
1

Abstract – The efficiency of nowadays computer systems
is highly influenced by the performance of the system cache.
With processor speeds getting higher and higher a good
cache performance becomes even more important. This
paper first gives a short overview of cache architectures.
Furthermore it shows, how garbage collection can effect
cache performance. This is supported by cache
performance measurements of generational mark & sweep
and generational copying garbage collection. These
measurements consider different cache sizes, different
placement strategies and different allocation thresholds.

Index Terms-- allocation threshold, cache miss rate,
cache performance, copying collection, garbage collection,
generational garbage collection, incremental collection,
mark & sweep collection

1 Introduction
The usefulness of garbage collection techniques is out of
question. The programmer is no longer responsible for
freeing memory of unreferenced objects. It is not only,
that the programmer doesn't have to think of freeing
unused objects, implementing the memory management
issues was usually a time consuming and fault-prone
task. So garbage collection is comfortable for the
developer and it improves the quality of the product as
well.

But there are also disadvantages of garbage collection.
Basically garbage collection interrupts the execution of
the current task, so this slows the performance of the
system down. Especially early garbage collection
algorithms interacted badly with the memory system of
computers. This is because the spatial and temporal
locality of garbage collection algorithms is quite poor.
The bad locality is explainable if we consider how a
garbage collector works in principle. When there is no
free space on the heap anymore the program halts and the
garbage collector runs. To determine which objects are
garbage the collector visits each object which is still in
use. This traversal is made over the whole address space
of the memory and usually leads to non-locality. This
non-locality means poor memory performance.

Since modern processors get faster and faster it is very
important that the data required for the CPU operations
can be delivered very quickly to the processing unit. So
the cache performance should be as good as possible. A

good cache performance is obtained if the cache miss
rate, the ratio between cache misses and the amount of
executed instructions, is low. Several Studies have shown
that the cache miss rate highly influences the overall
system performance. For example Grunwald showed that
lower miss rates increase the system performance by up
to 25 percent [Grunwald93]. The results of Lam show a
even more dramatic improvement of the system
performance of about 400 percent [Lam91].

The cost for a cache miss depends on several aspects.
First of all it depends on the architecture of the cache.
Futhermore there is a difference between read and write
misses. There is also to consider if only the first level
cache is missed or the second level cache as well.

The actual processing time consists of the time where the
processor can do useful work and the time where it has to
wait for the cache. By assuming that the penalties for
read and write misses have already been combined the
CPU time t can be calculated as follows:

t= IC∗CPI  miss
instruction

∗misspenalty ∗cycletime

IC ... instruction count
CPI ... average cycles per instruction

The increasing influence of the miss rate on the total
performance on newer computers is shown on the
following example.

The first calculation is based on an old VAX 11/780
(CISC processor) with a low miss penalty of 6 cycles, but
with a high CPI average of 8.5. The miss rate should be 2
percent and there are 3 memory references per
instruction:

t= IC∗8.53∗0.02∗6 ∗cycletime

t= IC∗8.86∗cycletime

The acutal CPI increased from 8.5 to 8.86 cycles, which
is an increase of about 4 percent.

The second calculation is for a newer DEC Alpha AXP

Cache-conscious Garbage Collection

Gernot Innthaler, Student, Johannes Kepler University, Linz

2

(RISC processor) with a miss penalty of 50 and a CPI
average of 2. The miss rate is again 2 percent, there are
1.33 memory references per instruction.

t= IC∗21.33∗0.02∗50∗cycletime

t= IC∗3.33∗cycletime

The actual CPI increased from 2 to 3.33 cycles which is
an increase of about 66 percent.

2 Cache architecture
A cache is a memory storage either for data or
instructions. Both types can be stored in the same cache.
However , many hardware producers design their
products with splitted caches, one in charge for data the
other one in charge for instructions. Nowadays the cache
is usually integrated in the CPU. Furthermore the cache
is split in a level 1 and a level 2 cache. The level 1 cache
the closest to the CPU and is smaller then the level 2
cache.

In order to be able to draw meaningful conclusions about
the influence of garbage collection on cache performance
caches should be distinguished by their cache size, their
placement policy and their write stragety. The next
sections will explain these terms.

2.1 Cache size

Depending on the actual implementation the cache sizes
may vary between 8 kilobytes and 2 megabytes. As
stated in a later section the cache size has a high impact
on the cooperation of the garbage collector and the
cache.

2.2 Placement policy

A cache is divided into a number of blocks. The size of a
block is typically in a range of 4 to 128 bytes. There are
coherences between the blocksize an the miss rate and
between the block size and the penalty for a miss.
Programs with a good spatial locality benefit from a
larger blocksize, the miss rate will decrease. This is
because it will be more likely that subsequent references
will be to addresses in the same block. But on the other
hand if the blocksize becomes to large in proportion to
the size of the whole cache, the miss rate will rise again.
In this case there are simply to few blocks in the cache
available and so the blocks have to be replaced very
often. An efficient blocksize is therefore a compromise
of making the blocks large enough, so the program can
gain efficiency and providing enough blocks in the
cache.

Another question is how the blocks of the main memory
are mapped into the cache. Therefore we can distinguish

three block placement policies.

Direct mapped

In a direct mapped cache each block of the main memory
is exactly mapped to a particular block in the cache. This
can be achieved for example by calculating the main
memory address modulo the number of blocks in the
cache. Direct mapping caches are simple to build and the
searching for a block can be done quickly. The drawback
is, that there might easily arise conflicts of different main
memory blocks mapped to the same block in the cache. If
the data of these rivalling blocks has to be accessed
alternatingly, there is always a miss and so the
performance is going down.

Fully associative

In a fully associative cache the main memory blocks can
be placed anywhere in the entire cache. In this way
conflicts as described for a direct mapped cache can be
avoided because there are no main memory blocks which
have to map to the same cache block. But the fully
associative cache has disadvantages as well. Searching
the cache for a particular block would be either rather
slow or require expensive parallel hardware. Therefore
fully associative memory is more likely to be used for
smaller units.

There are several strategies how a block can actually be
placed in a fully associative cache. The nowadays
commonly used technique is by randomly picking a
cache block and placing the data there. Another
possibility would be using the Least-Recently-Used
(LRU) procedure. With this technique the least recently
used block would be replaced. This would be the most
efficient strategy but it is hard to implement. There are
some strategies which nearly implement this behaviour.
A further placing strategy would be First-In-First-Out
(FIFO). This means, the first block written into the cache
is the first one which is replaced. This technique is not
recommended because it leads to a poor cache
performance.

Set-associative

Set-associativity combines the concepts of direct
mapping and fully associative. The cache is splitted into
several sets. Common numbers of sets would be two or
four. A main memory block is now always mapped into
the same set. This could be done like choosing the right
block with a direct mapped cache. Within this set the
block can be placed anywhere. Searching for a particular
block is now quicker than with a fully associative cache.
We already know, that a block can only be in a particular
set. So we only have to search within this set to
determine if the block is already in the cache or not. For
placing a block within a set the same strategies as for the

3

fully associative cache can be used, e.g. random, least-
recently-used or first-in-first-out.

Both the direct mapped and the fully associated cache
can be seen as special cases of a set-associative cache. A
direct mapped cache is a set-associative cache with as
many sets as there are blocks in the cache. On the other
hand a fully associative cache would be a set-associative
cache with only a single set.

2.3 Writing strategy

The performance of garbage collection algorithms seems
to depend on the way how write misses are treated within
the cache. Therefore I give a brief overview of writing
strategies.

At first I want to consider the case that a write hit occurs.
There are two possibilities what to do.

Write-through

In this case the data is written in the cache and in the
main memory. If there are several cache levels the data is
written in these levels as well. The advantage of this is
that if the block is going to be replaced the data is
already written into the next level memory. So there is no
additional effort necessary to save the data. But if the
data in a block is changed several times without the
block being replaced in the meantime, I still have to write
the data to the main memory each time it is changed.
This is a bit of a waste of bus bandwidth.

Write-back

Using the write-back (also called copy back) strategy the
data is only modified in the cache. It is only written back
to the main memory if the block is going to be replaced.
There is also an improvement for this strategy. If a block
is going to be replace, but the data has not been changed
since it was loaded, there is no need to write it back to
main memory. Therefore each block has a so called dirty
bit. This bit indicates wether the data in the block has
been changed since it was loaded. So it is possible to
decide, if the data has to be written back into the main
memory or not. The advantages and disadvantages are
the opposite of the write-through technique. Write-back
saves bus bandwidth but if a block has to be replaced
there are additional efforts necessary to save the data.

There are also two different techniques if a write miss
occurs. The question hereby is wether the block should
be loaded into the cache.

Write-allocate

With write-allocate (or fetch-on-write as it is called as
well) the block is allocated into the cache. Now it can be

handled as it had been there right from the beginning, so
the procedure would be like for a write hit.

Write-no-allocate

With write-no-allocate (or write-around) the block is not
loaded into the cache. The data is going to be written in
the next level memory (either the next cache level or the
main memory) right away. This saves bus bandwith
because the transfer of the block into the cache is
missing.

Each cache has to combine a technique for write hit and
write miss. Usually write-through is combined with
write-no-allocate and write-back is combined with write-
allocate. Write-through writes into the main memory
anyway so therefore it is better write into the main
memory with write-no-allocate in first place. The
combination of write-back and write-allocate makes
sense as well. With write-allocate the block is placed into
the cache. Then we hope, that there are write operations
on the block before it is replaced. So it was cheaper to
put the block into the cache.

3 Memory access of garbage collectors
The cache architecture we have seen so far benefits from
high spatial and temporal locality of programs. This
assumption can be made for most programs. Garbage
collector however basically have bad spatial and
temporal locality. In order to determine if garbage
collectors are able to cooperate with caches in a good
way this section discusses the general memory access
patterns of various garbage collection strategies.

3.1 Mark & Sweep garbage collector

Considering a simple mark & sweep collector the
references to the heap are likely to be random reads and
writes. Using a more advanced mark & sweep
implementation make the prediction of the memory
access easier. Those advanced methods could be for
example collectors using mark bitmaps and lazy
sweeping or generational mark & sweep collectors.

During marking the branch points are stored in a stack
and a bitmap is used to mark the objects. The pointers are
traced by accessing heap data. The read and write
references on the stack show high locality. The
references in the bitmap should show quite a good spatial
locality, too. By tracing the graph random read-only
accesses to the heap are created. Generational mark &
sweep collectors restrict the range of references to a
certain extent to limited region of the heap. These
observations imply that a mark & sweep garbage
collector has random reads and highly localised writes.
[Jones96]

4

The sweep phase produces highly sequential reads and
writes to mark bits. If first-fit allocation with separate
free-lists for each common object size is used the
allocation pattern consists of sequential, initialising
writes.

3.2 Copying garbage collector

A copying garbage collector basically compacts the heap,
if it is a generational collector it compacts the regions of
the heap. This means, the allocation is strictly linear,
objects directly allocated after each other are directly
place next to each other on the heap.

At first a copying garbage collecter has to scan the
objects in the grey part of the Tospace. Each word
referenced by a pointer is read and then updated. So this
memory access pattern consists of sequential reads and
writes. The forwarding address of the object where the
pointer refers to, is also read. In case the Fromspace
object has not been copied it has to be copied to the
Tospace and an update of the forwarding address is
necessary. This behaviour results in reads to a random
location with a possible write and after that sequential
reads in Fromspace and sequential writes in Tospace.
References to Tospace are around the address, where
scan points to. This is for read and write. Furthermore
there are references to addresses pointed to by free.
These are writes. After a word has been marked as black,
which means it was scanned and updated, the collector
does not have to touch it in this cycle again. This
description of memory access patterns is a bit simplified
since some issues, like copying objects by remapping
virtual memory, are not considered. [Jones96]

If linear allocation is assumed, it results in an easy
predictable pattern of access to Tospace. This would be a
sequence of initialising writes. It is not uncommon for
systems using garbage collection to have very high rates
of allocation [Jones96]. Generally it is assumed that
compared to reads writes occur only rarely. Typically
writes occur for about ten percent of all executed
instructions. But Diwan et al. and Goncalves and Appel
found programs where number of writes rise up to about
25 percent of all executed instructions [Diwan94]
[Goncalves95]. The majority of these writes occured due
to allocation. Since a copying garbage collector uses two
semispaces, there is a “back-and-forth“ allocation pattern
to observe. It is likely that this pattern works against the
block replacement policy of the cache. This leads to the
conclusion, that linear allocation can be expensive in
cycles, although it is quite cheap if we only consider the
amount of instructions executed by the allocator.
[Jones96]

3.3 Incremental garbage collector

Incremental garbage collectors access the memory
alternating with the mutator and the collector within a

short time. This could lead to the conclusion that the
cache miss rate is going up. An explanation would be
that data accessed by the mutator and data accessed by
the collecter are mapped to the same cache block. This
results in a high number of necessary replacements. But
Zorn delivers some evidence that the performance of
incremental garbage collection might be better than as
stated in the assumption [Zorn89].

A significant factor for the cache performance of
incremental collectors will be the style and the
granularity. Read-barriers trap the mutator access. So the
collector works with data the mutator is using at that
particular time. Some incremental collectors use the
memory protection system of the operating system. In
this case, the granularity of the read-barrier is a page and
therefore the behaviour explained above is weakened.
There are write-barriers which do not need the support of
the virtual memory. They mark data subjects to the
mutator writes and therefore behave in a similar. Dijkstra
and Steele for example developed collectors with that
behaviour. A design goal for some incremental collectors
is to improve locality. Therefore they are clustering
objects in Tospace according to their references in the
mutator.

It seems, that there are no studies made yet, that discuss
the cache performance of incremental garbage collection.
Therefore, this paper can not answer the question, if the
stated assumptions are correct. [Jones96]

4 Improving the cache performance
Generally speaking the cache performance can be
improved in three ways:

• by reducing the cache miss rate

• by reducing the miss penalty

• by reducing the time to hit

In context to garbage collection reducing the cache miss
rate is the import point. There are some know techniques
to reduce the miss rate, for example increasing the size of
the cache, increasing the size of a block in the cache or
increasing the associativity.

On the basis of studies by Zorn [Zorn91] and Goncalves
and Appel [Goncalves95] the influence of these
parameters in context to garbage collection is shown.
Goncalves and Appels study is based on a generational
copying collector. Zorn used a mark & sweep collector
as well as a copying collector. Both algorithms use
generational garbage collecting techniques and to get
comparable results the algorithms are as similar as
possible. The cache block size is 32 bytes. As a trigger to
run the garbage collector Zorn used the allocation
threshold technique. This means the collector is started
after a fix amount of memory has been allocated. In

5

contrast a fixed-space technique would wait until the
whole memory is allocated and then run the garbage
collector. Figures 1 and 2 illustrate both concepts.

Fig. 1 Fixed space collection policy

The amount of allocated memory is different between
each garbage collector runs. The disadvantage of the
fixe-size concept is, that it can lead to thrashing. This
happens when most of the memory in newspace is
allocated to live objects. Newspace fills quickly and so
the garbage collector is invoked more often but it can
recover less garbage each time.

Fig. 1 Allocation threshold collection policy

The amount of allocated memory is the same between to
garbage collector runs. The allocation threshold method
has several advantages. On one hand it solves the
thrashing problem of a fixed-size collection. On the other
hand the allocation behaviour is independent of the used
garbage collection algorithm. This means, each collector
is invoked the same number of times. This makes it
easier to compare different garbage collection
algorithms.

The garbage collection performance is highly influence
by the allocation threshold. Making the threshold
smaller, the garbage collector is invoked more often.
This has both negative and positive effects. If the
collecter runs more often, fewer objects can become
garbage between two collector runs. Also the CPU time

for the collection increases. If the generational behaviour
is implemented in that way, that an object is promoted to
the next generation after a fixed amount of collector runs,
then a small allocation threshold increases the promotion
to older generations as well. An advantage of a small
threshold is the good spatial reference locality since
garbage objects are reused quickly.

4.1 Mark & Sweep garbage collector

At first I want to analyse the performance of the collector
with a direct mapped cache architecture.

Fig. 3 Cache miss rate with mark & sweep collector, direct mapped

Fig. 4 Cache miss rate with mark & sweep collector, direct mapped

6

Fig. 5 Cache miss rate with mark & sweep collector, direct mapped

Figures 3 to 5 show the cache miss rate for different
cache sizes of a mark & sweep garbage collector on a
direct mapped cache. As we can see, the cache miss rate
is highly influenced by the cache size. Generally can be
said that increasing the cache size reduces the miss rate.
The diagrams show, that garbage collecting programs
“fit“ better in larger caches. Doubling the cache size until
the “well fit“ point is reached effects the miss rate to
decrease by about one percent. After that the curves are a
bit flatter.

The allocation threshold also can have a major impact on
the cache miss rate. If we take, for example, the Lisp
compiler running at a cache with 512 kilobytes, the miss
rate for an allocation threshold of 2 megabytes is more
than three times higher than with a threshold of 128
kilobytes. The Prolog compiler shows similar results.
The miss rates for the RL compiler are not that much
influenced by different thresholds at a certain cache size
than for the other two compilers. But the tendency is still
there.

Another interesting observeration is, that a smaller
threshold does not necessarily perform better. If we take
the Lisp compiler, a threshold of 128 kilobytes shows the
lowest miss rates. On the other hand running the RL
compiler it turns out to have the highest miss rates of all
thresholds. Therefore the best threshold also depends on
the running program.

There also seems to be a relation between the cache size
and the threshold. In nearly every curve we can see a
knee were both the cache size and the allocation
threshold have the right size, so that the program can
“fit“ well.

The next figures show how the associativity influences
the cache miss rate. The threshold is set to 128 kilobytes.

Fig. 6 Cache miss rate with mark & sweep, different associativity

Fig. 7 Cache miss rate with mark & sweep, different associativity

7

Fig. 8 Cache miss rate with mark & sweep, different associativity

Figures 6 to 8 show that the influence of the cache
associativity on mark & sweep collection is not very
high. Generally set-associative caches perform a bit
better than a direct mapped one. But even to this there is
a small exception. Running the Prolog compiler with a
cache of size 128 kilobytes the direct mapped cache has
lower miss rates than the set associative ones.

The different miss rates between the 2-way-set-
associative and the 4-way-set-associative caches are
negligible.

Since mark & sweep collectors do not copy objects, the
only exception is to promote them, the benefit of using
set-associative cache architectures is only little. The
allocated objects in newspace stay in the same place until
they are promoted to the next generation. Assuming a
large enough cache size so that it can contain the objects
in newspace, only few collisions will arise by referencing
this generation. Collisions can only arise between
references to newspace and older generations. The older
generations are much larger than newspace and therefore
cache blocks are accessed more randomly. This avoids
repeated, systematic collisions.

4.2 Copying collector

The same measurements as for the mark & sweep
garbage collector were done with the copying collector

as well. I start with the analysis for the direct mapped
architecture again.

Fig. 9 Cache miss rate with copying collector, direct mapped

Fig. 10 Cache miss rate with copying collector, direct mapped

8

Fig. 11 Cache miss rate with copying collector, direct mapped

Figures 9 to 11 show cache miss rates for a direct
mapped cache running with a copying collector. As
observed for the mark & sweep collector, larger caches
result in a lower miss rate.

The size of the threshold has still some influence on the
cache performance, but the differences are most of the
time not as high as for the other garbage collector. A
lower allocation threshold seems to result in a better
performance. But now there are not only exceptions to
that with the RL compiler, the Lisp compiler combined
with a cache size of 128 kilobytes also shows that the
smallest threshold is not necessarily the best.

Generally can be said, that the miss rates are higher than
with using a mark & sweep garbage collector

The following figures show the influence of the
associativity on the miss rate for the copying collector.
The allocation threshold is again 128 kilobytes.

Fig. 12 Cache miss rate with copying collector, different associativity

Fig. 13 Cache miss rate with copying collector, different associativity

9

Fig. 14 Cache miss rate with copying collector, different associativity

In contrast to mark & sweep collection algorithms
figures 12 to 14 show that copying collectors benefit
from a set-associative architecture a lot if the cache is
large enough. If this is teh case, the cache can hold both
semispaces and the amount of collisions decreases. To
explain the benefit over the direct mapped cache it has to
be considered, that since the cache uses an allocation
threshold the two semispaces do not always have the
same size. It depends on how many objects live through a
collection. If the semispaces become as large, so that
they do not fit in the cache anymore, then many
collisions arise in the direct mapped cache. In the set-
associative cache the blocks can be placed freely to a
certain extent. So most of the collisions are prevented.

There is another interesting aspect to observe. If the
cache size is large enough so that it can hold both
semispaces with their largest possible dimensions, the
performance of the direct mapped cache is again nearly
as good as the performance of the set-associative
versions.

The cache miss rates of the 4-way-set-associative cache
are a bit lower than the miss rates of the 2-way-set-
associative cache, but they are nearly negligible.

Goncalves and Appel ovbserved in their study the
influence of the cache block size on the miss rate. They
also differentiated between read and write misses. The
cache is direct mapped with write-allocate.

Fig. 15 Cache miss rate in contrast to different cache block sizes

Figure 15 shows the cache miss rate in context to the
cache size for different cache block sizes. Read misses
are drawn with heavier graphs.

As describe in section 3.2 copying collection lineary
updates pointers in the grey region. Allocation and
evacuation are done lineary as well. This leads to the
expection, that increasing the block size would decrease
the miss rates. The diagram shows that this assumption is
right. Especially the probability of write misses (thinner
lines in the diagram) can be reduced dramatically. By
doubling the size of a cache block from 16 bytes to 32
bytes the miss rate could be reduced over 10 percent.

Since mark & sweep collectors also benefit from spatial
locality, similar results can be expected.

4.3 Comparison of Mark & Sweep and Copying
collectors

This section directly compares the cache miss rates of
mark & sweep and copying garbage collectors.

The allocation threshold is set to a size of 256 kilobytes.
Figures 16 and 17 show the comparision of the two
collectors using a direct mapped cache. Figures 18 and
19 show the comparison in context of a 2-way-set-
associative cache.

10

Fig. 16 Cache miss rates of mark & sweep and copying garbage
collectors, direct mapped cache

Fig. 17 Cache miss rates of mark & sweep and copying garbage
collectors, direct mapped cache

Fig. 18 Cache miss rates of mark & sweep and copying garbage
collectors, 2-way-set-associative cache

Fig. 19 Cache miss rates of mark & sweep and copying garbage
collectors, 2-way-set-associative cache

With both cache architectures the mark & sweep
algorithm has a better cache performance. This is for one
reason for the better locality of a mark & sweep garbage
collector. In addition it also benefits more from adjusting
the allocation threshold. Remarkably there is a major
difference in the cache miss rates for midsize caches

11

whereas the gap between the two algorithms for small
and large caches is much smaller or not existing at all.
Because of the high promotion rate for smaller caches the
mark & sweep implementation looses some of its benefit.
In large caches the programs can fit well with both
techniques and so the miss rates are low anyway. The
gap between the two collectors is small with a set-
associative cache. This is because the copying collector
benefits from the 2-way-set-associative architecture
whereas mark & and copy shows hardly any
improvement.

5 Conclusion
The paper discusses the influence of garbage collectors
on the cache performance. The common opinion that
garbage collectors have a poor cache performance is not
necessarily true. By changing the cache size, the size of a
cache block or by using a set-associative cache
architecture the performance can be improved
dramatically. The cache size should be large enough so
that the program can fit well. An increased block size
decreases the cache miss rate as well (as long as the
amount of blocks in the cache is still large enough).
Generally mark & sweep garbage collectors have better
cache performance. This is due to their working
principle. Furthermore they react better to cache tuning
measures. Copying collectors benefit from a set-
associative architecture.

6 Bibliography
 Books

[Jones96] R. Jones, “Garbage Collection: algorithms for
automatic dynamic memory management”, Wiley & Sons, 1996,
pp 277 - 298

 Papers

[Chilimbi98] T.M. Chilimbi, J.R. Larus, "Using generational
garbage collection to implement cache-conscious data
placement", First International Symposium on Memory
Management , October 1998

[Diwan94] A. Diwan, D. Tarditi, J.E.B. Moss, "Memory
subsystem performance of programs using copying garbage
collection", Annual ACM Symposium on Principles of
Programming Languages , January 1994

[Goncalves95] J.R. Goncalves, A.W. Appel, "Cache performance of
fast-allocating programs", Conference on Functional
Programming and Computer Architecture , June 1995

[Grunwald93] D. Grunwald, B. Zorn, R. Hendersson "Improving the
cache locality of memory allocation ", Conference on
Programming Language Design and Implementation , June 1993

[Lam91] M.S. Lam, “The cache performance and optimizations
of blocked algorithms“, Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems , April 1991

[Wilson92] P.R. Wilson, M.S. Lam, T.G. Moher "Cache
considerations for generational garbage collection", ACM
Symposium on Lisp and Functional Programming , June 1992

 Technical Reports

[Zorn91] B. Zorn, "The effect of garbage collection on cache
performance", Technical Report CU-CS-528-91, University of
Colorado at Boulder, May 1991

 Dissertations

[Zorn89] B. Zorn, “Comparative Performance Evaluation of
Garbage Collection Algorithms“. PhD thesis, University of
California at Berkeley, March 1989. Technical Report UCB/CSD
89/544

	1Introduction
	2Cache architecture
	2.1Cache size
	2.2Placement policy
	Direct mapped
	Fully associative
	Set-associative

	2.3Writing strategy
	Write-through
	Write-back
	Write-allocate
	Write-no-allocate

	3Memory access of garbage collectors
	3.1Mark & Sweep garbage collector
	3.2Copying garbage collector
	3.3Incremental garbage collector

	4Improving the cache performance
	4.1Mark & Sweep garbage collector
	4.2Copying collector
	4.3Comparison of Mark & Sweep and Copying collectors

	5Conclusion
	6Bibliography

