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GraalVM is a virtual machine that supports the execution of various languages including
Ruby, JavaScript, R, and LLVM-based languages such as C/C++ [1]. Its individual language
implementations are based on Truffle, a language implementation framework [2].

To call precompiled binaries, where no source code is available, GraalVM provides a native
function interface, called Truffle Native Function Interface (Truffle NFI). However, the call
overhead of  Truffle  NFI  is  significant,  since data that  crosses the language boundaries
needs to be converted.

To provide an efficient alternative to Truffle NFI, a Truffle-based x86-64 interpreter should be
implemented.  Due to  Truffle’s  efficient  language interoperability,  the  overhead of  calling
precompiled libraries is avoided. The implementation of the interpreter requires mapping the
semantics  of  individual  x86-64  instructions  to  executable  Truffle  nodes.  To  implement
unstructured control flow, Sulong’s bytecode-interpreter-like approach should be used [3].
Further,  both  an  abstraction  of  memory  and  a  subset  of  system  calls  need  to  be
implemented.

Compilation on GraalVM relies on the assumption that function boundaries are explicitly
represented. However, functions are no longer present on the machine code level. Thus, a
heuristic should be developed that enables compilation nevertheless (e.g., by heuristically
identifying blocks of code as functions).

The scope of this thesis is as follows:

- Implementation of a Truffle-based x86-64 interpreter that can execute at least 2 SPEC
CINT2006 benchmarks and 5 benchmarks of the Computer Language Benchmark Game.

- Supporting compilation of the generated Truffle ASTs by the GraalVM.

- An evaluation of the interpreter’s completeness and peak performance.

Explicit non-goals are:

- Completeness with respect to the x86 instruction set or system calls.

- Peak performance that is competitive with state-of-the-art approaches.
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The work's progress should be discussed with the supervisor at least every 2 weeks. Please
note the guidelines of the Institute for System Software when preparing the written thesis.
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