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Preface

This Workbook for Students is designed to teach students how to apply
mathematics by formulating, analysing, criticizing and simulating mathe-
matical models. The book requires elementary calculus, matrix theory, ele-
mentary differential equations and knowledge of programming in MATLAB.
Although the level of mathematics required is not high, this is not an easy
text: Setting up and manipulating models require thought, effort, and usu-
ally discussion - purely mechanical approaches usually end in failure. Since
a firmly believe in learning by doing, all the problems require creating and
studying models by students. A possible fields application of mathemat-
ics are physics, technology, chemistry, economics, management, geography,
demography, biology/medicine and sport. The book concentrates on mathe-
matical modelling and simulation of biological systems, mainly on continuous
population models, chemostat models and application of control theory. The
core of the book, which should be included in any begining modelling course
is Chapter 2, 3, 4. Students should find numerical methods quite interesting
and useful. Computer calculations using MATLAB are presented in the form
of graphs whenever possible so that the resulting numerical simulations are
easier to visualize and interpret. The book is meant to be an introduction to
the principle and practice of mathematical modelling and simulation in the
biological science.






Chapter 1

Teaching and learning
mathematical modelling

The world to which mathematics is applied is in a process of dynamic change.
Besides the traditional physical sciences and engineering, the social sciences,
the biological and ecological sciences, and it seems all areas of human endeav-
our are susceptible to quantitative reasoning or mathematical modelling.

The unifying theme for application of mathematics to these subjects is
the translation of the ”real world” problem to the mathematical one by the
formulation of a mathematical model. The process of modelling is illustrated
in T'able 1.1 .

The left-hand column represents the real world, the right-hand column the
mathematical world and the middle column provides the translation between
the two states. The art of the good applied mathematician is to get the
optimum balance between manageability and reality.

If the mathematical model is made as a too simple one there would be
poor agreement between observed and predicted data at the validation stage
and the cycle must be traversed again with an improved model. On the
other hand as the model becomes more complicated so does the resulting
mathematics.

Definition 1.1 Model is an object or concept that is used to present some-

thing else. It is reality scaled down and converted to a form we can compre-
hend.

Definition 1.2 A mathematical model is a model whose parts are mathemat-
ical concepts, such as constants, variables, functions, equations, inequalities
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Table 1.1: Process of modelling

Formulate the Assumption Formulate the
— —
real problem made mathematical problem
T \J
Validate and Interpret Solve
— ——
refining model solution the mathematical problem

a representation in mathematical terms of the behaviour of real devices and
subjects.

Mathematical models can be divided into two categories: descriptive and
prescriptive. A descriptive model is one which describes or predicts how
something actually works or how it will work. A prescriptive model is one,
which is meant to help us choose the best way for something to work. Alterna-
tive names which are sometimes used for prescriptive models are normative
or optimisation models. The differences between descriptive and prescrip-
tive models do not lie primarily in the mathematics. The main difference
is in what the model is used for. A prescriptive model is a tool for human
decision-making, while a descriptive model just tell us ”what makes it tick”.
Often a descriptive model can be turned into a prescriptive one.

Mathematical modelling is a process that involves responding to a real
situation, abstracting a problem using some simplification and assumption,
establishing a response to the problem (which may involve the use of mathe-
matical visualization and symbols) and evaluating and communicating that
response to self and others.

Modelling cannot be done mechanically. Nevertheless, there are some
guidelines for how to go about it. We can divide the modelling process into
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three main steps:
e formulation
e mathematical manipulation
e evaluation
. Formulation can, in turn, be divided into three smaller steps.
Formulation

1. Starting the question. The question we start with is often too vague or
too "big”. If it is vague, make it precise. If it is too big, subdivide it
into manageable parts.

2. Identifying relevant factors. Decide which quantities and relationships
are important for your question and which can be neglected.

3. Mathematical description. Each important quantity should be repre-
sented by a suitable mathematical entity, e.g., a variable, a function,
a geometric figure, etc. Each relationship should be represented by an
equation, inequality, or other suitable mathematical assumption.

Mathematical Manipulation
The mathematical formulation rarely gives us answers directly. We usually
have to do some mathematics. This may involve a calculation, solving an
equation, proving a theorem, etc.

Evaluation
In deciding whether our model is a good one, there are many things we could
take into account. The most important question concerns whether or not
the model gives the correct answer. If the answers are not accurate enough
or if the model has other shortcomings, then we should try to identify the
sources of the shortcomings. It is possible that mistakes have been made in
the mathematical manipulation. But in many cases we need a new formula-
tion. For example, it can occur that some quantity or relationships which we
neglected, were more important than we thought. After a new formulation
we need to do new mathematical manipulations and a new evaluation. Thus,
mathematical modelling can be a repeated cycle of the three modelling steps.



Amongst the activities undertaken in mathematical modelling are Formu-
late the real-world problem, Formulate the mathematical problem and Solve
the mathematical problem. In order to solve a modelling problem we need a
number of skills, amongst which are the ability to abstract a mathematical
problem from real-world situation, identify the appropriate mathematical
tools needed to solve the problem, and wuse the appropriate mathematical
tools to solve problems.

Mathematics is often thought to consist of finding formulas for quantities
of interest to us. In that approach, called the analytical approach, we rely
heavily on mathematical theory. There is another approach, which might
almost be called experimental mathematics, which can sometimes be used.
One form of mathematical experiment is called simulation. There are two
great pillars upon which the experimental sciences rest, theory and experi-
ments. By contrast, the mathematical manipulation in a mathematical model
often seems to be based wholly on one pillar, the theory. This is largely true,
but not completely. In fact, the experimental approach finds some use when
we do mathematics.

Definition 1.3 An analytic solution involves finding a formula that relates
the quantity we are trying to estimate to other quantities known to us (We rely
heavily on mathematical theory). A simulation solution attempts to estimate
the value of a quantity by mimicking (simulating) the dynamic behaviour of
the system involved (It needs less theory but lots of patience and/or computer
time).

Mathematical modelling is the activity of translating a real problem into
a mathematical form. The mathematical form is solved and then interpreted
back to help explain the behaviour of the real problem.

When a model is used, it may lead to incorrect prediction. The model
is often modified, frequently discarded, and sometimes used anyway because
it is better than nothing. This is the way science develops. What makes
mathematical models useful? If we ”speak in mathematics” then:

1. We must formulate our ideas precisely and so are less likely to let
implicit assumption slip by.

2. We have a concise ”language” which encourages manipulation.

3. We have a large number of potentially useful theorems available.
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4. We have high-speed computers available for carrying out calculations.

There is a trade-off between items 3 and 4: Theory is useful for drawing
general conclusions from simple models and computers are useful for drawing
specific conclusions from complicated models.

There are two approaches to teaching a syllabus in applicable mathemat-
ics.

One way is to consider a particular mathematical topic and to illustrate its
application in a variety of different situation. For examples, the differential
equation

dy/dx = ky

has not only an impotent application in carbon carbon dating, but it is
also the governing equation for mathematical models which represent (i) the
population changes of a single species, (ii) the way in which a drug loses its
concentration in the body and (iii) the manner in which water cools.

This is one of the powers of mathematical analysis: the actual governing
equations can be representative for many situations in different disciplines,
so that by solving this one equation we have effectively solved a wide range
of problems.

A second approach to teaching applicable mathematics is to consider the
application of mathematics to different disciplines divided up on a subject
basis.

There are many good reasons to include modelling in the school cur-
riculum. In general, five arguments have been presented as a rationale for
modelling in schools: motivation, facilitating learning, preparation for the
use of mathematics in different areas, developing general competencies, and
comprehension of the socio-cultural role of mathematics. Modelling liter-
ature has characterized modelling activities according to the duration and
extent of the task as the teacher poses it.

Like problem solving modelling is a difficult skill to teach. In authentic
modelling situation, modellers typically:

1. extract the problem from the underlying real-word situation,
2. construct a simplified version of the initial problem,
3. construct a mathematical model of the simplified problem,

4. identify solution within the framework of the mathematical model,
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5. interpret these solutions in terms of the simplified problem,

6. verify that the solutions generated for the idealised problem are solu-
tions to the initial problem.

We can speak about three cases afforded by a modelling task as it is pre-
sented to students. In case 1, the teacher presents problem with quantitative
and qualitative information, and the students are expected to investigate the
situation. Case 2 provides other different possibilities for students engage-
ment. The teacher poses an initial question to the students and they become
responsible for collecting data and for presenting their solutions. In this case,
the students are mostly responsible for regulating their own activities. The
third case entails project with non-mathematical themes that may be chosen
either by a teacher or students. The students are responsible for formulating
problem, collection information and solving the problem.

Freudenthal rightly demands that pupils should not learn applied math-
ematics but should learn how to apply mathematics. Only their own active
engagement can, in the end, make a difference for pupils. The well-known
quotation from Chinese philosopher Confucius points out:

1. Tell it to me and I forget it.
2. Show it to me and I recall it.

3. Let me do it and I remember it.

12



Chapter 2

Continuous Population Models

2.1 Exponential Growth

In this chapter we look at a population in which all individual develops in-
dependently of one another. For this situation to occur these individuals
must live in an unrestricted environment, where no form of competitions is
possible. The population size of a single species at time ¢ we will denote
by z(t), where it is assume that x is an everywhere differentiable, that is a
smooth function on t. The rate of change of population size can be com-
puted if the births and deaths and the migration rate are known. A closed
population has no migration either into or out of population. For microor-
ganisms, which reproduce by splitting, it is reasonable to assume that the
rate of births of new organisms is proportional to the number of organisms
present. In mathematical terms this assumption we can express by saying
that if the population size at time ¢ is x, then over a short time interval of
duration A from time ¢ to ¢t + A the number of births is approximately bhx for
a some constant b, the per capacity birth rate. Similarly, we may assumed
that the number of deaths over the same time interval is approximately phx
for some constant pu, the per capacity dealt rate. Hence, the net change in
population size from time ¢ to time ¢ + h, which is z(¢ + h) — z(¢) may be
approximated by (bh — ph)z(t).
We obtain the approximate equations

z(t+ h) — x(t)
h

~ (b— ) (t) (2.1)
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and passage to the limit as h — 0 gives

dx

== (- wal) (22)

under the assumption that the function z(t) is differentiable.
If the net growth rate is naturally defined as

r=b—u
then we arrive again at the differential equation
d
d—f = rz(t) (2.3)

This differential equation has the infinite of solution given by the one
parameter family of function

z(t) = ke (24)

The most convenient way to impose a condition that will describe the popu-
lation dynamics of a specific population is by specifying the initial population
size at time ¢t = 0 as

z(0) = zg (2.5)

this choose select the solution,

z(t) = zpe™. (2.6)

Condition (2.5) is call an initial condition and the problem consisting
of the differential equation (2.3) together with the initial condition (2.5) is
called an wnitial value problem. The above initial value problem has the
unique solution

z(t) = mpe™,

where r > 0 implies that the population size will grow as ¢ — oo, while
r < 0 implies that population size will approach zero as t — oo. Population
that grow exponentially at first are commonly observed in nature. However,
their growth rates usually tend to decrease as population size increases. In
fact exponential growth or decay may be considered typical local behaviour.
The next section considers nonlinear assumptions on the rate of population
growth rate, which lead to quite different qualitative prediction.
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2.2 The Logistic Population Model

As before z(t) denotes the size of a population at time ¢, and dz/dt, or
Z the rate of change of population size. Here we study models in which
the growth rate depends only on population size, because, in spite of their
shortcoming, these do predict qualitative behaviour of many real problems.
The per capacity growth rate, is given by #/x(t), which we are assuming
is a function of z(¢). The simplest population model in which per capacity
growth rate is a decreasing function of population size is v — ax. This
assumption leads to the logistic differential equation

t=z(v — ax).

This equation is commonly written in the form
x
z=rz(l - =). 2.7
(-2 (2.7

In analysing equation (2.7), we first observe that the constant function
z(t) = 0 and z(t) = K are solutions. In seeking the remaining solutions, we
can assume that z(¢) # 0 and z(t) # K. We rewrite equation (2.7) as

z(1 —z/K)

By the method of partial fractions, we transform this to

=r.

N
x K —x

Integrated we get

T T

A little more algebra yields the logistic function for initial value z(0) = ¢

on

T 2o+ (K — zo)e (2:8)

z(t)

The parameters r and K appearing in equation 2.8 we can fit for a given
set of experimental data using the following two M — file :
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global t x

t=[0,1,2,3,4,5,6,7,8,9];
x=[9.6,29.0,71.1,174.6,350.7,513.3,594.4,640.8,655.9,661.8] ;
start=[1,10];

estimates = fminsearch(@expfun,start)

plot(t,x,’*’)

z=x(1) *estimates(2)./(x(1)+(estimates(2)-x(1)) .*exp(-estimates(1)*t));
zl=abs(z-x) ;

hold on

plot(t,z,’r’)

plot(t,z1,’+’)

xlabel(’t?)

ylabel (’Number of yeast cells x(t)’)

hold off

function sse = expfun(params)

global t x

r = params(1);

K= params(2);

FittedCurve = x(1)*K./(x(1)+(K-x(1)) .*exp(-r*t));
ErrorVector=FittedCurve - x;

sse= sum(ErrorVector."2);

end

2.3 Qualitative Analysis

Differential equations are commonly used for mathematical modelling in sci-
ence and engineering. Consider the equation

T = f(x,1). (2.9)

It is a differential equations because it involves the derivative dx/dt of the
unknown function z(t). Only the independent variable ¢ appears on the right
side of equation (2.9)

Definition 2.1 A solution of the initial value problem i = f(x,t) with
z(0) = zo on the interval [0,b] is a differentiable function xr = x(t) such
that (0) = zo and z(t) = f(z(t),t) for all t € [0, b].
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Figure 2.1: Actual yeast growth compared to logistic function (2.8)

At each point (¢, ) in the rectangular region
R={(t,z):0<t<bc<z<d},

the slope of the solution curve z = z(¢) can be found using the implicit
formula m = f(z(t),t). Hence the values m;; = f(z;,t;) can be computed
throughout the rectangle, and each value m; ; represents the slope of the line
tangent to a solution curve z(t) that passes through the point (¢;, z;). It can
be used to visualise how a solution curve fits the slope constraint. Sketches
of the slope field and solution can be constructed by using the MATLAB.
The following M — file will generate a graph analogous to Figure 2.2.

[t,x] = meshgrid(0:1.:8,1:-0.25:0);
dt=ones(5,9);
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K=0.5; % satutation coefficient
r=0.3; %growth rate

x1=0.2; %initial condition
x2=0.9; %initial condition
dx=r*(x-x.72/K)
quiver(t,x,dt,dx);

hold on

y=0:0.01:8;

z1=0.;

z2=0.5;

z3=x1*K ./(x1+(K-x1)*exp(-r*y));
z4=x2*%K ./ (x2+(K-x2)*exp(-r*y));
plot(y,z1,y,22,y,23,y,24)

hold off.

Definition 2.2 Given the rectangle R = {(t,z) : 0 <t < b,c <z <d}, as-
sume that f(x,t) is continuous on R. The function f is said to satisfy a
Lipschitz condition in the variable x on R provided that a constant L > 0
exists with the property that

|f(z1,1) — f(22,t)| < Lzt — 29

Theorem 2.1 Assume that f(x,t) is continuous in a region R. If f satisfies
a Lipschitz condition on R in the variable x and (ty,xy) € R, then the initial
value problem has a unique solution x = x(t) on the some subinterval ty <
t<ty+0.

Intuitively, a dynamic system is said to be in equilibrium if it does not
change as time proceeds. Thus, a population is in equilibrium if it stays the
some size. The mathematical way to put this would be: let z(¢) denote the
population at time ¢; if z(¢) is a constant function, equally if dz/dt = 0 for
all ¢, then the population is in equilibrium. Here is the formal definition used
for the kinds of differential equations of interest to us.

Definition 2.3 For the differential equation of the form

dx
— =1 (2.10)

the value T is called an equilibrium if f(z) = 0.

18



1.2

Figure 2.2: The slope field for the differential equation (2.7)

Observe that if Z is an equilibrium, then the constant function z(t) =
satisfies equation (2.10) and so z(t) = Z is called an equilibrium solution of
(2.10).

In order to describe the behaviour of the solution near an equilibrium
we introduce the process of linearization. If T is an equilibrium of the
differential equation & = f(z) so that f(Z) = 0, we make the change of
variable u(t) = x(t) — Z. Substitution gives

dz B
= () + )

The linearization of the differential equation at the equilibrium 7 is
defined to be the linear homogeneous differential equation
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dv df_@)
= (2.11)

The importance of the linearization lies in the fact that the behaviour of
its solution is easy to analyse.

Theorem 2.2 If all solution of the linearization (2.11) at an equilibrium T
tend to zero as t — oo then all solution of (2.10) with x(0)sufficiently close
to T tend to the equlibrium T as t — oo.

Definition 2.4 An equilibrium T is said to be stable if for every € > 0 there
erists 0 > 0 such that |z(0) — Z| < & implies |z(t) — Z| < € for allt > 0. An
equilibrium 1s said to be asymptotically stable if it is stable and if in addition
|z(0) — Z| < 6 implies limy_, o, z(t) = Z.

For differential equation Z(t) = f(x(t)) an equilibrium Z is asymptotically
stable if and only if

df(z)  _ df(2)
dt =z  dx <0.

If the population governed by logistic equations (2.7) is at equilibrium
K at some point of time, say ¢t = 0 for convenience, then it will at the
equilibrium and the function z(t) = K is a solution with the initial condition
z(0) = K. We get

Forz =0 dfd—(wo):r>0andfora‘c:K %:—r<0. As follows from
Figure 2.2 all solutions of the logistic equation trends to equilibrium z = K
as t — oo and the only solution that trends to & = 0 is the identically zero

solution z(t) = 0.
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2.4 Continuous Single-Species Population Mod-
els with Time Delay

Up to now in our study of continuous population models we have been assum-
ing that %(t¢), the growth rate of population size at a same time ¢, depends
only on z(t). However, there are situation in which the growth rate does not
respond instantaneously to change in population size. If we assume that the
per capacity growth rate &(t)/z(t) is a function of z(t — 7), as may be ap-
proximate for example in modelling a population whose food supply requires
a time 7. We are led to a model of the form

(t) = z(t)g(z(t — 7)) (2.12)

a differential-difference equation. For example, the delay logistic equation is

i(t) = ra()(1 — =7

= (2.13)

Definition 2.5 An equilibrium of the differential-difference equation

#(t) = x(t)g(z(t — 7))

is a value such that T(t)g(z) = 0, so that x(t) = T is a constant solution of
the differential-difference equation.

Observe that for the differential-difference equation (2.12) implies that
x = 0is always an equilibrium. The delay logistic equations has two equilibria
Z =0and Z = K. For differential equation &(t) = x(¢)g(x(t)) an equilibrium
x is asymptotically stable if and only if

d(wg(e) _ dg(a)

dr  z=z dx +9(7) <0,

so that the equilibrium x = 0 is asymptotically stable if g(0) < 0 and an

equilibrium Z is asymptotically stable if ¢'(Z) < 0. The asymptotic stability
of equilibrium Zz of the differential-difference equations

#(t) = 2(t)g(x(t — 7))
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requires additional condition. We let u(t) = z(¢)—Z and obtain the equivalent
differential-difference equation

a(t)

9(ZT 4+ u(t—1))
(9(z) + ' (@)ut — 7)) + fracg”(c)2u(t — 7)°
= u(t))(9(2) + 2g'(Z)u(t — 7)) + h(, u(t), u(t — 7))

The linearization of the differential-difference equation
#(t) = z(t)g(x(t — 7)) is defined to be the linear differential-difference equa-
tion

o(t) = g@)o(t) +zg' (@)v(t - 7))

Theorem 2.3 If all solutions of the linearization
o(t) = g(@)v(t) + 2g'(2)o(t - 7))
at an equilibrium T tend to zero as t — oo, then every solutions x(t) of

z(t) = x(t)g(x(t—7)) with |z(t) — Z| sufficiently small for —7 <t < 0 trends
to the equilibrium X as t — oo.

In order to describe the behaviour of solution of linearization, we must
study a problem more general

0(t) = av(t) + bu(t — 7)

We look for solution of the form v(¢) = ce* and obtain the characteristic
equation

A=a+be

In order that all solution of ©(t) = av(t)+bv(t—7) tend to zero as t — oo,
all solution of the characteristic equation must have negative real part. It is
possible to prove the following result.
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Theorem 2.4 All roots of the equation (z + a)e* +b =0, where a and b are
real, have negative real parts if and only if

a > —1
a+b > 0
b < (sin( —acos(

where ¢ is the oot of ( = —atan(, 0 < ¢ <7, ifa # 0 and ¢ = 7 if
a=0.
The following similar theorem holds
Theorem 2.5 If a,b are real number, then all roots z of
ae®* +b—ze* = 0

have negative real parts if and only if a < 1 and a < —b < v/ a? + a?, where «
is a root of a = atan «, such that 0 < a < w/2. If a = 0, then take o = /2.

For the equilibrium z = 0 the linearization is

Since ¢g(0) > 0 for most model of this type, the equilibrium z = 0 is
unstable. For the equilibrium z > 0, g(z) = 0 end the linearization is

o(t) = zg'(@)v(t—1))
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Using T'heorem 2.4 it is possible to show that the condition that all roots
of the characteristic equation have negative real part is

i
0< —br < —.
TS

For the delay-logistic equation this stability condition is 0 < r7 < 7.

A graphic display of the solution is often helpful for obtaining insights
into the behavior of solution. For delay-logistic equation, here is a display of
the solution with r =1, K =2,7 = 1.

2.5

solution y

time t

Figure 2.3: Numerical solution of logistic-delay equation

%  logist_delay
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%  The differential equations

h y’(t) = r*x y(t)*x(1- y(t-1)/K)

% are solved on [0, 10] with history y = 1 for
h t <=0.

% The lags are specified as a vector [1], the delay differential

% equations are coded in the subfunction DDEfun, and the history is
% evaluated by the function DDEHIST. Because the history is constant it
% could be supplied as a vector:

% sol = dde23(@ddefun, [1],1,[0, 101);

yA K=2, T=1, r=1

global r K

r=0.5;

K=2;

sol = dde23(@ddefun, [1] ,@ddehist, [0, 50]);

figure;

plot(sol.x,sol.y)

xlabel(’time t’);

ylabel(’solution y’);

function s = ddehist(t)
% Constant history function.
s = 1;

function dydt = ddefun(t,y,Z,r,K)
% Differential equations function.
global r K

ylagl = Z(:,1);

dydt = r*xy(1)*(1-ylagli(1)/K);
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2.5 Partial functional logistic equation in one
space dimension

Let us consider the following delayed logistic equation in one space dimension
with diffusion and a discrete time delay

2

0 0
au(x, t) = D@u(x, t) + au(z, t)(1 —u(z,t — 1)) (2.14)

with Neumann boundary condition

0
%u(x, t)=0, x=0,7, t >0, (2.15)

and initial conditions

u(z,t) = ¢(z,6) >0, 0<z<m, te(-1,0) (2.16)

where D, 7, are all positive constant.
We investigate the stability of the equilibrium u = 1 by changing variables
v =u — 1 to obtain

9] 0?
av(m, t) = D@U(x,t) —av(z,t —1)(1 +v(z,1)) (2.17)

The linearization around the equilibrium v = 0 takes the form

2
av(x,t) = D@v(x, t) —av(z,t —1) (2.18)
We look for the solution of the form wv(x,t) = ce™ coskz and obtain the
characteristic equation.

Let X = C([0,7]; R) As the Laplace operator has eigennvalues —k?, k =
0,1, ... with corresponding eigenfunctions coskx, A is a characteristic value
of the linearization if and only if for some & = 0,1,... A is a solution of
characteristic equation

A+ae ™+ DK = 0.

We need the following result:
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Theorem 2.6 Consider the equation
A+ae+ DE* = 0,

where D > 0. If 0 < a < /2, then every solution of the equation has a
negative real part. If o > 7/2, then there is a root y(«)+in(«) of the equation,
which 1s continuous together with its first derivative in o and satisfies 0 <
n(a) < m n(r/2) = 7/2, v(x/2) = 0, 7' (x/2) > 0, and v(a) > 0 for
a>7/2.
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Chapter 3

The Lotka-Volterra Equations

3.1 Predator-Prey Model

In the 1920s year Vito Volterra was asked if it were possible to expalian the
fluctuation which had been observed in the fish population of tha Adreatic-
sea. Volterra (1926) constructed the model has become known as the Lotka-
Volterra model because A. J. Lotka (1925) constructed a similar model in
the different context.

Let x(t) be the number of fish and y(¢) the number of sharks at time
t. We assume that the plankton, which is the food supply for the fish, in
unlimited, and thus that the per capita growth rate of the fish population in
the absence of sharks would be constant. Thus, if there were no sharks the
fish population would satisfy a different equation of the form

dx
— =z

dt
The shark on the other hand, defend on fish as their food supply, and we as-
sumed that if there no wish the sharks would have a constant per capita death
rate, thus, in the absence of fish, the shark population would a differential
equation of the form

dy _ _

We assumed that the presence of fish increases the shark growth rate, chang-
ing the growth rate form —yu to —p + cx. The presence of sharks reduces
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the fish population, changing the growth rate from A\ to A — by. This gives
Lotka-Volterra equations

dx_

pri z(A — by) (3.1)
% =y(p+ cx) (32)
(3.3)

We cannot solve this system of ordinary differential equations analytically,
but we can obtain some information about the behavior of this solution. To
solve for z(t) and y(¢) as a function of ¢, we eliminate ¢ and books for relation
between z and y. We look for orbits, or trajectories of the solution-curve in
the phase-plane representing the functional relation between x and y with
the time t as the parameter. We may eliminate ¢ from the equation in the
following way

dy/dt _dy  y(—p+cx)

de/dt — dr  x(\— by)

We may solve this differential equations by separation of variables:

—u+cr A—by
[ [
T )

—plogx +cx = Alogy—by+h

where h is a constant of integration, or

—plogz — Alogy +cx + by =h

The minimum value of the function
V(z,y) = —plogz — Alogy + cx + by

is obtaining by setting
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Figure 3.1: The slope field and trajectories of Lotka-Volterra equation

Then z = £ and y = 4, which is an equilitrium point of (3.1). Every orbit
of the system is given implicitly by an equation V(z(t),y(t)) = h, for some
constants h, which is determined by the initial conditions, i.e.

h = —plog(z(0)) — Alog(y(0)) + cz(0) + by(0)
The following M — files will generate Figure 3.1.

a=1.;b=1.;c=1.;d=1;

[yl,y2] = meshgrid(0:0.5:4,0:0.5:4)
Dy1Dt=y1.*(a-b.*y2);
Dy2Dt=y2.*(-d+c.*yl);
quiver(y1l,y2,Dy1Dt,Dy2Dt);

hold on
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zl=a/b;z2=d/c;

z=0:0.005:4;

plot(z,z1);

plot(z2,2);

tspan = [0,50]; yzero=[1.5,1.5];

options = odeset(’AbsTol’, 1le-7,’RelTol’, le-4);
[t,yl=0de45(QLV,tspan,yzero,options,a,b,c,d);
plot(y(:,1),y(:,2)),title(’’),grid

xlabel y_1(t),ylabel y_2(t)

tspan = [0,50]; yzero=[1.1,1.1];

[t,y]l=0de45(@LV,tspan,yzero,options,a,b,c,d);
plot(y(:,1),y(:,2)),title(’’),grid

xlabel y_1(t),ylabel y_2(t)

tspan = [0,50]; yzero=[2.5,2.5];

[t,y]l=0de45(@LV,tspan,yzero,options,a,b,c,d);
plot(y(:,1),y(:,2)),title(’’),grid

xlabel y_1(t),ylabel y_2(t)

tspan = [0,50]; yzero=[2,2];

[t,y]l=0de45(@LV,tspan,yzero,options,a,b,c,d);
plot(y(:,1),y(:,2)),title(’’),grid

xlabel y_1(t),ylabel y_2(t)

hold off

function yprime = LV(t,y,a,b,c,d)

WLV LV predator-prey parammetrized

h YPRIME = LV(T,Y,A,B,C)

yprime = [y(1)*(a-b*xy(2)); y(2)*(cxy(1)-d)]1;

3.2 A competition equation
Let us return to ecology, and model the interaction of two competing species.

If z and y denote their densities, then the rates of growth & /z and ¥ /y will
be decreasing functions of both x and y, since competition will act both
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within and between the species. The most simpleminded assumption would
be that this decrease is linear. This leads to

= z(a —bx — cy) (3.4)
= y(d—ez— fy)

with positive constants a to f. Again, since the boundary of R? is invariant,
so is R%r itself. In fact, if one population is absent, the other obeys the
familiar logistic growth law.

The z— and y—isoclines are given by

a—br—cy=20
d—ex— fy=20
in int R?. These are straight with negative slopes.

There remains the case of unique intersection F' = (Z,§) of the isoclines
in int R% when

_ af—cd _ bd —ae
x_bf—ce y_bf—ce (3:5)
The Jacobian of (3.2) at F is
—bx —czx
A= _ _ 3.6
[ —ey —fy ] (36)

We have to distinguish two situations:

(a) If bf > ce then the denominator in (3.3) is positive. This implies a f—cd >
0, bd — ae > 0 and hence

>

> (3.7)

Q|

QIS
| o

From the signs of & and ¢ in the regions I, II, III, IV we infer that every
orbit in int R% converges to F. This agrees with the fact that the eigenval-
ues of (3.4) are negative and Z, consequently, is a sink. This is the case of
stable coexistence, Figure3.2.

(b) otherwise

Q| o

~| o
QI
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Figure 3.2: The slope field and trajectories of competition equation

As seen from Figure3.3,all orbits in region I converge to the y-axis and all
those of region III to the z-axis. Since detA = ZY(bf —ce) < 0, F is a saddle.
Its stable manifold consist of two orbits converging to F. One of them lie
in region II, the other on i region IV. Together, they divide int R? into two
basins of attraction. All orbits from one basin converge to Fy = (0, %), all
those from the other one to F; = (,0). This means that - depending on
the initial conditions - one or the other species gets eliminated. This is the
so-called bistable case.

The following M files will generate Figure 3.2, 3.3.

hinterior equilibrium point a=10.;b=3.;c=1.;d=10;e1=2.5;f=1.5;
a=10.;b=2.5;c=1.5;d=10.;e1=3.;f=1.;

[yl,y2] = meshgrid(0:0.5:5,0:1:10);

Dy1Dt=yl.*(a-b.*yl-c.*y2);
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Figure 3.3: The slope field and trajectories of competition equation

Dy2Dt=y2.*(d-el.*yl-f.*xy2);
quiver(yl,y2,Dy1iDt,Dy2Dt);
hold on

z=0:0.05:4;
zl=(a-b*z)/c;z2=(d-elxz) /f;
plot(z,zl,’r’);
plot(z,z2,’c’);
plot(a/b,0,’+%);
plot(0,d/f,’+?);
z3=(axf-c*d) / (b*f-c*xel)
z4=(b*d-a*el) / (bxf-c*el)
plot(z3,z4,’+’);

tspan = [0,50]; yzero=[0.5,1];
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options = odeset(’AbsTol’, 1le-7,’RelTol’, le-4);
[t,yl=0de45(@comp_equat,tspan,yzero,options,a,b,c,d,el,f);
plot(y(:,1),y(:,2),’--"),title(’’) ,grid

xlabel y_1(t),ylabel y_2(t)

tspan = [0,50]; yzero=[0.5,8];

[t,yl=ode45(Q@comp_equat,tspan,yzero,options,a,b,c,d,el,f);
plot(y(:,1),y(:,2)),title(’’),grid

xlabel y_1(t),ylabel y_2(t)

tspan = [0,50]; yzero=[4.5,9];

[t,y]l=ode45(@comp_equat,tspan,yzero,options,a,b,c,d,el,f);
plot(y(:,1),y(:,2)),title(’’),grid

xlabel y_1(t),ylabel y_2(t)

tspan = [0,50]; yzero=[3.,1.7];

[t,y]l=ode45(@comp_equat,tspan,yzero,options,a,b,c,d,el,f);
plot(y(:,1),y(:,2)),title(’’),grid

xlabel y_1(t),ylabel y_2(t)

hold off

function yprime = comp_equat(t,y,a,b,c,d,el,f)

hcomp_equat competition equations

% YPRIME = comp_equat(t,y,a,b,c,d,e,f)

yprime = [y(1)*(a-b*y(1)-c*xy(2)); y(2)*(d-el*xy(1)-fxy(2))];

3.3 Lotka-Volterra Equations for More Than
Two Populations

The general Lotka-Volterra equation for n populations is of the form
n
i’i = :Ez-(rz--l—Zaijxj) i=1,...,n (39)
j=1

The z; denote the densities; the r; are intrinsic growth (or decay) rates, and
the a;; describes the effect of the j-th upon the i-th population, which is
positive if it enhances and negative if it inhibites the growth. All sorts of
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interactions can be modelled in the way, as long as one is prepared to assume
that the influence of every species upon the growth rates is linear called the
interaction matrix.

The state space is, of course, the positive orthant

R} =x=(z1,...,2,) eR":2; >0fori=1,...,n

The boundary points of RY lie on the coordinate planes x; = 0, which corre-
spond to the states where specifies 7 is absent. These "faces” are invariant,
since z;(t) = 0 is the unique solution of the i-th equation of (3.7) satisfying
2;(0) = 0. In such a model, a missing species cannot ”immigrate”. Thus the
boundary bd R? and consequently R itself are invariant under (3.7). So is
the interior int R%, which means that if 2;(0) > 0 then z;(¢) > 0 for all ¢
The density z;(t) may approach 0, however, which means extinction.

The ecological equations of the last chapter where examples of (3.7) with
n = 2. We shall see that all possible two dimensional cases can be classified.
In higher dimensions, many open questions remain. In particular, numerical
simulation shows that even the case of 3 populations may lead to some kind
of chaotic motion the asymptotic behaviour of the solution consist of highly
irregular oscillations and depends in a very sensitive way upon the initial
conditions. The long term outcome, in such a case, in unpredictable.

In this section, we shall describe a few general results about (3.7) and
then turn to some special cases of biological interest.

We will apply LaSalle’s extension theorem of Lyapunov stability. We
note the following definition and the theorem.

Let # = f(z) be a system of differential equations. The vector-valued
function f(x) is continuous in z for z € G where G is an open set in R™. Let
V be a C! function on R" to R.

Definition 3.1 We say V is Lyapunov function in G for & = f(zx) if V=
gradV.f <0 on G.

Let E=2¢G:V(z)=0.

Theorem 3.1 If V is a Lyapunov function in G for & = f(x), then each
bounded solution z(t) C G of £ = f(x) approaches M where M is the largest
wnvariant in set F.
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3.3.1 Interior equilibria

The equilibrium point of (3.7) in int R are the solutions of the linear equa-
tions

n
i+ Y ;=0 i=1,...,n (3.10)
j=1
whose components are postivie. (The equilibria on the boundary faces of R}
can be found in similar way: one has only to note that the restriction of (3.7)
to any such face is again of Lotka-Volterra type.)

Theorem 3.2 Int RY contains a- or w- limit points if and only if (3.7)
admits an interior equilibrium.

One direction of this proposition is trivial. A rest point coincides with
its own - and w- limit. It is a converse which is of interest, since it is
(in principle) not hard check. If (3.8) admits positive solutions. If it does
not, then every orbits has to converge to the boundary, or to infinity. In
particular, if int RY contains a periodic orbit, it must also contains a rest
point.

In order to prove the converse, let L : x — y be defined by

n
yizri—i-Zaijxj izl,...,n
j=1
If (3.7) admits no interior equilibrium, the set K = L(int RY) is disjoint
from O A well known theorem from convex analysis implies that there exists
a hyperplane H trough 0 which is disjoint from the convex set K. Thus there

exists a vector ¢ = (cy, ..., ¢,) # 0 which is orthogonal to H (c¢.x = 0 for all
x € H) such that c.y is positive for all y € K. Setting
V(x) =Y ¢loga;, (3.11)

we see that V' is defined on int R%. If x(¢) is solution of (3.7) in int R%, then
the time derivative of ¢ — V(x(t)) satisfies
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Thus V' is increasing along each orbit. But then no point y € intR% may
belong to its w- limit: indeed, by Lyapunov’s theorem, the derivative V would
have to vanish there. This contradiction completes the proof. It also shows:
Corollary: If (3.7) admits no interior equilibrium, then it is gradient-like
in int RY.

In general (3.8) will admit one solution in int R%, or none at all. It is
only in the ”degenerate” case detA = 0 that (3.7) can have more than one

solution: these will form a continuum of rest points.

3.3.2 The Lotka-Volterra equation for food chains

Let us investigate food chains with » members (chains with up to six members
are found in nature). The first population is the prey for second, which is
the prey for the third etc. ... up to the n-th, which is at the top of the food
pyramid. Taking competition within each species into account, and assuming
constant interaction terms, we obtain

.Q")l = I (7'1 — a1r1 — a12$2) (312)
Ty = Jﬂj(—’f‘j + Ajj—1Tj—1 — AjjTj — aj,j+1xj+1) ] = 2, e, = 1
Tnp = xn(_rn + Upp—1Tn—1 — ann$n)

with all r;,a;; > 0. The case n = 2 is just vynechane. We shall presently
see that the general case leads to nothing new:

Theorem 3.3 If (5.10) admits an interior equilibrium %, then T is globally
stable in the sense that all orbits in int RY converge to .

In order to prove this we write (3.10) as ;= z;w; and try
for suitably chosen c;, as a Ljapunov function in int Rf. Clearly
V(IE) = Z Cz(wz - .’Ezﬂ) = Z ci(xiwi — :Z"z-wi) = Z Ci(.’lii — :fz)wz (314)
T
Since T is an equilibrium, we have

Ty = Q5j5-1Tj-1 — QjjTj — Qjj4+1Tj+1
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for 5 =2,...,n— 1, and similar equation for j = 1 or n. This implies

wj = ajj-1(Tj1 — Tj—1) — aji(x; — Tj) — aj541(Tj01 — Tjpa)

Writing y; = z; — Z,, we obtain from (3.12)

n n—1
V== cagy; + 3 yivin (=it + ¢i1,5). (3.15)
j=1 j=1
We are still free to choose the constants ¢; > 0. Let us do it in such a way
that

St _ Cait (3.16)

Cj Aji1,5

holds for j =1,...,n. (3.14) then implies
V = — chajj(xj - jj)2 S 0. (317)

Let us consider the Volterra model for m species predator-prey systems in
the form:

T = m; (bi + Z%’%’) ; hi=1,...,m (3.18)

j=1

under the assumptions a;ja;; < 0, a; < 0. The following theorem holds.
Theorem 3.4 If the nontrivial equilibrium (Zi, ..., Tny) of the model (3.16)
1s feasible and there exists a constant positive diagonal matriz C such that
CA + ATC is negative definite, then the Lotka-Volterra model is globally

stable in the feasible region.

To prove this theorem Goh used the scalar Lyapunov function

V:ZCi(l'i—fi—filnl'i/fi), c; > 0.
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3.4 General mathematical model

In population dynamics and many other application of modelling, state space
lies in the nonnegative orthant. Recall that the positive orthant of n —
dimensional state space contains all points z = (zi, 29, ...,x,) with each
z; > 0. The nonnegative orthant ( R’) refers to point z; > 0.

For a given type of model, how can we be certain that embarrassing
negative population do not arise? In other words, we want to be sure that
solution or trajectories that start in the nonnegative orthant are trapped
therein.

Suppose the system of differential equations in the form

where each h;(z,t) is nonnegative for z € R’}.
The following is a simple theorem which has extensive fortunate implica-
tions for ecosystem modelling.

Theorem 3.5 Let

where: each g;(x,t) and each h;(x,t) is defined and continuous for all x € R’}
and all t and h;(xz,t) > 0 for i =1,2,...,n. Then all solutions with initial
value o = (Zo1, Zoz, - - -, Ton) € R} are nonnegative for all t > 0.

Well-posed system: 1. there exists a solution, 2. the solution is unique,
3. the solution depends continuously on the initial data.
Let us consider a general differential equation.

z; = fi(z,t) fori = 1,2,..,n

Note 3.1 A similar theorem holds for the following differential equations

where fi(x1,%2,...,%i—1,0,Tit1,...,%n,t) > 0 for all x € RY.
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Definition 3.2 For the differential equation of the form

dx
= = @) (3.19)

the value T is called an equilibrium if f(z) = 0.

Observe that if Z is an equilibrium, then the constant function z(t) = Z
satisfies equation (2.10) and so z(t) = 7 is called an equilibrium solution of
(3.17).

In order to describe the behaviour of the solution near an equilibrium
we introduce the process of linearization. If Z is an equilibrium of the
differential equation # = f(z) so that f(Z) = 0, we make the change of
variable u(t) = z(t) — Z. Substitution gives

dx B
o= () + 1)

The linearization of the differential equation at the equilibrium Z is
defined to be the linear homogeneous differential equation

@_#@v
dt  dz

(3.20)

The importance of the linearization lies in the fact that the behaviour of
its solution is easy to analyse.

Theorem 3.6 If all solution of the linearization (3.18) at an equilibrium T
tend to zero as t — oo then all solution of (3.17) with x(0)sufficiently close
to T tend to the equlibrium T as t — oo.

Definition 3.3 An equilibrium T is said to be stable if for every e > 0 there
erists 6 >) such that |z(0) — Z| < 0 implies |x(t) — Z| < € for all t > 0. An
equilibrium 1s said to be asymptotically stable if it is stable and if in addition
|z(0) — Z| < & implies limy_, o z(t) = Z.

We now examine a concept called asymptotic stability in the context of

linear system of ODEs. The following fundamental result applies to constant
coefficient systems.
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Theorem 3.7 Let A be a constant matriz with eigenvalues
AL, A,y g

Equilibrium T = 0 of linear differential equation ©(t) = Az(t) is asymp-
totically stable if and only if all eigenvalues of the matrix has negative real
part.

Now we recall some classic Hopf bifurcation theorem for the following
system of ODDEs

T = f(xalj')a

where f(0, ) = 0 for p in a neighborhood of 0.

Assume that A(u) = %Sc’—“ has a pair of complex conjugate eigenvalues
A and X such that A(u) = a(u) + iw(p), where a(0) = 0, w(0) = wy >
0, &/(0) # 0, and the remaining n — 2 eigenvalues have strictly negative real
parts. Then the system has a family of periodic solution.

3.4.1 Eigenvalues

Let A be a square matrix of dimension n x n and let v be a vector of
dimension n. The product Y = Av can be viewed as a linear transformation
from n-dimensional space into itself. We want to find scalars A for which
there exists a nonzero vector v such that

Av = \v; (3.21)

that is, the linear transformation T'(v) = Av maps v onto the multiple
Av. When this ocours, we call v an eigenvector that corresponds to the
eigenvalue A, and together they form the eigenpair A, v for v. In general, the
scalar A and vector v can involve complex numbers. For simplicity, most of
our illustrations will involve real calculations. However, the techniques are
easily extended to the complex case. The identity matrix I can be used to
express equation (3.19) as

(A — AT)v = 0. (3.22)
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The significance of equation (3.20) is that the product of the matrix
(A — AI) and the nonzero v is the zero vector! This linear system has
nontrivial solutions if and only if the matrix A — AI is singular, that is,

det(A — AT) = 0. (3.23)

This determinant can be written in the form

aj; — A Q12 A1n
21 age — A Qan,
. =0. (3.24)
ap1 Ap2 Qpp — )‘

When the determinant in (3.22) is expanded, it becomes a polynomial of
degree n, which is called the characteristic polynomial

p(A) = det(A — AI)
= (—D"A" + e A"+ A" et A+ cp) (3.25)

There exists exactly n roots (not necessarily distinct) of a polynomial
of degree n. Each root A can be substituted into equation (5.31) to obtain
an underdetermined system of equation that has a corresponding nontrivial
solution vector v. If \ is real, a real eigenvector v can be constructed. For
emphasis, we state the following definitions.

Definition 3.4 Eigenvalue. If A is ann z n real matriz, then its n eigen-
values A, Ag, ..., \, are the complex roots of the characteristic polynomial

p(A) = det(A — AI). (3.26)

Definition 3.5 Eigenvector. If A is an eigenvalue of A and the nonzero
vector A has the property that

Av = )v, (3.27)
then 'V is called an eigenvector of A corresponding to the eigenvalue .

Consider the characteristic equation

AL— A= A"+ b A"+ .. 4 by A+b, =0
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determining the n eigenvalues A of each real n x n square matrix A, where 1
is the identity matrix. Then the eigenvalues A all have negative real parts if

A1>0,A2>0,...,An>0,

where
by 1 0 0 0 0 0
bs by by 1 0 0 ... 0
A = bs by bs by by 1 ... 0
bok—1 bok—2 bok—3 bog—a bop—s bo—s ... b

Particularly for a given n we have the following Routh-Hurwitz condition:
E; polynomial P(z) = z + a is stable if a > 0.
nP:(a;2) =122+ ax + b is stable if a > 0,b > 0.
nP:(az:) =13+ ax® + bz + cis stable if a > 0,0 > 0,0 < ¢ < ab.
nP:(:;:l) =2*4+azr® +br? +cx+disstableifa > 0,6>0,0<c<ab0<d<
(abe—c?)

a2

3.5 Competition partial differential equation

Let us consider the following competition system with diffusion

0 0?

ayl(xat) = Dl@yl(xat) +y1(a1 — agye(z,t) — asys(z, 1)),
9 (1) = Do yn(,1) + yolas — asys(, 1)
(‘3ty2 Z,t) = 2atgy2 z, Ya2\G4 — A5Y3\T, 1)),

0 0?
ayg(i, t) = Dgﬁyg(x, t) + y3(—ag + agyi (z,t) + azya(z, 1)),

with Neumann boundary condition

45



0
a—xyz-(x,t) =0, z=0,m t >0, (3.28)

and initial conditions

yi (2,0) = ¢i(x) >0, 0<z<m, (3.29)

where D;, a; are all positive constant.
Let us denote T = (3 = Z—:,a’sQ = %ﬁa,fl = %_T“L””&) .
If x; > 0 then we have a positive spatially homogeneuos equilibrium and

the linearisation around this equilibrium takes the form

a 2

ayl(% t) = Dl@yl(% t) + yi(—a2ye(z,t) — asys(z, 1)),
9 (1) = Doyl 1) + ol —asyslz, 1)
8ty2 x, - 28t2?J2 Z, Y2 asys\x, 3

2

0
ays(%t) = Ds@ys(% t) + ys(asy(w,1) + arys(z,t)),

Let X = C([0,7]; R?) As the Laplace operator has eigennvalues —k?, k =
0,1, ... with corresponding eigenfunctions coskz, A is a characteristic value
of the linearization if and only if for some & = 0,1,... A is a solution of
characteristic equation

N = (—k’D+J)v ,k=0,1,...,

where J is a Jacobi matrix and D is a diagonal matrix, with d;; = d;.
The characteristic equation obtained from the linearization is given by:

N4+ A (k)N + Ag (k)X + As(k) = 0, where
A1 (n) = k‘2 (d1 + dg + dg)
A2 = k4(d2d3 + dl(dl =+ d2)) + (1;3&63_715'3 =+ a5a7§:2§:3

6 2 = = = =
A3 =k d1d2d3 +n (d2a3a6$1$3 + d1a5a7x2x3) — Q20506T1T2X3.
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To test the stability we use Routh-Hurwitz criterion. For £ = 0 we have
A;(k) = 0 which means the instability of the equilibrium point z. The
following M — file gives a numerical solution of the system.

function carasius

#Reaction-diffusion competition system
% Solves the PDE

global al a2 a3 a4 ab a6 a7 a8 di1 d2 d3
a2=0.93; a3=0.1;

a4=0.19; ab=0.2;

a6=1; a7=0.05;

a8=0.2; d1=0.01;

d2=0.03; d3=0.009;

%al=1.01;

al=0.1

m=0;

xmesh = linspace(0,3.14,45);

tspan = linspace(0,100,250);

sol = pdepe(m,@mbpde,@mbic,@mbbc,xmesh,tspan);
ul = sol(:,:,1);

u2 = sol(:,:,2);

subplot (121)

surf (xmesh,tspan,ul)
xlabel(’x’, ’Fontsize’, 12)
ylabel(’t’,’Fontsize’, 12)
title(’u_1’,’FontSize’, 16)

subplot (122)

surf (xmesh, tspan,u2)
xlabel(’x’,’Fontsize’, 12)
ylabel(’t’,’Fontsize’, 12)
title(’u_2’,’FontSize’, 16)
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function [c,f,s] = mbpde(x,t,u,DuDx)

global al a2 a3 a4 ab a6 a7 a8 dl d2 d3
c=[1,1,1];

f [d1;d2;d3].*DuDx;

S [u(1)*(a1-a2*u(2)-a3*u(3)); u(2)*(ad-ab*u(l3));
u(3)*(-a8+a6*u(1)+a7+u(2))1];

% _________________________________________________________________
function u0 = mbic(x);
w0 = [1; 1; 1]1;

% _______________________________________________________________
function [pa,qa,pb,qb] = mbbc(xa,ua,xb,ub,t)

pa = [0,0,0];
qa = [1,1,1];
pb = [0,0,0];
gb = [1,1,1];

3.6 Predator-Prey partial functional differen-
tial equation

Let us consider the following predator-prey system with diffusion and a dis-
crete time delay

0 0?

aM(x, t) = DlﬁM(a:, t) + M(z,t)(a — bM (z,t) — cN(z,t)), (3.30)
0 0?
aN(az,t) = DQ@N(&?J) +IN(z,t)(M(z,t — 1) — B),

with Neumann boundary condition

0 0
—_— = — = = >
(%M(x,t) (%N(x’t) 0, z=0,m, t >0,

and initial conditions
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Figure 3.4: Numerical solution

) le <_7-7 0)

0<z<rm

) >0,

t

N(xvt) = ¢($,

N(z,7t). We get
v(z,t) + 7lv(z, t) (u(z, t — 1) — B),

= M(x,1t),v(x,t)
62
=71D; ﬁu(x, t) + Tu(z, t)(a — bu(z, t) — cv(z,t)),
0 0?
&’U(ﬁ,t) = TDQ@

(1)

where Dy, Ds,a,b,c, !, 7, are all positive constant.
9,
ot

Let u(z,t)
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0 0
—_— = — = = >
agju(m,t) axv(ar:,t) 0, z=0,7m, t >0,

If a > b5 then we have a positive spatially homogeneuos equilibrium
(B, #) and the linearization around this equilibrium takes the form

0 0?

ayl(%t) = TDlﬁyl(mvt) + 70By1 (2,t) — cBrys(z,t)),
0 0? a—bp
ayQ(x,t) = TDgﬁyg(x,t) + 7l . yi(z,t —1),

Let X = C([0,7]; R?) As the Laplace operator has eigennvalues —k?, k =
0,1, ... with corresponding eigenfunctions coskz, A is a characteristic value
of the linearization if and only if for some & = 0,1,... A is a solution of
characteristic equation H(\) = detA(\) = 0, where

B bBr + 1Dk* BT
AR = _)J_< —l#m_’\) Dyrk?

That is A solves
A 4 7(bB 4 D1E? + Dok®)\ + 72 Dok (b3 + D1k?) + 187%(a — bB)e™ = 0
We need the following result:
Theorem 3.8 Consider the equation
M 4+pA+g()er+v = 0,

where p > 0, v € (0,7/2) are given constants, q(7y) is continuously differen-
tiable and satisfies q(y) > 0 and ¢'(y) > 0 in a neighborhood of vy, gammag
18 a real number such that

Wo

a(%) = psinwo ’

wo € (0,7/2)is the unique solution of
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Dby

5 tan w.
w? —v

Then Tiwy are zeros of equation with v = o and all others zeros with v = g
have negative real parts. Moreover, if M(7y) is the smooth curve of root such
that A(y) = iwy, then Re%)\(%) > 0.

By this theorem, we can see that if £ =1 and

T2D2(b,3 + Dl) <

b |

then at [ = [y, where

I _bﬂ‘*‘Dl‘{‘DQ Wo
7 Br(a—bB) sinw,

and

(b,B + D1 -+ Dg)wo
wg — 72D5 (b3 + Dy)
equation has a pair of purely imaginnary zeros “iwy and all other zeros

have negative real parts. moreover if \({) is the smooth curve of root such
that A(lp) = iwp, then Re%A(lg) > 0. Assume further that

= tanwy,

loBT(a — bB)
b3 + 4(D;y + Do)
By this assumption the following theorem holds.

<1

Theorem 3.9 If 7, Dy + Dy are sufficiently small,

lof1(a — bB)
b3 + 4(D1 + Do)

<1,

and

rDy(b + D1) < 3.,

then system (x.x) has a family of periodic solutions bifurcating fom the spa-
tially constant equilibrium (5, #), when [ is near .
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Chapter 4

The Chemostat

4.1 Single Chemostat

A chemostat is a piece laboratory apparatus used to cultivate bacteria. It
consists of a reservoir containing a nutrient, a culture vessel in which the
bacteria are cultivated, and an output receptacle.

Nutrient is pumped from the reservoir to the culture vessel at a constant
rate and bacteria are collected in receptacle by pumping the contents of the
culture vessel out at the same constant rate. The process is called continu-
ous culture of bacteria. We wish to describe the behavior of the chemostat
by modeling the number of bacteria and nutrient concentration. We shall
sketch the classical theory of the simple chemostat due to Novick and Szilard
(1950) and Monod (1950). We will obtain a model for two interacting pop-
ulation that describes a laboratory realization of a very simple lake. More
complicated chemostats, in which two or more cultures are introduced, give
multispecies models representing more complicated real word situations. We
let y present the number of bacteria and C' the concentration of nutrient in
the chemostat, both function of £. Let V' be the volume of the chemostat and
Q@ the rate of flow into the chemostat from the nutrient reservoir and also
the rate of flow out from the chemostat. The fixed concentration of nutrient
in the reservoir is a constant C(®).We assume that the average per capita
bacterial birth rate is a function b(C) of the nutrient concentration and that
the rate of nutrient consumption of an individual bacterium is proportional
to b(C), say ab(C). Then the rate of charge of population is the birth rate
b(C)yof bacteria minus the outflow rate @.y/V. The rate of charge of nutri-

93



ent volume is the replenshment rate @QC(®) minus outflow rate QC minus the
consumption rate ab(C'). This gives the pair off differential equations

gy = bC)y—qy
C = q(C - C) = pb(C).y,

where ¢ = Q/V and g = «a/V.
It is reasonable to assume that the function b(C') is zero if C' = 0 and that it
saturates when C becomes large. The simplest function with these properties

is
aC

T O+ A
where ¢ and A are constants, and this was the choise originally made by
Monod. The explicit chemostat model is now

b(C)

_aCy B

- ayc ¥
. _ 0) _ ﬁaCy
C q(C*” - C) Yol

4.2 Limiting behavior for competing species

Two competition models concerning n species consuming a single, limited
resource are discussed. One in based on the Holing-type functional response
and other on the Lotka-Valterra-type. The focus of the paper is on the
asymptotic behavior of solutions. LaSalle’s extension theorem of Lyapunov
stability theory is the main tool.

1. Introduction. The section is concerned with the limiting behavior,
as t — +oo, for the solutions of the system

Sit) = (S© —S(t))D—; 50 (4.1)
. m;z;(t)S(t) .
xz(t) W—Dﬂ?z(t), z-l,...,n

where S, D, k;, a;, m;, D; are positive. Only the positive solutions are ana-
lyzed, because they are of realistic interest.

The system (4.2) describes n species, with populations z;, i = 1,...,n,
and death rates D; competing for a single, limited resource S. This general-
izes the model (4.1) by allowing species-specific death rates. The species are
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assumed to feed on the resource with a saturating functional response to the
resource density. Specifically we assume that Michaelis-Menten kinetics or
the Holling ”disc” model describe how feeding rates and birth rates change
in increasing resource density. Close parallels of this model in future are e.g.
the plantkonics communities of unicellular algae in lake and oceans.

The mathematical future of this section is to apply LaSalle’s extension
theorem of Lyapunov stability theory. This technique allows us to generalize
the results and to give simple, elegant proof. In this section, we will discuss
the limiting behavior of solution of the system (4.2). First we note the
following lemmas, omitting the proofs.

Lemma 4.1 The solutions S(t),z(t),i = 1,...,n of (4.1) are positive and
bounded.

Lemma 4.2 Let b; =m;/D;, \i =a;/(bi —1),i=1,...,n. If
(1)  bi<1
or
(i) N> SO,
then lim;_, o x;(t) = 0.
Our basic hypothesis is (H,)
0<M<Ah<...<N,  A<SO.

The equations in (4.2) may be relabeled without loss of generality, so that
the parameters ); are nondecreasing in .

Theorem 4.1 Let (H,) hold.
(1) If 0 < Ay < Ag < ... < A\, then the solutions of (4.1) satisfy

t—00
: _ e (89 = X)(a+M)D
tli}gg .’L‘l (t) - ml - kl)\l I (4'2)
lim z;(t) = 0 1=2,3,...,n.
t—00
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(1)) If 0 < Ay = ... =X < Ajy1 < ... < Ay, for some 5,2 < j < n, then
the trajectory of (4.1) approaches M, where

j
M={(Al,xl,...,a:j,o,...,()):(S 1)D = Z xz,x,ZO i=1,...
1= 1
Proof. A rearrangement of (4.2) yields
(t) ( ; +S(t)
S(t) - /\z

Let
S

V(S,z1,...,xp) = S=A1— A 1n (/\ )—1—01 l(ml—xl) —x. ln< )]—l—ZczxZ,
1

and G = {(S,z1,...,2,) : S >0, z; >0, i = 1,...,n}. Choose ¢; =
ki/(m; — D;), i = 1,...,n. Then time derivative of V' computed along
solution of the differential equation is

: (8@ —9) kixy L x;
= (S = M) 2D - Ly
V=5 /\1)[ S a1+ S 2/-3(/\1 Mo TS a;+ S

or

_ =MD o oy Sy oy
= (al n S)SAI( )\18 a15 )+ Zzzzkz()\l )\Z)ai T S

If0<)\1<)\2§...§)\n, then

<0onG. (4.3)

E:{()\1,$1,...,$j,0,...,0)Zwlzo}

and the largest invariant set M in E'is {(\1, 27, 0,...,0)}. Hence (4.4) follows
directly from Lemmad4.1 and LaSalle’s theorem.

FO< A =...=X <A1 <... <\, for some j, 2 < j <n, then from
(4.4) we have

E:{()\1,$1,...,1‘j,0,...,0)Z.’El,...,ﬂi]’ ZO}

and

J
M = {()\1,.’131,...,.’1,'j,0,...,0) . (S(O) _)‘I)D:Z

Hence the trajectory approaches M.
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4.3 Asymptotic behavior of a chemostat with
delayed response in growth

Let us consider the asymptotic behavior of solutions of a model of two species
of microorganisms in a chemostat. The derivation of our model is as follows.
The parameters are the folow rate of the chemostat denoted by D > 0 and
the concentration of growth-limiting nutrient in the fresh infolowing medium
denoted by S The concenttration of nutrient external to cells at time ¢
is assumed to be a continuous function S(t). For i = 1,2, species-specific
per capacita nutrient uptake function is assumed to be a known continuous
function p; : (0,00) with p;(0) = 0, and the species-sfecific time delay in
nutrient conversion is denoted by ;.

S@) = (SO -s@)D - ;pi(S(t))xi(t)

l’l(t) = —$1(t))D + eDTlpl(S(t))azl(t — T1) (44)

.Tg(t) = —X9 (t))D + €DT2p2(S(t)).ZC2 (t — 7'2)
(4.5)
in the unknowns S(t), z1(t) and x4(t) with continuous nonnegative initial
data S(t) = ¢o(t),zi(t) = ¢;s(t),t € (—7,0) . Throughout our analysis of
chemostat we assume that D and S© are positive constant, that 7, 7, are
positive constant with 7 = maz{r, 72} and the function p; : (0,00) are
continuously differentiable and bounded with p;(0) = 0 and p}(£§) > 0 for

¢ > 0. The equilibruim points of (4.6) depend on the parameters of the
model. Let a; and b; for i = 1,2, be defined by

[ 5O pi(S©) < DePm,
“EA p i (DeP) pi(S©) > DePr,

b = e_DT"(S(O))—aZ-)

The only possible eqilibrium points are

EO = (5(0)7070)a El = (a17b1a0)7 E2 = (a270762)-
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Equilibrium points E;, FE, exist if and onlly if a; < S©. The stability of
E is determined by the stability of the trivial solution of the linearization,
which can also be written as

v = —(D+pi(a)b)ve(t) — DePTvi(t) — pa(ar)va(t),
o = pi(a)bie " Pug(t — 7) — Dui(t) — Dui(t — 1)
vy = —Duy(t) + pa(ar)e ™Puy(t — 7).

Linearization has nontrivial solutions of the form

(’UO (t), (%1 (t), V2 (t)) = (koe/\t, kle’\t, kze/\t)

if and only if A is a root of the characteristic equation H () = detA(\) =
0, where

—(D+pi(a)by  —DePr —p2(a1)
AN = M — | pi(a)be PN D 4 Den 0
0 0 —D + py(a;)e (PN

Upon simplification, the charasteristic equation becomes

H(\) = (A+D)(A+ D+ pi(a1)by — De™™ ) (A + D — py(a;)e P,
Theorem 4.2 If A,B are real number, then all roots z of
A +B—ze* = 0
have negative real parts if and only if A < 1 and A < —B < Vo2 + A2,
where « s a oot of a = Atan «, such that 0 < o < /2. If A =0, then take
a=m/2.

We conclude that E; is asymptotically stable if and only if a; < as.
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4.4 Diffusive mathematical model of chemo-
stat

Another alternative is empty to use one vessel and remove the the ”well-
stirred” hypothesis of the basic chemostat yielding a system of reaction-
diffusion equations of the following form assuming equal diffucion rates:

oS dOQS mySu meSv

a 3372_611—{—5_0,2—}‘5’

ou 0y myiSu

ou _ 0% 4,

ot PR (4.6)

ov v mySv

E = d@+a2+s, O<z <,

with boundary conditions
oS
e — _q0
ax (t’ 0) S )
ou ov
B_x(t’ 0) - 8_:v(t’ 0) =0,
g—i(t, ) +rS(t,m) = 0,
Z—Z(t, ) +ru(t,m) = 0, (4.7)
ov
%(t, ) +ru(t,m) = 0
and initial conditions

S(0,z) = So(z) >0,

u(0, = wu(z) >0, uo(z) # 0,

v Y, /UO('I) Z Oa Uo(CU) 74 Oa

function chemostat
% Reaction-diffusion chemostat system
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% Solves the PDE

global al a2 ml m2 di1 d2 d3 sO
di1=1;d2=1; d3=1;s0=1.;

al=1; a2=1; mi=4; m2=1;

m=0;

xmesh = linspace(0,3.14,45);
tspan = linspace(0,10,50);

sol = pdepe(m,@mbpde,@mbic,@mbbc,xmesh,tspan) ;
ul sol(:,:,1);

u2 = sol(:,:,2);

u3 = sol(:,:,3);

subplot (131)

surf (xmesh,tspan,ul)
xlabel(’x’, ’Fontsize’, 12)
ylabel(’t’,’Fontsize’, 12)
title(’u_1’,’FontSize’, 16)

subplot (132)

surf (xmesh,tspan,u2)
xlabel(’x’,’Fontsize’, 12)
ylabel(’t’,’Fontsize’, 12)
title(’u_2’,’FontSize’, 16)

subplot (133)

surf (xmesh,tspan,u3)
xlabel(’x’,’Fontsize’, 12)
ylabel(’t’,’Fontsize’, 12)
title(’u_3’,’FontSize’, 16)

% ________________________________________________________________

% Subfunction

% _________________________________________________________________

function [c,f,s] = mbpde(x,t,u,DuDx)
global al a2 ml m2 di d2 d3 sO
c=[1,1,1];

f = [d1;d2;d3].*DuDx;
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s = [-mi*xu(1)*u(2)/(al+u(1l))-m2*xu(1)*u(3)/(a2+u(l));
mixu(1)*u(2)/(al+u(1)); m2*xu(1)*u(3)/(a2+u(1))];

function u0 = mbic(x);
w0 = [1; 1; 11;

function [pa,qa,pb,gb]l = mbbc(xa,ua,xb,ub,t)
global al a2 ml m2 dil d2 d3 s0

pa = [s0,0,0];

qa = [1,1,1];

pb = [ub(1),ub(2),ub(3)];
gb = [1,1,1];
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Chapter 5

Application of Optimal Control
Theory

5.1 Nonlinear optimal problem

The Pontriagin maximum principle deals with the general control problem
of maximizing an objective function

7w = [ gty u(e)ar, (5.1)

where u(t) is chosen from some class of admissible controlllers uw on 0 < ¢ < T,
with a state equation

g =ftyt,u®), y(0) =y (5.2)

terminal condition y(t) = yy.
We define the Hamiltonian

H(t,y(t), u(t), A1) = g(t, y, u) + Af (¢, y, w), (5.3)

where A is an unknown function called the adjoint variable. The maximum
principle says that if "u” is the optimal control and y the corresponding
solution, then there is an adjoint variable A such that

D_ oy of
dt Oy dy

(5.4)
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and the optimal control maximizes the value of the Hamiltonian over all
admissiblle controllers for each ¢, that is

H(t, :07 Ia: )‘) = mamuEQH(ta @7 u, )‘)

In general, we have three functions y(t), u(t), A(t) to determine, and three
equations can be used for their determination.

We now give a interpretation of the maximum principle. The compu-
tations which lead to this interpretation actually can be redefined to give
a proof of the maximum principle under the assumption that all functions
invaloved are sufficiently smooth (twice differentiable). For a full proof, we
refer the reader to the books of Pontriagin or Lee and Markus (1968).

We consider the problem of maximizing

T
T() = [ g(s,y(s),u(s))ds
0
subject to a state equation

y=f(ty,u)

with initial and terminal condition

y(to) = yo and y(t1) = .

The admissiable controllers ”u(t)” on a specified finite interval to < ¢ < T
will constitute a certain family ”F” of measmable m-vector functions.

Let we consider the initial point (¢g,yo) as variable, assuming that an
optimal control 4(t) exists for all initial points (%o, yy) under consideration.
For each initial point we define the function

w(ty, yo) = J[u] = maxJ[u] (5.5)

Because the optimal policy must be optimal at each point of the interval
to <t < T, we must have

wlto, o) = [ 9(s.3(6),a(s))ds + w(t,5(0)

for every ”t”, where

tl

w(t, ) = [ 9ls,3(6),a())ds = maa [ gls,y(s),u(s))ds

64



Differentiation of (5.8) with respect to ”t” gives

Gt g(0) = 22 PCID 1 400, a00) = ~g(0, 0 200)

If we define A(t) = %—';’(t, 9(t)) and the Hamiltonian
H(t,y,u,A) = g(t,y,u) + Af(4,y, u)
the maximum principle implies that

H(t,9,0,\) = mazH(t,g,u, ).

The Function G(t,y,u) defined by

ow

ow
G(t,y,u) = E(t’ y) + a—yf(t,y,u) +g(t,y,u)

has the property that
G(t,y(t),u(t)) = 0. (necessary condition of optimality of w(t,y))
It is possible to show, that
G(t,y(t),u) < 0 (noninereasing in the neighbourhood of (y(t),u(t)))
G(t,y,u) is maximized by the choise y = §(t), v = @(t). In particular, if we
fix y = §(t) then G(t,4(t),u) is maximized by the choise v = 4(t) and if we
U

fix u = a(t) then G(t,y, @) is maximized by the choise y = ¢(t) as.

H(t,9(t),u,A) = g(t,9,u) + Af(t (1), u)

= gtt.g0)+ 252 10 50), )
= G(t.g,u) - 281D,

maximazition of G(t, 9, u) equivalent to maximization of H (¢, 3(t),u, \).
Derivative %‘;jy’“) at y = §(t) and u = 4(t) is equal to 0, i. e.
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0G(t,y,u) Pw  O*w owof 0Og
= t _ —_— =
By ooy oy Wt g5, T3, =0

and we get the adjoint equation

d\(t) d (ow(t,y)\ 0w  Fw _

dt  dt

5.2 The steepest Descent Algorithm

The procedure we use to solve optimal control problems by the method of
steepest descent is

1. Select a discrete approximation to the nominal control history u(®(t), ¢ €
[to, tf], and store this in the memory of the digital computer. This can
be done, for example, by subdiving the interval [t,,tf] into N subin-
terval (generally of equal duration) and considering the control u® as
being piecewise-constant during each of these subintervals; that is,

u(O)(t) :u(O)(tk)’ S [tk,tk+1)’ k:071:aN_]—
Let the iteration index ¢ be zero.

2. Using the nominal control history u®®, integrate the state equations
(5.2) from ¢, to t; with initial conditions x(t;) = xo and store the
resulting state trajectory x() as a piecewise-constant vector function.

3. Calculate A (¢;) by substituting x®)(¢;) from step 2 into Eq. (5.4).
Using this value of A()(¢;) as the ”initial condition” and the piecewise-
constant values of x(¥) stored in step 2, integrate the adjoint equations
from t; to to, evaluate 9H® (t)/u, t € [ty, ;], and store this function
in piecewise-constant fashion. The trajectory of adjoiny equation does
not need to be stored.
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oH®
H ou

‘ <1, (56)

where v is a preselected positive constant and

2 . T .
tr [oH® oH®
M= (t)| dt.
to au au
terminate the iterative procedure, and output the external state and

control. If the stopping criterion (5.6) is not satisfied, generate a new
piecewise-constant control given by

oH®
H Ou

(1 (4.) = u® (¢
u ( k) u ( k) —+ T 811
where
u?(t) =u®(ty),  forté€ [ty tr), k=0,...,N—1.

Replace u®(¢;) by uC+9(¢,),k=0,..., N — 1, and return to step 2.

5.3 Optimization of Harvesting Returns

Let us suppose that we try to regulate the fishery by reducing the harvesting
effort in order to increase the field. In order to do this we must take into a
account the time value of money because of interest. As the quantity which
we shall is the present value of all future harvest rents, we shall do this by
using a discount rate J, and as we are studying a continuous model we shall
assume that this discount rate is compounded continuously.

When we speak of a discount rate §, we mean that the present value
of an amount which would have value 1 at a time ¢ units in the future is
(1 — §)t. If the discount is compounded K times per year, we use discount
rate % per discount period. Then "t” years would be t K discount period
and the percent value of an amount 1 at a time ¢ units in the future would

tK
be (1 — %) . By continuous compounding we obtain

5 tK
Am (“?) :

67



Let us assume that the harvest at time ”t” has the form

h(t) = E.G(y(t)),

where E - effort, G(y) - non-negative, non-decreasing function of ”7y”. We
continue to assume a constant price ”p” and constant cost ”c” of unit effect.

Then the unit harvest cost when the population level is y is a function ¢(y)
c

given by ¢(y) = R
That the net evenue is

pEG(y)At — cEAt = (p — ¢(y))h(t)At.

The presente value of all future harvesting effect is thus

Th(®) = [ o~ c(w)ht

If we choose a finit time horison

T = [ e~ cly)h(t)ir

The optimal control problem which we wish to solve is to choose the
harvest rate function which will maximize the integral J(h(t)) subject to the
state equations

y = F(y) — h(t)

and the constraints y(¢) > 0 and 0 < A(t) < hpas
We will show that

X 0 if y<vy*
h(t) =4 Fy*) ify=y"
hmaz — 1f Yy >y

We have
g(t,y,h) = e (p—c(y))h

f(ta Y, h’) = F(y) - h’(t)

The Hamiltonian has the form
H(t,y,h, ) = e (p — c(y))h(t) + A(t)(F(y) — h(t))
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and the adjoint equation
d\
dt
The maximum principle gives

H=h(t) (e (p— ) — A®)) + A F(y)

If \(t) > e % (p — c(y)) then h(t) =0
If A(t) < e (p — c(y)) then h(t)

—c (y)h(t)e " + AF'(y)

hmam

When \(t) = e~%(p — c(y)), we have

—de " (p — c(y)) = = (y)he " + AF'(y)

= —d(yF(y)e™” +e " (p—cy)F'(y)
(F(y) =h)

=e " (=Y Fy)+ (p—cv)F'(y))

We get
S(p—ely)) = %(F(y»(p—c(y))
F(y) — WEy) _

(p—cly))

Let y* is a solution of the equation then h(t) = F(y*). c(y) is non-
increasing function of y

For y > y* is c(y) < c¢(y*) and A < e~ (p — c(y))

If y < y* then c(y) > c(y*) and A > e % (p — c(y)) and we get

. 0 if y<y*
ht)=1{ Fly") ify=y"
hmaz — 0f y > y*.
Note that we have in effect set an equilibrium value terminal condition

when we replaced h by F(y), ei. F(y(T) = EG(y(T)) to reach optimal
equilibrium population level y*.
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Figure 5.1: Optimal harvesting

function optimal_control
global al a2 K r p ¢ be
al=1;a2=0.5;K=5;r=2;p=5;c=2;
contmax=4;be=0.01;

[y1l,y2] = meshgrid(0.5:0.5:7.5,0.5:0.5:7.5);
Dt=ones (15,15) ;
DyDt=r*y2.*(1-y2/K) ;
quiver(yl,y2,Dt,DyDt,’c’);
ocl=fzero(@OCF,10)
D=fz(y2,r,K,ocl,contmax) ;
for i=1:15
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for j=1:15
Dy2Dt (i, j)=D(i);

end
end
hold on
quiver(yl,y2,Dt,Dy2Dt, ’r’);
z1=K;
z2=o0cl;
z=0:0.005:7.5;
plot(z,zl,’r’);
plot(z,z2,’y’)
tspan = [0,7.5]; yzero=[0.6];
options = odeset(’AbsTol’, le-7,’RelTol’, le-4);
[t,y]l=0de45(@FY,tspan,yzero,options,r,K,ocl,contmax) ;
plot(t,y,’g’),title(’’),
xlabel ’time’,ylabel y
tspan = [0,7.5]; yzero=[7.5];
[t,yl=0de45(QFY,tspan,yzero,options,r,K,ocl,contmax) ;
plot(t,y,’b’)
hold off

function harvest = FY(t,y,r,K,ocl,contmax)
WFY F(y) parammetrized
h HARVEST = FY(t,y,r,k)
if y>ocl cont=contmax;
elseif y == ocl cont=y*r*(1-y/K);
else cont=0;
end
harvest = [y*r*(1-y/K)-cont];
end

function fopl = OCF(y)

%0CF Function of optimal population level
% 0CF(y,al,a2,p,c,r,K)

global al a2 K r p ¢ be

fy=y*r*(1-y/K) ;

cy=cx(a2+y)/al/y;

dfy=-2*r/K*y+r;
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dcy=-c*a2/al/y~2;
fopl = dfy*(p-cy)-dcy*fy-bex*(p-cy);
end

function [z] = fz(y,r,K,ocl,contmax)
WFZ F(y) parammetrized
% HARVEST = FY(y,r,K,ocl,contmax)
for i=1:15
if y(i) > ocl cont(i)=contmax;
end
if y(i) == ocl cont(i)=y(i)*r*(1-y(i)/K);
end
if y(i)<ocl cont(i)=0;
end
end
for j=1:15
z(§)=r*y(j)*(1-y(j)/K)-cont (j);
end
end
end

5.4 The growth model of microorganisms

One of the important tracks of biotechnology is to examine the capability of
microorganisms to degrade harmful substances which are the result of indus-
trial production. In this section we start from a simple mathematical model
describing the growth of mmiicroorganisms on two substitutable nutrients xz;
and x,,, assuming that substrate x; inhibits the assimilation of the other.

The model is based on the folloving assumptions:

1. A single microbial population grows, which is fed with a medium
containing two substitutable nutrients (x1, z3) as limiting factors.

2. An organism exhibits the preference of nutrient x; over nutrient x,.

3. The uptake rates of nutrients x1 and z, are those of the Monod and
the 'Double Monod’ type, respectively.
Based on the above assumption, we can write equation of specific growth

72



rates of the organism on each substrate:
HimazT1
= —_—, 5.8
Kl + 2 ( )
9 — H2mazT2 K3
KQ + X9 ) K3 + 2

ul

1 (5.9)

where fijmae 1s the maximum specific growth rate of the organisms on
substrate 'i’. The second factor in equation (5.2) represents the inhibition
effect of x; on the assimilation of substrate x, with the inhibitor constant
Kg.

The rate of the cell growth depends on the combined contributions from
the growth on z; and x5 and on the cell concentration x3. The kinetics
of a multiple substitutable substrate utilization has been modelled by using
an additive growth rate equation that incorporates separate functions to
describe the growth and the utilization of the individual components of a
mixture. The balance equation of the biomass in the chemostat is

T3 = x3 (ul/y1 + p2/ys — D — b) (5.10)
The substrate utilization kinetics is given by the following equations

2y = —plzs + D(xy, — x1) (5.11)
37.2 = —,Ltl.’l?g —+ D(l’QF — LEQ) (512)

where D is the dilution rate of the chemostat, x;; is the concentration of z;
in the feed and y; are the yield coefficients of the nutrients.

In the terms of our second assumption, substrate z; has been preferen-
tially used, i. e. it inhibited the initial rate of the substrate z, utilization.
We show that in spite of this it accelerates the degradiation of this substrate.
This phenomenon may be studied in the continuous flow system.

In the continuous flow system the concentration of x; in the inflow water
can be regulated by the addition of the preferred substrate. The question
is how to add the preferred substrate to the inflow water so as make the x4
concentration drop beyond a define limiting value within the shortest time
T.

Let us denote u(t) = z1,(t). The task is to find a function u(t) for which
the objective function:

T
J(u,T) = /O dt
3
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attains its minimum, where the terminal time T is defined by the inequality

29(T) < e. (5.13)

Hence we are led to the following optimal control problems: to find u(t)
satisfying the constraints

u(t) € (0; Unaz)

which minimize J(u,T) with T defined by the inequality (5.6). We solve
the problem by using Pontryagin’s maximum principle (Pontryagin et al.,
1983) which involves the definition of the Hamiltonian and a set of adjoint
differential equations corresponding to the state variable. For this problem,
the Hamiltonian is linear in v and can be represented as

H=o0ou+v,

where o is referred as the switching function, and depending on its value we
have following optimal solution

ﬁ(t):{o if 0 <0,

Himax Zf o> 0.

Terminal time 7T is determined by equality z5(7T") = e.
Let we consider the following penalty function
T T )
Te(u, T) = / dt + 5k/ (min(0, zs — €))? dt
0 0

where [ is an increasing sequence of positive number.

T
Je(u,T) = /O (1 + B (min(0, z, — ))°) dt
0Ji(n,T)
m+1 _ pm k\'% —
T =T = A

—T™ — )\, (1 + Br (min(0, z2 — 5))2)
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Chapter 6

Numerical solution

6.1 Numerical solution of ordinary diferen-
tial equations

Differential equations are commonly used for mathematical modelling in sci-
ence. Many mathematical models of biological problems result in the formu-
lation of a first order ordinary differential equation of the form

Here f is a given function of two real variables and y is unknown function of
the independent variable ”t”. In order to determine the solution uniquely, it
is necessary to improve an additional condition on y. This usually takes the
form.

y(to) = Yo
Definition 6.1 A solution to the initial value problem (L. V.P.)
v = fly, 1) with y(to) = yo
on an interval (to;b) is a differentiable function y = y(t) such that
y(to) = yo and y(t) = f(y(t),1)

for all t € (to;b)
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Definition 6.2 Given the rectangle
R={(yt):c<y<d, a<t<b},

assume that f(y,t) is continuous on R. The function is said to satisfy a
Lipschitz condition in the variable y on R provided that a constant L > 0
exists with the property that

[f(y1,8) = (2, )| < Ly2 — w1

for all (y1,t), (y2,t) € R. The constant L is called a Lipschitz constant for
f.

Theorem 6.1 (Ezistence and Uniqueness)
assume that f(y,t) is continuous in a region

R={(y,t):c<y<d, a<t<b}.

If f satisfied a Lipschitz condition on R in the variable y and (to,vo) € R,
then the initial value problem

rg = f(y’t)’y(tO) =Y

has a unique solution y = y(t) on some subinterval to <t <ty +9

The aim of this charter is to derive numerical techniques for solution of
I.LV.P. at a sequence of points t, = t; + kh. We shall let y; demote the
numerical value obtained as an approximation to the exact solution y(y).
The size of the interval h is usually called the step length.(size)

6.1.1 FEuler’s Methods

We now show how the differential equation and given initial condition can
be used to calculate values y1,y2,y3,... in a step-by-step manner. First of
all we choose the absissas (mesh point) for the points. We subdivide the
interval (to;b) into M subintervals and select the mesh points ty = to + kh

for k=0,1,...,n, where h = b_ﬁa We now proceed to solve approximately

Y = f(y,t) over (to;t,) with y(ty) = yo.
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The simplest way of approximating this equation is to replace the deriva-
tive y(to) by approximation #3¥. This gives

Y1 — Yo
h

= f(yﬂa to)

which can be rearranged as

11 = Yo + hf (Yo, o)

The process is repeated and generates a sequence of points that approx-
imates the solution curve y = y(t). The general step for Euler’s methods
is

tht1 =tk + hy Y1 = Yk + A S (Yk, te)
fork=0,1,.... M -1

function E = euler (f, a, b, ya, M)

% Input - f is the function entered as a string ’f’

% — a and b are the left and right end points

% — ya is the initial condition y(a)

% — M is the number of steps

%0utput- E = [T’ Y’] where T is the vector of abscissas and
% Y is the vector of ordinates

h = (b-a)/M;

T = zeros(1, M+1);

Y = zeros(1l, M+1);

T = a:h:b;

Y(1) = ya;

for j = 1:M

Y(j+1) = Y(j)+hxfeval(f, T(j), Y(G));
end

E= [T Y’];

6.1.2 Predictor-Corrector Methods
Trapezoidal Formula

The next approach introduced a new idea for constructing an algorithm to
solve the IL.V.P

y(t) = fy(t), 1) over (to;b)  y(to) = vo-
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to obtain the solution point (¢1,y;), we can use the fundamental theorem of
calculus and integrate 9(t) over (o, %) to get

[ s w0t = [ ottt = (e - oo

When equation is solved for y(t1), the result is

t1
y(t1) = y(to) + ) fy(t),t)dt.
0
Now a numerical integration method can be used to approximate the
definit integral. If the trapezoidal rule is used with the step h = t; — ¢y, then
the result is

(0 = ylto) + 5 (7o o) + Fyn,12)

Notice that the formula on the right-hand side involves the yet to be deter-
mined value y(¢;). To proceed, we use an estimate for y(¢;). Euler’s method
will suffice for this purpose. At each step, Euler’s method is used as a pre-
diction, and then the trapezoidal rule is used to make a correction to obtain
the final value.

The general step for method is

Per1 = Y+ hf(y, k), ths1 +h

h
Yk+1 = Yrt §(f(yka te) + f(Prt1: tet1))

function H = heun (f, a, b, ya, M)

% Input - f is the function entered as a string ’f’
% - a and b are the left and right end points

% - ya is the initial condition y(a)

% — M is the number of steps

%0utput- H = [T’ Y’] where T is the vector of abscissas and
% Y is the vector of ordinates

(b-a)/M;

zeros (1, M+1);

zeros (1, M+1);

a:h:b;

H <35
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Y(1) = ya;

for j = 1:M

k1 = feval(f, T(j), Y(j));

k2 = feval(f, T(j+1), Y(j)+hxkl);
Y(j+1) = Y(j)+(h/2)*(k1+k2);

end

H=I[T Y’];

6.1.3 Runge-Kutta Methods

The fourth-order Runge-Kutta methods is based on computing y;.1 as fol-
lows:

Ykt1 = yk%(fl +2fo+2f3+ fa)

where
fvo = Fyr,t)
fo = Tt m =)
fio= et ot o)

fo = f(ye +hfs,te+h)

This method is started as follows.Start with the initial point (o, o) and
generate the sequence of approximation using

Yet1 = ykg(fl +2fo+2f3+ fa)

function R = rk4 (f, a, b, ya, M)

% Input - f is the function entered as a string ’f’

» - a and b are the left and right end points

% - ya is the initial condition y(a)

% — M is the number of steps

%0utput- R = [T’ Y’] where T is the vector of abscissas and
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% Y is the vector of ordinates

h = (b-a)/M;

T = zeros(1, M+1);

Y = zeros(1, M+1);

T = a:h:b;

Y(1) = ya;

for j = 1:M

k1 = hxfeval(f, T(j), Y(j));

k2 = hxfeval(f, T(j)+h/2, Y(j)+k1/2);
k3 = hxfeval(f, T(j)+h/2, Y(j)+k2/2);
k4 = hxfeval(f, T(j)+h, Y(j)+k3);

Y(j+1) = Y(j)+(k1+2¥k2+2*%k3+k4)/6;
end
R = [T Y’];

6.1.4 System of differentiable equations

This section is an introduction to systems of differential equations. To illus-
trate the concepts, we consider the initial value problem

z= f(t,x,y) x(to) = o
j= gtzy)  yo) =y

over (to, b)

Euler’s method for solving the system is easy to formulate. The interval
(to,b) is devided into M subintervals, h = %= and the mesh points are
tx+1 = tx + h. This is used to get the recursive formulas for Euler’s method:

tk+1 = tk + h

Thp1 = T+ hf(te, 2k, yi)

Yk+1 = hg(tk,xk,yk) kZO,l,...,M—l

Runge-Kutta method of order 4 are

h
Tpt1 = Tp+ E(fl +2fy +2f3+ fa)
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h
Yer1 = Yr+ 8(91 + 292 + 293 + 94),

where
fi = flte, zr, k)
h

h h
fo = f(tk+§,$k+§f1;yk+§g1)

h h h
fz = f<tk+§,$k+§f2,yk+§gz)

fo = f(tk+h, o+ hfs,ye + hgs)

g1 = g(tka Tk, yk)
h

t +h +hf +
= —. X J— _
g2 g\l 9 k 9 15 Yk 291

t +h —i-hf -l-h
= —. X J— _
g3 g\l 9 k 9 2, Yk 292

gs = g(tx + h,zx + hfs, yx + hgs)

Runge-Kutta methods to approximate the solution of the system of dif-
ferential equations.

function [T, Z] = rks4 (F, a, b, Za, M)

% Input - F is the system input as a string ’F’
% - a and b are the end points of the interval
% - Za = [x(a) y(a)] are the initial conditions
% — M is the number of steps

%0utput— T is the vector of steps

h - Z = [x1(t) =xn(t)]; where xk(t) is the approximation
% to the kth dependent variable

= (b-a)/VM;

zeros(1, M+1);

zeros (M+1, length(Za));

a:h:b;

H N H B
1]
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Z(1,: ) = Za;

for j 1:M

k1 = hxfeval(F, T(j), Z(j,: ));

k2 = hxfeval(F, T(j)+h/2, Z(j,: )+k1/2);
k3 = hxfeval (F, T(j)+h/2, Z(j,: )+k2/2);
k4 = hxfeval(F, T(j)+h, Z(j,: )+k3);

Z(j+1,: ) = Z(j,: )+(k1+2xk2+2¥k3+k4)/6;
end

6.2 Numerical solution of delay differential
equation - Linear spline approximation

We introduce a useful technique for approximating of differential-difference
equations of the form

©(t) = f(z(t), z(t — 7))
with a goal solving them numerically. The idea is to take the delay interval
of length 7 and divide it up into N interval. At each point of the partition,
say t;, we define 2(¢;) to be a node of a linear spline. We will approximate
the function z(t) over this interval by taking a piecewice linear function. The
approximating function is described by the function (yo, ..., yn). Let

yj(t) = z(t — j7/N)
for the N 4+ 1 nodes j = 0,..., N. In partiicular yy(t) = z(t — 7). Be-
tween nodes y; is a linear function. We see that the derivation of y,(t) is
approximately

. Yji—1 — Y5
(1) = =D
y]( ) T/N
Using the linear spline approximation, we obtain the system of ordinary
differential equations (containing no time delay)

() = f(yo,yn)
N

%) = —(yi-1 =~ y)
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for j =1,..., N. With this notation, we have the following theorem.

Theorem 6.2 Under the condition listed above

z(t — 1) =yn(t) + O(1/N)

as N — oo, uniformy for t on any finite set over which x(t) exists.

6.2.1 DDE problems - Numerical solution with dde25

The DDE solver can solve systems of ordinary differential equations

y(t) = f(t’ y(t)a y(t - 7—1)’ te ’y(t - Tk))

where t is the independent variable, y is the dependent variable, and ¥ rep-
resents dy/dt. The delays (lags) 71, ..., 7, are positive constants.

In an initial value problem, we seek the solution on an interval [to, /]
with ¢y < t;. The DDE shows that g(¢) depends on values of the solution at
times prior to ¢. In particular, §(¢y) depends on its values for ¢ < ty, i.e., its
history S(t).

The function dde23 solves initial value problems for delay differential
equations (DDEs) with constant delays. It integrates a system of first-order
differential equations

y(t) = f(ta y(t)a y(t - 7—1)’ s ’y(t - Tk))

on the interval [to,ts] with ¢y < ¢ty and given history y(t) = S(¢t) for ¢t < t.
dde23 produces a solution that is continuous on [tg,tf]. You can use the
function deval and the output of dde23 to evaluate the solution at specific
points on the interval of integration.

dde23 tracks discontinuities and integrates the differential equations with
the explicit Runge-Kutta (2,3) pair and interpolant used by ode23. The
Runge-Kutta formulas are implicit for step size longer than the delays. When
the solution is smooth enough that steps this big are justified, the implicit
formulas are evaluated by a predictor-corrector iteration.
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DDE Solver Basic Syntax

The basic syntax of the DDE solver is

sol = dde23(ddefun,lags,history,tspan)
The input arguments are

ddefun A function that evaluates the right side of the differential equations.
The function must have the form
dydt = ddefun(t,y,z)
where the scalar t is the independent variable, the column vector y is
the depend variable, and Z(:,j) is y(t — 7;) for 7,=lags(j).

lags A vector constant positive delays 71, ..., 7.

history Funstion of ¢ that evaluates the solution y(t) for ¢ < t5. The function
must be of the form
S = history(t)
where S is a column vector. Alternatively, if y(¢) is constant, you can
specify history as this constant vector.
If the current call to dde23 continues a previous integration to t0, use
the solution sol from that call as the history.

tspan The interval of integration as a two-element vector [t0,tf] with tO<tf.

The output arguments sol is a structure created by the solver. It has
fields:

sol.x Nodes of the mesh selected by dde23

sol.y Approximation to y(t) at the mesh points of sol.x
sol.yp Approximation to §(t) at the mesh points of sol.x
sol.solver 'dde23’

The evaluate the numerical solution at any point from [t0,tf], use deval
with the output structure sol as its input.

Additional DDE Solver Arguments

For more advanced applications, you can also specify as input arguments
solver options and additional parameters
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options Structure of optional parameters that change the default integration
properties. This is the fifth input argument.
sol = dde23(ddefun,lags,history,tspan,options)
”Creating and Maintaining a DDE Options Structure” on page 5-17
tells you how to create the structure and describes the properties you
can specify.

pl,p2,... Parameters that the solver passes to ddefun and the history func-
tion, and all functions specified in options.
sol = dde23(ddefun,lags,history,tspan,options,pl,p2,...)
The solver passes any input parameters that follow the options argu-
ment to the functions every time it calls them. Use options=[] as a
placeholder if you set no options. In the ddefun arguments list, param-
eters follow the other arguments.
dydt = ddefun(t,y,Z,p1,p2,...)
Similarly, if history is a function, then
S = history(t,p1,p2,...).

Solving DDE Problems

The section uses an example to describe:

e Using dde23 to solve initial value problems (IVPs) for delay differential
equations (DDEs)

e Evaluatong the solution at specific points

Example: A Straightforvard Problem

This example illustrate the straightforward formulation, computation, and
display of the solution of a system of DDEs with constant delay. The history
is constant, which is often the case. The differential equation are

n@t) = nt-1)
Yo(t) = wu(t—1) +a(t —0.2)
y3(t) = (t)
The example solves the equations on [0,5] with history
wnt) =1
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y2(t) = 1 fort<0
ys(t) = 1

function ddexl

#DDEX1 Example 1 for DDE23.

% This is a simple example of Wille’ and Baker

%  that illustrates the

%  straightforward formulation, computation, and

% plotting of the solution

% of a system of delay differential equations (DDEs).
h

%  The lags are specified as a vector [1, 0.2], the

% delay differentialequations are coded in the

%  subfunction DDEX1DE, and the history is

% evaluated by the function DDEX1HIST.

%  Because the history is constant it

%  could be supplied as a vector:

% sol = dde23(@ddexlide,[1, 0.2],0nes(3,1),[0, 51);
h

% See also DDE23, @.

%  Jacek Kierzenka, Lawrence F. Shampine and Skip Thompson
%  Copyright 1984-2002 The MathWorks, Inc.
%  $Revision: 1.2 $§ $Date: 2002/04/15 03:35:26 §$

sol = dde23(@ddexide,[1, 0.2],@ddex1hist, [0, 5]);
figure;

plot(sol.x,so0l.y)

title(’An example of Wille’’ and Baker.’);
xlabel(’time t’);

ylabel(’solution y’);

function s = ddexlhist(t)
% Constant history function for DDEX1.
s = ones(3,1);
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function dydt = ddexlde(t,y,Z)
%» Differential equations function for DDEX1.
ylagl = Z(:,1);
ylag2 = Z(:,2);
dydt = [ ylagl(1)
ylagli(1l) + ylag2(2)
y(2) 1;

6.3 Numerical solution of partial differential
equations

Let us consider the one-dimensional parabolic differential equation

ou 5, 0%u
— = "= +s(,t,u), 6.1
ot 0x? ( ) (6.1)
where a < x < band ty <t <{t;. Initial and boundary condition must be
supplied in the following form. For a < z < b and ¢ = %y the solution must
satisfy u(z,ty) = ug(x) for a special function ug. For z = a and ¢, <t < t;
the solution must satisfy

u(a,0) = ¢1(t) andu(b,0) = g2(?)

Assume that the rectangle R = {(z,t) : 0 < z < a,0 < ¢t < b} is
subdivided into n — 1 by m — 1 rectangles with sides Az = h and At =
k. Start at the bottom row, where ¢ = ¢35, and the solution is u(z;,t;) =
uo(z;). A method for computing the approximations to u(z,t) at grid points
in successive rows {u(z;,t;) : ¢ = 1,2,...,n}, for j = 1,2,...,m, will be
developed.

The difference formulas for u(x,t) and u,,(x,t) are

u(z,t+ k) —u(z,t)

u(z,t) = + O(k) (6.2)
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and

u(x — h,t) — 2u(z,t) + u(x + h,t)

2 + O(h?) (6.3)

Ugz (T, 1) =

The grid spacing is uniform in every row: ;41 = x;+h (and z;_1 = x;—h),
and it is uniform in every column: ¢;; = t; + k. Next, we drop the terms
O(k) and O(k?) and use the approximation u; ; in equations (6.2) and (6.3),
which are in turn substituted into equation (6.1) to obtain

Uigl — Uij _ aUi-1j — 2Uij + Uip1

L =cC 72 + ]CSZ'J', (64)

which approximates the solution to (6.1). For convenience, the substitution
r = c®k/h? is introduced in (6.4), and the result is the explicit forward-
difference equation

Ui, j+1 = (1 - QT)’LI,Z',J' + T(ui—l,j + ui-l-l,j) + ksi,j. (65)

Equation (6.5) is employed to create the (j + 1)th row across the grid,
assuming that approximations in the jth row are known. Notice that this
formula explicitly gives the value w; ;11 in terms of u; 1, u; ; and w;4q ;.

The simplicity of formula (6.5) makes it appealing to use. However, it is
important to use numerical techniques that are stable. If any error made at
stage of the calculations is eventually dampened out, the method is called
stable. The explicit forward-difference equation (6.5) is stable if and only if
r is restricted to the interval 0 < r < % This means that step size k£ must
satisfy k < h?/(2¢?).

function U = forwdif (f, cl1, ¢2, a, b, ¢, n, m)
% Input - u0 =u(x, 0) as a string ’u0’

% - a and b right end points of [0,a] and [0, b]
% - c the constant in the heat equation

% — n and m number of grid points over [0, al and [0, b]
%0utput- U solution matrix

% Initialize parameters and U

a/(n-1);

b/ (m-1);

c"2%k/h"2;

1-2%r;

n =B N B
1}
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U = zeros (n, m);

% Boundary conditions

U1, 1:m) = ci;

U(n, 1:m) = ¢c2;

% Generate first row

U(2:n-1, 1) = feval(f, h:h:(n-2)*h)’;
% Generate remaining rows of U

for j = 2:m

for i = 2:n-1

U(i, j) = s*¥U(1, j-D+rx(U(i-1, j-1)+U(i+1, j-1));
end

end

U=10’;

6.3.1 The Crank-Nicholson Method

An implicit scheme, invented by Jon Crank and Phyllis Nicholson, is based
on numerical approximations for solution of equation (6.1) at the point (z, ¢+
k/2) that lies between the rows in the grid. Specifically, the approximation
used for uy(x,t + k/2) is obtained from the central-difference formula,

” (33 tt g) _ ulo,t ’2 —u D L o). (6.6)

The approximation used for u,(x,t + k/2) is the average of the approxima-
tions gz (z,t) and uz,(x,t + k), which has an accuracy of the order O(h?):

2
+u(z + h,t + k) +u(z — h,t) — 2u(z,t) + u(z + h,t)) + O(h?)

1
Uy (x, t+ E) = 2—h2(u(x —h,t+ k) —2u(z,t+ k) (6.7)

In a fashion similar to the previous derivation, we substitute (6.6) and (6.7)

into (6.1) and neglect the error terms O(h?) and O(k?). The employing the

notation u; ; = u(x;,t;) will produce the difference equation

Uij1r — Uig _ 2Mi1j41 — i1 + i1 + Uiy — 25+ Uit + ks; ;(6.8)
k 2h? ’

Also, the substitution r = c?k/h? is used in (6.8). But this time we must

solve for the three ’yet to be computed’ values w; 1 j+1,%;j+1 and wiyq i1
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This is accomplished by placing them all on the left side of the equation.
Then rearrangement of the terms in equation (6.8) results in the implicit
difference formula

—rUi—141 + (24 27) Ui — TU1 G
= (2 — 27’)114',]' + T(Ui_ljj + U"H—l,j) + kSiJ. (69)

for i = 2,3,...,n — 1. The terms on the right-hand side of equation (6.8)
are all known. Hence the equations in (6.8) form a tridiagonal linear system
AX = B. The six point used in the Crank-Nicholson formula (6.8), together
with the intermediate grid point where the numerical approximations are
based.

Implementation of formula (6.8) is sometimes done by using the ratio
r = 1. In this case the increment along the ¢-axis is At = k = h?/c?, and the
equations in (6.8) simplify and become

—Uim1,j41 + AU — Uigrj41 = Uim1j + Uigrj + KSig, (6.10)

for v = 2,3,...,n — 1. The boundary conditions are used in the first and
last equations (i.e. wy; + 141 = ¢ and Uy, = Upj+1 = Co, respectively).
Equation (6.9) are especially pleasing to view in their tridiagonal matrix from
AX =B.

[ 4 —1 1T U2,j+1 i [ 201 + Uz, j + ]{382,3'
-1 4 -1 O U3, j+1 Ug,5 + Uy,5 + k‘Sg,j
-1 4 -1 Upj+1 | = | Up-ijtUpprgt sy
o -1 4 -1 Up—2,5+1 Un—3,j + Un_1,; + kSp_2;
i =1 4 [ lup1jy1 ] | Un-oj+2c0+ksn 1

When the Crank-Nicholson method is implemented with a computer, the
linear system AX = B can be solved by their direct means or by iteration.

function U = crnich (f, c1, ¢2, a, b, ¢, n, m)

% Input - f = u(x, 0) as a string ’f’

% - cl =u(0, t) and c2 = u(a, t)

% - a and b right end points of [0, al] and [0, b]
% — ¢ the constant in the heat equation
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% - n and m number of grid points over [0, a] and [0, b]
%0utput- U solution matrix; analogous to Table 10.5

%» Initialize parameters and U

h = a/(n-1);

k = b/(m-1);

r c"2xk/h"2;

sl = 2+2/r;

s2 = 2/r-2;

U = zeros (n, m);

% Boundary conditions

U1, 1:m) = ci;

U(n, 1:m) = c2;

% Generate first row

U(2:n-1, 1) = feval(f, h:h:(n-2)*h)’;

%» Form the diagonal and off-diagonal elements of A and
% the constant vector B and solve tridiagonal system AX = B
Vd(1, 1:n) = silxones(1l, n);

vda(l) = 1;

Vd(n) = 1;

Va = -ones(1, n-1);
Va(n-1) = 0;

Vc = -ones(1, n-1);
Vc(1) = 0;

Vb(1) = ci;

Vb(n) = c2;

for j = 2:m

for i = 2:n-1

Vb(i) = U(i-1, j-1)+U(i+1, j-1)+s2*U(i, j-1);
end

X = trisys(Va, Vd, Vc, Vb);
U(l:n, j) = X’;

end

U=U;

91



6.3.2 Semi-discretize methods for partial differential
equation

Let us consider the system of ODEs

y(t) = Ay(t)+y).*(1—y) +v

where Ais N —by — N and v is N — by — 1 with

0 1 |
-1 0 1 o
A = ’[‘1 —1 0 1
@) -1 0 1
-1 0|
- _2 1 -
1 -2 1 @)
+749 1 -2 1 :
O 1 -2 1
i L =2

where 7, = —a/(2h) , T2 =b/h* and v = (ry — 71,0,...,0,79 + 71). Here,
a, b and h = 1/(N + 1) are parameters. This ODE system arises when the
method of lines based on centrel differences is used to semi-discretize the
partial differential equation (PDE).

2

2 8) + a2 u(t) = b2z t) +ule, (1 uls 1), 0<z <1,

9
ot ox 0z?

with Dirichlet boundary conditions u(0,¢) = wu(1,¢) = 0 and initial data
u(z,0) = (1 + cos(27z))/2
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function rcd
%RCD Stiff ODE from method of lines
%on reaction-convection-diffusion problem.

N =238; a=1; b = be-2;
tspan = [0 2]; space = [1:N]/(N+1);

yO = 0.5%(1+cos(2*pi*space));

yo = y0o(:);

options = odeset(’Jacobian’,Q@jacobian);

options = odeset(options,’RelTol’,1e-3,’AbsTol’,1e-3);

[t,y] = odelbs(@f,tspan,y0,options);

e = ones(size(t)); U = [e y el;
waterfall([0:1/(N+1):1],t,U)

xlabel (’space’,’FontSize’,16), ylabel(’time’,’FontSize’,16)

h e Nested functions ——----—-—-
function dydt = f(t,y)

A3 Differential equation.

rl = —ax(N+1)/2;

r2 = bx(N+1)"2;

up = [y(2:N);0]; down = [0;y(1:N-1)];

el

[1;zeros(N-1,1)]; eN = [zeros(N-1,1);1];

dydt = rix(up-down) + r2*(-2*y+up+down) + (r2-ril)xel + ...

(r2+r1)*eN + y.*x(1-y);
end

function dfdy = jacobian(t,y)
%JACOBIAN Jacobian matrix.

rl = —ax(N+1)/2;

r2 = bx(N+1)"2;

u = (r2-ri1)*ones(N,1);

v = (-2%r2+1)*ones(N,1) - 2xy;
w = (r2+r1)*ones(N,1);
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dfdy = spdiags([u v w],[-1 0 1],N,N);
end

end

time space

Figure 6.1: Numerical solution

6.3.3 Partial Differential Equations with pdepe

MATLAB’s pdepe a class of parabolic/elliptic differential equation (PDE)
systems. These systems involve a vector- valued unknown function u that
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depends on scalar space variable, x, and a scalar time variable, t. The general
class to with pdepe applies has the form

OGN R R Y (R A N O (R
c ‘rL‘a auaax at =T 3x X ‘rL‘a auaax S xa auaax I

where a < x < band ty <t < t;. The integer m can be 0,1 or 2, correspond-
ing to slab, cylindrical and spherical symmetry, respectively. The function
c is a diagonal matrix and the flux and source function f and s are vector
valued. Initial and boundary conditions must be supplied in the following
form. For a < z < b and t = t, the solution must satisfy u(z,ty) = ug(x) for
a specified function uy. For £ = a and ¢, <t <ty the solution must satisfy

ou

pa(x7 t? u) + qa(xit)f (‘T’ t? u? %) = 07

for specified functions p, and g,. Similarly, for = b and ?y <t < ¢y,

0
pb(xatv U) + Qb(ﬂf; t)f (m,t,u, a_z> =0

must hold for specified functions p, and gy. Certain other restrictions are
placed on the class of problems that can be solved by pdepe; see doc pdepe
for details.

A call to pdepe has the general form

sol=pdepe(m,@pdefun,@pdeic,@pdebc,xmesh,tspan,options,pl,p2,...);

which is similar to the syntax for bvp4c. The input argument m can take the
values 0,1 or 2, as describe above. The function pdefun hast the form

function[c,f,s] = pdefun(x,t,u,DuDx,p1,p2,...)

It accepts the space and time variables together with vectors u and DuDx
that approximate the solution u and the partial derivative du/0dx, and re-
turns vectors containing the diagonal of the matrix ¢ and the flux and source
functions f and s. Initial conditions are encoded in the function pdeic, which
takes the form

function u0 = pdeic(x,p1,p2,...)
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The function pdebc of the form
function [pa,qa,pb,qb] = pdebc(xa,ua,xb,ub,t,p1,p2,...)

evaluates pg, gy, pp and g, for the boundary conditions at xa = a and xb = b.
The vector xmesh in the argument list of pdepe is a set of points in [a, b] with
xmesh(1) = a and xmesh(end) = b, ordered so that xmesh(i) ; xmesh(i+1).
This defines the = values at which the numerical solution is computed. The
algorithm uses a second-order spatial discretization method based on the
xmesh values. Hence the choice of xmesh has a strong influence on the accu-
racy and cost of the numerical solution. Closely spaced xmesh points should
be used in regions where the solutions is likely to vary rapidly with respect to
x. The vector tspan specifies the time points in [¢y, ¢;| where the solution is to
be returned, with tspan(1)=ty, tspan(end) =t; and tspan(i)itspan(i+1). The
time integration in pdepe is performed by odelbs and the actual timesteps
values are chosen dynamically—the tspan points simply determine where the
solution is returned and have little impact on the cost or accuracy.
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Chapter 7

More complex mathematical
models

7.1 A Mechanistical Model of the Adaptation
of Phytoplankton Photosynthesis

7.1.1 Description of the Model

Modelling phytoplankton photosynthesis in aquatic ecology is mostly based
on an empirical approximation of the photosynthesis-light (P - I) curves.
However, because different types of curves seem to fit better particular sit-
uations and parameters of these curves vary widely from observation to ob-
servation, the prediction obtained are limited in scope. One of the reasons
is that the process of photo-adaptation is not taken into account. Therefore,
more recently attempts have been made to use algal physiological informa-
tion for building for ecological purposes somewhat more elaborate mecha-
nistic models of the process and to cover photo-adaptation (Crill 1977, Liou
and vanEybergen 1982, Geider and Platt 1986, Eilers and Peeters 1988). It
is clear that no equivalence between detailed physiological models of the bio-
chemical mechanisms of photosynthesis and ecological models is useful. The
purposes are different and therefore also the models. Nevertheless, without
covering at least the principal physiological mechanisms no major progress of
ecological models can be expected. In this respect models with a few param-
eters having some physical meaning are to be recommended. The present
paper is based on one of such models.
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Basic for the following consideration is the mechanistic model of phyto-
plankton photosynthesis by Eilers and Peeters (1988). It is based on unit pro-
cesses concerning the cellular reaction centres called photo—syntheticfactories—
PSF. Tt is known from algal physiology (e.g. Steward 1974) that three
states of a PSF are possible: z; - resting, =, - activated and x3 - inhibited.
Transitions between states depend both on light intensity and time. The
probabilities of the PSF being in the state x;,x9 or x3, are given as py, po
and ps, respectively. Transitions between states can be expressed as follows:

p1 = —alp; + yp2 + 0p3 (7.1)
P = alp — (BI+7)p:
p3 = Blps — dps
The parameters «,(3,7 and ¢ occurring in this model are positive
constants.
Let p(t,p%) be a solution of (1) with the initial condition p(0,p°) = p°,
where p? + p3 + pd = 1. Note that solutions of the system (1) exist for all
t > 0. By adding up the right-hand side of (1) we get

p1+p2+p3 =0,
ie. Spi(t,p’) =1 forall ¢t > 0. Of course these equations are considered

in S={pe R :p +ps+ps=1} Thesimplex S is positively invariant.

7.1.2 Global behaviour under constant condition

Theorem 7.1 Let «,f,7,0 and I be positive, then there exists an unique
positive equilibrium p  which is globally asymptotically stable on S.

Proof 7.1 Vector p is the solution of the following linear equation system

—alp; + yps + 0ps = 0 (7.2)
alp;— (BI+v)po= 0
BIpy —0ps = 0

Let us consider the matricx D = P + pE, where pmax Py, E s the unit
matriz. D s an irreducible nonnegative matriz and so the apparatus of the
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Perron-Frobenius theory of a nonnegative matriz applies. Since 1P =0, also
1D = pl, where 1 denotes the unit vector. By the Perron-Frobenius theory
there is a unique positive right eigenvector r associated with the eigenvalue
p and we can normalize to get

pi =i/ X1

Since (P + pE)p = pp, then. Pp =0 and p > 0. By the Perron-
Frobenius theorem we get (see Akin, 1979 for proof) that the matriz P is a
stable matriz on S, i.e. P has one zero eigenvalue and the other eigenvalues
have negative real parts. This proves the statement of the proposition. From
Proposition 2 it follows that system (1) has a unique positive equilibrium p
with entries

(7.3)

where F = afI? + (a+ )61 + 76.

7.1.3 Optimization of photosynthetic production

Let us assume that phytoplankton regulates its photosynthetic production
rate (FP) with a certain strategy which maximizes production. The rate of
the photosynthetic production FP is proportional to the number of transi-
tions from z, to z; (Eilers and Peeters 1988). In this section we investigate
for a fixed value of light intensity I the optimal values of o*, 8*,v* and
0*,i.e. values «, 3,7 and ¢ for which the photosynthetic production FP is
under the given environmental condition expressed by [ is maximal under
constraints

*

a* € [Qmin, Cmas)
ﬁ* € [ﬁmma /Bmax]
fy* € [ Ymin r)/ma:v]
5* € [ min; maw]

We will examine two strategies:
1. instantaneous maximal photosynthetic production with respect to «, 3,7
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and § i.e. F'P = vyp; — max,
2. integral maximal photosynthetic production as a goal function

T
J(a, B,7,0) = /’ypg(t)dt — max
0

Local optimality

In the case 1, we examine the following function

. adly
Sy + (B + ad)] + aBI?

FP

By straightforward calculation we get

o = Qmaz (7.4)
'7* = Ymaz (75)
0" = Omaz-

Global optimality

The optimization problem consists in finding the functions oy, < a*(t) <

AOmaz, ﬁmm S ﬂ* (t) S ﬁmam; Ymin S /Y* (t) Z Ymazx and 5mm S 5* (t) S 5mam
which maximize the functional

T
J(O!,ﬁ,’}/, 6) = /’YPQ(t)dt,
0

where T is constant. To find an optimal solution and test its uniqueness
we use the Pontryagin maximum principle (Pontryagin et al. 1983), which
gives a necessary condition for optimal control. For the problem considered
the Hamiltonian has the form :

H(a, B,7,6,p,2) = alpi(zo—21) +yp2 (1421 —22) +0ps(21—23) + BIpa (23— 22)
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and the adjoint equation is
z2=—2P+b b=(0,—7,0)

with terminal condition z(T") = 0.

By routine calculation we get that for all ¢ < T, 2z3(t) < 21(t) < 22(t)
and 1+ z(t) > 2(t), (see Appendix). It means that an optimal solution
which maximizes the Hamiltonian has the form

™ (t) = Qmax (7.6)
5 (t) = Bmin
v (t) = Ymax (77)
o (t) = Omas

and we get the following proposition.

Theorem 7.2 The optimal control o*,3*,v* and 6* which maximizes the
goal function

T
J(a, B,7,0) = /0 Tp2(t)dt,
using
p="Pp
is determined by (8) uniquely and is independent of T > 0.

7.1.4 APPENDIX

The adjoint equation of system (1) has the form :

2:'1 = leI(Zl — 2’2)
Zp="(e—2—1)+ BI(z — 2)
23 = 6(23 — 21).

We now prove the following lemma:

Lemma 7.1 Let z(t) be a solution of (14) with initial condition for t —
—o0, z(T) =0, then for all t,0<t<T holds:

1+ 21(t) > 2(t) > 21(t) > 2(1).
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Proof 7.2 z(T) = 0, therefore

21(T) = al(z1(T) — 2o(T)) =0
2(T) = v(22(T) — 21(T) = 1) + BI(2(T) — z3(T)) = —v
Z3=10(23 — 21) = 0.

For the second derivative of zy and z3 there hold

Z(T)

al(2(T) — 2(T)) = —aly
&(T) = 0(4(T) - 4(T)) = 0.

z(t) is continuous therefore there exists t < T such that for all t,
t1 <t <T the following inequality holds

1+ 21(t) > 22(t) > 21(t) > z(2).

Let ty > 0 to be the smallest time for which our statement holds for all
t € (t,T). We can distinguish three cases

1. z(t2) = z2(t2) = 23(t2)

2. 1+ 2z1(te) = 22(t2) or z(ta) = 2z3(t2)

3. Zg(tg) = Zz(tz),
which contradict the statement of lemma.

Suppose that z1(ta) = 2o(ta) = 23(t2). In this case for derivative of
21,29 and z3 there holds z, = 0, 2o = —y and z3 = 0. It means that
near the point z; = zo = z3 Solution 2o(t) is decreasing more slowly
than z1(t) and 2z(t). This contradicts the fact that for all t,ts <t <T
Zg(t) > 21 (t) > 23 (t)

In the second case we get for 1+ z(ta) = 22(ta) or zi1(ta) = z3(t2)
stmilarly as above

Z1 :OZI(Z1—22) <0
Zy = BI(22 — 23) >0

2'3 = 5(23 — 21) =0.
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This contradicts the fact that for all t, to <t <T
1+ 21(t) > zo(t) > 21(t) > 23(1).

In the last case for zi(ty) = zo(t2) we get

212011(21—22) =0
Zo = —7 + BI(22 — 23)
23:5(23—21) <0

We show that for all t,ts <t <T holds zy < z3+7/B/I. Near the point
zo = 23+ v/B/I solution 2z(t) is increasing and z3(t) decreasing that
means z2(t) < z3(t) +v/B/I for all t, to <t <T. As it follows from this
proposition zZy(te) <0 and Z1(tz) = 0. For this reason there exists a t3 > 0
such that for all t € (t9,t3), 22(t) < 21(t). This contradicts the fact that for
all 1, to <t <T, zo(t) > z1(t). If 22(ta) =0 then Zy(ty) = —6y <0 and
Z1(t2) = 0. Similarly as above we get a contradiction.
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