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ABSTRACT. The purpose of this paper is to investigate a system of parabolic
equations with discrete time delays describing a nitrogen transformation cycle
in aquatic environment, which consists of the 4 types living organisms (phy-
toplankton and microorganisms), the 4 types dissolved organic and inorganic
nutrients and detritus. When the delays are relatively small, our predictions
are also identical to the predictions given by the corresponding PDE. The sys-
tem of parabolic equations is discretized by the finite difference method which
yields a coupled system of nonlinear algebraic equations. Stability analysis
of equilibria and some numerical examples are given. It is shown that Hopf
bifurcation may occurs.
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1. INTRODUCTION

The main purpose of this paper is to study the asymptotic behaviour of the
nitrogen transformation cycle in an aquatic environment presented by [10].
Mathematical models of increasing complexity that describe the dynamics of
material recycling in closed ecosystem were constructed by [1], [7] [8], [9], [11] and
[14]. The common property of these models is that a total level of recycling material
of this trophic chain is assumed to be constant for the duration of the investigation.
The global asymptotic behavior of the similar models of n species of microor-
ganisms competing exploitatively for a single growth-limiting nutrient was studied
in [2], [6], [15] and [16], .
The aerobic transformation of nitrogen compounds includes:
- the decomposition of complex organic substances into simpler compounds, am-
monium being the final nitrogen product,
- ammonium and nitrate oxidation,
- the assimilation of nitrates.
Specific groups of microorganisms participate in these processes. Heterotrophic
bacteria (z1) assimilate and decompose the soluble organic nitrogen compounds
DON (zg) derived from detritus (z5). Ammonium (z7), one of the final decom-
position products undergoes a biological transformation into nitrate (zg). This is
carried out by aerobic chemoautotrophic bacteria in two stages: ammonia is first
oxidized by nitrifying bacteria from the genus Nitrosomonas (z2) into nitrites
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(zg) that serve as an energy source for nitrating bacteria mainly from the genus
Nitrobacter (z3). The resulting nitrates may be assimilated together with ammo-
nia and soluble organic forms of nitrogen by the phytoplankton (x4), whereby the
aerobic transformation cycle of nitrogen compounds is formed (Fig.1). The individ-

ual variables zi,...

» L9

represent nitrogen concentrations contained in the organic

as well as in inorganic substances and living organisms presented in a model.

Heterotroph. NH,-N Nitrosomonas
Bacteria " X) (X2)
(X1) J

NO,-N
(Xs)
DON , l
(Xe)
i AN Nitrobacter
(X3)
\, ' |
, Detritus | Phytoplankton _ | NG;-N
(Xs) (X4) (X9)
-t

Figure 1. Diagram of the compartmental system modelled by (1).

The following system of partial functional differential equations is proposed as a
model for the nitrogen transformation cycle:

ot

6'73'5 (pa t)
ot
61"6 (pa t)

m ot
63:7(1)3 t)
ot

65[58 (pa t)
ot
61’9 (pa t)
ot

62 i 7t
di% +2i(p, t — 1) Us(2(p, t — 1ui))

—zi(p, ) Ei(z(p,t)) — zi(p, t) M;(z(p,1)))

0%z 4
ds 50 + D wiMile) = Ksas(t = 1is,p)
=1
621'6
dg a2 + Ks2s5(t — ris, p) — 21 (t, p)Ur(2(t,p)) +

z4(t,p)Ea(x(t, p)) — za(t, p) Ps(2(t, p))
+ 1 (tap)El (x(tap)) -

0 i
d7 —3p2
— T4 (tap)P7 (.’L’(t,

z2(t, p)U2(z(t, p))
82$8

8 —8p2
623)9
dy a2

D))

+ za(t, p) E2(x(t,p)) — w3(t,p)Us(z(t,p))

+ z3(t, p) E3(x(t,p)) — z4(t, p) Po((t, p))
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with Neumann boundary condition

6:1,‘@' 6331
2 t,0) = t,1) =0
2) o (.0 = (e
and initial conditions
(3) T (t7p) = ¢’l (tap) 2 07 0 S D S 17 te <_7‘7 0)

where x;(¢,p) are the concentration of the recycling matter in microorgan-
isms, the available nutrients and detritus, respectively. The constants r.. stand for
the discrete time delays in uptake and excretion of nutrient and decomposition of
detritus, r = maz {r.} and 0 < p < 1.

K.z
Uz) = —-i%iHs for i=1,2,3,4
1+ gi%its
D = U + UTT7 + UYT9g
K4p
Us(z) =
1(@) 1+ gup
U - uptake rate
azi 1U;(x) azi1
Li(x = +1-—
l( ) 1 + agiUi(.’L') az;
L - excretion activity
Mi(z) = goiys + 92i44Li()
M - mortality rate
Ez(a:) = UZ(SL')L,(CL') for i=1,2,3,4
E - excretion rate
K s
Pi(z) = AUiTi for i=6,7,9.
1+ g4p

Note 1.1. All coefficients occurring in these equations are nonnegative constants,
further dg; as2i, 9, g2irs > 0, a2i—1 < az; and asi—1 > a3;(92i43 + 92i4a) for
1=1,2,3,4 and represent relevant physical constants.

2. PRELIMINARY RESULTS

The following basic proposition is hold

Proposition 2.1. The solution X (®,.) = X (p,t) = (1 (p,1t),..., 29 (p,t)) of (1)-
(3) exists for all ® € CY, defined by

Cy ={® € C°¢i(t,p) >0, te(—r,0) and p€{(0,1)and i=1,...,9}
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remains nonnegative and for all t > 0

Zmzp,t+rm +sz(p, )dp = c
i=1

O\H

1
for all t > 0, where ¢ = Of(z?zl 2 (P, Tus) + 2?25 zi(p,0))dp.

Proof. Local existence is standard [17] p.37, 48. System of equations (1) describing
the dynamic of nitrogen transformation can be written in the form:

2
%.Z'i = dmaa—px; —f—FZ(.Z') for i=1,...,9
Let us denote

R ={(z1,...,39)|lm; > 0for i=1,...,9}
By straightforward calculation we get that Fj(xi,...,2i—1,0,%iy1,...,29) > 0
for ¢ =1,...,9and z; > O0for j =1,...,5—1,i+1,...,9. We obtain that
the region RY is positively invariant for our system. By adding up of right-hand
side of (1) we get 2?21 Fi(z)) =0.

Let ® € C{ be given. We set
L 9

/ Z zi(p,t + Tui) + Z zi(p,t))dp
0 =1 i=5

for all t > 0, where X(®,t,p) = (x1(®,t,p),...,29(P,t,p)) is the solution of (1)
throught ®.
It follows from model (1) that

1, 9
dI/Zt(t) = %(/(Z z; (D, t + Tyi) + 2»’17@'(10, t))dp) =
0o =1 =

Szt 4 i) + X 2i(p, ) dp =

Q.|Q‘

1
[ =
0
1 d 9 d
[ (Eﬂfi Pyt +rw) + > s prd (Pt +1yi))dp =

0
ox; 1 ox;

ap( 1) = 6(Of) 0.

! 62xi(p7 )
2?21 OfdziT)zd - Ez 1 dm(

It follows easily that

Log 9
(4) /Zmz pt+ru) + Y zi(pt))dp=c
0 =5

andc= 0}(219_1 xi(p; rui)+2?:5 :L",(p, 0))dp That X (pa t) = (xl (p, t) yeees X9 (pa t))

is bounded follows immediately from (4). O

Note 2.1. The nonnegative orthant is positively invariant for the model presented,
and the initial value problem is well-posed in the sense that unique mild solutions
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exist for all t > —r where r = max {r.;} and depend continuously on the initial
data and parameters.

3. PROPERTIES OF THE MODEL

The first four equations describing the dynamics of the living organisms have
the following structure:

821','

T; = dm'a—p2

+ mifi(xamri) for ¢ = 17273747

where fi(z,z.;) = Ui(z, %) — Ei(x, ©r;) — Mi(x, ;). After algebraic modifications
the functions f;(x,z) acquire the form

diyiys — Qi
(z) = 7
fi@) azi(1 + yirs(g: + a2:K5))

where

d; = Ki(azi—1 — a2,(g2i+3 + g2i+4)) + 9i(a2i—192i+4 — a2i(g2i+3 + g2it4))
¢i = 02i(92i+3 + 92i+4) — Q2i—192i+4 for i =1,2,3,4

Yit5 = Tits for i=1,2,3

and Yo = UgZg + U7TT7 + UgTg. Let us denote

K* = 9i(a2i(92i+3 + 92i44) — A2i—192i+4)
¢ azi—1 — a3;(92i4+3 + 92i44)
biys = qi/d;
1
Se = {z€C:x>0[Y)  xi(t,2)dz=c}
0
S = {z €S, : z; are spatially cons. and z; = --- = x5 = 0}
So = {xe€S:z;<b; for i=6,7,8}.

Proposition 3.1. S. is a positively invariant set of system (1)-(3).

Proof. Tt follows from Proposition 1.

Note 3.1. If K4y < K}, then

fa(z) < _u <0
ag

for allx € S,

Let the functional F': C{ — RY be defined by
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61(p, —1u1) U1 (®(p, —141)) — 61(p,0) E1 (B(p, 0)) — 1 (p, 0) M1 (®(p, 0)
620, —142) Uz(® (D, —T4)) — $2(p, 0) B (B(p, 0)) = >(p, 0) M>(&(p, 0)

63(p, —7u3)Us(®(p, —743)) — 63(p, 0) 3 (®(p, 0)) — 3 (p, 0) M3(®(p, 0)

610, —1u) Us(@ (D, —T1)) — 64(p,0) B4 (B(, 0)) = (p,) Ma(®(p, 0)

F=| $i 6:i(p,0)Mi(®(p,0) — Ks¢s(p, —745)

Ks5(p, =5) — Ur(®(p;0)) 1 (p, 0) — Po(®(p,0)) ¢4 (p, 0) + Ex(2(p, 0))¢4(p; 0)
E1(2(p,0))¢1(p,0) + Ua(®(p, 0))¢a(p, 0) — Pr(®(p, 0)) 4 (p, 0)

$2(p,0) B2 (®(p, 0)) — b3(p, 0)Us(®(p, 0))

¢3(p, 0)E3(®(p, 0)) — ¢4(p,0) Po(2(p, 0))

Let X = C([0,1]; R?). As the Laplace operator has eigenvalues —k2, (k =
0,1,...) with corresponding eigenfunction cos(kmz), A is a characteristic value of
(1) if and only if for some k£ = 0,1, ... the characteristic equation

H(\) =M - k*D — J(z) = 0,

where

Vi 0 0 0 0 0 0 0 O

0 J2 0 0 0 0 0 0O

0 0 I3 0 0 0 0 00O

0 0 0 J4 0 0 0 00O

J(.’f)) = mq mo ms ln —K5€_’\r7‘5 0 0 0 O

—u; 0 0 es—ps Kses 0 0 0 0

€1 — U2 0 —DPr 0 0 0 0 O

0 es  —us 0 0 0 0 00

0 0 es —Po 0 0 0 0O

and e; = E;(z°), m; = M;(z%), u; = U;(2°), 85 = u; —e; —my , j; = e Muin; —
ei—m;, i=1,...,4 and p; = P;(z°) i=6,7,9.
Proposition 3.2. If K, < K} and ry5 K5 < (sin(¢) — dysk?m2rs cos(€)

where ( is the root of ( = —atan(, 0 < { < 7, if dpsk®72rps # 0 and ( = g if
dgsk®m2rys = 0, then all points of the set Sy are stable in S..

Proof. Let Z € So. With the translation y =z —Z we can write the system (1)
as

) 0%y _
Y= Da—p2 + DF(z)y + N(y),
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N(y) involves only the higher terms in yi,...ys. The perturbation system of
(1) and its associated eigenvalue problem are, respectively, written as follows:

. %y _

y:Da—p2 + DF(z)y ,

M= (=k*m’D + J)v, k=0,1,...

The eigenvalues of —k?>7?D + J(z) at z € Sy are as follows

Aig = e MrTuiy; —e; —my; —dyik*n® for i=1,...,4
Aig = —dgik’n? for i =6,...,9
Ao = —Kse o+ — d gk’

Upon simplification, the characteristic equation becomes
H(X) = Hi(AN)Hz(A)Hs(A),

where
4
Hl()\) = H()\z”k — eiAi’kr"iui +e;+m; + dm'k27T2),
i=1
9
() = J[Cur +deik’s?)
i=6
H3(\) = (Asp + Kse ™ + dsk’n?).

Denoted the three factor of H(\) by Hy (), Ha(A) and H3()), respectively. The
location of the roots of the quasi-polynomials H; () and H3()\) is accomplished by
using the Pontryagins theorem, [4] contains a brief introduction of the Pontryagin’s
results, together with a proof of Theorem 5.1, (see appendix T heorem 5.1).

To apply the Theorem 5.1 to the quasi-polynomial H3(\), we first let w = rgsA
so that w and A have real parts of the same sign. Multiplying both side of H3(\)
by rpses ks yields

(w + d5k27727‘k5) e’ +rpisKs =0

All roots of the equation

(w + d5k27T2’l“k5) e’ +risKs =0

have negative real parts if and only if

dw5k}2ﬂ'27‘k5 > -1,
dos k> T T 5 + 5 K5 > 0
and
res Ks < sin(¢) — dsk*m?rs cos(€)
where ( is the root of { = —dgsk®m?rstan(, 0 < ¢ < m, if dsk?7%r # 0 and
¢ = % if dyk?nrys = 0.
If K5 < min {kzwzdw, ﬁ} inequalities are satisfied and H3(\) has roots with

negative real parts.

If £ € S then u; — e; —m; < 0 and by the similar way it can be shown, that all
the roots of the following transcendental equations given by Hj () have negative
real parts for all i=1,... 4.



8 TIBOR KMET

The equation H;(A) = 0 is treated similarly by multiplying both sides by

rui€ i+ to obtain

AkTuiy, + e +my; + dgik®n® =0 for i=1,...4

Az’,k —e
(w + (dm'k27r2 +e; + mz) rui) e“Y —ryiu; = 0.

We can apply T heorem 5.1.All roots of the equation

(w + (doik®T* + €; + M) T0i) € — Tyiu; = 0.
have negative real parts if and only if

(dm-k27r2 +e; + m@) Tui > —1,

(dwik27l'2 + eimi) Twi — Ti; > 0
and

—ryitt; < (sin(C) — (dgik®7* + €; + m;) ryi cos(()
where ( is the root of ( = — (d;k*7% + e; + m;) ryitan(, 0 < ¢ <, if

(dik*m? +e; +mi) ru; #0 and ( = % if (dgik®m* + €; + m;) rys = 0. The condi-
tion of Theorem 5.1 are satisfied that means all roots of Hy(A\) = 0 have negative
real parts. This prove the result.

O
If k=0 then ¢ = § and
rrs K < g
i.e. for
Ks > 2 s

all spatially constant Z € Sy are unstable.
Let us consider H3(A) as a complex function of two complex variables

Fw, Ks5) = (w + dw2n+1k27r2rk5) e’ + 15 Ks
If we let w = a + if and setting a = 0. By Theorem 5.1 we get that there exists

% ™

5_27'195

for which H3(\) has root with zero real part. Let wo(K}) is a simple eigenvalue,
6?(&]0, Kg)
Ow

therefore # 0, by the implicit function theorem we get that

(2409 g 7w
° ( 0Ks ) | 0F(wo, K?)
ow
ris * (m/2 — cos (wo))
lle?® + ipeid|”

Real part of eigenvalue w = a + i crosses the imaginary axis transversely at
K. For k=0 0 is the eigenvalue with multiplicity n which is a dimension of the
family of equilibria set So. According to Proposition 3.1 the rest eigenvalues have
been found to have real parts negative.

Our numerical calculations are based on Proposition 3.1 and iterative schemes
for numerical solution of system of nonlinear parabolic equations with discrete time
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delays presented by [12], [13]. The vector function F' = (Fy, ..., Fy) given by right-
hand side of (1) is mixed quasimonotone and the Jacobi iterative scheme, which is
unconditionally stable with respect to the mesh sizes can be applied for numerical
solution of (1). Decomposition rate of detritus K; and discrete time delay rate rg5
play a role of bifurcating parameters. For

all spatially constant Z € Sy are unstable. Numerical calculations show that for Kj
near to K} periodic solution occurs (Figure 2).

1,2

N\

0,6

\
w
T

Figure 2. Numerical solution of (1) for K5 = 2.0 and rxs = 0.8 (z1 (¢, p)).

If

Ky rps < =

all solutions converge to the set Sy (Figure 3). If the time delay rgs or the decom-
position rate Ky are relatively small (K5 rgs < % ), our predictions are identical to
the predictions given by the corresponding PDE [9].
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Figure 3. Numerical solution of (1) for K5 = 0.02 and 75 = 0.8 (21 (¢, p)).

4. EXISTENCE AND STABILITY OF SPATIALLY CONSTANT EQUILIBRIA

In this section we will suppose that K; > K}

for i = 1,2,3,4. Under this

assumption four possible kinds of spatially constant equilibria can exist :

- interior (large loop) spatially constant equilibrium with z; >0 forall ¢=1...9
- medium loop spatially constant equilibria with z2 =23 =0, 21 >0, 24 >0

- small loop spatially constant equilibria with 21 =29 =23 =0, 4 >0

- a trivial spatially constant equilibria set S.

Now we now examine the existence and stability of equilibria of the particular

loops. Let us denote

bs = (bg — Uﬁbﬁ — ’LL7b7)/U9
b; = (bg - Uﬁbﬁ)/U7

bg = bg/UG

c1 = bg+br+bg+0b5

¢ = bg+ b;

Cc3 = bg

It is evident that an equilibrium of a large and a medium loop can exist only

for b5 >0 and b7 > 0, respectively.

Proposition 4.1. Let K; > K}

and by >0 and ¢ >
positive spatially constant equilibrium T on S. exists.

then there a unique
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Proof. See [7]. O

Let us consider the stability of small loop spatially constant equilibria with
1 =22=x3=0, 4 >0
For ;1 =22 =23 =0 and r.; = 0 system (1) - (3) has the following form:

Oz4(p, t) 0%z4(p, 1)
ot mepQ + z4(p, t)Us(2(p, 1)) —
(5) 24(p, t)Ea(z(p, 1)) — z4(p, 1) Ma(2(p, 1)))
Oz (p, t 0?
% = dzswx; + 24(p, ) Ma(a(p, 1) — Kss(p, t — is)
Ozg(p,t 0?
0D~ o5 + Kol — ) + Bulolp, 0)ma(p.6) — Fololp,0)ma(p.
with boundary conditions
6.%’1' _ 6.%', _

for i = 4,5,6 and initial conditions
z; (p,t) = ¢; (p,t) > 0for 0 <z < 1,¢t € (—r,0)

and i =4,5,6
For d; = 0 and r; = 0 we have the following result:

Proposition 4.2. Let I'(t) = (z(t),x5(t),z6(t) be an arbitrary periodic orbit of
(5) with period T > 0, then T'(t) is asymptotically stable.

Proof. Substituting into the system (5) x5 = ¢ — x4 — g we get

4 = x4(Uxs) — Es(z6) — My(26))
(6) 26 = Ks(c—z4—16) — 24(Us(mg) — Es(zg))
Consider the fundamental matrix U(t) defined as a solution of
Ut)=pP0U®, U0 =1,

where P(t) is a Jacobian matrix of (9) and
J() = ( Us(zs) — Ea(ws) — Ma(z6)  (Ua(ws) — Ea(z6) — Ma(z6)) z4(t) )

—Ky — Uy(wg) + Eq(xs) —Ky — (Uy(wg) — E4(.'136)), x4 (t)
The Flogouet exponents of (6) are 0 and -y, where

T
y= —/ (Ks — (Us(zs) — Fa(x6)) 24(t))dt < 0,
0
i.e. T'(t) is asymptotically stable. O

By the help of the last Proposition we can show that the equilibrium point
(%4,%5,%¢) is globally asymptotically stable in int S3.

Proposition 4.3. The critical point © = (Z4,%5,%¢) is globally asymptotically
stable w.r.t. the interior S3.
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Proof. We linearize to study the behaviour of (1) near the equilibrium © . The
behaviour of the solution of a linearized system depends on the eigenvalues of P
which are the roots of the characteristic equation det (\I — P) =0 or

N2+ A(Ks + (Us(zs) — Ea(zs))) z4(t)+
(Us(w6) — Ea(x6) — My(x6)) 4(t)(Ks + Us(2s) — Ea(g)) = 0.

7

Us(ze) — Ea(zs), (Ua(we) — Ea(we) — Ma(zs))
(Us(xs) — Ea(z6)) > 0
implies that every eigenvalue of the matrix P has a negative real part, i.e. ©
is a locally asymptotically stable equilibrium of (1). Suppose that T'(¢) is an
arbitrary periodic orbit. By proposition 4.2 it must be asymptotically stable -
a contradiction since an asymptotically stable equilibrium mandates at least one
periodic orbit being unstable. Thus there are no periodic orbits and the local

asymptotic stability of © is global by the Poincare-Bendixon Theorem. O
Let the functional F : C3 — R® be defined by

¢4(p7 0)U4(q)(p, 0)) - ¢4(p> O)E4(q)(p, 0)) - ¢2(P> 0)M4(CI)(P> 0)
F= ¢i(p,0) Ma(®(p,0) — K5¢5(p, —7k5)
K5¢5 (p> _Tk5) - Pﬁ(é(pa 0))¢4(p5 0) + E4(¢(pa 0))¢4(p5 0)

As the Laplace operator has eigenvalues —k2, (k = 0,1,...) with corresponding
eigenfunction cos(kwz), A is a characteristic value of (1) if and only if for some
k =0,1,... the characteristic equation

H(\) =X +k°D - J(z) =0,
where

0 0 aixra
J(u’f‘) = my —k5q7’\r’“5 asTy4
—TN4 k5€)‘7"“5 3&'4(—@1 — ag),

where a1 = (Us(z¢) — Es(x6) — My(z6)), a2 = My(zg) and my = My(ze)

Stability of spatially constant equilibrium depends on the stability of lineariza-
tion in Z.

Spatially constant equilibrium Z is asymptotically stable if and only if all roots
of characteristic equation have negative real parts.

(7) N AN+ Aod 4 A3 = —e A3 (B1A2 4+ By + Bs)

where A1, As, A3, By, By, B3 are positive numbers and

Ay = d1k? + dok?® + d3k? + a1z4 + asxy

A2 = d1d2k4+d1d3k4+d2d3k4+a1d1x4k2+a2d1x4k2 +a1d2:1:4k2+a2d2w4k2+a1m1x4
A3 = d1d2d3k‘6 + a1d1d2x4k4 + a2d1d2x4k4 + a1d2m1w4k2

B, = Kj;

BQ = d1K5k2 + d3K5k2 + a1K5x4

B3 = d1d3K5k4 + a1d1K5x4k2
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We set A = a + i and substituting into (7) similarly as in[6] we obtain the
following equations :

o® —3aB% + A1(a® — %) + Aya + A3 =
(8) —e " [{Bi (a® — %) + Baa + B3} cos(Br) + {2B1af + B2} sin(8r)]
o’ — B+ 24108 + Ay =
—e™ " [{By (a® — #%) + Baa + B3} sin(Br) + {2B1a + B2} cos(Br)]

Let rj5 be such that a(ry;) = 0. Substituting to (8) then equations (8) reduce
to

(9) —4:18%) + A3 = —{Bi(-p?) + Bs} cos(Br) + B>fsin(Br)
—B*+ A8 = {By(—p?) + Bs}sin(Br) + Baf3 cos(Br)

Squaring and adding the equations (9) and simplifying we obtain at an equation
for g* of the form:

B*C 4+ (A} — 24, — B)B** + (A2 — 24,43 + 2B B3 — B3)5*? + A2 — B2 = 0.
For k =0 A3, B3 = 0 and we have the following form:

(10) B*2(8*" + (A} — 24, — BY)B™* + (43 - B})) = 0,

where A3 — B = ayz4?(m? — K2). If my < Kj there is a simple largest positive
root 8* of equation (10).

We now show that for § = 3* there is a rj, such that a(ry;) = 0.

The equation (9) can be written in the form:

P cos(Brys) + Qsin(Bris) = G,
Q cos(Brys) + Psin(frys) = H,
where G? + H? = P2 4+ Q? = C?. The equations

P = (4 cos(Bris),
Q = Cl sin(,@rkg,)

determine a unique ¢ €< 0,27) and

Cycos(Bris —0) =G,
Cy sin(B*rgs — 0) = H.
As it follows from last equations there uniquely r;, €< 6/8%, (27 +0)/B*) exists
for which a(r};) = 0.
To calculate da(rys)/dris let we consider equations (8). Differentiating with
respect g5, setting rps = 155, 8 = 8* and a = 0 we obtain

da(rks) _ 36°° + (247 — 44, — 2B3)*" + (A3 — 24143 + 2B, B3 — B3)$*’
drys h% + h% ’
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where
hi = Ay —3B* +1}5(=Bi1*? + Bs)cos(rfs 8*) —
2By sin(ris 87) + Bargs 7 sin(ris ) — By cos(rgs 87)
and
hy = —2Air}s + 2Bir}s cos(ris %) + s (—B1*? + Bs)sin(ris %)

—Bysin(rys ") — Barys 8 cos(rps %).

Let n = 32, then equation (10) we can reduce to

®(n) = n(n° + (247 — 24, — 2B3)n + (43 — —B3)).
B* is the largest positive simple root of equation (10), we have

d®(n*)

dn > 0.

Hence

. «2d®(n")
da(riy) _ B —dg 50
dris h% + h% ’

Let k£ > 0. We show that there exists K so that for all K5 < K} the character-
istic equation

(11) )\3 +A1)\2 +A2)\+A3 = —6}\7‘(31)\2 +Bg)\+B3)

has eigenvalues with negative real parts. Coefficients By, By and Bs are linear
function in K5, A1, As, A3 are independent on K5 and By = B, = B3 = 0 for
K5 = 0. Let we consider the characteristic equation for K5 = 0.

(12) N AN+ AN+ 43=0

It is convenient to use the Routh-Hurwitz criterion (see, [3]) to test the stability
properties of (12). By this criterion the real part of the eigenvalues of (12) are neg-
ative if and only if A;, A3 >0 and A;A; > Ajz. By straightforward computation
we get

A Ay — As = ((dik? + d3k® + (ay + a)zq) (d2k* + aymyzg+
dok?(d3k® + (a1 + a2)w4) + dik*(d2k? + d3k?* + (a1 + a2)z4)) > 0

Eigenvalues are continues functions of K5 , i.e. there exists K} that for all
0< Ks < K%, mi >0 and k > 0 all eigenvalues of characteristic equation (11)
has negative real parts.

According to [17] we proofed the following proposition:

Proposition 4.4. Let be 21 =22 = 23 =0 and 0 < m} < K5 < K. Then system
(1) has a family of periodic solutions bifurcating from spatially constant interior
equilibrium T , when rys is near riy.

For numerical calculation of r}, depending on K5 we used a values of coefficients
given in Tablel.
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rk5
2] E o

Figure 4. Numerical calculation of bifurcation parameter rj. depending on Kj.

5. DISCUSSION

In this paper, a functional partial mathematical model of nitrogen transforma-
tion cycle with discrete time delay is considered. The model incorporates discrete
time delays in uptake, excretion of nutrient and decomposition of detritus. De-
composition rate of detritus K5 and discrete time delay rate ri; play a role of
bifurcating parameters. For K4 < K} and

K5 >

2 TEk5

all spatially constant Z € Sy equilibriia are unstable. Numerical calculations show
that for K5 near to K} periodic solution occurs (Figure 2,3). If K4 > K}, then
system (1) has a family of periodic solutions bifurcating from spatially constant
interior equilibrium Z , when ry5 is near r;; (See Figure 4).

6. APPENDIX

Theorem 6.1. All roots of the equation (z + a)e* +b =0, where a and b are real,
have negative real parts if and only if

a > -1
a+b > 0

b < (sin(—acos(

where C is the root of ( = —atan(, 0 < (<7, ifa#0and (=T ifa=0.
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Table I. Values of the constants used in the model

ap =0.007 day Ky =34323 (mgN/l)™! day™!
as = 0.0182 day K =0.62 day™!

a3 =0.5 day g1 =0.14 (mgN /1)1
as =0.67  day g2 =15 (mgN /1)1
as = 1. day 93 =2.0 (mgN/1)~1
ag =139  day ga=15 (mgN/1)~1
ar =0.66  day g5 =0.8 day!

ag = 0.67 day ge = 0.4 day—!

ug = 0.01 dimensionless gr=0.2 day!

ury = 0.03 dimensionless gs = 0. day!

ug = 0.2 dimensionless g9 = 0.15 day!

K; =193 (mgN/l)~' day™' g10 =0. day!

K, =817 (mgN/l)~' day™* g¢11 =0.1 day~!

K3 =71.28 (mgN/l)~' day™" g¢12 =0. day!

Figure description:
Figure 1. Diagram of the compartmental system modelled by (1).
Figure 2. Numerical solution of (1) for K5 = 2.0 and ri5 = 0.8 (z1(t,p)).
Figure 3. Numerical solution of (1) for K5 = 0.02 and 5 = 0.8 (z1(t, p))-
Figure 4. Numerical calculation of bifurcation parameter rj, depending on Kjs.
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