

Module Planning: Embedded Linux Workshop, Hagenberg, SS 2013

Objective: Familiar with difference of embedded/PC Linux system, Development tool chain for embedded ARM systems,

Kernel modules, Principles of device drivers, Communication of device drivers with user processes,
Interrupt handling techniques, Kernel threads and kernel synchronization techniques

Prerequisite: Basic knowledge of Linux, Some practical experience with a Linux system (Debian, Ubuntu, etc); Good
knowledge of software (cross) development in C (gcc, make) and testing

Grading Scheme: “erfolgreich besucht”: presence in at least 4 sessions
Note 1 oder 2: individual results in Lab on interrupt latency (session 6) based on a short report

Session Titel Contents Lab

1:
Di 4.
Juni

2:

Do 6.
Juni

Introduction, Cross Development Difference: Desktop Linux / Embedded Linux
GNU tool chain (gcc, gdb)
Editors, Makefile, Tools, Bootloader
Services: TFTP, DHCP, NFS used for setup

Kernel, Kernel Loadable Modules Kernel Architecture, Process-Management
System Calls, File System Review: pseudo FS
(/proc, /sys), Kernel Modules

Experimental setup of the embedded system development infrastructure
Build your cross development tools: tool chain, root file system, kernel
Cross-develop a simple application program, write a makefile for it

Simple module (Hello World)
Dependent modules with parameters
Module communication with user space via /proc

3:
Di 11.
Juni

Kernel Concurrency Management
Kernel Threads

Atomic variables and bit operations,
Semaphores, Mutexes, Wait queues,
Completions, Spin locks
Introduction to kernel threads

Kernel thread APIs, creation/cancellation of kthreads
Performance analysis of kernel synchronization methods

4:
Do 13.

Juni
5:

Di 18.
Juni

Device Drivers Device Interfaces, User API (system calls)
Sample Drivers for LEDs, Switches, GPIOs

Interrupt Processing Concepts of interrupt processing

Interrupt handler,
Deferred interrupt handling by tasklets and
kernel threads

Driver to control LED's and switches
Driver to control GPIOs

Preliminary Exercises: GPIO Interrupts
– Simple interrupt handlers
– Sharing interrupts and interrupt handlers
– Deferred interrupt processing using tasklets and kernel threads

6:
Do 20.

Juni

Mini-project Applied drivers Interrupt latency estimation using GPIO triggered interrupts. Maintain a kernel
event buffer. Evaluate its events by a user space program to estimate different
types of latencies like interrupt fast/slow handling latency, kernel/user latency.

