. .
eclipse

JDT fundamentals — Become a JDT tool smith

Martin Aeschlimann

IBM Research, Switzerland
martin_aeschlimann@ch.ibm.com

Copyright © IBM Corp., 2007-2008. All rights reserved. 0
Source code made available under the EPL, v1.0, remainder licensed under Creative C ons Att. Nc Nd 2.5 license. T u to rl al

Overview — The 3 Pillars Lo =con- 2008

Java Model — Lightweight model for views
= OK to keep references to it

= Contains unresolved information

= From project to declarations (types, methods..)

Search Engine
» |ndexes of declarations, references and type hierarchy relationships

AST — Precise, fully resolved compiler parse tree

= No references to it must be kept: Clients have to make sure only a limited
number of ASTs is loaded at the same time

= Fully resolved information
» From a Java file (‘\Compilation Unit’) to identifier tokens

Copyright © IBM Corp., 2007-2008. All rights reserved.
2 Source code made available under the EPL, v1.0, remainder licensed under Creative

The 3 Pillars — First Pillar: Java Model gPs=con 2008

Java Model — Lightweight model for views
= Java model and its elements

» Classpath elements

= Java project settings

= Creating a Java element
= Change notification

= Type hierarchy

= Code resolve

Copyright © IBM Corp., 2007-2008. All rights reserved.
3 Source code made available under the EPL, v1.0, remainder licensed under Creative

Java Elements API P2s=con- 2008

|IJavaElement form a hierarchy that renders the entire workspace from Java angle

Separated hierarchy from resources:
Important to note:

Not all Java elements must have an underlying resource (elements inside a JAR, external
JAR files)

» A Java package doesn’t have the same children as a folder (no concept of subfolder)

JavaCore.create(resource)

IProject _ g IJavaProject
\‘Eﬁl MyProject E-Ta# MyProject «—

Folder —, :g E:: E{§$: IPackageFragmentRoot

T Ems B % IPackageFragment
IFile — ©®a - ICompilationUnit / IClassFile

""" classpath - 'Type /// e .:.c.g t element getParent()

project IMethod //[‘]ﬁ-h IRE Systern Likgary [jdkl.4.1] .

_ (g rt.jar - Dkt 4. 1jrellin ¢ element.getChildren()
IFIeld Iclasspath
linitialzier =~ e

<

javaElement.getResource()

Copyright © IBM Corp., 2007-2008. All rights reserved.
Source code made available under the EPL, v1.0, remainder licensed under Creative

Using the Java Model g5 =con 2008

Setting up a Java project
= A Java project is a project with the Java nature set

= Java nature enables the Java builder
= Java builder needs a Java class path

IWorkspaceRoot root= ResourcesPlugin.getWorkspace() .getRoot();

IProject project= root.getProject(projectName); Create a project
project.create(null); <
project.open(null);

IProjectDescription description = project.getDescription(); Set the
description.setNaturelds(new String[] { JavaCore.NATURE_ID }); <« Java nature

project.setDescription(description, null);

IJavaProject javaProject= JavaCore.create(project);
jJavaProject.setRawClasspath(classPath, defaultOutputLocation, null);

'\Set the Java
build path

Copyright © IBM Corp., 2007-2008. All rights reserved.
5 Source code made available under the EPL, v1.0, remainder licensed under Creative

Java Classpath 45 <con 2008

The Java element hierarchy is defined by the Java classpath:
Classpath entries define the roots of package fragments.

Project entry = (=2 otherProject
EIIL;‘J Project
Source entry B0 s
Container entry ® = JRE System Library [jdk1.5.0_11]
Elﬂ. Referenced Libraries

Library entry ® () library.jar
Variable entry EI junit-#,1.jar - Jdnit4 - el I20070208-0011

Java Build Path

[Source | I=F Projects = Libraries 4}5} Order and Expork
|

JARs and dlass Folders on the build path;

E‘ library . jar - Projeck ’ add 1aRs, ..
B @ JUnitdfjunit-4. 1. jar - CH\e\20070208-D010e:
- Bl JRE System Library [jdk1.5.0_11] | Add External JaRs

[add Library. ..

]

-]

| Addvariable... |
l

-]

[#dd Class Falder,

Copyright © IBM Corp., 2007-2008. All rights reserved.
6 Source code made available under the EPL, v1.0, remainder licensed under Creative

Classpath — Source and Library Entries 4@ =cov 2008

Source entry: Java source files to be built by the compiler
» Folder inside the project or the project itself

» Possibility to define inclusion and exclusion filters
= Compiled files go to either a specific or the projects default output location

IPath srcPath= javaProject.getPath() .append(‘'src');
IPath[] excluded= new IPath[] { new Path(*‘doc'™) };
IClasspathEntry srcEntry= JavaCore.newSourceEntry(srcPath, excluded);

Library entry: Class folder or archive
» Class files in folders, archive in workspace or external

= Source attachment specifies location of libraries source

New in 3.4: External class folders

Copyright © IBM Corp., 2007-2008. All rights reserved.
Source code made available under the EPL, v1.0, remainder licensed under Creative

Creating Java Elements @2 =con 2005

1JavaProject javaProject= JavaCore.create(project); Set the build path

IClasspathEntry[] buildPath= {
JavaCore.newSourceEntry(project.getFullPath() .append(‘'src™)),
JavaRuntime.getDefaul tJREContainerEntry()

33

jJavaProject.setRawClasspath(buildPath, project.getFullPath().append('bin’), null);

IFolder folder= project.getFolder(''src'); Create the source folder
folder.create(true, true, null);

IPackageFragmentRoot srcFolder= javaProject.getPackageFragmentRoot(folder);
Assert.assertTrue(srcFolder.exists()); // resource exists and is on build path

Create the package fragment
IPackageFragment fragment= srcFolder.createPackageFragment(*'x.y", true, null);

String str= = - Create the compilation unit,
package x.y; + "\n"" + includi
"public class E {" + "\n" + Including a type
String first;"” + "\n" +
R

ICompilationUnit cu= fragment.createCompilationUnit("E.java", str, false, null);
IType type= cu.getType("E™); Create a field

type.createField(''String name;", null, true, null);

Copyright © IBM Corp., 2007-2008. All rights reserved.
8 Source code made available under the EPL, v1.0, remainder licensed under Creative

Java Project Settings g5 =con 2008

Configure compiler settings on the project
= Compiler compliance, class file compatibility, source compatibility

= Compiler problems severities (Ignore/Warning/Error)

JavaProject.setOption(JavaCore.COMPILER_COMPLIANCE, JavaCore.VERSION_1 5);

If not set on the project, taken from the workspace settings

= Project settings persisted (project/.settings/org.eclipse.jdt.core.prefs).
Shared in a team

= More project specific settings: Formatter, code templates...

See Platform preferences story
» Platform.getPreferencesService()

Copyright © IBM Corp., 2007-2008. All rights reserved.
9 Source code made available under the EPL, v1.0, remainder licensed under Creative

Working COpieS @g CON" 2008

10

A compilation unit in a buffered state is a working copy
Primary working copy: shared buffer shown by all editors

= based on the eclipse.platforms buffer manager (plug-in
org.eclipse.core.filebuffers)

= becomeWorkingCopy(...): Increment count, internally create buffer, if first
= commitWorkingCopy(): Apply buffer to underlying resource
» discardWorkingCopy(): Decrement count, discard buffer, if last

» Element stays the same, only state change

Private working copy: Build a virtual Java model layered on top of the
current content

= |CompilationUnit.getWorkingCopy(workingCopyOwner) returns a new element
with a new buffer (managed by the workingCopyOwner) based on the underlying
element

= commitWorkingCopy(): Apply changes to the underlying element

» Refactoring uses this to first try all changes in a sandbox to only apply them if
compilable

Working copy owner: Connects working copies so that they reference each
other

Copyright © IBM Corp., 2007-2008. All rights reserved.
Source code made available under the EPL, v1.0, remainder licensed under Creative

Java Element Change Notifications poecon 2008

Change Listeners: JavaCore.addElementChangedListener(1ElementChangedListener)

» Java element delta information for all changes: class path changes,
added/removed elements, changed source, change to buffered state
(working copy)

= Changes triggered by resource change notifications (resource deltas),
call to ‘reconcile()’

|JavaElementDelta: Description of changes of an element or its children

Delta kind Descriptions and additional flags

ADDED Element has been added

REMOVED Element has been removed

CHANGED F CONTENT Content has changed. If F_FINE_GRAINED is set:

Analysis of structural changed has been performed
F_MODIFIERS Changed modifiers

F _CHILDREN | Deltas in children
1JavaElementDelta][] getAffectedChildren()

F_ADDED TO_CLASSPATH, F_ SOURCEATTACHED, F_ REORDER,
F_PRIMARY_WORKING_COP,...

Copyright © IBM Corp., 2007-2008. All rights reserved.
11 Source code made available under the EPL, v1.0, remainder licensed under Creative

JavaElementListener — an Example @252con 2008

Find out if types were added or removed
fJavaListener= new IElementChangedListener() {

public void elementChanged(ElementChangedEvent event) {

boolean res= hasTypeAddedOrRemoved(event.getDelta()); Parent constructs:

private boolean hasTypeAddedOrRemoved(lJavaElementDelta delta) { Recursively go
IJavaElement elem= delta.getElement(); down the delta tree
boolean 1sAddedOrRemoved= (delta.getKind() !'= l1JavakElementDelta.CHANGED) ;
switch (elem.getElementType()) {

case lJavakElement.JAVA MODEL: case lJavaElement.JAVA PROJECT:

case lJavaElement.PACKAGE_FRAGMENT_ROOT: case I1JavaElement.PACKAGE_ FRAGMENT:
ifT (1sAddedOrRemoved) return true;
return processChildrenDelta(delta.getAffectedChildren()); <

case lJavakElement.COMPILATION UNIT:
IgompilationUnit cu= (ICoTpilationUnit) elem; Be aware of
i Icu.getPrimar -equals(cu < - .
rgturngfalse; vO-€d () p”V_ateworkmg
it (isAddedOrRemoved || isPossibleStructuralChange(delta.getFlags())) coples
return true;
return processChildrenDelta(delta.getAffectedChildren());

case l1JavaElement.TYPE:
ifT (1sAddedOrRemoved) return true;
return processChildrenDelta(delta.getAffectedChildren()); // inner types

default: // fields, methods, imports...
y return false;

}
}

Copyright © IBM Corp., 2007-2008. All rights reserved.
12 Source code made available under the EPL, v1.0, remainder licensed under Creative

Code Resolve @9 2CON" 2008

= Resolve the element at the given offset and length in the source

jJavaElements= compilationUnit.codeResolve(50, 10);
= Used for Navigate > Open (F3) and tool tips

<li=This lava elerment does not exist (ELEMENT _DOES_MOT_EXIST 1< /fli=
zli= The range specified is not within this element's

soUrce range (INDEX_QUT_COF_BOUMDS)
< ful=

* ¥ ¥ ¥ ¥

+
DavaElernent[] codeSelect(int offset, int length) throws JavaModelException;

-'IIurg.EcIipse.jdt.curE.IJavaElement

b selected text in this compilation unit,

Comrnon prokacol for all elements provided by the Java he first selected character.
maodel, Java model elements are exposed ba clients as bd characters,

handles to the actual underlying element. The Javamodel B owner first, In other words,
may hand ouk arey nomber of handles For each element. ¢ their original cormpilation units

Handles that refer to the same element are guaranteed ko be
equal, buk not necessarily identical,
Methods annotated as "handle-onk" do not reavire he original compilation

Press 'F2' For Focus,

F]

*

Copyright © IBM Corp., 2007-2008. All rights reserved.
13 Source code made available under the EPL, v1.0, remainder licensed under Creative

Code Resolve — an Example @>s=con 2005

Setup a

Resolving the reference to “String” in a compilation unit compilation unit

String content =
"public class X {"" + "\n" +
" String field;" + "\n" +
II}II;
ICompilationUnit cu=
fragment.createCompilationUnit(“X.java", content, false, null);

int start = content. indexOf("'String™);
int length = "String”.length();
IJavaElement[] declarations = cu.codeSelect(start, length);

|

Contains a single IType:
‘java.lang.String’

Copyright © IBM Corp., 2007-2008. All rights reserved.
14 Source code made available under the EPL, v1.0, remainder licensed under Creative

Second Pillar: Search Engine 4g)»s=con 2008

Search Engine
= Design motivation

= Using the search engine
= Code example

Copyright © IBM Corp., 2007-2008. All rights reserved.
15 Source code made available under the EPL, v1.0, remainder licensed under Creative

Search Engine @ysecon 2008

Indexed search for declarations and references

» packages, types, fields, methods and constructors

» using wildcards (including camel-case) or from a Java element
Scoped search

» scope = set of Java elements

» predefined workspace and hierarchy scopes
Precise and non-precise matches
= Code with errors, incomplete class paths

New in 3.4: Limit the match locations
® in casts, in catch clases, only return types...

Copyright © IBM Corp., 2007-2008. All rights reserved.
16 Source code made available under the EPL, v1.0, remainder licensed under Creative

Search Engine — Using the APIs @ps=con 2008

= Creating a search pattern

SearchPattern.createPattern("'foo*",
IJavaSearchConstants.FIELD, 1JavaSearchConstants.REFERENCES,
SearchPattern.R_PATTERN_MATCH | SearchPattern.R_CASE_SENSITIVE);
= Creating a search scope

SearchEngine.createWorkspaceScope();
SearchEngine.createJdavaSearchScope(new 1JavaElement[] { project });
SearchEngine.createHierarchyScope(type);

= Collecting results
= Subclass SearchRequestor

» Results are reported as SearchMatch

Copyright © IBM Corp., 2007-2008. All rights reserved.
17 Source code made available under the EPL, v1.0, remainder licensed under Creative

Search Engine — an Example {gos=con 2008

18

Searching for all declarations of methods “foo” that return an int / Search pattern

SearchPattern pattern = SearchPattern.createPattern(
"foo(*) iInt",
IJavaSearchConstants.METHOD,
IJavaSearchConstants.DECLARATIONS,
SearchPattern.R_PATTERN_MATCH) ;

IJavaSearchScope scope = SearchEngine.createWorkspaceScope(); + Search scope

SearchRequestor requestor = new SearchRequestor() {
public void acceptSearchMatch(SearchMatch match) {

System.out._printIn(match.getElement()); —— Result

¥ collector

¥

SearchEngine searchEngine = new SearchEngine();

N Start search
searchEngine.search(*//////////

pattern,

new SearchParticipant[] { SearchEngine.getDefaultSearchParticipant()},
scope,

requestor,

null /*progress monitor*/);

Copyright © IBM Corp., 2007-2008. All rights reserved.
Source code made available under the EPL, v1.0, remainder licensed under Creative

The 3 Pillars — Third Pillar; AST 4Jpsecon 2008

AST — Precise, fully resolved compiler parse tree
= Overall design

= Creating an AST
= AST node details
» Bindings

= AST rewrite

= Refactoring toolkit

Copyright © IBM Corp., 2007-2008. All rights reserved.
19 Source code made available under the EPL, v1.0, remainder licensed under Creative

Abstract Syntax Tree By <con 2008

Source Code

return getPrefixi() + count:

ASTParser#createAST(...)

AST l

ReturnStatement

expression

InFixExpression

leftOperand rightOperand

resolveBindin _ _
IMethodBinding ‘_"_"_"_"-"_"_9 ----- MethodInvocation SimpleName

Copyright © IBM Corp., 2007-2008. All rights reserved.
20 Source code made available under the EPL, v1.0, remainder licensed under Creative

Creating an AST s <con 2008

= Build AST from element or source
» AST factory: ASTParser

» Either from Java model elements: ICompilationUnit, IClassFile (ITypeRoot)
= Or source string, file name and |JavaProject as context

= Bindings or no bindings

= Bindings contain resolve information. Fully available on syntax errors free code,
best effort when there are errors.

= Full AST or partial AST
= For a given source position: All other method have empty bodies

= AST for an element: Only method, statement or expression

Copyright © IBM Corp., 2007-2008. All rights reserved.
21 Source code made available under the EPL, v1.0, remainder licensed under Creative

Creating an AST »secon- 2008

22

ASTParser parser= ASTParser.newParser(AST.JLS3);
parser .setSource(cu); «—

parser.setResolveBindings(true); Create AST on an element
parser.setStatementsRecovery(true);

ASTNode node= parser.createAST(null);

ASTParser parser= ASTParser.newParser(AST.JLS3);
parser.setSource('System.out.printin() ;" .toCharArray());

parser.setProject(javaProject);
parser.setKind(ASTParser.K_STATEMENTS) ;
parser .setStatementsRecovery(false); — Create AST on source

ASTNode node= parser.createAST(null); string

Copyright © IBM Corp., 2007-2008. All rights reserved.
Source code made available under the EPL, v1.0, remainder licensed under Creative

AST Browsing o con 2008

.- (9 Ohiject
- ¥9" aSTHade
C anonymousClassDeclaration
7@ BodyDeclaration
B catchClause

Typed access to the node children: + gﬂ Comment
... . Cornpilationlnit
ConditionalExpression: L ®" Crpresson
A .
getExpression() expr 7 thenExpr : elseExpr; t g i:;ﬂf;s
getThenExpression() © arraycreation
. ® arrayInitializer
getEIseExpressmn() {B Assignment
(& BooleanLiteral
E CastExpression
. . (& characterLiteral
Homogenous access using node properties: (8 dassinstanceCreation
@ ConditionalExpression

List allProperties= node.structuralPropertiesForType();

\ Will contain 3 elements of type ‘StructuralPropertyDescriptor’:
ConditionalExpression.EXPRESSION_ PROPERTY,
ConditionalExpression.THEN_EXPRESSION_PROPERTY,

ConditionalExpression.ELSE _EXPRESSION_PROPERTY,

expression=
node.getStructuralProperty(ConditionalExpression.EXPRESSION PROPERTY);

Copyright © IBM Corp., 2007-2008. All rights reserved.
23 Source code made available under the EPL, v1.0, remainder licensed under Creative

AST Visitor 4@ <con” 2008

ASTParser parser= ASTParser.newParser(AST.JLS3);
parser.setSource(cu);

parser .setResolveBindings(true); Count the number of
casts
ASTNode root= parser.createAST(null);
root.accept(new ASTVisitor() {
public boolean visit(CastExpression node) {
fCastCount++;
return true- Count the number of references to
3 a field of ‘java.lang.System’

(‘System.out’, ‘System.err’)

/

public boolean visit(SimpleName node) {
IBinding binding= node.resolveBinding();
1T (binding instanceof IVariableBinding) {
IVariableBinding varBinding= (1VariableBinding) binding;
ITypeBinding declaringType= varBinding.getDeclaringClass();
it (varBinding.isField() &&

"java.lang.System" .equals(declaringType.getQualifiedName())) {
fAccessesToSystemFields++;

}
}

return true;

}

Copyright © IBM Corp., 2007-2008. All rights reserved.
Source code made available under the EPL, v1.0, remainder licensed under Creative

24

AST Rewriting 2s=con 2008

Instead of manipulating the source code change the AST and write
changes back to source

Descriptive approach
= describe changes without actually modifying the AST

= allow reuse of the AST over several operations
= support generation of a preview

Modifying approach
= directly manipulates the AST
= APl is more intuitive
= implemented using the descriptive rewriter

Rewriter characteristics
= preserve user formatting and markers

= generate an edit script

Copyright © IBM Corp., 2007-2008. All rights reserved.
25 Source code made available under the EPL, v1.0, remainder licensed under Creative

AST Rewriting 2s=con 2008

Implementation of descriptive rewrite is currently more powerful:

= String placeholders: Use a node that is a placeholder for an arbitrary
string of code or comments

= Track node positions: Get the new source ranges after the rewrite
= Copy a range of nodes

= Modify the comment mapping heuristic used by the rewriter
(comments are associated with nodes. Operation on nodes also include
the associated comments)

Copyright © IBM Corp., 2007-2008. All rights reserved.
26 Source code made available under the EPL, v1.0, remainder licensed under Creative

AST Rewrite Qo aons

Example of the descriptive AST rewrite:

public void modify(MethodDeclaration decl) {

Create the rewriter
AST ast= decl.getAST(); f/

_ . _ Change the method name
ASTRewrite astRewrite= ASTRewrite.create(ast); ‘//

SimpleName newName= ast.newSimpleName("*'newName') ;
astRewrite.set(decl, MethodDeclaration.NAME PROPERTY, newName, null);

ListRewrite paramRewrite=
astRewrite.getListRewrite(decl, MethodDeclaration.PARAMETERS PROPERTY);

SingleVariableDeclaration newParam= ast.newSingleVariableDeclaration();
newParam.setType(ast.newPrimitiveType(PrimitiveType.INT));
newParam.setName(ast.newSimpleName("'pl™));

paramRewrite. insertFirst(newParam, null);

™

TextEdit edit= astRewrite.rewriteAST(document, null); Insert a new parameter as

first parameter
edit.apply(document); ™~

Create resulting edit script
\Apply edit script to source buffer

Copyright © IBM Corp., 2007-2008. All rights reserved.
27 Source code made available under the EPL, v1.0, remainder licensed under Creative

Code Manipulation Toolkits P>s=con 2008

» Refactoring — org.eclipse.ltk.refactoring ®
= refactorings - org.eclipse.ltk.core.refactoring.Refactoring S —
= responsible for precondition checking
= create code changes
= code changes - org.eclipse.ltk.core.refactoring.Change
= provide Undo/Redo support
= support non-textual changes (e.g. renaming a file)
= support textual changes based on text edit support
= user interface is dialog based

= Quick fix & Quick Assist — org.eclipse.jdt.ui.text.java nae- beisan.

& Change to 'getlamet,.)’

u AST based B Create method 'getMam()’

@ Local Rename

= processors - org.eclipse.jdt.ui.text.java.lQuickFixProcessor

= check availability based on problem identifier
= generate a list of fixes
= user interface is provided by editor

Copyright © IBM Corp., 2007-2008. All rights reserved.
28 Source code made available under the EPL, v1.0, remainder licensed under Creative

Summary JdBe)s2CcON 2008

= JDT delivers powerful program manipulation services
= Java Model, Search engine and DOM AST

= Add your own tool to the Eclipse Java IDE
» put also in headless mode (can be used programmatically)

= Visual Editor, EMF, metric tools, ...
= Full J2SE 5.0/6.0 support

» Community feedback is essential
= bugreports: http://bugs.eclipse.org/bugs

= mailing lists: http://www.eclipse.org/mail/index.html
= newsgroups: news://news.eclipse.org/eclipse.tools.jdt

Copyright © IBM Corp., 2007-2008. All rights reserved.
29 Source code made available under the EPL, v1.0, remainder licensed under Creative

Leg al Notice @g 5 2CON™ 2008

= Copyright © IBM Corp., 2007-2008. All rights reserved. Source code in this presentation is
made available under the EPL, v1.0, remainder of the presentation is licensed under
Creative Commons Att. Nc Nd 2.5 license.

» Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

» Eclipse and the Eclipse logo are trademarks of Eclipse Foundation, Inc.
= QOther company, product, or service names may be trademarks or service marks of others.

= THE INFORMATION DISCUSSED IN THIS PRESENTATION IS PROVIDED FOR
INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE
COMPLETENESS AND ACCURACY OF THE INFORMATION, IT IS PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND IBM SHALL NOT
BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR
OTHERWISE RELATED TO, SUCH INFORMATION. ANY INFORMATION CONCERNING
IBM'S PRODUCT PLANS OR STRATEGY IS SUBJECT TO CHANGE BY IBM WITHOUT
NOTICE

Copyright © IBM Corp., 2007-2008. All rights reserved.
30 Source code made available under the EPL, v1.0, remainder licensed under Creative

