
window events until the 

shell is closed

Process the next event

Sleep if nothing to do

Dispose the display
The shell and all widgets 

are already disposed



SWT SWT –– Example (2)Example (2)
private SelectionListener buttonListener = new SelectionAdapter() {

public void widgetSelected(SelectionEvent e) {
shell.close();

}
};

public void openShell() {
shell = new Shell(display, SWT.DIALOG_TRIM);
shell.setText("My SWT dialog");
shell.setLayout(new RowLayout(SWT.VERTICAL));

List list = new List(shell, SWT.BORDER | SWT.V_SCROLL);
list.setLayoutData(new RowData(200, 100));
for (int i = 1; i < 20; i++) {
list.add("Item " + i);

}

Button button = new Button(shell, SWT.PUSH);
button.setText("Close");
button.addSelectionListener(buttonListener);

shell.pack();
shell.open();

}

Listener when button is 
selected, i.e. pressed

Close the shell

Create a top level window 
with dialog trimmings

Layout for child widgets

Create a list with a border 
and a vertical scrollbar

Layout data (class accor-
ding to layout of parent

Create a push button and 
add a selection listener

Apply the layout and show 
the window



SWT SWT –– Threading issuesThreading issues

• Each display is bound to a thread
– Called the “user-interface thread”
– This thread executes the main event loop

• Dispatch of operating system events

• SWT is not thread-safe
– Resource objects must only be accessed by user interface thread
– “SWTException” when method called from wrong thread

• Better than an unexpected behavior 

• Execute code from a non-UI thread
– “display.syncExec(runnable)” or “display.asyncExec(runnable)”
– The run-method of the “Runnable” is executed in the UI thread



Develop and Run SWT ApplicationsDevelop and Run SWT Applications

• SWT is independent from Eclipse
– No dependency on OSGi or the Eclipse runtime

• Download the SWT-bundle from the Eclipse homepage
– Or: use the files from the plug-in org.eclipse.swt

• SWT consists of Java classes and a native library
– swt.jar must be on the classpath
– swt*.dll (on Windows) must be in the native library path



JFaceJFace –– ViewerViewer

• Viewer connect widgets to a model
– For the more complex SWT widgets like tables and trees

• SWT
– Add “TableItem” or “TreeItem” objects to a “Table” or “Tree”
– One method for structure, labels, sorting and filtering
– Difficult to update when domain objects changed

• Re-build the whole content

• JFace
– Configure a “TableViewer” or “TreeViewer”
– Adapter on domain objects for structure and labels
– Strategy objects for sorting and filtering
– Adapters and Strategies are re-useable for multiple viewers
– Simple to update when domain objects are changed

• Efficient handling included in viewer

http://wiki.eclipse.org/index.php/JFaceSnippets



JFaceJFace –– TreeViewerTreeViewer

setContentProvider()
setLabelProvider()
setSorter()
addFilter()
setInput()

TreeViewer

hasChildren()
getChildren()
getParent()

ITreeContentProvider

getText()
getImage()

ILabelProvider

sort()
ViewerSorter

select()
ViewerFilter

1

1

1

1

1
0..1

1
*

Domain objects

DrawingContentProvider

DrawingLabelProvider



JFaceJFace –– TreeViewerTreeViewer

• Content provider
– Example: “DrawingContentProvider”
– Given an input object, returns a set of corresponding domain objects

• Label provider 
– Example: “DrawingLabelProvider”
– Returns a string and icon for presenting a domain object

• Sorter
– Sort a set of domain objects

• Filter
– Determine the domain objects that should be shown in the viewer
– Multiple filters can be applied

• Update when domain objects change
– Content and label provider add a listener on domain objects



WorkbenchWorkbench

• Workbench Window
– The top level window
– User can open multiple windows

• Menu Bar, Tool Bar
– Shared area where all plug-ins can contribute actions

• Status line
– Shared area

• Editors
– Editor tool bar is integrated in main tool bar

• Views
– Views have their own tool bar

• Page
– Area where editors and views are shown
– One workbench window has exactly one page



Editors vs. ViewsEditors vs. Views

• Editors
– Opened by the user on a specific element
– Open-modify-safe life cycle
– Explicit input data (instance of “IEditorInput”)
– Multiple editors of the same kind can be open
– Always shown in the editor area
– Contribute to the global tool bar and menu

• Views
– Opened without specifying an input
– Views know where to fetch its input
– Changes are immediately applied
– Open at most once (usually)
– Can be moved around by the user
– Have their own tool bars and menus



Kinds of ViewsKinds of Views
• Navigator views

– Present hierarchical structures
– Allow to open an editor for a selected element
– Example: Navigator, Package Explorer

• Outline views
– Present the structure of the contents of the active editor
– Example: Outline

• Information / Detail views
– Provide additional information about the selected objects
– Usually track the current selection
– Example: Properties

• Result / Output views
– Show the result or output of an operation
– Example: Search, Console

• Collector views
– Collect particular artifacts
– Allow navigation to the original location
– Example: Tasks, Bookmarks, Problems



Basic Extension PointsBasic Extension Points

• org.eclipse.ui.views
– Add a view that can be opened using “Show View”
– Views are grouped in categories

• org.eclipse.ui.editors
– Add an editor for a specific file type or extension

• org.eclipse.ui.actionSets
– Add actions to the main menu or toolbar

• org.eclipse.ui.viewActions
– Add declarative actions to the menu or toolbar of a view

• org.eclipse.ui.editorActions
– Add declarative actions to an editor

• org.eclipse.ui.popupMenus
– Contribute to the popup menu of a view or editor
– The popup menu itself must be provided by the part
– Viewer contribution

• Entry is shown in popup menu of a specified part
– Object contribution

• Entry is shown if an entry of a specific class is selected



IDID--StringsStrings

• Used to identify extensions in the manifest
– Used by Java code to reference an extension
– Normal string constants in Java code

• Naming conventions
– All id-strings should be unique
– Use naming conventions of packages

• Avoids problems if tools of different vendors are combined

• Strings are not checked by the compiler
– Be sure to always change all references

• Frequent bug
– Use one string constant per id-string



ActionsActions

• Defined in JFace
– Basic interfaces and classes
– Label, image, run-method
– Can be added to menus, toolbars and status lines

• Workbench specifies how to add actions to
– Main menu and toolbar
– View menu and toolbar
– Editor specific menu and toolbar
– Context menu
– Status line

• Programmatic vs. declarative actions
– Programmatic: Action instantiated in Java source code
– Declarative: Action specified in plugin.xml

• Contribute actions to parts declared in other plug-ins
• Part must support extension


