
JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
www.jku.at
DVR 0093696

Master's Thesis / Project in Software Engineering

A Truffle-based Interpreter for x86 Binary Code

Student: Daniel Pekarek

Advisor: DI Manuel Rigger, M.Phil.

DI David Leopoldseder

Start date: 01.03.2018

GraalVM is a virtual machine that supports the execution of various languages including
Ruby, JavaScript, R, and LLVM-based languages such as C/C++ [1]. Its individual language
implementations are based on Truffle, a language implementation framework [2].

To call precompiled binaries, where no source code is available, GraalVM provides a native
function interface, called Truffle Native Function Interface (Truffle NFI). However, the call
overhead of Truffle NFI is significant, since data that crosses the language boundaries
needs to be converted.

To provide an efficient alternative to Truffle NFI, a Truffle-based x86-64 interpreter should be
implemented. Due to Truffle’s efficient language interoperability, the overhead of calling
precompiled libraries is avoided. The implementation of the interpreter requires mapping the
semantics of individual x86-64 instructions to executable Truffle nodes. To implement
unstructured control flow, Sulong’s bytecode-interpreter-like approach should be used [3].
Further, both an abstraction of memory and a subset of system calls need to be
implemented.

Compilation on GraalVM relies on the assumption that function boundaries are explicitly
represented. However, functions are no longer present on the machine code level. Thus, a
heuristic should be developed that enables compilation nevertheless (e.g., by heuristically
identifying blocks of code as functions).

The scope of this thesis is as follows:

- Implementation of a Truffle-based x86-64 interpreter that can execute at least 2 SPEC
CINT2006 benchmarks and 5 benchmarks of the Computer Language Benchmark Game.

- Supporting compilation of the generated Truffle ASTs by the GraalVM.

- An evaluation of the interpreter’s completeness and peak performance.

Explicit non-goals are:

- Completeness with respect to the x86 instruction set or system calls.

- Peak performance that is competitive with state-of-the-art approaches.

DI Manuel Rigger, M.Phil.
Institute for System Software

T +43 732 2468 4356
F +43 732 2468 4345
manuel.rigger@jku.at

Secretary:
Birgit Kranzl
Ext 4341
birgit.kranzl@jku.at

The work's progress should be discussed with the supervisor at least every 2 weeks. Please
note the guidelines of the Institute for System Software when preparing the written thesis.

[1] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq,

Doug Simon, and Matthias Grimmer. 2017. Practical partial evaluation for high-performance dynamic language runtimes.

SIGPLAN Not. 52, 6 (June 2017), 662-676. DOI: https://doi.org/10.1145/3140587.3062381

[2] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and Christian Wimmer. 2012. Self-

optimizing AST interpreters. In Proceedings of the 8th symposium on Dynamic languages (DLS '12). ACM, New York, NY,

USA, 73-82. DOI=http://dx.doi.org/10.1145/2384577.2384587

[3] Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas Würthinger, and Hanspeter Mössenböck. 2016. Bringing

low-level languages to the JVM: efficient execution of LLVM IR on Truffle. In Proceedings of the 8th International Workshop on

Virtual Machines and Intermediate Languages (VMIL 2016). ACM, New York, NY, USA, 6-15. DOI:

https://doi.org/10.1145/2998415.2998416

