

Automatic Code Generation
Using Dynamic Programming Techniques

Diploma Thesis for Igor Böhm
Student ID: 0155477

Email: igor@bytelabs.org

Advances in compiler construction have shown that many steps can be automated during the

process of compiler design and implementation. While there is a plethora of tools offering

automation for the early phases of a compiler (e.g. scanner and parser generators), the later

phases (e.g. syntax tree generation and manipulation, code generation) lack such variety of

good tool support. The scope of this diploma thesis covers the design and implementation of

a tool which produces a code generator for a target machine, given a specification of an ab-

stract syntax tree (AST) of a program as well as a specification of the target machine itself. A

dynamic programming approach as described in [1, 2, 3, 4, 5] should be utilized. The basic

concept is as follows:

• Initially the addressing modes of operands the target machine has to offer must be deter-

mined. Examples of addressing modes are Constant, Register, Register relative, Indexed,

Absolute, etc.

• Afterwards the operators of the AST must be mapped to target machine instructions. The

following properties must be specified for each instruction:

• the AST-Operator which is implemented by this instruction

• the address modes of the operands as well as the result of the instruction

• the costs of the instruction (e.g. memory in bytes or processor cycles used)

• the instruction pattern to be emitted iff this instruction is selected

• Finally it must be specified how operands can be converted from one addressing mode

into another one. Such operations also induce costs depending on the cost model (e.g.

code size, processor cycles used, etc.).

During the first pass over the AST, dynamic programming is the key ingredient enabling us to

tile the AST with instruction patterns in such a way that addressing modi fit together, and the

overall costs are being minimized as well. Finally, the second pass over the AST emits the

optimal instruction patterns selected earlier.

Institut für Systemsoftware
O.Univ.-Prof. Dr. Hanspeter Mössenböck

The following key points are essential ingredients of this diploma thesis:

• Design a specification language which enables one to specify all matching instructions

including their addressing modes and costs for each operator of the AST. It should also be

possible to specify addressing mode conversions and their costs. There should also be the

possibility to annotate each Instruction with semantic actions, which are to be emitted

when the instruction pattern is selected.

• Implement a generator which takes such a specification as its input, and produces a code

generator as its output. The produced code generator should find the optimal tiling of in-

structions for the AST and emit the appropriate code for it.

• Using the designed specification language as well the generator, specify code generators

for at least two target machines and create those code generators using your tool.

• Define a common format for syntax trees your generator supports. Write a front end for a

simple language which emits such syntax trees and plug the front end together with your

code generator back end.

Try to design the specification language with simplicity and easy readability in mind. It is es-

sential to pay attention to good programming style as well as good documentation. After all it

should be easy for other persons to maintain and improve your tool later on. The resulting

tool will carry a simple and permissive open source license.

Regular meetings with the supervisor regarding the progress of the project are mandatory.

Supervisor: o.Univ.-Prof. Dr. Hanspeter Mössenböck

Diploma thesis commenced: January 2006

Literature
1. Fraser, Ch.W., Hanson D.R., Proebsting T.A.: Engineering a Simple and Efficient Code Generator Generator.

Letters on Programming Languages and Systems , Vol 1(3), 213-226, 1992

2. Emmelmann, H., Schröer, F.-W., Landwehr, R.: BEG - A Generator for Efficient Back Ends. Proc. SIG-

PLAN'89 Conference on Programming Language Design and Implementation, SIGPLAN Notices 24, 7 (July

1989), 227-237

3. Horspool, N.R.: Automating the Selection of Code Templates. SOFTWARE - Practice and Experience, Vol

15(5), 503-514 (May 1985)

4. Proebsting, T.A.: Simple and Efficient BURS Table Generation. Proc. SIGPLAN'92 Conference on Program-

ming Language Design and Implementation, SIGPLAN Notices (1992), 331-340

5. Proebsting, T.A.: BURS Automata Generation. ACM Transactions on Programming Languages and Systems

(TOPLAS), Vol 17(3), 461-486 (May 1995)

