How to Write APIs That Will
Stand the Test of Time

Jaroslav Tulach

Sun Microsystems
http://www.nethee

Design To Last

First version is always easy

Learn why to strive for good API design
and few tricks how to do it from guys who
maintain NetBeans framework APIs for
more than ten years.

& NetBeans

Why create an API at all?
What is an API?

API Design Patterns

API Design Anti-patterns
Q&A

Distributed Development

There Is a lot of Open Source Solutions

ant, jalopy, velocity, tomcat, javacc, junit

Applications are no longer written, but composed
Linux Distributions, Mac OS X

Source code spread around the world
Exact schedule is impossible

Presence of Computer Science

Enormous building blocks

Applications are assembled

Cisco SYsTEMS

- PN e]

m nld_ ‘

‘sofarl'él

&l vmware

http://www.cs.utexas.edu/users/wcook/Drafts/2006/RinardOOPSLAOQG6.pdf

Modular Applications

Composed from smaller chunks

Separate teams, schedule, life-cycle

Dependency management

Specification Version 1.34.8
Implementation Version Build20050611
Dependencies chunk-namel >=1.32

RPM packagers
Execution containers like NetBeans

http://platform.netbeans.org/

What is an API?

API Is used for communication

build trust, clearly describe plans

Evolution Is necessary

method and field signatures
files and their content
environment variables
protocols

behavior

L10N messages

http://openide.netbeans.org/tutorial/api-design.html

Preservation of Investments

Backward compatibility
source Vvs. binary vs. cooperation

Knowing your clients is not possible
ncremental Improvements

-rst version IS never perfect
Coexistence with other versions

http://openide.netbeans.org/tutorial/api-design.html

Rules for Successful API design

Use case driven API design
use cases -> scenarios -> javadoc

Consistent API design

An interface that is predictable serves better than one which is locally optimal but inconsistent
across the whole set.

Simple and clean API design

less is more - expose only necessary functionality

Think about future evolution
First version is not going to be perfect

Stability of APIs

It IS all about communication

APIs can serve different purposes
Early adopters
Internal communications
Framework APIs

We have stability categories
Private, Friend
Under Development, Stable, Standard
Deprecated

http://openide.netbeans.org/tutorial/api-design.html#life

Evaluation of an API Quality

Customer centric — easy to use
Use cases, scenarios, javadoc
Future evolution

Test coverage

quality = code A specification
the "amoeba" model

NetBeans API Reviews http://openide.netbeans.org/tutorial/reviews/

The Amoeba Model

How we think our application looks like

http://openide.netbeans.org/tutorial/test-patterns.html
S T

The Amoeba Model

The actt shape of our application

http://openide.netbeans.org/tutorial/test-patterns.htmi

The Amoeba Model

Shape of amoeba after next release

http://openide.netbeans.org/tutorial/test-patterns.html

Design Patterns

“Recurring solutions to software design problems”
common name
description of the problem
the solution and its consequences

Simplify description of the architecture

http://openide.netbeans.org/tutorial/api-design.html

API Design Patterns

Design Patterns as well
simplify description of the architecture

API framework vs. internal design
Main emphasis Is on evolution
First version is never perfect

http://openide.netbeans.org/tutorial/api-design.html
S T

Factory Method Gives more Freedom

Do not expose more than you have to

// exposing constructor of a class like
ThreadPool pool = new GeneralThreadPool();

// gives you less freedom then

ThreadPool pool = ThreadPool.createGeneral();

The actual class can change in future
One can cache instances
Synchronization Is possible

http://openide.netbeans.org/tutorial/api-design.html

Method is Better than Field

Do not expose more than you have to

class Person extends Identifiable {
String name;
public void setName(String n) {
this.name = n;

}

Synchronization is possible
Validation of input parameters in setter can be done
The method can be moved to super class

http://openide.netbeans.org/tutorial/api-design.html
S T

Non-Public Packages

Do not expose more than you have to

OpenIDE-Module-Module: org.your.app/1
OpenIDE-Module-Public-Packages: org.your.api
OpenIDE-Module-Friends: org.your.otherapp/1

NetBeans allows to specify list of public packages
Enforced on ClassLoader level

Possible to enumerate modules that can access them
Split API classes into one package and hide the rest

http://openide.netbeans.org/tutorial/api-design.html
L T

Separate Interface and Impl

Do not expose more than you have to

Common advice in any design book

Many ways to interpret the advice
Interface != Java interface keyword
Good APl Is not just a part of implementation
Honest use of API — do not cheat with impl

Java class vs. interface battle
never ending ideological fights
pragmatic approach
method additions
access modifiers
subclassing and construction restrictions

http://openide.netbeans.org/tutorial/api-design.html
B & 2002¥§ 20202

The Trampoline Pattern

Example of Telelnterface

Myth: There is no containment among packages
there is no way to create “friend” packages

-
creates new objects from the"API
calls.methods in the SPI
>

Restrict Access To Friends

Do not expose more than you have to

Use package private classes
Java does not have friend packages, but...

public final class api.Item {
/** Friend only constructor */
Item(int value) { this.value = value; }
/** API method(s) */
public int getValue() { return value; }
/** Friend only method */
final void addListener(Listener 1) { ... }

http://openide.netbeans.org/tutorial/api-design.html
S T

The Trampoline Pattern cont.

Do not expose more than you have to

/** The friend package defines an accessor
* interfaces and asks for its implementation
*/
public abstract class impl.Accessor {
public static Accessor DEFAULT;
static { Object o = api.Item.class; }

public abstract Item newItem(int value);
public abstract void addListener(
Item item, Listener 1);

http://openide.netbeans.org/tutorial/api-design.html

The Trampoline Pattern cont.

Do not expose more than you have to

class api.AccessorImpl extends impl.Accessor {
public Item newItem(int value) {
return new Item(value); }
public void addListener(Item item, Listener 1) {
return item.addListener(1l); }

}

public final class Item {
static {
impl.Accessor .DEFAULT = new api.AccessorImpl();

}
}

http://openide.netbeans.org/tutorial/api-design.html
S T

The Trampoline Pattern

The Difference Between Java and C

Separate client and provider API

Imagine API for control of media player in C

void xmms_pause();
void xmms_add_to_playlist(char *file);

Java version is nearly the same
class XMMS {
public void pause();
public void addToPlaylist(String file);

}
Adding new methods is possible and benefitial

http://openide.netbeans.org/tutorial/api-design.html
S T

Provider Contract in Java and C

Separate client and provider API

Now let's write the interface for playback plugin in C
// it takes pointer to a function f(char* data)
void xmms_register_playback((void)(f*)(char*));

Java version much cleaner
interface XMMS.Playback {
public void playback(byte[] data);
}

Adding new methods breaks compatibility!

http://openide.netbeans.org/tutorial/api-design.html
S T

Co-variance and Contra-variance

Separate client and provider API

Client API requirements are oposite to Provider API
Very different and complicated in C

Simple in object oriented languages
Anything subclassable is de-facto provider API

Do not mix client and provider APIs.

The client API The provider API

http://openide.netbeans.org/tutorial/api-design.html

New OutputStream method

Separate client and provider API

Can you add write(ByteBuffer) to OutputStream?
public void write (ByteBuffer b) throws IOException ({
throw new IOException (“"Not supported”);

}

Previous version complicates clients, but there is a way:
public void write (ByteBuffer b) throws IOException ({
byte[] arr = new byte[b.capacity()];
b.position (0) .get (arr);
write (arr);

}

http://openide.netbeans.org/tutorial/api-design.html
S T

The FilterOutputStream problem

Separate client and provider API

Shall rilteroutputstream delegate or call super?

public void write (ByteBuffer b) throws IOException ({
out .write(b); // super.write(b);?

}

desirable
useless

http://openide.netbeans.org/tutorial/api-design.html

— & 2 3 =

The FilterOutputStream problem

Separate client and provider API

Shall Filteroutputstream delegate or call super?

public void write (ByteBuffer b) throws IOException {
out .write(b); // super.write(b);?

}

necessary desirable
useless

/;1ass MyFOS extends FOS f\
write (byte[] arr) {
for (i) {
arr[i] ~= Oxff;

}

out .write (arr);

}
J 4

http://openide.netbeans.org/tutorial/api-design.html
S T

Fixing FilterOutputStream problem

Separate client and provider API

Fixing existing problem
Delegate iff FOS.write (ByteBuffer) is not overriden

Think about evolution during API design. For example:

public /*final*/ class OutputStream extends Object ({
private Impl impl;
public OutputStream(Impl i) { impl = i };
public final void write (byte[] arr) { impl.write (arr); }
public interface Impl {
void write (byte[] arr);
}
public interface ImplWithBuffer extends Impl {
void write (ByteBuffer arr);
}
}

http://openide.netbeans.org/tutorial/api-design.html
S T

Allowing for extensibility

Example of Telelnterface

Myth: By tunneling of data you lose type safety

(HelplD)getClientProp(“helplD”) putClientProp(“helplD, id)

Allowing for extensibility — tunnel data

package javax.swing;
public final class JComponent {
public <T> T getCapability(Class<T> clazz) {
return impl.lookup(clazz);

}
}

package javax.help;
public interface HelpID {
public void showHelp();

}

HelpID id = logicalWindow.getCapability(HelpID.class);
if (id != null) id.showHelp();

Allowing for extensibility — Lookup

package javax.swing;
public final class JComponent {
public <T> T getCapability(Class<T> clazz) {
return impl.lookup(clazz); // what is the impl?

}

http://www.netbeans.org/download/6_0/javadoc/usecases.html#usecase-Lookup

Foreign Code From Constructor

Anti Patterns

Accessing not fully initialized object is dangerous
Fields not assigned
Virtual methods work

java.awt . Component calls updateUI
org.openide.loaders.DataObject calls register
Wrap with factories, make the constructors lightweight

http://openide.netbeans.org/tutorial/api-design.html

Foreign Code In Critical Section

Anti Patterns

Calling foreing code under lock leads to deadlocks

Sometimes hard to prevent

private HashSet allCreated = new HashSet ();
public synchronized JLabel createlabel () {
JLabel 1 = new JLabel ();
allCreated.add (1);
return 1;

}
java.awt . Component grebs AWT tree lock

HashSet.add calls object.equals

http://openide.netbeans.org/tutorial/api-design.html

Verification

Mistakes happen
Automatic testing of global aspects

Signature tests

Files layout

List of exported packages
Module dependencies
Automated tests

Executed after each daily build

http://openide.netbeans.org/proposals/arch/clusters.html#verify

Be client centric
Be predictable
Always think about evolution

Design to last

Questions & Answers
Practical APl Design

Confessions of a Java Framework Architect
ISBN-10: 1430209739

The Definitive Guide to

API DeS|gn

Jaroslav Tulach
http://www.netbeans.org

	title
	goal
	Agenda
	distributed
	gigant
	modular
	what
	preserve
	usecases
	topo
	quality
	amoeba1
	amoeba2
	amoeba3
	pattern
	apipatterns
	factory
	nofields
	publicpkgs
	Snímek 20
	Snímek 21
	accessor1
	accessor2
	accessor3
	Snímek 25
	client1
	client2
	client3
	is1
	is2
	is3
	is-fix
	Snímek 33
	All-Purpose Slide
	Snímek 35
	Snímek 36
	anti1
	anti2
	verify
	Conclusion: Summary of Talk
	Snímek 41

