JOHANNES KEPLER
UNIVERSITAT LINZ

Netzwerk fiir Forschung, Lehre und Praxis

nformatik

Schnitestelle Zukunft

Incremental Garbage Collection 11

BAKKALAUREATSARBEIT

(Seminar aus Softwareentwicklung: Garbage Collection)

zur Erlangung des akademischen Grades

Bakkalaureus/Bakkalaurea der technischen Wissenschaften

in der Studienrichtung

INFORMATIK

Eingereicht von:

SCHATZ Roland, 0355521

Angefertigt am:
Institut fiir Systemsoftware

Betreuung:

Prof. Dr. Hanspeter Mdssenbock

Naarn, Jdnner 2006

Johannes Kepler Universitit Linz
A-4040 Linz ® Altenberger Strafe 69 # Internet: http://www.uni-linz.ac.at DVE 0093696

INCREMENTAL GARBAGE COLLECTION I

Incremental Garbage Collection ||

Roland Schatz

Abstract— In the past, garbage collection was often dismissed
for performance critical applications as not being able to provide
adequate performance, especially for real-time applications.

But incremental garbage collection algorithms are quite capa-
ble of providing real time performance at acceptable latencies.
There is also the possibility of providing hardware support to
further reduce latency.

There are also approaches for using garbage collection on
embedded systems, where it is important not to waste too much
memory on fragmentation.

This paper is the second part of a three paper series intending
to give an introduction to different approaches to real-time
memory management through incremental garbage collection
algorithms.

Building on the basic algorithms presented in the first part of
this series, this paper introduces some advanced algorithms to
improve the performance, make the algorithms more appropriate
for uncooperative environments and reduce memory usage, mak-
ing real-time garbage collection feasible for embedded systems.

There is also a short chapter about hardware supported
garbage collection.

Index Terms— Garbage collection, real-time, embedded sys-
tems, Treadmill, operating systems

I. INTRODUCTION

HIS paper is intended to give an overview over real-time

incremental and concurrent garbage collection. While in
the past garbage collection was often thought of not being
capable of giving convincing real-time performance, Baker’s
copying garbage collection algorithm [1] proved that it is
possible to implement a real-time garbage collector.

This paper is the second part of a three paper series.

In the first part, Christian Wirth describes the basic ideas
behind incremental garbage collection and gives a general
introduction into the area [2].

He then presents some algorithms, most important Baker’s
incremental copying collector.

This paper assumes that the reader has read Wirth’s paper
and is familiar with the basic idea behind Baker’s algorithm.

First the Appel-Ellis-Li garbage collector is presented. It
builds on top of Baker’s algorithm and improves it by utilizing
page level protection hardware. This reduces the cost of the
read barrier sacrificing real-time performance. Unlike Baker’s
algorithm, it requires no support from the compiler, but it
requires a minor modification to the operating system kernel.

Then a short introduction about replicating collectors is
given. They keep the original object around and let the mutator
access the original object instead of the copy, synchronizing
changes to the object later. This has the advantage of needing
only a write barrier instead of a more expensive read barrier.

After that a new approach for synchronizing between
multiple concurrent threads is given. Instead of using lock-
ing mechanisms, the Doligez-Leroy-Gonthier collectors try

to seperate the heap into seperate regions for each thread,
avoiding synchronization completely when accessing these
regions.

Then a non-copying garbage collector, Baker’s Treadmill,
is introduced. It has most characteristics of Baker’s original
copying collector, but it operates without moving objects.
Because of this it is possible to relax some restrictions without
loosing consistency, for example using a write barrier instead
of a read barrier.

Basically Baker’s Treadmill has good performance, but
produces much fragmentation. The next algorithm presented
takes the Treadmill algorithm as base and improves its memory
usage and also its performance by reducing fragmentation,
making the algorithm feasible for operating system kernels,
as demonstrated with the SPIN operating system, and also for
embedded systems, where memory usage is still an important
factor.

Finally there is a short chapter introducing some ideas how
incremental garbage collection algorithms might be supported
by specialized hardware while still staying compatible to
common general purpose architectures.

In the last part of this series, Thomas Wirthinger presents
the Train algorithm, which combines the concepts of gener-
ational garbage collection with real-time incremental garbage
collection [3].

Il. THE APPEL-ELLIS-LI COLLECTOR

Baker’s copying collector [1], [2] is real-time, but it is not
concurrent. When the collector does some work, the mutators
must be stopped. It also requires special hardware support to
implement the read trap with acceptable performance.

Appel, Ellis and Li improve this algorithm [4]. Their
garbage collector is copying and concurrent, and it requires
neither special hardware nor any modification to the compiler.

Their collector uses the same memory layout as Baker’s
collector (see Fig. 1):

« Black objects are already scanned. They can only contain
pointers to tospace.

« Gray objects are copied but not scanned. They may still
contain pointers to fromspace.

o White objects are still in fromspace. At the end of a
collection cycle they are garbage and their storage is
reclaimed.

The collector must make sure that the mutator only sees
tospace pointers. Baker’s algorithm simply intercepts every
pointer read operation and makes sure the mutator never sees
a white pointer.

The Appel-Ellis-Li collector uses a slightly stricter con-
straint: The mutator is allowed to see black objects only. Black
objects can only contain tospace pointers, so this automatically

INCREMENTAL GARBAGE COLLECTION I

new objects
alloc

unscanned

potential garbage

unscanned objects
scanned objects

tospace

scanned

start
fromspace

Fig. 1. Memory layout of Appel-Ellis-Li collector.

maintains the constraint that the mutator should never see a
fromspace pointer.

Because the mutator can never fetch a fromspace pointer
into its registers, newly allocated objects can never contain
fromspace pointers, so they can be treated as black without
the need to scan them.

A. Implementation

The black-only constraint is implemented using the virtual
page protection mechanism of the operating system.

The mutator can never get a pointer to fromspace, so white
objects can’t be seen anyway. So we can maintain the black-
only constraint by setting all tospace pages containing gray
objects (gray pages) to no access. When the mutator tries to
access a gray page, it triggers a page trap and the collector
can scan the page.

The collector uses two threads to scan pages. The trap thread
waits for mutator threads that are caught in a page trap, the
scanner thread scans gray pages continuously:

void TrapThread() {
for (;;) {
WaitForTrap(&thread ,
synchronized (lock) {
ScanPage (page);
}

ResumeThread (thread);

&page);

}
}

void ScanThread () {
for (;;) {
synchronized(lock) {

while(scanned >= unscanned) {
signal (scanFinished);
wait (lock , unscannedPages);

}

ScanPage (scanned);

scanned += PageSize;

ScanPage scans a gray page for pointers. All white objects
encountered are copied to tospace (“grayed”) and the pointers
replaced. Finally the access protection is removed from the
page. Now the page contains only black objects.

void ScanPage (page) {
if (!protected(page)) {
return;
}

for (object on page) {
ScanObject(object);
}

unprotect (page);

}

void ScanObject(object) {
for (pointer in object) {
pointer = MoveObject(pointer);
}

}

void xMoveObject(object) {
if(inTospace(object))
return object;
if (object—>forwardPtr)
return object—forwardPtr;

ret = unscanned;
unscanned += sizeof(object);
copy(object, ret);

object—forwardPtr = ret;
signal (unscannedPages);
return ret;

A problem with this approach is that the collector threads
have to be able to access protected pages somehow. A serial
implementation could unprotect the page before scanning
it, but for a concurrent implementation the page must be
protected until every fromspace reference is evacuated.

Most architectures support two execution modes, user- and
kernel-mode. If the collector runs in kernel mode and page
access is restricted only for user mode code, the page can be
scanned while still being protected. This requires only minor
modifications to the operating system kernel.

B. Allocation

Moved objects are stored at the bottom of the free space,
new objects are allocated at the top of the free space:

void xallocate (int size) {
synchronized (lock) {

unused = alloc — unscanned;
if (unused < size || unused < FlipTH) {
Flip ();

INCREMENTAL GARBAGE COLLECTION I

Tospace

Read
barrier

before the trap

Tospace

Mutator

after the trap

“no access” page

Fig. 2. Appel-Ellis-Li “black-only” read barrier. [5]

}

alloc —= size;
return alloc;

If the free space is too small to satisfy the allocation or
below a treshold, a “flip” is triggered. The treshold must be
chosen large enough to leave enough space to finish scanning.

One problem with this allocation function is that it needs
the same lock as both collector threads, creating a bottleneck.
The function can be improved by a two-stage allocator. One
stage allocates blocks of memory using the normal allocation
function, the other stage allocates objects from these blocks
and calls the first stage only when it runs out of space.

C. Flipping

When a flip is triggered, all mutator threads are stopped and
the collector waits for the scanner thread to finish scanning all
remaining gray objects. At this point, all reachable objects are
black and all remaining white objects are garbage.

The collector flips the roles of tospace and fromspace, im-
plicitly reclaiming all white objects. Then all objects directly
reachable from roots (registers, stacks, globals) are grayed.

Finally the mutator threads are resumed and the scanner
thread is signaled that there are new gray pages to be scanned.

void Flip() {
stopMutators ();
synchronized (lock) {
while(scanned < unscanned) {
wait (lock , scanFinished);

}

swap (tospace , fromspace);
scanned = tospace—>start;
unscanned = tospace—>start;
alloc = tospace—end;

for (pointer in roots) {
pointer = MoveObject(pointer);

}

signal (unscannedPages);

}

resumeMutators ();
}

Because the flip operation has to scan all roots it can have a

INCREMENTAL GARBAGE COLLECTION I

Mutator Thread

IP of thread redi-

rected by Flip()

_/fc)r—e;ch register

| MoveObject(register)

(\jmpﬁMutator.Olle)

Fig. 3. Threads scanning their own registers.

high latency. For the stacks this can be solved by treating the
stacks themselves as gray objects, setting their page protection
to no access.

Also scanning all registers can introduce a high latency
when there are many threads. But the registers need not be
scanned if the current instruction pointer of each thread is
redirected to a special routine that scans the registers and then
jumps to the old location, so the thread automatically scans
its own registers when it is first scheduled (see Fig. 3).

D. Large Objects

Because the algorithm scans pages and not objects, there
are some problems when objects cross page boundaries.

If the scanner can easily determine for an arbitrary word
if it is a pointer or not, it can just ignore object boundaries
entirely. No harm is done when the scanner scans only half
an object and resumes with the rest later:

void ScanThread () {
for (;;) {
synchronized (lock) {
while(scanned >= unscanned) {
signal (scanFinished);
wait (lock , unscannedPages);

}

if (isPointer(scanned)) {
xscanned = MoveObject(xscanned);

}

scanned += WordSize;

}

But if the scanner needs information from the object header
to determine where the pointers are located it can not start
scanning in the middle of an object. For small objects the
collector could move objects to the start of the next page if
they don’t fit into the current one.

When objects are too large this wastes too much space, and
when they are larger than a page it is impossible to avoid
crossing a page boundary. To solve this, the Appel-Ellis-Li
collector uses a crossing map.

Crossing[p] is true if an object crosses the boundary be-
tween the pages p-1 and p. When a page with crossing=true
should be scanned, the scanner has to skip back to the first
page with crossing=false. This page starts with the start of
an object. It then scans all pages until another page with
crossing=false is encountered.

void ScanPage (page) {
if (!protected(page)) {
return;
}

Page xp = page, *end
while(Crossing[p]) {
p——;

page;

while(Crossing[end])
end++;
}

for (object on pages[p..end—1]) {
ScanObject(object);

—~—

while(p < end) {
unprotect(p);
pt+;
}
}

I1l. REPLICATING COPYING COLLECTORS

A disadvantage of using a read barrier is that it places
a small overhead on every pointer operation. The following
collectors try to avoid this.

A. Nettles’ replicating collector

Nettles and O’Toole developed a copying garbage collector
that does not use an expensive read barrier [6].

Their algorithm leaves the original objects in fromspace and
allows the mutator to access them (see Fig. 4). This requires
an additional word in the object header for the forwarding
pointer, because the object itself must not be destroyed.

Every change that happens to an object that was already
copied to tospace has to be stored in a mutation log and
applied to the tospace object as well before the flip. When
flipping fromspace and tospace, the mutation log is applied,
then the roots are changed to point to the tospace objects and
the collection cycle is complete.

INCREMENTAL GARBAGE COLLECTION I

Fromspace Tospace
getHeader forward pointer header word
Mutator read
write| original replica
GC

Mutation Log

Fig. 4. Replicating garbage collection. [5]

The mutation log can be maintained with a write barrier.
The cost of this depends on the language used. For functional
languages destructive write operations are rare, so the cost is
very low.

It’s important to note that the write barrier of this algorithm
must catch all writes, while the read barrier of the previous
algorithms only need to catch pointer reads.

B. The Huelsbergen and Larus collector

When a language distinguishes mutable and immutable data,
the collector can be further improved.

Huelsbergen and Laurus exploit the fact that most data in
the ML language is immutable [7].

For immutable data, the mutator is allowed to access either
the fromspace or the tospace copy. Obviously no mutation log
is neccesary.

For mutable data that has already been copied, only the
tospace version may be used. The mutator has to follow the
forwarding pointer when accessing a fromspace object. When
the object is copied while the mutator is accessing it, all
changes have to be reapplied to the tospace copy.

IV. THE DOLIGEZ-LEROY-GONTHIER COLLECTORS

A disadvantage of a write barrier is that it still places some
overhead on all writing mutator operations. Also all previ-
ous algorithms make heavy use of synchronisation between
threads.

Doligez and Leroy [8] divide the heap into two generations
(see Fig. 5).

The older generation is called major heap. Mutable objects
are always allocated in the major heap. In addition to that,
every thread has its own minor heap that is only accessible
from inside the thread.

The thread stack and the registers may hold references to
the minor heap and to the major heap. Words in the minor
heap may also hold references to both heaps, but words on

the major heap and global variables may only hold references
to the major heap.

If an attempt is made to write a reference to the minor heap
into a mutable object (always located on the major heap), the
referenced object and all objects referenced by it have to be
replicated on the major heap. Since only immutable objects
are stored on the minor heaps, no consistency problems arise.

The minor collections use copying collection on a single
minor heap, moving all live objects to the major heap. This
stops only the thread whose minor heap is currently collected,
no synchronisation is neccesary.

A special thread collects the major heap using a simple
mark-and-sweep algorithm.

The advantage of the Doligez-Leroy collector is that it
places no overhead on pointer operations accessing data that
is local to the thread.

A. Synchronising major collections

The algorithm was further improved by Doligez and
Gonthier [9]. They try to minimize the amount of synchro-
nization required on major collections.

Instead of using locks, the synchronisation is done cooper-
atively with a complex phase protocol.

Each thread has a phase variable, initially set to Async. The
mutator threads have to cooperate by periodically monitoring
the phase of the collector thread.

When the collector starts a cycle, it advances to Syncl, sig-
naling the mutators that it is about to start garbage collection.
The mutators acknowledge this by moving to Syncl. When all
mutators have done this, the collector advances to Sync2.

Now the mutators have to make sure all update operations
that are in progress are complete, and then advance to Sync2.
Once this is complete, the collector can go back to Async
again, signaling the mutator threads they should shade their
roots before going into Async themselves.

During the Sync phases the write barrier is very conserva-
tive, both the old and the new value of each written pointer

INCREMENTAL GARBAGE COLLECTION I

thread 1 thread 2

thread 3

young generation

old generation

| Global variables|

Fig. 5. Thread local heaps. [5]

have to be shaded. During the Async phase only a simple
barrier that shades the new value is needed.

V. IN-PLACE GARBAGE COLLECTION REVISITED

Most algorithms presented so far are based on copying
collectors, they copy live objects from one part of the heap
(fromspace) into another part (tospace), and then reclaim the
whole fromspace atomically.

This has the advantage of improving the locality of reference
and compacting the memory, effectively eliminating external
memory fragmentation. It also is relatively simple, memory
allocation is just a pointer increment (or decrement) and all
free space can be reclaimed implicitly in constant time. It is
also implicitly incremental.

But inplace collectors are better suited to uncooperative
environments where we have no means of reliably identifying
pointers. In some environments we might get false positives
when trying to determine wheather a value is a pointer or an
integer. With copying collectors this error can be fatal, while
with in-place collectors it makes the collector just a little bit
more conservative.

It’s also easier to ensure consistency when not moving
objects, since the mutator does not need to be protected from
changes made by the collector, and there are never two copies
of a particular object around that could run out of sync.

A. Basic Garbage Collection

Lets first revisit how a basic garbage collector works.
Memory on the heap can be seperated in four sets:

« scanned objects (black)

« visited but unscanned objects (gray)

« not yet visited objects (white)

« free space

Generally speaking, a collection cycle starts with all mem-
ory that is not free as white and the roots gray. It then
repeatedly scans a gray object, making referred white objects
gray and the scanned object black. When there are no more
gray objects, the cycle is complete and the remaining white
objects may be freed.

Obviously a simple stop-the-world mark-and-sweep collec-
tor uses exactly this strategy. But the two semispaces used by
the original Baker’s algorithm [1], [2] (and most other copying
collectors) may be seen just as another way to implement these
four sets, as already seen on Fig. 1 in Section II.

B. Requirements for Efficient Collection

There are only a few requirements that a data structure must
satisfy in order to efficiently implement this tri-color-marking
algorithm on top of it [10]:

1) it is easy to enumerate free cells (fast allocation)

2) it is easy to enumerate gray cells (efficient marking)

3) it is easy to determine the color of a cell

4) it is easy to change the color of a cell

5) it is easy to interchange the interpretation of white, black

and free (fast memory reclamation)

Obviously the semispace organisation of Fig. 1 fulfils ev-
erything except perhaps point 4. Changing from white to gray
requires a copy operation. This can still be seen as a constant
time operation and suitable for real-time when objects are
reasonably small, but it may be arbirary expensive when there
is no upper bound to the object size.

INCREMENTAL GARBAGE COLLECTION I

C. A simple Data Structure

There is another simple data structure that satisfies all these
points: Double-linked lists [11].

The most simple implementation consists of just three
double-linked lists, one for each color. Allocation is simply
moving an object from the free-list to the white-list. When
the free list is empty, all objects are on the white-list.

All mutators are stopped and the collection cycle runs,
moving the roots to the gray-list. Then all gray objects are
scanned, moving them to the black list. When the gray list is
empty, the marking terminates. This leaves all objects either in
the white list (unreachable) or the black list (reachable). Then
the white and black lists are exchanged, and the black list is
reinterpreted as free list, implicitly reclaiming all unreachable
objects.

void collect() {
stopMutators ();

for (root in rootset) {
white—>remove(root);
gray—>insert(root);

}

for (object in gray) {
gray—remove(object);
for (pointer in object) {
if (white—>contains(xpointer)) {
white—>remove (x pointer);
gray—>insert(xpointer);
}
}
black—insert(object);

}

swap(black, white);
resumeMutators ();

}

Object allocate () {
/1 black is interpreted as free
Object ret = black—removeFirst();
white—>insert(ret);
return ret;

All basic operations of this algorithm consist only of moving
an object from one list to another and the exchanging of two
lists. These are all constant time operations, but of course this
algorithm is neither incremental nor concurrent.

D. An Incremental Algorithm

This algorithm can be implemented as realtime algorithm
by interleaving marking and mutator operations the same way
as in the old Baker’s algorithm [1], [2].

For this to work we have to introduce a fourth color, called
dead-white, distinguishing free objects from not yet marked

(white) objects?.

When the mutator wants to access a white object, it first
has to move it to the gray list, indicating it should be scanned
by the collector at some later time. This can be implemented
using a simple read barrier. This way consistency is ensured.

void doSomeWork () {

if (gray—empty())
return;

Object object = gray—>removeFirst();
for (pointer in object) {
if (white—contains(xpointer)) {
white—>remove (x pointer);
gray—>insert (xpointer);
}
}
black—insert(object);

}

Object allocate () {
if (deadwhite—empty ()) {

Flip ();
}
Object ret = deadwhite—>removeFirst ();
black—insert(ret);
return ret;

}

void Flip() {
stopMutators ();

while (1 gray—empty ()) {
doSomeWork () ;
}

deadwhite = white;
white = black;
black = empty;

for (root in rootset) {
white —>remove(root);
gray—>insert(root);

}

resumeMutators();

}

void readBarrier(object) {
if (white—contains(object)) {
white—>remove(object);
gray—insert(object);
}
}

11n [10], Baker called the free-list white and the not yet marked objects off-
white. | have changed the colors to be consistent with earlier usage, because
in Section Il white refers to not yet marked fromspace objects.

INCREMENTAL GARBAGE COLLECTION I

The algorithm uses only constant time operations, so it
should be obvious that this algorithm is realtime if and only
if the original copying collector it is based on is realtime.

E. Concurrency

Although the previous pseudocode sample is for an incre-
mental algorithm analogous to Baker’s copying collector, with
doSomeWork being called a few times at each allocation, it
should be no problem to make the algorithm concurrent, anal-
ogous to the Appel-Ellis-Li collector presented in Section II.

The same argument is equally valid for all following pseu-
docode samples.

Because the following algorithms are all based on the simple
four-list non-moving collector, they can all be implemented
either incremental and concurrent. The pseudocode samples
are given for the incremental variant because they are simpler
and easier to read.

V1. BAKER’S TREADMILL COLLECTOR

Baker’s Treadmill is a data structure for garbage collection
that satisfies all of the requirements mentioned in the previous
section. The Treadmill collector is a real-time non-moving
collector that still retains some of the advantages and the
simplicity provided by copying collectors.

A. General Structure

The algorithm presented in the previous section can be
further optimized by linking all four lists together into a single
cyclic double-linked list (called Treadmill) [10]. The original
lists are in consecutive segments, seperated by four pointers,
in the following order:

« bottom

o White

o top

o gray

e SCan

« black

o free

« dead-white

« bottom

These pointers are the same as in Baker’s incremental
copying collector, except that the white objects are neither
adjacent to top nor to bottom, but in a seperate region of the
heap.

Fig. 6 illustrates how the Treadmill might look like in the
middle of a garbage collection cycle.

B. Allocation
Allocation is as simple as pushing the free pointer one object
counter-clockwise, making the newly allocated object black.
Object allocate () {
if (free == bottom) {
Flip ();
}

Object ret = free;
free = free—>cw;
return ret;

This is a constant time operation, and obviously a lot
cheaper than having to manipulate a free object list.

C. Marking

The marker always scans the object pointed to by the scan
pointer and then pushes the scan pointer one object clockwise,
making the scanned object black.

When it encounters a pointer to a white object while
scanning, the object is unlinked and inserted into the gray
segment. This is the only relink operation neccesary. For this
we need to know weather or not an object is white, so we
need a single color bit for each object that tells us wheather
or not the object is white.

void doSomeWork () {
if (scan == top)
return;

for (pointer in scan) {
if (pointer—isWhite ()) {
unlink (x pointer);
pointer—clearWhite ();
/1 insert object cw after top
insert(xpointer, top);
}
}

scan = Scan—>CCw,

D. Scanning Order

The object can be inserted either at the top pointer or at the
scan pointer. When inserting at the top pointer, the scanning
order is breath-first. This is identical to a normal copying
collector. When inserting at the scan pointer, the scanning
order is depth-first.

Depth-first scanning seems to cause fewer page faults and
cache misses [5].

Note that there is no marking stack neccesary to scan in
depth-first order. One could argue that the links in the Tread-
mill are used as a stack, and occupy the space permanently
instead of only during the collections. But as we will later see,
the Treadmill links don’t use any more space than copying
collectors.

E. Flipping

When the scan pointer meets the top pointer, there are no
more gray objects and the garbage collection cycle is complete.
When the free pointer meets the bottom pointer, the free list
is empty and we have to flip.

Before flipping, we first have to make sure scanning is
already complete.

INCREMENTAL GARBAGE COLLECTION I

scan —1

\

Tospace

top
‘1

Fromspace

new objects

free list

bottom j

Fig. 6. Baker’s Treadmill. [5]

At this point there are only black and white objects in the
Treadmill. Now we have to reinterprete the black objects as
white and the white objects as dead-white. This is simply
archieved by advancing the segments of the Treadmill, that
is, swapping the top and bottom pointers.

Now we have just white and dead-white objects. Finally we
set the scan pointer to the top pointer. Then we can begin
with scanning the root pointers, inserting the objects pointed
to by them between top and scan, making them gray. The next
garbage collection cycle can begin by blackening these gray
objects.

void Flip() {
while(scan != top)
doSomeWork ();

bottom = top—>cw;
top = free—ccw;

for (root in rootset) {
unlink (root);

insert(root,

top);
}

scan = free-—>ccw;

Note that we normally would have to change the white
bit of every object in the Treadmill. This can be avoided by
implizitly exchanging the interpretation of set and clear white
bits after every flip.

F. Performance Comparisons

Compared to simple double-linked lists, the Treadmill has
the advantage that the color changes from dead-white to black
and from gray to black are simply done by moving a pointer
forward in a list, instead of relinking an object. That is a single
pointer write compared to about six pointer writes.

We still have to relink an object when changing its color
from white to gray.

Compared to the incremental copying algorithm [1], [2], the
Treadmill requires 2 additional pointers per object for the links

INCREMENTAL GARBAGE COLLECTION I

in the double-linked list. This is offset by the fact that it does
not require a seperate tospace. A CONS pair in Lisp is exactly
2 pointers large, so the space requirements are equal, but for
larger objects the Treadmill requires less space.

Also the cost of copying a CONS pair to tospace is lower
than relinking an object from the white segment to the gray
segment, but thats only because a CONS pair is always only
two words large. As the object size gets larger, the cost
of copying it increases linearly, making it a non-constant
operation for unbounded object sizes, while relinking of an
object is independant of its size.

The cost of allocation is also higher than simply increment-
ing a pointer, but it is still less than unlinking something from
a linked list, scanning a free memory bitmap or searching a
free list.

The same reasoning holds for making a scanned object black
and advancing to the next gray object, but this advantage is
lost when the copying collector tries to implement depth-first
scanning.

G. Using a Write Barrier

In [10], Baker assumes that the synchronisation between the
collector and the mutator is done with a read barrier, just like
in his copying collector.

The reason why Baker’s copying collector used a read
barrier was to protect the mutator from the changes to the
object locations by the collector when objects are moved into
tospace. But the Treadmill collector does not move objects
while scanning.

There is no reason why the Treadmill needs a read bar-
rier [5]. We could just use a write barrier that grays the new
target of a modified pointer if it was originally white, or re-
gray the black object, depending on our overall strategy.

Both operations need just an object relinked into a different
segment of the Treadmill, this requires constant time. Also a
write barrier is much cheaper than a read barrier.

H. Heterogenous Objects

A big problem with the Treadmill is that it assumes all
objects are of the same size. This may be a perfectly valid
assumption for many functional languages, but most other
languages require quite a big spectrum of different object sizes.

The most straightforward solution appears to just ignore the
problem, putting different sized objects into the Treadmill.

But this causes the problem that it is no longer possible to
take just the first object in the free list, it has to be searched
for an object big enough to satisfy the request, the object may
have to be split and later adjacent free objects may have to be
merged again in order to be able to satisfy big requests.

There are several solutions to this problem that can find a
fitting free space in logarithmic time, but of course this is no
longer real-time.

A tradeoff would be to round up the size of the objects to
the next power of two and using seperate Treadmills for each
object size [12]. This eliminates the need to search a free list,
but produces fragmentation.

10

It also means that we have multiple free lists, so they don’t
become empty simultaniously. Because of this we have to
recolor free objects explicitly, but this can be done lazily [5].

I. Memory Fragmentation

There is also the problem of memory fragmentation. In
general every garbage collector produces some memory frag-
mentation, but for non-moving collectors it can easily get out
of control.

There are two kinds of memory fragmentation [13]:

« Internal fragmentation is memory wasted by the algo-
rithm, for example by header fields or rounding up object
sizes. This memory can’t be used by the mutator. It is
usually very easy to give an upper bound on the memory
lost by internal fragmentation.

« External fragmentation is memory that is free in theory,
but it can’t be used because it is too small to satisfy
allocation requests. This memory can be used by the
mutator, but only for small enough allocations. When
the mutator does not need that much small objects, the
memory is effectively lost.

In general it is not possible to give an upper bound on
the memory lost to external fragmentation. Depending on the
usage statistics it can grow arbitrarily large.

The problem of external fragmentation is always there when
we have to deal with immobile objects of different sizes, and
in general it can not be solved without moving objects [10].

The next section tries to optimize the Treadmill algorithm
mainly by reducing fragmentation.

VIl. THE TREADMILL ON EMBEDDED SYSTEMS

Lim, Pardyak and Bershad have implemented a garbage
collector that is optimized for embedded systems [13].

For evaluating algorithms they used three performance
metrics:

« latency

« overhead

o memory utilization

Latency is the length of mutator pauses caused by the
collector or allocator.

Overhead is the total time spend collecting or allocating
memory in relation to the total execution time.

Memory utilization is the percentage of memory actually
usable by the mutator in relation to the total heap size.

Usually it is very easy to optimize one of these metrics.
Most algorithms sacrifice higher memory utilization for lower
latency or overhead. Incremental garbage collection reduces
latency at the cost of a slightly higher overhead.

On desktop computers we can usually ignore memory uti-
lization as long as we stay within reasonable bounds, because
memory is cheap. But since memory is usually a very limited
resource on embedded systems, the primary design goal of
their algorithm was to minimize memory utilization without
sacrificing overhead or real-time latency.

The collector is based on the Treadmill algorithm, since this
algorithm is already optimized for real-time latency and low
overhead by sacrificing memory utilization.

INCREMENTAL GARBAGE COLLECTION I

A. Overall Strategy

Known improvements to the Treadmill algorithm like a
buddy allocator would produce a higher overhead or compro-
mise it’s real-time latencies.

The overall strategy of the algorithm is [13]:

« large objects are allocated from a seperate pool and
aligned to pages to limit internal fragmentation
« free pages are located via a page-wise collection to enable
fast merging, migration and remapping
« free pages are migrated between lists to eliminate page-
level external fragmentation
« free pages are remapped into continuous ranges for large
allocations
« page filling allocation directs allocations to under-utilized
pages
These page-level optimizations can all be performed effi-
ciently in constant time, so they do not compromise real-time
latencies.
To counter memory waste by objects smaller than the page
size, they allow arbitrary free-list sizes. Lim also compacts the
object header, further reducing internal fragmentation.

B. Performance

Lim tested the garbage collector both in the SPIN operating
system kernel and in the context of userspace applications. In
all benchmarks the improved garbage collector used 25% to
60% less memory than the unimproved Treadmill collector.

In userspace applications they managed to further reduce
the memory usage by 18% by implementing arbitrary free-list
sizes and compacting the headers (see Section VII-I).

The latency of the algorithm is at most 15ms. It’s important
to note that this is a soft real-time bound. For any garbage col-
lector implementation there always exists an allocation request
that requires an unbounded amount of time to complete.

If the application requests more memory than is available
when the collector has not yet finished marking, a full col-
lection is forced. In the worst case the whole heap has to be
scanned before the allocation request can be fulfilled.

C. The Segregated Treadmill Algorithm

With the Treadmill, allocation time is constant because all
objects have the same size. This restriction can be relaxed by
using segregated free lists for different object sizes, increasing
in power of two steps [12]. Each free list is managed by a
seperate Treadmill (see Fig. 7).

While having real-time latencies and a low overhead, the
segregated Treadmill algorithm has poor memory utilization.

The worst case internal fragmentation is 50%. The external
fragmentation can get extremely high because memory blocks
are never merged to fulfill larger requests or split to fulfill
smaller ones. Once comitted to a particular free list, pages are
never moved to another one.

Because of excecllent time characteristics, Lim chose this
segregated Treadmill algorithm as a starting point for devel-
oping their optimized collector.

11

32 byte objects

64 byte objects

Page size objects

Reserve pool

Fig. 7. Seperate Treadmills for small objects. [13]

D. Improving Memory Utilization

Coalescing memory to reduce internal fragmentation is hard
with the Treadmill. It reclaims memory implicitly in constant
time, so it is hard to identify free objects, and without that
information it is hard to come up with global strategies to
reduce fragmentation.

In the new algorithm, free memory information is main-
tained at the page level. For example, if all objects on a page
are free, the page can be assigned to a different Treadmill. All
computations are done on a limited number of pages per call
in order to maintain real-time bounds.

All techniques presented try to improve peak memory
utilization, that is, the amount of memory that a collector can
allocate before having to complete a collection cycle. That is,
for a given workload and collection frequency the collector
needs a smaller heap, or more important, for a given heap
size the collector can provide more memory before it has to
reclaim garbage.

While in general reducing peak memory utilization in-
creases latency and overhead of a single collection cycle, it
also decreases the frequency of collection cycles, so actually
the overhead is massively reduced.

The techniques presented operate on two layers. As already
mentioned, the base layer operates on the page level and
drastically improves memory utilization.

The second layer reduces internal fragmentation caused by
small objects. It builds on top of the base layer to further
reduce the memory footprint of workloads with many small
allocations.

E. Large Objects

Objects smaller and up to one page in size are allocated
from segregated Treadmills (see Fig. 7).

But in addition to the usual 50% worst case internal frag-
mentation, big objects can produce an extremely high amount
of external fragmentation, because once freed their memory is
still lost for smaller allocations.

Because of that, objects larger than a single page are
allocated in a seperate big object list. In the big object list
are regions of memory that are broken up into objects of

INCREMENTAL GARBAGE COLLECTION I

the required size. All objects larger than a page are always
allocated page-aligned.

The big object list itself is also managed by a Treadmill, but
since there are different sized objects on the list, an allocation
requires a search on the free list. This takes linear time, so it
cannot be done in real-time. In Section VII-G we will see that
allocation from the big object list can still be done in constant
time utilizing page level optimizations.

Object allocate (int size) {
if (size > PageSize) {
return bigTreadmill—allocate (size);
} else {
size = roundUp(size);
return smallTreadmill[size]->alloc ();
}
}

Object BigTreadmill:: allocate (int
/1 search for big enough object
Object ret = findObject(free, size);
unlink (ret);
insert(ret,

size) {

free —>ccw);

}

Because starting from page-sized objects we no longer
increase object sizes in power of two steps, but in page-sized
steps, the internal fragmentation is always less than one page.
This is still 50% for the worst case szenario where every
allocation request is one page plus one byte, but for larger
objects internal fragmentation drops fast.

F. Page Migration

After taking care of internal fragmentation, we still have
to solve the problem of external fragmentation, caused by the
segregated Treadmill because it does not move objects from
one free-list to another.

With each small object Treadmill we associate a list of
pages, seperated into an allocated and a free page list. The
pages in these lists contain the objects managed by the
Treadmill. When an object is allocated, the page it resides
on is moved from the free page list to the allocated page list.

During garbage collection, when an object is grayed, the
page it resides on is also marked. At the end of the collection
cycle, unmarked pages are moved to the free page list.

void SmallTreadmill:: ScanObject(object) {
for (pointer in object) {
if (pointer—isWhite ()) {
unlink (x pointer);
insert(xpointer, top);
pointer—>page—>mark();
}
}

scan = scan—>CCw;

}

void SmallTreadmill:: Flip () {

12

while(scan != top)
doSomeWork () ;

bottom =
top =

top—>cw;
free —ccw;

for (root in rootset) {
unlink (root);
insert(root, top);

}

for (page in allocatedPages) {
if (!page—>marked) {
allocatedPages—>remove (page);
freePages —insert (page);
}
}

scan =
}

Whenever a Treadmill runs out of free objects, a page from
the free list of another Treadmill is reassigned. First the page
is unlinked from the free page list, and with it all objects are
unlinked from the associated Treadmill.

Then the page is reinitialized for holding objects of the
different size. The page is inserted into the free list of the target
Treadmill, and its objects are inserted into the free segment of
the Treadmill (see Fig. 8).

free —ccw;

Object SmallTreadmill:: allocate () {
if (free == bottom) {
/1 search free page lists
Page page = findFreePage();

if (page) {
for (object on page) {
/1 unlink old objects
unlink (object);
¥
reinitialize (page, this—objSize);
for (object on page) {

/!l insert into our own free list
insert(object, free);
}
} else {
Flip ();
}
}
Object ret = free;
free = free—>cw;
return ret;

}

Only when a free list is empty and there is no free page on
any other Treadmill, garbage has to be reclaimed. By deferring
the flip as long as possible, both the memory utilization and
the overhead of the algorithm are greatly improved.

This algorithm is still real-time. Locating a free page is
only bounded by the number of free page lists, which is a

INCREMENTAL GARBAGE COLLECTION I

13

— heap pages —] — free page —]
LR NN N E{Eymp

Fig. 8. Reassigning pages to different Treadmills. [13]

small constant. Unlinking the page is bounded by the count
of objects previously in the page, reinitializing and linking into
the target Treadmill is bounded by the count of new objects
that fit in the page. Both are constant.

Reclaiming an arbitrary number of free pages can still be
done in constant time by using a seperate page-level Treadmill,
but this would increase the cost of allocation, so it was not
implemented by Lim.

G. Page Remapping

We still have the problem of external fragmentation in the
big object list. Long lived big objects can break up the space,
resulting in many single free pages that are no longer usable
for big object allocation.

The page migration algorithm of the previous section does
not prevent this kind of external fragmentation, because it
deals only with single pages. It never merges adjacent free
pages to produce enough space for big objects.

Further it appears to be counterproductive to move free
pages from the big object list back to the small Treadmills.
This would further fragment the memory, using up continous
space that can’t be used for big object allocations later.

Compacting memory would solve this problem, but this
would require moving objects, which conflicts with the goal
of producing an in-place garbage collector.

To solve this, we just virtually remap free pages into a
continuous range of memory. Whenever an allocation request
larger than a page is made that can’t be satisfied out of the
big object Treadmill, the allocator finds enough free pages and
remaps them into a continuous range.

Since now we effectively eliminated page level fragmen-
tation, we also eliminated the problem that we can’t move
free pages from the big object list back to the small object
Treadmills.

The same algorithm can be used for constant time allocation
out of the big object list. Instead of searching for an object
big enough on the free list, we just remap all free memory of
the big object list into a single continuous block and allocate
by incrementing a pointer.

The dead-white section of the big object Treadmill can now
just be seen as a free page list for the purpose of both big
object allocation and small object page migration.

void BigTreadmill::growContinuousBlock() {
Page page = findFreePage ();
page—remap (allocTop);
allocTop += PageSize;

}

Object BigTreadmill:: allocate (int size) {
while(allocFree + size > allocTop) {
growContinuousBlock ();

}

Object ret = allocFree;
allocFree += size;
return ret;

Of course, remapping of large numbers of pages can take
unbounded time. But remapping can be done lazily, analogous

INCREMENTAL GARBAGE COLLECTION I

address space

—_———— e — ———— ——

address space

—_———— e — ———— ——

| |
| |
| |
| |
| unmapped space |
| |
| |
| |

I I
I |
I |
| I
I |
I I
I I
I unmapped space |
I I
I |
I I
: : continuous free space
I I

I |

Fig. 9.

Page remapping.

to lazy copying. Instead of remapping all pages at once,
they are just reserved and remapped incrementally in the
background, or when someone actually needs the memory,
that is, at page fault time. Initialisation of newly allocated
memory can also be deferred to the time when the page is
actually remapped.

But since in typical workloads big object list allocations and
remapping were rare, Lim did not implement lazy remapping.

H. Page-filling Allocation

Our page migration algorithm introduces an additional prob-
lem. We now have sub-page external fragmentation.

When an object from a page is allocated, this page is
commited to this object size and can not be used by allocations
of different sized objects.

In SPIN’s workloads this is not a problem because there
are some long-lived objects allocated during initialization and
then a large number of a wide variety of sizes, so almost all
memory that would be wasted over by this kind fragmentation
gets used.

For different workloads that allocate only few objects of
some sizes, there is a page-filling allocator. It remembers
continuous chunks of memory within pages. When memory
utilization is too low, the allocator tries to find a page with
enough continuous range and assigns part of this page to
another Treadmill.

This can be done on demand, so there is only overhead
when it is actually needed.

14

I. Small Objects

For very small objects, the internal fragmentation can easily
raise above 50%. The big object list reduces the problem for
large objects, so for workloads with many large objects this
can be ignored.

There are two optimizations for workloads with mainly very
small objects.

First we can reduce the internal fragmentation caused by the
object headers. The Treadmill algorithm requires two pointers
per object in addition to any other header information. The size
of these pointers can be reduced by using relative pointers.
Objects that are far away from each other can be brought
nearer together by page remapping.

With this method we can reduce the header size from 3
words to 1 or 2 words, depending on how much performance
we are willing to sacrifice.

Another method is to reduce the internal fragmentation
caused by rounding up object sizes by relaxing the power of
two constraint. We just determine some set of object sizes at
compile time that minimize rounding errors for our particular
workload, and then use these object sizes instead of a power
of two progression for our small object Treadmills.

VI1Il. HARDWARE SUPPORT

Software only garbage collection algorithms all have a
problem with hard real-time performance. Read-barriers are
very expensive and often lead to unpredictable pauses. Virtual
memory techniques are even worse, since every operation may
potentially cause a page fault.

The best software-only collectors are the Nettles and
O’Toole replicating collector and Baker’s Treadmill [5].

The Nettles collector has measured worst-case latency times
of 50 microseconds, but propably it will performe worse in an
environment where write operations are more frequent.

For these reasons it is believed that garbage collectors
need hardware support for archieving hard real-time perfor-
mance [5].

Because general purpose computers that rely on specialised
architectures are usually not comercially successful, Nilsen
and Schmidt propose a special garbage collected memory
module that communicates with the system over a traditional
memory bus [14].

For the CPU this memory module would look identical to
a normal RAM module (see Fig. 10).

Their garbage collector is basically a variation of Baker’s
incremental copying collector [1], [2] with additional back-
pointers for lazy copying.

The read barrier is performed by the memory module in
hardware. If an object that is not yet fully copied is read by
the CPU, the memory module automatically copies the object
and stalls the CPU until it is ready. The CPU won’t notice
anything except some latency.

The simulated worst case latency is approximately one
microsecond.

LIST OF FIGURES
1 Memory layout of Appel-Ellis-Li collector. . .. 2

INCREMENTAL GARBAGE COLLECTION I

15

CPU

Cache

Conventional System Bus

ROM RAM

Garbage-Collected Memory Module

Fig. 10. Nilsens hardware architecture. [14]

2 Appel-Ellis-Li “black-only” read barrier. [5] . . . 3
3 Threads scanning their own registers. 4
4 Replicating garbage collection. [5] 5
5 Thread local heaps. [5] 6
6 Baker’s Treadmill. [5] 9
7 Seperate Treadmills for small objects. [13] . .. 11
8 Reassigning pages to different Treadmills. [13] . 13
9 Page remapping. L 14
10 Nilsens hardware architecture. [14] 15

REFERENCES

[1] H. G. Baker, “List processing in real time on a serial computer,
Commun. ACM, vol. 21, no. 4, pp. 280-294, 1978.

[2] C. Wirth, “Incremental garbage collection I,” in Seminar aus Softwa-
reentwicklung: Garbage Collection, 2006.

[3] T. Wiirthinger, “Incremental garbage collection Ill,” in Seminar aus
Softwareentwicklung: Garbage Collection, 2006.

[4] A. W. Appel, J. R. Ellis, and K. Li, “Real-time concurrent collection on
stock multiprocessors,” in PLDI ’'88: Proceedings of the ACM SIGPLAN
1988 conference on Programming Language design and | mplementation.
New York, NY, USA: ACM Press, 1988, pp. 11-20.

[5] R. Jones and R. Lins, Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley, 1996.

[6] S. Nettles and J. O’Toole, “Real-time replication garbage collection,”
in PLDI '93: Proceedings of the ACM SIGPLAN 1993 conference on
Programming language design and implementation. New York, NY,
USA: ACM Press, 1993, pp. 217-226.

[7] L. Huelsbergen and J. R. Larus, "A concurrent copying garbage col-
lector for languages that distinguish (im)mutable data,” in PPOPP '93:
Proceedings of the fourth ACM SIGPLAN symposium on Principles and
practice of parallel programming. New York, NY, USA: ACM Press,
1993, pp. 73-82.

[8] D. Doligez and X. Leroy, “A concurrent, generational garbage collector

for a multithreaded implementation of ml,” in POPL '93: Proceedings
of the 20th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages. New York, NY, USA: ACM Press, 1993, pp.
113-123.

(9]

[10]
[11]

[12]

[13]

[14]

D. Doligez and G. Gonthier, “Portable, unobtrusive garbage collection
for multiprocessor systems,” in POPL *94: Proceedings of the 21st ACM
S GPLAN-S GACT symposium on Principles of programming languages.
New York, NY, USA: ACM Press, 1994, pp. 70-83.

H. G. Baker, “The treadmill: real-time garbage collection without motion
sickness,” SGPLAN Not., vol. 27, no. 3, pp. 66-70, 1992.

D. E. Knuth, The Art of Computer Programming Vol. |: Fundamental
Algorithms, 2nd ed. Reading, MA: Addison-Wesley, 1973.

P. R. Wilson and M. S. Johnstone, “Truly real-time non-copying
garbage collection,” in Proceedings of OOPSLA/EECOOP’ 93 Workshop
on Garbage Collection in Object-Oriented Systems, 1993.

T. F. Lim, P. Pardyak, and B. N. Bershad, “A memory-efficient real-
time non-copying garbage collector,” in ISMM ’98: Proceedings of the
1st international symposium on Memory management. New York, NY,
USA: ACM Press, 1998, pp. 118-129.

K. D. Nilsen and W. J. Schmidt, “Cost-effective object space man-
agement for hardware-assisted real-time garbage collection,” ACM Lett.
Program. Lang. Syst., vol. 1, no. 4, pp. 338-354, 1992.

