
1

Abstract – The efficiency of nowadays computer systems 
is highly influenced by the performance of the system cache. 
With  processor speeds getting higher and higher a good 
cache  performance  becomes  even  more  important.  This 
paper first  gives  a  short  overview of  cache architectures. 
Furthermore it   shows,  how garbage collection can effect 
cache  performance.  This  is  supported  by  cache 
performance measurements of generational mark & sweep 
and  generational  copying  garbage  collection.  These 
measurements  consider  different  cache  sizes,  different 
placement strategies and different allocation thresholds.

Index  Terms--  allocation  threshold,  cache  miss  rate, 
cache performance,  copying collection, garbage collection, 
generational  garbage  collection,  incremental  collection, 
mark & sweep collection

1 Introduction
The usefulness of garbage collection techniques is out of 
question. The programmer is  no longer responsible for 
freeing memory of unreferenced objects. It is not only, 
that  the  programmer  doesn't  have  to  think  of  freeing 
unused objects, implementing the memory management 
issues  was  usually  a  time  consuming  and  fault-prone 
task.  So  garbage  collection  is  comfortable  for  the 
developer and it improves the quality of the product as 
well.

But there are also disadvantages of garbage collection. 
Basically garbage collection interrupts the execution of 
the  current  task,  so  this  slows  the  performance  of  the 
system  down.  Especially  early  garbage  collection 
algorithms interacted badly with the memory system of 
computers.  This  is  because  the  spatial  and  temporal 
locality  of garbage collection algorithms is  quite  poor. 
The  bad  locality  is  explainable  if  we  consider  how  a 
garbage collector works in principle.  When there is no 
free space on the heap anymore the program halts and the 
garbage collector runs. To determine which objects are 
garbage the collector visits each object which is still in 
use. This traversal is made over the whole address space 
of  the  memory  and  usually  leads  to  non-locality.  This 
non-locality means poor memory performance.

Since modern processors get faster and faster it is very 
important that the data required for the CPU operations 
can be delivered very quickly to the processing unit. So 
the cache performance should be as good as possible. A 

good cache  performance  is  obtained  if  the  cache  miss 
rate, the ratio between cache misses and the amount of 
executed instructions, is low. Several Studies have shown 
that  the  cache  miss  rate  highly  influences  the  overall 
system performance. For example Grunwald showed that 
lower miss rates increase the system performance by up 
to 25 percent [Grunwald93]. The results of Lam show a 
even  more  dramatic  improvement  of  the  system 
performance of about 400 percent [Lam91].

The cost  for  a cache miss depends on several  aspects. 
First of all it depends on the architecture of the cache. 
Futhermore there is a difference between read and write 
misses. There is also to consider if  only the first  level 
cache is missed or the second level cache as well.

The actual processing time consists of the time where the 
processor can do useful work and the time where it has to 
wait  for  the cache.  By assuming that  the penalties  for 
read and write misses have already been combined the 
CPU time t can be calculated as follows:

t= IC∗CPI  miss
instruction

∗misspenalty ∗cycletime

IC ... instruction count
CPI ... average cycles per instruction

The  increasing  influence  of  the  miss  rate  on  the  total 
performance  on  newer  computers  is  shown  on  the 
following example.

The  first  calculation  is  based  on  an  old  VAX 11/780 
(CISC processor) with a low miss penalty of 6 cycles, but 
with a high CPI average of 8.5. The miss rate should be 2 
percent  and  there  are  3  memory  references  per 
instruction:

t= IC∗8.53∗0.02∗6 ∗cycletime

t= IC∗8.86∗cycletime

The acutal CPI increased from 8.5 to 8.86 cycles, which 
is an increase of about 4 percent.

The second calculation is for a newer DEC Alpha AXP 
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(RISC processor) with a miss penalty of 50 and a CPI 
average of 2. The miss rate is again 2 percent, there are 
1.33 memory references per instruction.

t= IC∗21.33∗0.02∗50∗cycletime

t= IC∗3.33∗cycletime

The actual CPI increased from 2 to 3.33 cycles which is 
an increase of about 66 percent.

2 Cache architecture
A  cache  is  a  memory  storage  either  for  data  or 
instructions. Both types can be stored in the same cache. 
However  ,  many  hardware  producers  design  their 
products with splitted caches, one in charge for data the 
other one in charge for instructions. Nowadays the cache 
is usually integrated in the CPU. Furthermore the cache 
is split in a level 1 and a level 2 cache. The level 1 cache 
the closest  to the CPU and is  smaller then the level  2 
cache. 

In order to be able to draw meaningful conclusions about 
the influence of garbage collection on cache performance 
caches should be distinguished by their cache size, their 
placement  policy  and  their  write  stragety.  The  next 
sections will explain these terms.

2.1 Cache size

Depending on the actual implementation the cache sizes 
may  vary  between  8  kilobytes  and  2  megabytes.  As 
stated in a later section the cache size has a high impact 
on  the  cooperation  of  the  garbage  collector  and  the 
cache.

2.2 Placement policy

A cache is divided into a number of blocks. The size of a 
block is typically in a range of 4 to 128 bytes. There are 
coherences between the blocksize an the miss rate and 
between  the  block  size  and  the  penalty  for  a  miss. 
Programs  with  a  good  spatial  locality  benefit  from  a 
larger  blocksize,  the  miss  rate  will  decrease.  This  is 
because it will be more likely that subsequent references 
will be to addresses in the same block. But on the other 
hand if the blocksize becomes to large in proportion to 
the size of the whole cache, the miss rate will rise again. 
In this case there are simply to few blocks in the cache 
available  and  so  the  blocks  have  to  be  replaced  very 
often. An efficient blocksize is therefore a compromise 
of making the blocks large enough, so the program can 
gain  efficiency  and  providing  enough  blocks  in  the 
cache.

Another question is how the blocks of the main memory 
are mapped into the cache. Therefore we can distinguish 

three block placement policies. 

Direct mapped

In a direct mapped cache each block of the main memory 
is exactly mapped to a particular block in the cache. This 
can  be  achieved  for  example  by  calculating  the  main 
memory  address  modulo  the  number  of  blocks  in  the 
cache. Direct mapping caches are simple to build and the 
searching for a block can be done quickly. The drawback 
is, that there might easily arise conflicts of different main 
memory blocks mapped to the same block in the cache. If 
the  data  of  these  rivalling  blocks  has  to  be  accessed 
alternatingly,  there  is  always  a  miss  and  so  the 
performance is going down.

Fully associative

In a fully associative cache the main memory blocks can 
be  placed  anywhere  in  the  entire  cache.  In  this  way 
conflicts as described for a direct mapped cache can be 
avoided because there are no main memory blocks which 
have  to  map  to  the  same  cache  block.  But  the  fully 
associative cache  has  disadvantages  as  well.  Searching 
the cache for  a particular block would be either  rather 
slow or  require expensive parallel  hardware.  Therefore 
fully associative memory is more likely to be used for 
smaller units.

There are several strategies how a block can actually be 
placed  in  a  fully  associative  cache.  The  nowadays 
commonly  used  technique  is  by  randomly  picking  a 
cache  block  and  placing  the  data  there.  Another 
possibility  would  be  using  the  Least-Recently-Used 
(LRU) procedure. With this technique the least recently 
used block would be replaced. This would be the most 
efficient strategy but it is hard to implement. There are 
some strategies which nearly implement this behaviour. 
A  further  placing  strategy  would  be  First-In-First-Out 
(FIFO). This means, the first block written into the cache 
is the first one which is replaced. This technique is not 
recommended  because  it  leads  to  a  poor  cache 
performance.

Set-associative

Set-associativity  combines  the  concepts  of  direct 
mapping and fully associative. The cache is splitted into 
several sets. Common numbers of sets would be two or 
four. A main memory block is now always mapped into 
the same set. This could be done like choosing the right 
block  with  a  direct  mapped cache.  Within  this  set  the 
block can be placed anywhere. Searching for a particular 
block is now quicker than with a fully associative cache. 
We already know, that a block can only be in a particular 
set.  So  we  only  have  to  search  within  this  set  to 
determine if the block is already in the cache or not. For 
placing a block within a set the same strategies as for the 
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fully associative cache can be used, e.g. random, least-
recently-used or first-in-first-out.

Both the direct  mapped and the fully associated cache 
can be seen as special cases of a set-associative cache. A 
direct  mapped cache is  a  set-associative cache with as 
many sets as there are blocks in the cache. On the other 
hand a fully associative cache would be a set-associative 
cache with only a single set.

2.3 Writing strategy

The performance of garbage collection algorithms seems 
to depend on the way how write misses are treated within 
the cache. Therefore I give a brief overview of writing 
strategies.

At first I want to consider the case that a write hit occurs. 
There are two possibilities what to do.

Write-through

In this case the data is written in the cache and in the 
main memory. If there are several cache levels the data is 
written in these levels as well. The advantage of this is 
that  if  the  block  is  going  to  be  replaced  the  data  is 
already written into the next level memory. So there is no 
additional  effort  necessary to  save the data.  But if  the 
data  in  a  block  is  changed  several  times  without  the 
block being replaced in the meantime, I still have to write 
the data to the main memory each time it  is  changed. 
This is a bit of a waste of bus bandwidth. 

Write-back

Using the write-back (also called copy back) strategy the 
data is only modified in the cache. It is only written back 
to the main memory if the block is going to be replaced. 
There is also an improvement for this strategy. If a block 
is going to be replace, but the data has not been changed 
since it was loaded, there is no need to write it back to 
main memory. Therefore each block has a so called dirty 
bit.  This bit  indicates wether the data in the block has 
been changed since it  was loaded.  So it  is  possible  to 
decide, if the data has to be written back into the main 
memory or  not.  The advantages and disadvantages are 
the opposite of the write-through technique. Write-back 
saves bus bandwidth but  if  a block has to be replaced 
there are additional efforts necessary to save the data.

There are also two different techniques if a write miss 
occurs. The question hereby is wether the block should 
be loaded into the cache.

Write-allocate

With write-allocate (or  fetch-on-write  as it  is  called as 
well) the block is allocated into the cache. Now it can be 

handled as it had been there right from the beginning, so 
the procedure would be like for a write hit.

Write-no-allocate

With write-no-allocate (or write-around) the block is not 
loaded into the cache. The data is going to be written in 
the next level memory (either the next cache level or the 
main  memory)  right  away.  This  saves  bus  bandwith 
because  the  transfer  of  the  block  into  the  cache  is 
missing.

Each cache has to combine a technique for write hit and 
write  miss.  Usually  write-through  is  combined  with 
write-no-allocate and write-back is combined with write-
allocate.  Write-through  writes  into  the  main  memory 
anyway  so  therefore  it  is  better  write  into  the  main 
memory  with  write-no-allocate  in  first  place.  The 
combination  of  write-back  and  write-allocate  makes 
sense as well. With write-allocate the block is placed into 
the cache. Then we hope, that there are write operations 
on the block before it is replaced. So it was cheaper to 
put the block into the cache.

3 Memory access of garbage collectors
The cache architecture we have seen so far benefits from 
high  spatial  and  temporal  locality  of  programs.  This 
assumption  can  be  made  for  most  programs.  Garbage 
collector  however  basically  have  bad  spatial  and 
temporal  locality.  In  order  to  determine  if  garbage 
collectors  are able to  cooperate  with caches in a  good 
way this  section  discusses  the  general  memory  access 
patterns of various garbage collection strategies.

3.1 Mark & Sweep garbage collector

Considering  a  simple  mark  &  sweep  collector  the 
references to the heap are likely to be random reads and 
writes.  Using  a  more  advanced  mark  &  sweep 
implementation  make  the  prediction  of  the  memory 
access  easier.  Those  advanced  methods  could  be  for 
example  collectors  using  mark  bitmaps  and  lazy 
sweeping or generational mark & sweep collectors.

During marking the branch points are stored in a stack 
and a bitmap is used to mark the objects. The pointers are 
traced  by  accessing  heap  data.  The  read  and  write 
references  on  the  stack  show  high  locality.  The 
references in the bitmap should show quite a good spatial 
locality,  too.  By  tracing  the  graph  random  read-only 
accesses to the heap are created.  Generational mark & 
sweep  collectors  restrict  the  range  of  references  to  a 
certain  extent  to  limited  region  of  the  heap.  These 
observations  imply  that  a  mark  &  sweep  garbage 
collector has random reads and highly localised writes. 
[Jones96]
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The sweep phase produces highly sequential  reads and 
writes  to  mark bits.  If  first-fit  allocation with separate 
free-lists  for  each  common  object  size  is  used  the 
allocation  pattern  consists  of  sequential,  initialising 
writes.

3.2 Copying garbage collector

A copying garbage collector basically compacts the heap, 
if it is a generational collector it compacts the regions of 
the  heap.  This  means,  the  allocation  is  strictly  linear, 
objects  directly  allocated  after  each  other  are  directly 
place next to each other on the heap.

At  first  a  copying  garbage  collecter  has  to  scan  the 
objects  in  the  grey  part  of  the  Tospace.  Each  word 
referenced by a pointer is read and then updated. So this 
memory access pattern consists of sequential reads and 
writes. The forwarding address of the object where the 
pointer  refers  to,  is  also  read.  In  case  the  Fromspace 
object  has  not  been  copied  it  has  to  be  copied  to  the 
Tospace  and  an  update  of  the  forwarding  address  is 
necessary.  This behaviour results  in reads to a random 
location with a  possible  write  and after that  sequential 
reads  in  Fromspace  and  sequential  writes  in  Tospace. 
References  to  Tospace  are  around  the  address,  where 
scan points to. This is for read and write. Furthermore 
there  are  references  to  addresses  pointed  to  by  free. 
These are writes. After a word has been marked as black, 
which means it was scanned and updated, the collector 
does  not  have  to  touch  it  in  this  cycle  again.  This 
description of memory access patterns is a bit simplified 
since  some  issues,  like  copying  objects  by  remapping 
virtual memory, are not considered. [Jones96]

If  linear  allocation  is  assumed,  it  results  in  an  easy 
predictable pattern of access to Tospace. This would be a 
sequence of initialising writes. It  is not uncommon for 
systems using garbage collection to have very high rates 
of  allocation  [Jones96].  Generally  it  is  assumed  that 
compared  to  reads  writes  occur  only  rarely.  Typically 
writes  occur  for  about  ten  percent  of  all  executed 
instructions. But Diwan et al. and Goncalves and Appel 
found programs where number of writes rise up to about 
25  percent  of  all  executed  instructions  [Diwan94] 
[Goncalves95]. The majority of these writes occured due 
to allocation. Since a copying garbage collector uses two 
semispaces, there is a “back-and-forth“ allocation pattern 
to observe. It is likely that this pattern works against the 
block replacement policy of the cache. This leads to the 
conclusion,  that  linear  allocation  can  be  expensive  in 
cycles, although it is quite cheap if we only consider the 
amount  of  instructions  executed  by  the  allocator. 
[Jones96]

3.3 Incremental garbage collector

Incremental  garbage  collectors  access  the  memory 
alternating with the mutator  and the collector  within a 

short  time.  This  could  lead  to  the  conclusion  that  the 
cache miss  rate  is  going up. An explanation would be 
that data accessed by the mutator and data accessed by 
the collecter are mapped to the same cache block. This 
results in a high number of necessary replacements. But 
Zorn  delivers  some  evidence  that  the  performance  of 
incremental  garbage  collection might be  better  than as 
stated in the assumption [Zorn89].

A  significant  factor  for  the  cache  performance  of 
incremental  collectors  will  be  the  style  and  the 
granularity. Read-barriers trap the mutator access. So the 
collector  works  with  data  the  mutator  is  using  at  that 
particular  time.  Some  incremental  collectors  use  the 
memory protection  system of  the  operating  system. In 
this case, the granularity of the read-barrier is a page and 
therefore  the  behaviour  explained  above  is  weakened. 
There are write-barriers which do not need the support of 
the  virtual  memory.  They  mark  data  subjects  to  the 
mutator writes and therefore behave in a similar. Dijkstra 
and  Steele  for  example  developed  collectors  with  that 
behaviour. A design goal for some incremental collectors 
is  to  improve  locality.  Therefore  they  are  clustering 
objects in Tospace according to their references in the 
mutator. 

It seems, that there are no studies made yet, that discuss 
the cache performance of incremental garbage collection. 
Therefore, this paper can not answer the question, if the 
stated assumptions are correct. [Jones96]

4 Improving the cache performance
Generally  speaking  the  cache  performance  can  be 
improved in three ways:

• by reducing the cache miss rate

• by reducing the miss penalty

• by reducing the time to hit

In context to garbage collection reducing the cache miss 
rate is the import point. There are some know techniques 
to reduce the miss rate, for example increasing the size of 
the cache, increasing the size of a block in the cache or 
increasing the associativity.

On the basis of studies by Zorn [Zorn91] and Goncalves 
and  Appel  [Goncalves95]  the  influence  of  these 
parameters  in  context  to  garbage  collection  is  shown. 
Goncalves and Appels study is based on a generational 
copying collector. Zorn used a mark & sweep collector 
as  well  as  a  copying  collector.  Both  algorithms  use 
generational  garbage  collecting  techniques  and  to  get 
comparable  results  the  algorithms  are  as  similar  as 
possible. The cache block size is 32 bytes. As a trigger to 
run  the  garbage  collector  Zorn  used  the  allocation 
threshold technique. This means the collector is started 
after  a  fix  amount  of  memory  has  been  allocated.  In 
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contrast  a  fixed-space technique  would  wait  until  the 
whole  memory  is  allocated  and  then  run  the  garbage 
collector. Figures 1 and 2 illustrate both concepts.

Fig. 1 Fixed space collection policy

The  amount  of  allocated  memory  is  different  between 
each  garbage  collector  runs.  The  disadvantage  of  the 
fixe-size concept is,  that  it  can lead to thrashing.  This 
happens  when  most  of  the  memory  in  newspace  is 
allocated to live objects. Newspace fills quickly and so 
the garbage collector is  invoked more often but  it  can 
recover less garbage each time.

Fig. 1 Allocation threshold collection policy

The amount of allocated memory is the same between to 
garbage collector runs. The allocation threshold method 
has  several  advantages.  On  one  hand  it  solves  the 
thrashing problem of a fixed-size collection. On the other 
hand the allocation behaviour is independent of the used 
garbage collection algorithm. This means, each collector 
is  invoked  the  same  number  of  times.  This  makes  it 
easier  to  compare  different  garbage  collection 
algorithms.

The garbage collection performance is highly influence 
by  the  allocation  threshold.  Making  the  threshold 
smaller,  the  garbage  collector  is  invoked  more  often. 
This  has  both  negative  and  positive  effects.  If  the 
collecter  runs  more  often,  fewer  objects  can  become 
garbage between two collector runs. Also the CPU time 

for the collection increases. If the generational behaviour 
is implemented in that way, that an object is promoted to 
the next generation after a fixed amount of collector runs, 
then a small allocation threshold increases the promotion 
to  older  generations  as  well.  An advantage  of  a  small 
threshold  is  the  good  spatial  reference  locality  since 
garbage objects are reused quickly.

4.1 Mark & Sweep garbage collector

At first I want to analyse the performance of the collector 
with a direct mapped cache architecture.

Fig. 3 Cache miss rate with mark & sweep collector, direct mapped

Fig. 4 Cache miss rate with mark & sweep collector, direct mapped
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Fig. 5 Cache miss rate with mark & sweep collector, direct mapped

Figures  3  to  5  show the  cache  miss  rate  for  different 
cache sizes of a mark & sweep garbage collector on a 
direct mapped cache. As we can see, the cache miss rate 
is highly influenced by the cache size. Generally can be 
said that increasing the cache size reduces the miss rate. 
The  diagrams  show,  that  garbage  collecting  programs 
“fit“ better in larger caches. Doubling the cache size until 
the “well  fit“  point  is  reached effects  the  miss  rate  to 
decrease by about one percent. After that the curves are a 
bit flatter.

The allocation threshold also can have a major impact on 
the cache miss rate.  If  we take,  for  example,  the Lisp 
compiler running at a cache with 512 kilobytes, the miss 
rate for an allocation threshold of 2 megabytes is more 
than  three  times  higher  than  with  a  threshold  of  128 
kilobytes.  The  Prolog  compiler  shows  similar  results. 
The miss rates for the RL compiler are not  that much 
influenced by different thresholds at a certain cache size 
than for the other two compilers. But the tendency is still 
there.

Another  interesting  observeration  is,  that  a  smaller 
threshold does not necessarily perform better. If we take 
the Lisp compiler, a threshold of 128 kilobytes shows the 
lowest  miss  rates.  On  the  other  hand  running  the  RL 
compiler it turns out to have the highest miss rates of all 
thresholds. Therefore the best threshold also depends on 
the running program.

There also seems to be a relation between the cache size 
and the threshold.  In  nearly  every curve we can see a 
knee  were  both  the  cache  size  and  the  allocation 
threshold  have  the  right  size,  so  that  the  program can 
“fit“ well.

The next figures show how the associativity influences 
the cache miss rate. The threshold is set to 128 kilobytes.

Fig. 6 Cache miss rate with mark & sweep, different associativity

Fig. 7 Cache miss rate with mark & sweep, different associativity
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Fig. 8 Cache miss rate with mark & sweep, different associativity

Figures  6  to  8  show  that  the  influence  of  the  cache 
associativity  on  mark  &  sweep  collection  is  not  very 
high.  Generally  set-associative  caches  perform  a  bit 
better than a direct mapped one. But even to this there is 
a small exception. Running the Prolog compiler with a 
cache of size 128 kilobytes the direct mapped cache has 
lower miss rates than the set associative ones.

The  different  miss  rates  between  the  2-way-set-
associative  and  the  4-way-set-associative  caches  are 
negligible.

Since mark & sweep collectors do not copy objects, the 
only exception is to promote them, the benefit of using 
set-associative  cache  architectures  is  only  little.  The 
allocated objects in newspace stay in the same place until 
they are  promoted to  the  next  generation.  Assuming a 
large enough cache size so that it can contain the objects 
in newspace, only few collisions will arise by referencing 
this  generation.  Collisions  can  only  arise  between 
references to newspace and older generations. The older 
generations are much larger than newspace and therefore 
cache blocks are accessed more randomly. This avoids 
repeated, systematic collisions.

4.2 Copying collector

The  same  measurements  as  for  the  mark  &  sweep 
garbage collector were done with the copying collector 

as well. I  start with the analysis for the direct mapped 
architecture again.

Fig. 9 Cache miss rate with copying collector, direct mapped

Fig. 10 Cache miss rate with copying collector, direct mapped
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Fig. 11 Cache miss rate with copying collector, direct mapped

Figures  9  to  11  show  cache  miss  rates  for  a  direct 
mapped  cache  running  with  a  copying  collector.  As 
observed for the mark & sweep collector, larger caches 
result in a lower miss rate.

The size of the threshold has still some influence on the 
cache performance, but  the differences are most  of the 
time not  as  high as  for  the other  garbage collector.  A 
lower  allocation  threshold  seems  to  result  in  a  better 
performance. But now there are not only exceptions to 
that with the RL compiler, the Lisp compiler combined 
with a cache size of 128 kilobytes also shows that the 
smallest threshold is not necessarily the best.

Generally can be said, that the miss rates are higher than 
with using a mark & sweep garbage collector

The  following  figures  show  the  influence  of  the 
associativity on the miss rate for the copying collector. 
The allocation threshold is again 128 kilobytes.

Fig. 12 Cache miss rate with copying collector, different associativity

Fig. 13 Cache miss rate with copying collector, different associativity
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Fig. 14 Cache miss rate with copying collector, different associativity

In  contrast  to  mark  &  sweep  collection  algorithms 
figures  12  to  14  show that  copying  collectors  benefit 
from a set-associative architecture a  lot  if  the cache is 
large enough. If this is teh case, the cache can hold both 
semispaces  and the amount of  collisions  decreases.  To 
explain the benefit over the direct mapped cache it has to 
be  considered,  that  since  the  cache  uses  an  allocation 
threshold  the  two  semispaces  do  not  always  have  the 
same size. It depends on how many objects live through a 
collection.  If  the  semispaces  become as  large,  so  that 
they  do  not  fit  in  the  cache  anymore,  then  many 
collisions arise in the direct  mapped cache. In the set-
associative cache the  blocks can be  placed freely to  a 
certain extent. So most of the collisions are prevented.

There  is  another  interesting  aspect  to  observe.  If  the 
cache  size  is  large  enough  so  that  it  can  hold  both 
semispaces  with  their  largest  possible  dimensions,  the 
performance of the direct mapped cache is again nearly 
as  good  as  the  performance  of  the  set-associative 
versions.

The cache miss rates of the 4-way-set-associative cache 
are  a  bit  lower  than  the  miss  rates  of  the  2-way-set-
associative cache, but they are nearly negligible.

Goncalves  and  Appel  ovbserved  in  their  study  the 
influence of the cache block size on the miss rate. They 
also differentiated between read and write  misses.  The 
cache is direct mapped with write-allocate.

Fig. 15 Cache miss rate in contrast to different cache block sizes

Figure 15 shows the cache miss rate  in  context  to  the 
cache size for different cache block sizes. Read misses 
are drawn with heavier graphs.

As  describe  in  section  3.2  copying  collection  lineary 
updates  pointers  in  the  grey  region.  Allocation  and 
evacuation  are  done  lineary  as  well.  This  leads  to  the 
expection, that increasing the block size would decrease 
the miss rates. The diagram shows that this assumption is 
right. Especially the probability of write misses (thinner 
lines  in  the  diagram) can be  reduced dramatically.  By 
doubling the size of a cache block from 16 bytes to 32 
bytes the miss rate could be reduced over 10 percent.

Since mark & sweep collectors also benefit from spatial 
locality, similar results can be expected.

4.3 Comparison of Mark & Sweep and Copying 
collectors

This  section directly compares the cache miss  rates of 
mark & sweep and copying garbage collectors.

The allocation threshold is set to a size of 256 kilobytes. 
Figures  16  and  17  show  the  comparision  of  the  two 
collectors using a direct mapped cache. Figures 18 and 
19  show  the  comparison  in  context  of  a  2-way-set-
associative cache.
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Fig.  16  Cache  miss  rates  of  mark  &  sweep  and  copying  garbage 
collectors, direct mapped cache

Fig.  17  Cache  miss  rates  of  mark  &  sweep  and  copying  garbage 
collectors, direct mapped cache

Fig.  18  Cache  miss  rates  of  mark  &  sweep  and  copying  garbage 
collectors, 2-way-set-associative cache

Fig.  19  Cache  miss  rates  of  mark  &  sweep  and  copying  garbage 
collectors, 2-way-set-associative cache

With  both  cache  architectures  the  mark  &  sweep 
algorithm has a better cache performance. This is for one 
reason for the better locality of a mark & sweep garbage 
collector. In addition it also benefits more from adjusting 
the  allocation  threshold.  Remarkably  there  is  a  major 
difference  in  the  cache  miss  rates  for  midsize  caches 
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whereas the gap between the two algorithms for small 
and large caches is much smaller or not existing at all. 
Because of the high promotion rate for smaller caches the 
mark & sweep implementation looses some of its benefit. 
In  large  caches  the  programs  can  fit  well  with  both 
techniques and so the miss rates are low anyway. The 
gap  between  the  two  collectors  is  small  with  a  set-
associative cache. This is because the copying collector 
benefits  from  the  2-way-set-associative  architecture 
whereas  mark  &  and  copy  shows  hardly  any 
improvement.

5 Conclusion
The paper discusses the influence of garbage collectors 
on  the  cache  performance.  The  common  opinion  that 
garbage collectors have a poor cache performance is not 
necessarily true. By changing the cache size, the size of a 
cache  block  or  by  using  a  set-associative  cache 
architecture  the  performance  can  be  improved 
dramatically. The cache size should be large enough so 
that  the program can fit  well.  An increased block size 
decreases  the  cache  miss  rate  as  well  (as  long  as  the 
amount  of  blocks  in  the  cache  is  still  large  enough). 
Generally mark & sweep garbage collectors have better 
cache  performance.  This  is  due  to  their  working 
principle. Furthermore they react better to cache tuning 
measures.  Copying  collectors  benefit  from  a  set-
associative architecture.

6 Bibliography
    Books

[Jones96] R.  Jones,  “Garbage  Collection:  algorithms  for 
automatic dynamic memory management”, Wiley & Sons, 1996, 
pp 277 - 298

    Papers

[Chilimbi98] T.M.  Chilimbi,  J.R.  Larus,  "Using  generational 
garbage  collection  to  implement  cache-conscious  data 
placement",  First  International  Symposium  on  Memory  
Management  , October 1998

[Diwan94] A.  Diwan,  D.  Tarditi,  J.E.B.  Moss,  "Memory 
subsystem  performance  of  programs  using  copying  garbage 
collection",  Annual  ACM  Symposium  on  Principles  of  
Programming Languages   , January 1994

[Goncalves95] J.R. Goncalves, A.W. Appel, "Cache performance of 
fast-allocating  programs",  Conference  on  Functional  
Programming and Computer Architecture  , June 1995

[Grunwald93] D. Grunwald, B. Zorn, R. Hendersson "Improving the 
cache  locality  of  memory  allocation  ",  Conference  on 
Programming Language Design and Implementation , June 1993

[Lam91] M.S. Lam, “The cache performance and optimizations 
of  blocked  algorithms“,  Fourth  International  Conference  on 
Architectural  Support  for  Programming  Languages  and  
Operating Systems , April 1991

[Wilson92] P.R.  Wilson,  M.S.  Lam,  T.G.  Moher  "Cache 
considerations  for  generational  garbage  collection",  ACM 
Symposium on Lisp and Functional Programming  , June 1992

    Technical Reports

[Zorn91] B. Zorn, "The effect of garbage collection on cache 
performance",  Technical  Report  CU-CS-528-91,  University  of 
Colorado at Boulder, May 1991

    Dissertations

[Zorn89] B.  Zorn,  “Comparative  Performance  Evaluation  of 
Garbage  Collection  Algorithms“.  PhD  thesis,  University  of 
California at Berkeley, March 1989. Technical Report UCB/CSD 
89/544 


	1Introduction
	2Cache architecture
	2.1Cache size
	2.2Placement policy
	Direct mapped
	Fully associative
	Set-associative

	2.3Writing strategy
	Write-through
	Write-back
	Write-allocate
	Write-no-allocate


	3Memory access of garbage collectors
	3.1Mark & Sweep garbage collector
	3.2Copying garbage collector
	3.3Incremental garbage collector

	4Improving the cache performance
	4.1Mark & Sweep garbage collector
	4.2Copying collector
	4.3Comparison of Mark & Sweep and Copying collectors

	5Conclusion
	6Bibliography

