TNF

Faculty of Engineering
and Natural Sciences

Generalized Trace Compilation for Java

DISSERTATION

submitted in partial fulfilment of the requirements
for the academic degree

Doktor der technischen Wissenschaften

in the Doctoral Program in Engineering Sciences

Submitted by
Dipl.-Ing. Dipl.-Ing. Christian Haubl

At the
Institute for System Software

Accepted on the recommendation of
0.Univ.-Prof. Dipl.-Ing. Dr. Dr.h.c. Hanspeter Mdssenbotck
Univ.-Prof. Dipl.-Ing. Dr. Michael Franz

Co-advisor
Dipl.-Ing. Dr. Christian Wimmer

Linz, January 2015

Oracle, Java, HotSpot, and all Java-based trademarks are trademarks or registered trademarks of Oracle
in the United States and other countries. All other product names mentioned herein are trademarks or

registered trademarks of their respective owners.

Abstract I

Abstract

Traditional method-based just-in-time (JIT) compilation translates methods to optimized
machine code. Trace-based compilation only generates machine code for frequently ex-
ecuted paths, so-called traces, that may span multiple methods. This results in faster

compilation, less generated machine code, and often better optimized machine code.

We present our implementation of trace recording and a trace-based JIT compiler in a
modification of the Java HotSpot VM. Our tracing implementation records traces for Java
applications during execution and supports traces that either start at loop headers or
at method entries. After several times of trace recording, our trace-based JIT compiler
merges the recorded traces into a structure suitable for compilation, a so-called trace
graph. During compilation, traditional and trace-specific optimizations are applied and
guarded with run-time checks if necessary. The generated machine code is then invoked
by the interpreter or by other compiled traces. When a run-time guard fails or a method
part must be executed that was not covered by traces and was therefore not compiled,

execution falls back to the interpreter.

Our most profitable optimization is trace inlining, which is similar to method inlining
in method-based JIT compilers. It widens the compilation scope and allows optimizing
code parts of multiple methods as a whole, which increases the performance. The major
advantage of trace inlining over method inlining is that the trace information is context-
sensitive and therefore more accurate as it depends on the specific call site. This allows
inlining different method parts for each specific call site which increases performance while

reducing code size and compilation time.

In terms of peak performance, our trace-based JIT compiler outperforms the Java Hot-
Spot client compiler by up to 59%. On some of the benchmarks, we also outperform the
HotSpot server compiler in spite of the fact that our compiler performs significantly fewer

optimizations and is therefore substantially faster.

Kurzfassung 1I

Kurzfassung

Herkémmliche methodenbasierte just-in-time (JIT) Kompilierung iibersetzt Methoden in
optimierten Maschinencode. Pfadbasierte Kompilierung erzeugt nur Maschinencode fiir
héufig ausgefithrte Pfade, sogenannte Traces, die auch iiber mehrere Methoden hinwegge-
hen kénnen. Dies fiihrt zu einer schnelleren Kompilierung sowie zu weniger generiertem

und oft besser optimiertem Maschinencode.

Wir implementierten ein Verfahren, um Traces wahrend der Ausfiihrung von Java Pro-
grammen aufzuzeichnen, sowie einen pfadbasierten JIT Compiler, indem wir die Java
HotSpot VM modifizierten. Traces kénnen bei einem Schleifenkopf oder am Anfang
einer Methode beginnen. Aufgezeichnete Traces werden an den JIT Compiler iibergeben,
welcher diese in einen Trace-Graphen zusammenfiihrt. Beim Ubersetzen des Trace-Graphen
nach Maschinencode werden traditionelle, optimistische und pfadspezifische Optimierun-
gen angewandt. Der erzeugte Maschinencode wird dann vom Interpreter oder von bereits
kompiliertem Code aufgerufen. Wenn ein Methodenteil ausgefithrt werden muss, der nicht
durch Traces abgedeckt ist und somit nicht kompiliert wurde, dann wird der Maschinen-

code deoptimiert und die Ausfithrung im Interpreter fortgesetzt.

Unsere lohnendste Optimierung ist das Inlinen von Traces, welches dhnlich funktioniert,
wie das Inlinen von Methoden in einem methodenbasierten JIT Compiler. Inlining er-
hoht die Optimierungsmoglichkeiten des Compilers und ermoglicht es, mehrere Methoden
gemeinsam zu optimieren. Dies wiederum erhoht die Ausfiihrungsgeschwindigkeit des
generierten Maschinencodes. Der grofie Vorteil von Trace Inlining gegeniiber dem Inlining
von Methoden ist, dass die Trace-Information kontextabhéngig ist. Wird an mehreren Pro-
grammstellen die gleiche Methode aufgerufen, so kann jeder Methodenaufruf gezielt durch
die notigen Teile der gerufenen Methode ersetzt werden. Dies fithrt zu besser optimiertem

und weniger generiertem Maschinencode sowie zu einer schnelleren Kompilierung.

Programmen die mit unserem tracebasierten Compiler iibersetzt wurden, werden um bis
zu 59% schneller ausgefiihrt als bei einer Ubersetzung mit dem HotSpot Client Compiler.
Bei einigen Benchmarks tbertrifft unser tracebasierter Compiler sogar den HotSpot Server

Compiler, obwohl unser Compiler deutlich weniger Optimierungen durchfiihrt.

Contents IIT

Contents

1 Introduction 1
11 Java . . . o e 1

1.2 Motivation and Contributions 3

1.3 Structure of the Thesis o 4

2 The Java HotSpot Virtual Machine 6
2.1 Interpreter. 7

2.2 Just-in-time Compilers L 8
2.3 Memory Management 9
2.4 Deoptimization e 10

3 The Client Compiler 12
3.1 Front End 12
3.2 BackEnd 13
3.3 Optimizations L 14

4 Trace Recording 16
4.1 OVerview e 16
4.2 Bytecode Preprocessingo oL 17
4.3 Normal Interpreter 18
4.4 Trace Recording Interpreter oL 19
4.4.1 Tracing Stack 19

4.4.2 Recorded Trace Information 22

4.4.3 Thresholds 24

4.5 Partial Traces L 26

5 Trace-based Compilation 27
5.1 Front End 27
5.2 Back End 30
5.3 Trace Transitioning L 30
5.3.1 Separating Loops from Methods 31

5.3.2 Loop Calling Conventions 32

5.4 Exception Handling 37

Contents v
5.5 Type-specific Optimizations 38
5.6 Tail Duplication 40
5.7 Runtime Changes 41
Trace Inlining 43
6.1 Advantages Over Method Inlining 43
6.2 Method Traces e 44
6.3 Loop Traces o 47
6.4 Relevance L 48
6.5 Context Sensitivity L 50
6.6 Compilation Units 52
6.7 Trace Filtering 54
6.8 Effect on Compiler Intrinsics oL 56
Deriving Code Coverage Information from Recorded Traces 58
7.1 Runtime System and Requirements 60
7.2 Computing Code Coverage v 61
7.3 Comparison to Other Code Coverage Techniques 64
7.4 Code Coverage Tools 66
7.5 Startup Performance 68
Evaluation 70
8.1 Methodology 70

8.1.1 SPEGCjvm2008 70
8.1.2 SPECjbb2005 72
813 DaCapo9.12Bach 72
8.2 Trace-based Compilation L 72
8.2.1 SPEGCjvm2008 73
8.2.2 SPECjbb2005 75
823 DaCapo9.12Bach 75
8.2.4 Startup Performance 78
8.2.5 Importance of Exception Handling 80
8.2.6 Effect of Larger Compilation Scope 81
8.2.7 Trace Transitioning 84
8.2.8 Further Evaluations 85
8.2.9 Discussionof Results L. 85
8.3 Code Coverage v v v i i 86
8.3.1 SPECjvm2008 87
8.3.2 SPECjbb2005 89
8.3.3 DaCapo9.12Bach 90
8.3.4 Memory Usage 93

Contents v
8.3.5 Discussionof Results 93

9 Related Work 95
9.1 Trace-based Compilation oL 95
9.2 Method Inlining oL Lo 98
9.3 Code Coverage v o it 99
9.3.1 Selective Instrumentation 100

9.3.2 Disposable Instrumentation 100

10 Summary 103
10.1 Future Work e 103
10.1.1 Trace-based Compilation 103

10.1.2 Code Coverage o v v v i i it 104

10.2 Conclusions e 105
List of Figures 106
Bibliography 110

Introduction 1

Chapter 1

Introduction

Today, it is common to develop Java applications in an object-oriented way so that complex
functionality is split up into a large number of classes and methods that are usually
organized in class hierarchies. This abstraction simplifies development but may result in
reduced performance because more indirection steps are necessary and virtual method calls
must be executed more frequently. To increase the performance, the just-in-time (JIT)
compiler must remove as much abstraction as possible when translating Java applications

to machine code.

1.1 Java

Java [35] is an object-oriented programming language with a syntax similar to C++. How-
ever, complex and error prone C++ features such as multiple inheritance and pointer arith-
metic were omitted. Another simplification is that Java uses a garbage collector (GC) for
automatic memory management so that it is not necessary to deallocate memory explic-
itly. Java also comes with a large standard class library that provides implementations for
commonly used data structures and operating system functionality. This greatly simplifies

the life of developers and provides a good ecosystem for application development.

Figure 1.1 shows that unlike C++, Java is not compiled to machine code but instead to
Java bytecode using an ahead-of-time (AOT) compiler such as javac. For every compiled
Java class or interface, there is one Java class file that contains the bytecode and additional
meta data such as information about methods, exception handlers, and constants. A Java
application is then executed on top of a Java virtual machine (JVM) [54] that loads the
application’s class files and executes its bytecode. This extra layer of abstraction ensures
that Java applications are platform independent and can execute on a large variety of

systems such as mobile phones, desktop computers, and large servers.

Introduction 2

Java application 49767@@?% Java compiler (javac) ‘
ive application ¢ Jenerates : Javavirtual | _ generates :
native application |« + C++ compiler (g++) ‘ machine < + C++ compiler (g++) ‘
operating system operating system
(a) native application (b) Java application

D Java bytecode D native code . hardware

Figure 1.1: Layers involved when executing native and Java code

Figure 1.2 (a) shows a simple method that returns the sum of two integer values. When
a Java AOT compiler, such as javac, compiles the source code to a class file, the bytecode
in Figure 1.2 (b) is generated. The first byte of every JVM instruction is the opcode
which defines the operation that should be executed. Currently, the JVM specification
defines 202 of the 256 possible opcodes [54]. The abstract concept behind a JVM is a stack
machine where the opcode defines how to manipulate the operand stack by pushing and
popping values. Figure 1.2 (c) shows that iadd pops two integer values from the operand

stack and pushes their sum back onto the operand stack.

0 iload a
1 public int add(int a, int b) { 1 iload b a iadd [54p
2 return a + b; 2 iadd a + b . B
3} 3 ireturn top of stack—»
(a) source code (b) bytecode (c) operand stack before and after iadd

Figure 1.2: Java example

During execution, a JVM may collect information about the run-time behavior of the
executed Java application. For example, it may detect frequently executed methods or
may record how often certain method parts are executed. This information can then
be used to trigger just-in-time (JIT) compilation for frequently executed code. The JIT
compiler analyzes the executed code, applies optimizations, and generates platform-specific
machine code that is then executed on the bare machine instead. During compilation, the
JIT compiler can use information that was recorded about the application behavior to

guide its optimizations. This may result in better optimized code that executes faster.

Introduction 3

1.2 Motivation and Contributions

While traditional JIT compilation focuses on the compilation of whole methods, trace-
based compilation compiles frequently executed paths, so-called traces [9]. A trace de-
scribes one specific path through a sequence of instructions and is not necessarily limited
to the scope of a method. Compiling traces instead of methods can result in less generated

machine code, faster compilation, and a higher performance.

Previously, trace compilation was successfully used for binary translation and dynamically
typed languages such as JavaScript (see Chapter 9). TraceMonkey was the first JIT
compiler for JavaScript. It also used trace compilation and started as a research project
at the University of California, Irvine [17]. Later on it was integrated into Mozilla’s
Firefox browser. After Google’s success with its method-based JavaScript JIT compiler
V8 [34], tracing compilers for JavaScript became unpopular and Mozilla decided to replace
TraceMonkey with the method-based JIT compiler JonMonkey [56]. To the best of our
knowledge, all of today’s production quality JavaScript JIT compilers use a method-based
approach. Trace compilation was also tried for statically typed languages, such as Java,
but tracing compilers could not compete with production-quality method-based compilers

in terms of peak performance.

We chose to implement a trace-based JIT compiler for Java by modifying the Java HotSpot
VM which is one of today’s most popular production quality JVMs. Unlike previous trace-
based JIT compilers, we do not focus on just optimizing loop-intensive code, because most
larger Java applications are not particularly loop intensive. Instead, we combine tracing
ideas with ideas from method-based compilation so that the resulting trace-based JIT
compiler achieves good speedups on large applications that are not loop intensive. This

thesis contributes the following:

e We present a scope-based trace recording variant that supports all Java features such
as exception handling, Java subroutines, reflection and invocation of native methods

within traces.

e We describe the required changes for supporting trace recording and trace-based
compilation in a production quality VM (the Java HotSpot VM) that originally uses

a mature method-based JIT compiler.

e We establish loops as top-level compilation units to allow complete separation of
compiled method traces and compiled loop traces. We discuss and address issues
that arise from this separation and we compare our system to other trace-based and
method-based JIT compilers. The resulting trace transitioning system is flexible

enough to allow arbitrary transitions between interpreted and compiled code.

Introduction 4

e We describe how to perform trace inlining and show its advantages when compared
to method inlining. Furthermore, we evaluated multiple trace inlining heuristics
implemented for our trace-based JIT compiler. We also evaluate which high-level
compiler optimizations do benefit from trace inlining due to the widened compilation

scope.

e We present a generalized exception handling approach so that exceptions can be

thrown and caught efficiently within traces or across trace boundaries.

e Our extensive evaluation shows the impact of trace compilation on startup perfor-
mance, peak performance, size of generated machine code, and compilation time
for the benchmark suites SPECjbb2005 [63], SPECjvm2008 [64], and DaCapo 9.12
Bach [13]. All results are compared to the method-based Java HotSpot client and

server compilers.

e We propose a runtime system where it is possible to derive accurate code coverage
information from profiling data that was originally intended for guiding JIT com-
piler optimizations. This technique has very low impact on peak performance and is
applicable to all modern VMs that have an aggressive JIT compiler and use instru-
mentation for recording profiling data. We compare our approach to other commonly
used code coverage approaches and discuss its advantages and drawbacks. Further-
more, we evaluate our approach and compare it to a state-of-the-art code coverage

tool for Java that uses bytecode instrumentation.

1.3 Structure of the Thesis

During the development of this thesis, several papers were published that document certain
parts of the implementation [37-41]. Significant parts of these papers are integrated into

various chapters of this thesis.

Chapter 2 gives an overview over the Java HotSpot VM and its components such as the

interpreter and the JIT compilers.

Chapter 3 deals particularly with the Java HotSpot client compiler on which we based our
trace-based JIT compiler. It covers the client compiler’s intermediate representation and

its most important optimizations as those are inherited by our trace-based JIT compiler.

Our novel scope-based trace recording approach is described in Chapter 4. The decision
to record short traces and to use trace linking instead of recording long traces is crucial
for our approach. It delays the inlining decision to the time of JIT compilation when more
information is available than during trace recording. This simplifies inlining decisions and

makes trace inlining our most profitable optimization.

Introduction 5

Chapter 5 focuses on the changes that we had to apply to the method-based Java Hot-
Spot client compiler while reshaping it into a trace-based JIT compiler. This chapter
also mentions additional optimizations that our compiler performs to reach good peak

performance.

Trace inlining, which is our key optimization, is discussed in Chapter 6. This chapter
also compares trace inlining to method inlining and describes why trace inlining is more

powerful and why it affects performance significantly.

Chapter 7 focuses on a method to derive code coverage information from recorded traces.
Using the profiling data that is intended for the JIT compiler to derive exact code coverage
information eliminates the need of instrumenting the executed application. This ensures

that the impact on peak performance is minimal.

Our trace-based compiler is evaluated in Chapter 8. For the evaluation, we report numbers
for multiple benchmark suites and compare our trace-based compiler to both the Java Hot-
Spot client and server compilers. Especially larger object-oriented applications profit from
our approach to trace-based compilation. Furthermore, we evaluate our novel technique

for deriving exact code coverage from the recorded traces.

Work related to the topics in this thesis is presented in Chapter 9 and we describe simi-

larities and differences between our and their work.

Chapter 10 concludes this thesis and discusses the outcomings as well as future work.

The Java HotSpot Virtual Machine 6

Chapter 2

The Java HotSpot Virtual Machine

The Java HotSpot VM is a production-quality JVM that is being developed by Oracle
Corporation (formerly Sun Microsystems). It is available for multiple platforms such as
Windows, Linux, and Mac OS, and supports several processor architectures such as x86
and SPARC.

Figure 2.1 shows the runtime system of the Java HotSpot VM. Execution of a Java appli-
cation starts with class loading. The class loader loads the class files, parses and verifies
them, and builds run-time data structures such as the constant pool or method objects.
Then, the interpreter starts executing the bytecodes. Whenever the interpreter executes a
method, it increments the method’s invocation counter to detect so-called hotspots. When
the invocation counter exceeds a certain threshold, the JIT compiler compiles the method
to optimized machine code. Subsequent invocations of the method directly invoke this

machine code instead of interpreting the bytecodes.

class loader provides bytecodes

I
loads first executions

ete hi
m initializes mterpr ter (77777977777777 code

\
increments generates

|
invocation
counter

JIT compiler
Figure 2.1: System overview

overflows

The Java HotSpot VM comes with two different JIT compilers: the client compiler and
the server compiler. Usually, one of them is selected as the sole JIT compiler, however
there is also a tiered mode where hot methods are first compiled using the client compiler

and later on using the server compiler.

The Java HotSpot Virtual Machine 7

While the bytecode is executed in the interpreter, the VM may also record profiling data
about the application’s behavior. This profiling data is used to guide optimistic opti-
mizations during JIT compilation. However, during later executions it may be necessary
to invalidate such optimistic optimizations because the previously recorded profiling data
no longer matches the application’s behavior. In that case, the VM invalidates the ma-
chine code that contains this optimistic optimization and falls back (deoptimizes) to the

interpreter.

2.1 Interpreter

For the initial executions, the Java HotSpot VM uses a highly efficient interpreter imple-
mentation [36]. This interpreter consists of hand-written assembler templates for every
Java opcode. The machine code for this interpreter is generated during VM startup from
the assembler templates. Infrequently executed and complex operations are implemented

as calls to the C-based runtime of the interpreter.

The interpreter is instrumented to record profiling data for frequently executed methods.
However, this instrumentation is only embedded in the generated interpreter machine code
if the server compiler is used for JIT compilation because the client compiler does not use
any profiling data. In the following, the most important instrumented instructions are
listed:

e The interpreter records for branches and switch instructions how often the instruc-
tion jumped to which branch target. This information helps determining frequently
executed code parts within methods so that those parts can be optimized more ag-
gressively. Furthermore, the JIT compiler may exclude code parts from compilation
that were not executed during profiling. This increases performance while decreasing

the amount of generated machine code and the time required for JIT compilation.

e For virtual and interface calls, a maximum of two receiver types and their frequencies
are recorded. If no more than two receiver types have been seen for a call, then it is

often profitable to inline the invoked method(s) optimistically.

e For array stores, typecasts and instanceof instructions the seen types and their fre-
quencies are recorded. This is profitable as the JIT compiler may use that informa-

tion to optimistically simplify type checks.

Figure 2.2 shows that the profiling data for a method is stored in a contiguous block
of memory where space is reserved for every instrumented instruction. During profiling,
the interpreter holds a pointer into the block of profiling data for the currently executing

method. This pointer is updated at every branching instruction so that it always points

The Java HotSpot Virtual Machine 8

to the profiling data for the next instrumented instruction. Recording the profiling data
and keeping the pointer into the profiling data in sync with the execution decreases the
performance of the interpreter and therefore impacts startup performance. However, after
JIT compilation, this is outweighed by the increased peak performance because the JIT

compiler can generate better optimized machine code.

data for an ia type information
ifinstruction| 29 for a typecast

<«—4bytes—>«———Bbytes———— >« fdbjes————————————»

ta tag data for a switch instruction

«

Figure 2.2: Java HotSpot VM profiling data

2.2 Just-in-time Compilers

Oracle’s Java HotSpot VM ships with two different JIT compilers that share most parts of
the VM infrastructure. The client compiler is designed for best startup performance and
implements only basic optimizations to achieve a decent peak performance [50]. It splits
method compilation into three phases: generation of the high-level intermediate repre-
sentation (HIR), generation of the low-level intermediate representation (LIR), and code
generation. Compilation starts with generating the HIR that is in static single assignment
(SSA) form [22] and represents the control flow graph. On this level, optimizations such
as constant folding, null-check elimination, and method inlining are applied. The result-
ing optimized HIR is used to generate the LIR, which is close to machine code but still
mostly platform independent. Virtual registers are used instead of physical machine regis-
ters for nearly all instructions. Then, linear scan register allocation [70] maps the virtual
registers to physical ones. Finally, code generation translates every LIR instruction to

platform-dependent machine code.

The server compiler is designed for long-running server applications and produces highly
efficient code to reach best-possible peak performance [60]. Servers execute mostly long-
running applications so that the longer compilation time is only a small overhead when
considering the total execution time. In comparison to the client compiler, the server
compiler performs many additional optimizations such as escape analysis, loop invariant

code motion, and loop unrolling.

It is also possible to combine both JIT compilers in a so-called tiered mode where hot
methods are initially compiled with the client compiler. The generated machine code is
instrumented to record further profiling data but executes significantly faster than the
interpreter. If a method is sufficiently hot, then it is recompiled later on using the server

compiler. The server compiler guides its optimizations with the recorded profiling data to

The Java HotSpot Virtual Machine 9

reach best-possible peak performance. With tiered compilation it is therefore possible to

achieve both good startup and good peak performance.

Both JIT compilers use optimistic optimizations to generate better optimized machine
code. Calls to virtual or interface methods occur frequently in Java so that one of the
most important optimistic optimizations is method inlining. The JIT compilers use class
hierarchy analysis (CHA) [23] to check if a method is not overridden by any loaded subclass
as the call can be inlined optimistically in this case. If a subclass is loaded later on that
overrides an optimistically inlined method, the previously performed inlining must be
voided. The Java HotSpot VM deoptimizes affected methods that are currently being

executed, so that their execution continues in the interpreter [45].

2.3 Memory Management

Java uses a garbage collector (GC) for automatic memory management [48] to avoid the
error-prone manual memory management. The Java HotSpot VM features several gener-
ational GCs with different strength and key characteristics [55]. Which GC performs best

depends on factors such as the heap size and the number of available cores/processors.

e The serial collector is a stop-the-world GC (i.e., it stops all application threads
during garbage collection) that uses only one thread for garbage collection. So, it is

best suited for single-core machines or for applications with a small heap.

e The parallel collector is optimized for throughput and uses multiple threads for
garbage collection but is otherwise still a stop-the-world GC. On machines with
multiple hardware threads, garbage collections are significantly faster than with the
serial collector. However, with large heaps the long pause-time for a full garbage
collection can still be an issue. This especially applies to interactive applications

that are expected to respond to user input.

o If a low maximum pause-time is important, it is possible to use the concurrent mark-
sweep collector (CMS). It performs many small garbage collections concurrently
to the running application so that full garbage collections are avoided as much as
possible. However, the additional concurrency is an overhead that results in a lower

throughput performance.

e Another concurrent GC is the garbage-first collector (G1) [24]. Tt is best suited for
large heaps and machines with multiple CPUs and aims for a low pause time similar
to CMS. However, unlike CMS it does compact the heap so that it should replace
CMS eventually.

The Java HotSpot Virtual Machine 10

2.4 Deoptimization

Deoptimization [45] is the process of falling back to the interpreter from compiled code.
Figure 2.3 shows the machine stack before, during, and after a deoptimization. Initially,
there is a compiled method on the stack as shown in Figure 2.3 (a). When deoptimization
is requested for a thread, all values live in the current compiled method frame are rescued
to the heap. Then, the compiled stack frame is popped, which results in the stack shown in
Figure 2.3 (b). Depending on the inlining depth of the currently executed instruction, one
or multiple interpreter frames are pushed on the stack. In the final step, those interpreter
frames are filled with the values that were previously rescued to the heap, resulting in the
stack shown in Figure 2.3 (c). After that, the execution continues with the latest values

in the interpreter.

older frame older frame
parameters parameters
ied local variables
r?gg%f A interpreter data | interpreted
top of | monitors method A
stack operand stack J
(a) stack before deoptimization parameters
local variables
interpreter data | interpreted
older frame monitors method B
top of | top of operand stack J
stack stack
(b) stack during deoptimization (c) stack after deoptimization

Figure 2.3: Deoptimization

For deoptimization, exact information is necessary that indicates which values the com-
piled code stores in registers and stack slots. This information is stored in a compact
way in the debugging information that the JIT compiler generates while emitting machine
code. Using this information, the necessary interpreter stack frames can be reconstructed
and filled.

One important example where deoptimization might occur is when the JIT compiler uses
profiling data to perform optimistic optimizations. Profiling data always has a certain
degree of uncertainty as it is only recorded during a certain period of execution. Opti-
mizations that are based on the profiling data may be invalidated because the application
behavior may change over time so that the profiling data does no longer reflect the appli-
cation behavior. In such a case, the compiled code is discarded and it deoptimizes to the

interpreter. Then, the profiling data is updated and a new compilation is triggered after

The Java HotSpot Virtual Machine 11

spending some time in the interpreter. This compilation uses the updated profiling data

so that the optimizations can be adjusted to the new application behavior.

Another optimistic optimization is inlining, although it does not necessarily rely on pro-
filing data. The JIT compiler uses CHA to check if a certain method is not overridden
by any subclass. If this is not the case, the method can be inlined optimistically. When
the compiler does the inlining, it stores additional meta data about the assumption on
the class hierarchy together with the generated machine code. If a class is loaded later
on that violates this assumption by overriding the inlined method, the machine code is
invalidated. Furthermore, the affected machine code deoptimizes to the interpreter if it is

currently being executed.

Debugging also relies on deoptimization. If a breakpoint is placed in a method that was
already compiled, it is necessary to invalidate the method’s machine code and if the code
is currently executing it deoptimizes to the interpreter. This ensures that the application
runs with full speed when no break points are present but allows adding breakpoints at

arbitrary source code locations during any point of execution.

The Client Compiler 12

Chapter 3

The Client Compiler

The Java HotSpot client compiler is designed for best startup performance and implements
only basic optimizations to achieve a decent peak performance [50]. It splits method com-
pilation into three phases: generation of the high-level intermediate representation (HIR),

generation of the low-level intermediate representation (LIR), and code generation.

3.1 Front End

The client compiler’s high-level intermediate representation (HIR) is in SSA form [22] and
is structured as a control flow graph (CFG). When compiling a method, the compiler first
iterates all control-flow-changing bytecodes and uses that information to build a control
flow graph with the corresponding basic block structure. The blocks of the resulting control
flow graph are then processed in reverse-post-dominator order, as shown in Figure 3.1. For
every block, the JIT compiler then iterates over the corresponding bytecodes and generates

HIR instructions.

(a) block order without a loop (b) block order with a loop

Figure 3.1: Reverse-post-dominator processing order

The Client Compiler 13

The reverse-post-dominator order ensures that every block can rely on the fact that all its
predecessor blocks have already been processed. This greatly simplifies data-flow analysis
and the generation of ¢ instructions when the control flow merges. The only exception
are loop headers, for which ¢ instructions are generated eagerly for all variables that are
modified in the loop. Unnecessary ¢ instructions are then eliminated later on in a separate

step.

The Java HotSpot client compiler applies optimizations such as constant folding, load
elimination, store elimination, and value numbering locally while parsing a block. This
limits the scope of the optimization but also has the effect that little time is spent on JIT
compilation as local optimizations can be applied efficiently. In a few cases, for example
when inlining a small method, consecutive control flow graph blocks are merged, which
increases the scope and therefore the effectiveness of local optimizations. After parsing
all bytecodes, null-check elimination, conditional elimination, block merging, and global
value numbering are applied globally. Furthermore, minor loop optimizations are applied,
e.g., converting the conditional forwards jump of a loop to a backwards jump. After those
optimizations, the control flow in the optimized HIR is frozen so that no further changes

to the control flow are allowed on the lower level. This simplifies the back end.

Exception-throwing bytecodes do not end basic blocks as this would result in many short
basic blocks. Instead, all exception handlers are recorded in an exception handler table.
If an exception occurs at run time, the exception handler table is accessed and if there
is a corresponding exception handler, execution continues there. Otherwise, the current
frame is popped from the stack and the search for an exception handler continues in the

parent frame.

3.2 Back End

The low-level intermediate representation (LIR) is generated from the optimized HIR by
iterating it in reverse-post-dominator order and mapping each HIR instruction to a number
of LIR instructions. It is still mainly platform independent as virtual registers are used
instead of physical machine registers. For certain platform-dependent parts, such as calling
conventions, it is possible to use fixed platform-dependent registers. Eventually, linear scan
register allocation [70] maps the virtual registers to physical ones. Unlike the HIR, the LIR
is not in SSA form so that ¢ instructions are resolved using move instructions. For that,
the register allocator contains some optimizations that try to detect and avoid unnecessary

moves.

Code generation iterates over all LIR instructions and translates every LIR instruction

to platform-dependent instructions. On this level, optimizations such as template-based

The Client Compiler 14

instruction selection are applied to generate efficient machine code. In addition to ma-
chine code, debugging information is generated which is used for garbage collection and

deoptimization.

3.3 Optimizations

The Java HotSpot client compiler mostly uses local optimizations. This ensures that little
time is spent on JIT compilation as local optimizations can be applied efficiently. However,
this also limits the scope of optimizations which has a negative impact on the quality of
the generated machine code. To maximize the startup performance, no profiling data
is gathered in the interpreter when the client compiler is selected as the JIT compiler.
However, this also means that the client compiler does not guide its optimizations with

profiling data.

The client compiler performs the following optimizations: method inlining, canonicaliza-
tion (constant folding and elimination of type checks), load/store elimination, conditional
expression elimination, common subexpression elimination, dead code elimination, value
numbering (locally and globally), and null check elimination. Furthermore, it performs a
limited form of array bounds check elimination. In a more recent early access version of
OpenJDK 8, the array bounds check elimination became more powerful as the technique
of Wiirthinger et al. [72] was integrated. However the work presented in this PhD thesis

is based on the version with the limited array bounds check elimination.

The most profitable optimization of the Java HotSpot client compiler is method inlining
which replaces calls with copies of the actually called code. This removes the overhead of
the call, increases the compilation scope and therefore also increases the effectiveness of
optimizations. Inlining heuristics can be categorized into static and dynamic approaches.
While static inlining heuristics rely on static metrics such as the callee size, dynamic

inlining heuristics use profiling data to decide if a call is worth inlining.

The Java HotSpot client compiler uses a simple static method inlining heuristic that
compares the callee’s number of bytecodes to a fixed limit that decreases with the inlining
depth. This approach avoids a time-consuming analysis by assuming that the inlining of
each call can be decided independently. Virtual methods and interface methods are only
considered for inlining if CHA reveals that only one particular target method is possible
in the specific context. For such inlinings, an assumption is stored together with the
generated machine code. If a class is loaded later on that violates this assumption, the

generated machine code is invalidated, see Chapter 2.4.

In contrast to that, the Java HotSpot server compiler uses profiling data to guide many of

its local and global optimizations. Furthermore, it applies sophisticated loop optimizations

The Client Compiler 15

such as loop peeling, loop unrolling and loop-invariant code motion. Another feature of
the server compiler that the client compiler lacks is escape analysis [21]. Escape analysis
enables optimizations such as scalar replacement and lock elimination. Those optimiza-
tions and the graph coloring register allocator ensure that best-possible code is generated.
However, this is also the reason why the server compiler requires roughly one order of a

magnitude more time for JIT compilation than the client compiler.

Trace Recording 16

Chapter 4

Trace Recording

Figure 4.1 (a) shows the control flow graphs of two methods, while Figure 4.1 (b) shows
three traces that span both methods. All traces start at block 1, which is their trace
anchor. Which basic blocks are selected as trace anchors depends on the trace recording

implementation as there are multiple ways for detecting trace anchors [12, 27, 44].

3'Ma\b\dM3"
siplalc|d]»y

(a) control flow graphs (b) possible traces

K

4]

\ 1

4]

Figure 4.1: Possible traces through two methods

4.1 Overview

In a VM, traces can be recorded by instrumenting bytecode execution. Our implemen-
tation supports two different kinds of traces: loop traces anchored at loop headers, and
method traces anchored at method entries. Figure 4.2 shows the runtime system of our
trace-based VM. Execution of a Java application starts with the class loader that loads,
parses, and verifies the class files. This results in run-time data structures such as the
constant pool and method objects. Then, a static loop analysis step is performed on the
loaded bytecodes to detect loop headers and to create tracing-specific data structures.
This explicit loop detection step avoids the detection of false loops [42], which may occur
in other approaches where every backwards branch target is assumed to be a potential
loop header. The detected loop headers and all method entries are then used as potential

trace anchors.

Trace Recording 17

loads class loader
static analysis initializes

4
first | normal .
bytecodes . . ——increments
executions interpreter
counter overflow
Fomms deoptimizes----- trap 9 IEEUT records
‘ interpreter
code
generates JIT compiler €—recorded often enough

D unmodified D modified . new

Figure 4.2: Trace-based Java HotSpot VM

The Java HotSpot VM template interpreter is a highly efficient interpreter implementation
and consists of hand-written assembler templates (see Chapter 2.1). Our trace-based Java
HotSpot VM uses two different versions of this template-based interpreter, for which we
duplicated and instrumented the interpreter. This results in a normal and a trace record-
ing interpreter. Execution starts in the normal interpreter, which counts the execution
frequencies of trace anchors. When a trace anchor was executed frequently enough, it is
marked as hot and execution switches to the trace recording interpreter. This interpreter is
instrumented to record the executed path and the observed type information in a thread-
local buffer. Traces that start at this hot anchor are then recorded for a certain number
of times until they are considered hot and therefore compiled to optimized machine code.
When execution reaches a trace anchor for which compiled machine code already exists,
this machine code is invoked instead of interpreting the bytecodes. Switching between the
normal and the trace recording interpreter avoids trace recording for rarely executed code
parts and allows executing bytecodes at nearly the same speed as the interpreter of the
unmodified VM.

4.2 Bytecode Preprocessing

Traditionally, trace recording treats every backwards branch target as a possible loop
header [9]. However, this may lead to the detection of false loops, which can affect the
performance negatively. To accurately detect loop headers, we do a dedicated bytecode
preprocessing step after class loading. For every method, we temporarily build a control
flow graph and run a loop detection algorithm on that graph. The bytecode preprocessing

performs the following steps:

Trace Recording 18

1. Loop headers are detected using the method’s control flow graph and for every loop

header, a data structure describing the loop is allocated.
2. Basic blocks are assigned to the loops in which they are contained.

3. The relationships between loops are computed so that inner loops are correctly nested

in the corresponding outer loop.
4. Loop exits are computed.

5. Additional metrics are calculated. This includes a complexity metric that estimates

the maximum number of different paths that can be taken through the loop.

The preprocessing step is performed only once per class and is cheap when compared
to other tasks performed during class loading such as verification. For every processed
method, this results in a set of loop-describing data structures. Every data structure
contains the loop header’s bytecode index (BCI), the BCIs of all loop exits and additional
information such as the complexity metric or the number of inner loops. This information
is stored in a compact way while all other data used during bytecode preprocessing is
discarded.

To reduce the tracing overhead for the interpreter, we mark loop headers directly in the
bytecodes. For that, we introduce a new VM internal bytecode loop_header. Introducing
VM internal bytecodes for optimized operations is a common pattern and those bytecodes
may use opcodes that are unused according to the JVM specification [54]. To preserve
the original bytecode, we rescue it to the data structure that describes the loop before

replacing the original bytecode with the bytecode loop_header.

From the interpreter’s point of view, detecting loop headers is now trivial as every loop
header is marked by the bytecode loop_header. Whenever the bytecode 1loop_header is
executed, the interpreter first executes trace-anchor-specific tasks such as incrementing an
execution counter. Then, the original bytecode is obtained from the corresponding loop’s

data structure and this bytecode is executed.

4.3 Normal Interpreter

The normal interpreter does not perform any trace recording and executes bytecodes at
nearly the same speed as the interpreter of the unmodified VM. To avoid trace recording
for rarely executed traces, each trace anchor has an execution counter that is incremented
by the normal interpreter. When the execution counter overflows, the trace anchor is
marked as hot and execution switches to the trace recording interpreter. During garbage

collection, the trace anchor execution counter is cleared regularly to avoid rarely executed

Trace Recording 19

parts being falsely identified as hot on long-running applications. If compiled machine
code does already exist for the executed trace anchor, the interpreter invokes the machine

code instead of interpreting the bytecodes.

4.4 Trace Recording Interpreter

Other trace recording implementations [9, 12, 14, 17, 30-32, 47| typically store information
about encountered bytecodes in a single trace, even if this trace crosses method bound-
aries. Thus, inlining is done during trace recording and may result in large traces that
cannot be split and must be compiled as a whole. Furthermore, other trace recording
implementations often abort trace recording on special events such as when the executed

application throws an exception.

To address these limitations, we use a scope-based trace recording approach where traces
are restricted to span at most one method. When a method invocation is encountered
during trace recording, a separate trace is started for the invoked method and this separate
trace is linked to its caller trace. This restricts individual traces to span at most one
method while the linking preserves the call structure and also makes the traces context-
sensitive so that each call site knows exactly which traces were called there. The linking
results in a data structure that is similar to a dynamic call graph and it allows delaying
any inlining decisions to the time of JIT compilation when more information is available.
Our trace recording approach supports all Java features such as exception handling, Java
subroutines, reflection, and invocation of native methods. There are no situations in
which we have to abort trace recording. For best-possible performance, all frequently
executed trace recording operations, such as recording information for specific bytecodes,
are directly implemented in the assembler templates of the trace recording interpreter.
More complex operations, such as storing a recorded trace (see Figure 4.5) are implemented

in the C-based runtime of the interpreter.

Our trace recording infrastructure supports efficient multi-threading so that every Java
thread can switch between the normal and the trace recording interpreter independently.
For trace recording, every thread holds a thread-local tracing stack, which is a virtual
call stack of traces that is managed by the trace recording interpreter. Information about
bytecodes that modify the control flow is stored in the topmost trace of the tracing stack

and the tracing stack is modified if necessary (see below).

4.4.1 Tracing Stack

Figure 4.3 shows a trace recording example that focuses on the tracing stack and trace

linking. The tracing stack shown in Figure 4.3 (b) grows from right to left. (1) When

Trace Recording

public class Adder {
private int value;

int value = getValue();
for (int i = ©; i < data.length; i++) {
if (data[i] < @) value += Math.abs(i);

1
2
3
4 public void addData(int[] data) {
5
6
7
8 else value += i;

9 }

10 setValue(value);
1}

12

13 public int getValue() {
14 return this.value;
15}

16

17 public void setValue(int value) {
18 this.value = value;
19 }

20 }

21

22 public static void main(String[] args) {
23 int[] data = new int[] { 0, 1, -1 };
24 Adder adder = new Adder();
25 adder.addData(data);
26 System.out.println(adder.getValue());
27 }

(a) source code

(1)
) lgetValues| |addData:|
(3) |addData | | — > getValue
) | loop: | |addDatas |— | —>{getValues

(5) ‘Ioopz‘ ‘addDataﬂ» %getValum‘ ‘Ioom‘

(6) ‘Math.ab&‘ ‘Ioopz‘ ‘addData«}» %getVelua‘ ‘Ioop1‘

O[] en] | fomave] o] o]

g]| i o) i
O[]]| fatn] o]] o]

o | fte] o]] bt e
) s Yotne]] ot

(b) tracing stack (c) traces recorded in the trace repository

Figure 4.3: Tracing stack while trace recording

Trace Recording 21

the trace anchor at the method entry of addData() is marked as hot, execution switches
to the trace recording interpreter and a method trace is pushed on the tracing stack.
The method is executed from the beginning up to the invocation of the virtual method
getValue (). When doing the virtual call, the invocation and the receiver class are stored
in the caller trace. (2) Upon entering the method getValue(), a new method trace is
pushed on the tracing stack and trace recording continues there. (3) When getValue()
returns, the corresponding trace is popped from the tracing stack and stored in the trace
repository. Then, the traces are linked by storing a pointer to the trace of getValue()
in the trace of addData(). Execution and trace recording continues for addData() and
reaches the loop header. (4) For recording the loop, a new loop trace is pushed on the
tracing stack. (5) After the first loop iteration, when execution is back at the loop header,
the loop trace is popped from the tracing stack and stored. For the next loop iteration,
a new loop trace is pushed on the tracing stack. The second loop iteration executes
the same path as the first iteration, so the system recognizes that the same trace was
already recorded and does not store it again but only increments the counter within the
previously recorded trace. (6) The third loop iteration takes a different path so that the
method Math.abs() is invoked for which a new method trace is pushed on the tracing
stack. (7) When Math.abs() returns, the corresponding trace is stored and linked to its
caller trace. (8) Then, execution reaches the loop header and the loop exits. So, the loop
trace is popped from the tracing stack and stored. (9) After the loop, the virtual method
setValue () is invoked. So, the invocation and the receiver class are stored in the caller
trace, and a new method trace is pushed on the tracing stack upon entering setValue().
(10) When setValue() returns, the corresponding trace is popped from the tracing stack,
stored, and linked to its caller trace. (11) Eventually, the method addData() returns so
that also this trace is popped from the tracing stack and stored. After that, the tracing

stack is empty and execution switches back to the normal interpreter.

In the example above, it was assumed that no traces had been compiled for the invoked
methods and the loop. If traces for the method getValue() had already been compiled
earlier, the invocation of getValue() would execute the compiled machine code instead
of interpreting the method. So, the trace recording interpreter cannot push a new method
trace on the tracing stack, nor can it record any control flow in the invoked method. In
that case, our trace recording approach does not preserve exact control flow information
over method boundaries. It would be possible not to invoke compiled code and instead
force this code to be executed in the trace recording interpreter if a trace is currently
being recorded. However, this would drastically reduce the startup performance because
the application would be interpreted for a significantly longer time. Furthermore, as shown
in the previous example, loop traces are never linked to their caller so that exact control
flow information is also not preserved in that case. The same also applies to recursive

method invocations, which we also do not link to their parent trace.

Trace Recording 22

4.4.2 Recorded Trace Information

In the trace recording interpreter, certain bytecodes are instrumented so that information
about them is recorded in the traces. All other bytecodes are processed in the same way

as in the normal interpreter.

e For every branching bytecode, including jump subroutine (jsr) and return from

subroutine (ret), we store the target BCIL.

e For non-virtual method invocations, we store the BCI of the invocation, and a pointer
to the callee. Upon entering the callee, a new method trace is pushed on the tracing
stack and recording continues there. When the callee returns, we store the method
trace and pop it from the tracing stack. Then, we link the traces by storing a pointer

to the callee’s trace in the caller’s trace and trace recording continues for the caller.

e For the invocation of virtual methods and interface methods, we additionally store
the class of the receiver before doing the same steps as for a non-virtual method

invocation.

e If a loop header is encountered when a trace for that loop is not already on top
of the tracing stack, we store the current BCI and a pointer to the data structure
that describes the loop. Then, we push a new loop trace on the tracing stack and
recording continues there. When a loop exit is taken, we store the loop trace, pop

it from the tracing stack, and trace recording continues for the outer trace.

e If the current trace is a loop trace and execution looped back to the loop header, the
current trace is stored and removed from the tracing stack. A new loop trace may

be started for the next loop iteration if trace recording should be continued.

e For exceptions, we store the exception source BCI, the exception handler BCI, and
a pointer to the class of the thrown exception. Because a thrown exception may exit
the current method or loop, we pop traces from our tracing stack until the topmost
trace is the one in which exception handling continues or until our tracing stack is
empty. Then, we append information about the exception to all popped traces and

store those traces.

Figure 4.4 shows a trace recording example that focuses on the information that is recorded
for instrumented bytecodes. All bytecodes that are executed during the following example

are in black type, while unexecuted bytecodes are in gray type.

When the trace anchor at the method entry of accessArray () is marked as hot, execution
switches to the trace recording interpreter and a method trace is pushed on the tracing

stack. The method is executed from the beginning and the first recorded instruction is

Trace Recording 23

int accessArray(int val, int[] arr)

@ iconst ©

1 istore index accessArray

2 goto 14 .

5 iload index Jmp 14

6 invokestatic computeIndex() |00p_header

9 iadd 14 loop
10 istore index *— descriptor
11 iinc val by -1 jmp 18

14 loop_header (iload val) - - method
15 ifge jump to 5 invokevirtual
18 aload this 2_0 -
19 iload index ° receiver
20 invokevirtual modifyIndex() ° class
23 istore index throw 26

24 aload arr ;
25 iload index catc.h 28 |
26 iaload arr[index] class
27 ireturn

28 astore exception loop

30 iconst -1 -

31 ireturn jmp 18

int modifyIndex(int value)

0 iload value

1 iflt jump to 10

4 iload value modifylndex 1«

5 bipush 20 -

7 if_icmple jump to 12 jmp 4

10 iconst © jmp 12

11 ireturn

12 iload value

13 ireturn

Figure 4.4: Recorded traces

the jump to BCI 14. There, a loop header is located, which is recorded together with a
pointer to the corresponding loop descriptor. For recording the loop, a new loop trace is
pushed on the tracing stack. Assuming that the loop is not executed but immediately left
by falling through to BCI 18, only this BCI is recorded. Then, the loop trace is stored,
popped from the tracing stack and we are back in the trace of accessArray(). There,
another jump to BCI 18 is recorded to let the caller trace know that the loop exited to
BCI 18. BCI 20 invokes the virtual method modifyIndex() for which the current BCI
and pointers to the invoked method and the receiver class are stored. Upon method entry,
a new method trace is pushed on the tracing stack. During execution of the method,
two branching instructions are encountered where the first one falls through to BCI 4
and the second one jumps to BCI 12. When modifyIndex() returns, the trace is stored
and popped from the tracing stack. Then, the traces are linked by storing a pointer
to the trace of modifyIndex() in the trace of accessArray(). Execution continues for
accessArray () until BCI 26, where the array access throws an exception. The exception
is caught by the exception handler at BCI 28 and the method returns after that. So, the
trace is stored and popped from the tracing stack. Because there are no more traces on

the tracing stack, execution switches back to the normal interpreter.

Trace Recording 24

Figure 4.5 shows the function that is used to store recorded traces. For most trace anchors,
only a small number of traces is recorded. So, storing a new trace is required rarely
while in most cases only the execution count of an already recorded trace is incremented.
Therefore, we store the recorded traces in a data structure that avoids locks and atomic
instructions when data is read. When it seems that a new trace was found, we lock
our data structure for other writing threads and recheck under the lock if this trace is
really new before adding it to the recorded traces. So, for the most frequent case, we can
avoid synchronization and atomic machine instructions, which significantly increases the
trace recording performance for multi-threaded applications. If a not yet seen trace was
recorded, the thread-local trace is copied to global accessible memory and stored in the

list of all traces for that trace anchor.

1 void storeTrace(TraceAnchor traceAnchor, Trace trace) {
2 Trace existingTrace = traceAnchor.find(trace);

3

4 if (existingTrace == null) {

5 traceAnchor.lock();

6 try {

7 // recheck under lock

8 existingTrace = traceAnchor.find(trace);
9 if (existingTrace == null) {
10 Trace globalTrace = copyToGlobalMemory(trace);
11 traceAnchor.store(globalTrace);
12 } else {
13 existingTrace.incrementCount();
14 }
15 } finally {
16 traceAnchor.unlock();
17 }
18 } else {
19 existingTrace.incrementCount();
20 }
21 }

Figure 4.5: Code for storing a recorded trace

To simplify the detection of already recorded traces, each trace is identified by a hash
code. This hash code is computed in a way that two traces which took the same path
but invoked different traces have different hash codes. This ensures that context-sensitive

information is preserved over method boundaries.

4.4.3 Thresholds

How often trace recording is performed for a trace anchor before the recorded traces are
compiled to machine code depends on various aspects. Our runtime system uses the

following thresholds to trigger trace recording and trace compilation:

Trace Recording 25

e The method tracing threshold determines how often a method trace anchor has to
be executed before the execution switches to the trace recording interpreter so that
traces starting from the method entry are recorded. To avoid recording infrequently
executed method traces, we wait 3,000 executions before we consider a method trace

anchor as hot and start trace recording.

e The method traces compilation threshold determines how often traces are recorded
for a trace anchor at a method entry before those traces are merged and compiled
to optimized machine code. To ensure that we capture the most relevant traces,
we perform trace recording up to 1,000 times before compilation (depending on the

complexity metric described below).

e The loop tracing threshold determines how often a loop header has to be executed
before the execution switches to the trace recording interpreter so that traces starting
from the loop header are recorded. Loop headers are executed significantly more
frequently than methods so that we wait 25,000 executions before we start trace

recording.

e The loop traces compilation threshold determines how often traces are recorded for
a loop header before the recorded traces are compiled to optimized machine code.
Here, we also ensure that we capture the most relevant traces before compilation so

that we perform trace recording up to 1.000 times before compilation.

Therefore, loops are compiled before their surrounding method if the loop body is executed
at least 6.5 times per method invocation. At the first glance, the used thresholds may seem
high but they are already lower than the thresholds that are used in the method-based
HotSpot server compiler which compiles methods after 10,000 executions. We chose the
high tracing thresholds to avoid compiling infrequently executed method and loop traces
to machine code. The fairly high compilation thresholds have a different reason. Our
trace-based JIT compiler uses the recorded trace information for optimistic optimizations
and we tried to minimize the probability that those optimistic optimizations have to be

invalidated at a later point of execution because of a change in the application behavior.

To increase the startup performance and to reduce the amount of trace recording, we
use the complexity metric that is computed during bytecode preprocessing so that simple
methods and loops are less frequently recorded than complex ones. This heuristic increases
the startup performance without a significant effect on the quality of the recorded traces.
If the trace recording interpreter encounters a trace anchor for which compiled machine

code already exists, it invokes this machine code instead of interpreting the bytecodes.

Trace Recording 26

4.5 Partial Traces

The trace-based JIT compiler only compiles method parts that are covered by traces and
it may use the recorded traces for optimistic optimizations that are guarded with run-
time checks. If code must be executed that was not compiled or if a run-time check of
an optimistic optimization fails, we trigger an extended version of the Java HotSpot de-
optimization mechanism so that execution falls back to the trace recording interpreter.
When the trace recording interpreter takes over, it records a partial trace that directly
starts at the point of deoptimization instead of at the trace anchor but which is still asso-
ciated to its enclosing trace anchor. In every other aspect, there is no difference between
normal traces and partial traces and both use the same trace recording mechanism. To
detect too frequent deoptimization of compiled code, a counter is incremented every time
a deoptimization occurs. After reaching a threshold, the compiled machine code is inval-
idated and another compilation is triggered that uses the originally recorded traces and
all partial traces. The additional information from the partial traces is used to increase
method coverage or to disable specific optimistic optimizations which in return reduces
the deoptimization frequency. Trace recompilation is required infrequently as shown in
Chapter 8.

Trace-based Compilation 27

Chapter 5

Trace-based Compilation

Trace-based compilation only compiles frequently executed paths, so-called traces, instead
of whole methods to optimized machine code [9]. This can increase the peak performance,
while reducing the amount of generated machine code and the time required for JIT

compilation.

Our trace-based JIT compiler is based on the Java HotSpot client compiler because it has
a simple structure so that it can be modified easily. Although all techniques are general
enough to be also applicable to the server compiler, the complex structure of the server
compiler is less approachable for the changes that are required for trace-based compilation,

especially in the context of a research project.

Compiling the traces of a trace anchor to optimized machine code involves multiple steps.
First, our trace-based compiler builds its HIR by merging the recorded traces into a trace
graph. On this level, we remove traces that start at the trace anchor but have not been
executed frequently enough. Then, all client compiler optimizations and tracing-specific
optimizations such as aggressive trace inlining are applied to the HIR. The optimized
HIR is used to generate the LIR that is used for register allocation and code generation.
Eventually, linear scan register allocation maps virtual registers to physical ones. The LIR
is then translated to optimized machine code which is invoked by one of the interpreters

or by other compiled traces.

5.1 Front End

Figure 5.1 (a) shows the control flow graph (CFG) of a method, which is typically used
as the HIR in a method-based compiler. Assuming that the traces in Figure 5.1 (b)
were recorded, the traditional high-level intermediate representation for a trace-based
JIT compiler is the trace tree [31] shown in Figure 5.1 (c). A trace tree does not allow

any inner merge nodes but instead duplicates the control flow. This simplifies certain

Trace-based Compilation 28

optimizations but may lead to exponential growth of compiled code because of the control
flow duplication. Figure 5.1 (d) shows that our trace-based JIT compiler uses a hybrid
between a traditional control flow graph and a trace tree, a so-called trace graph, so that
both control flow duplication and inner merge nodes are allowed. A trace graph allows
duplicating code in cases where it makes sense while avoiding code bloat that may occur
for trace trees. Merging the traces is explicitly done by the JIT compiler and not during
trace recording, because by the time of JIT compilation all relevant traces have been
recorded and more information is available. Information that was obtained during trace
recording, such as the receiver class of a virtual call, are attached to the nodes of the trace

graph, so that the compiler can directly access that information.

(b) traces (c) trace tree

(d) initial trace graph (e) partial trace (f) final trace graph

Figure 5.1: Different high-level intermediate representations and partial traces

On the HIR, we apply traditional optimizations such as constant folding, null-check elim-
ination, and dead code elimination. Furthermore, we apply tracing-specific optimizations
such as trace inlining, which is our most profitable optimization. Trace inlining is more
powerful than method inlining because traces contain context-sensitive information. This
information helps to avoid inlining of method parts that were executed frequently in total
but are not required for the current caller (see Chapter 6). This is shown in Figure 5.2,
where two different callers invoke the same method. Each caller just needs a certain part

of the invoked method so that different traces are recorded for the two callers. When com-

Trace-based Compilation 29

piling the caller traces, trace inlining is used to inline only those traces that are needed
by the specific caller. This is a significant advantage over the context-insensitive profiling
data that is typically used by method-based compilers, as such compilers would inline all

executed method parts into both callers.

(a) control flow graphs

B> 1[5 e la>{] 4]
caller A
EZER > [z >l e

(b) traces recorded for caller A (c) traces recorded for caller B

Figure 5.2: Context-sensitive trace information

During trace recording, we record type information for the receiver objects of virtual calls.
This information is also context-sensitive so that our trace-based compiler can inline virtual
calls more aggressively without causing code bloat. Other optimizations such as optimistic

type-check elimination also profit from the context-sensitive type information.

Our trace-based compiler only compiles method parts that are actually covered by traces.
Untraced code parts are replaced by deoptimize [45] instructions that fall back to the
trace recording interpreter if executed. By omitting untraced code parts, we decrease
the number of merge points in the compiled code so that our trace-based compiler can
optimize more aggressively. This results in better peak performance. Furthermore, it
reduces the size of the generated machine code and decreases the amount of time spent
on JIT compilation. The recorded traces may also keep track of observed types or values
that can then be used for aggressive compiler optimizations. If aggressive optimizations
are performed based on the recorded trace information, the compiler emits run-time checks
to guard those assumptions. When a run-time check fails, execution deoptimizes to the

trace recording interpreter.

When compiled code deoptimizes, the trace recording interpreter records a partial trace
that directly starts at the point of deoptimization instead of the trace anchor, see Fig-
ure 5.1 (e). The Java HotSpot VM deoptimization mechanism is rather slow but it avoids
generating compensation code for infrequently executed cases. If deoptimization is re-

quired too frequently for a certain piece of machine code, we invalidate the machine code

Trace-based Compilation 30

and trigger a recompilation that uses the originally recorded traces and all partial traces.
The additional information from the partial traces helps to disable optimistic optimiza-
tions selectively or it increases the method coverage, as shown in Figure 5.1 (f). This

reduces the deoptimization frequency.

5.2 Back End

While we applied massive changes to the front end, only few changes were necessary
in the back end. The largest changes in the back end were for the transitioning from
compiled traces to other interpreted or compiled code (see Chapter 5.3). For this, we had
to introduce new LIR instructions and map them to machine code. Other back end parts
such as the register allocator or the code generation only required minor changes because

we ensure that every compiled trace has its own stack frame.

Both, the Java HotSpot client and server compilers use intrinsics to optimize certain native
JDK methods. Inlining the intrinsic avoids the native call and allows optimizing the code
before, during, and after the call as a whole. The server compiler maps significantly more
native methods to compiler intrinsincs than the client compiler so that fewer native calls
remain in the compiled code. Our trace-based compiler inherits the intrinsics used by
the client compiler but we also ported a small subset of simple intrinsics from the server
compiler to our trace-based compiler. This allows a better comparability of our results to

the Java HotSpot server compiler as fewer native calls remain that hinder optimizations.

5.3 Trace Transitioning

Unlike other trace-based compilers [9, 12, 14, 17, 30-32, 47], we do trace inlining during
JIT compilation instead of during trace recording. This allows using sophisticated inlining
heuristics to avoid unnecessary code bloat as more information is available during JIT
compilation. However, it requires a good trace transitioning system as traces may invoke
other interpreted or compiled code. For our trace-based compiler, invoking traces is as

important as invoking methods is for a method-based compiler.

Invoking traces that start at method entries is fairly simple as we can reuse the method
invocation mechanisms of the Java HotSpot VM. In terms of invocation, there is no dif-
ference between methods and method traces. However, for loop traces, a flexible trace
transitioning system is necessary that allows arbitrary transitions between interpreted

and compiled code.

Trace-based Compilation 31

5.3.1 Separating Loops from Methods

Method-based compilers use on-stack-replacement (OSR) [46] for long-running loops to
switch from interpreted to compiled code in the middle of a method. Which parts of
a method are compiled for on-stack-replacement is up to the compiler. If the whole
method is compiled, the profiling data for the method parts before and after the loop
are inaccurate as those parts were executed infrequently. This may result in insufficiently
optimized machine code. If only the loop is compiled, the optimized code falls back to the

interpreter when the loop exits.

When switching from interpreted code to compiled code within a loop, the interpreted
stack frame and its values are converted into a compiled stack frame. This conversion
can be expensive, but is done only once so that execution can continue in the compiled
machine code. If the loop’s parent method is compiled at a later point of execution, this
compilation includes the long-running loop so that the OSR machine code will not be

executed anymore.

Our trace-based approach is a generalization of OSR. It establishes loops as top-level
compilation units to allow complete separation of compiled method traces and compiled
loop traces. A compiled loop trace has its own stack frame and its own block of machine
code that does not necessarily become obsolete when traces of the parent method are
compiled. This adds a significant amount of flexibility to our compiler as we can choose
to extract loops into their own compilation units when advantageous. However, it still
allows reusing large parts of the method-based compiler infrastructure such as the linear
scan register allocator or the code generator. Separating loops from methods helps us
to reduce the size of each compilation unit and affects the compilation time positively as
the compilation time often increases more than linearly with the size of the compilation

unit.

Invoking loop traces is difficult since many values may flow into loops. Loops can also
modify the values that flow into them so that multiple values may have to be returned to
the caller when the loop exits. Otherwise, the caller would continue working with outdated

values.

To simplify the invocation of loop traces, we enforce the following restrictions: we do
not compile loop traces separately if they use monitors or operand stack values that were
defined outside the loop. So, it is never required to pass monitors or operand stack values
to loop traces. Furthermore, we do not compile loop traces separately that exit while
there are still locked monitors or remaining values on the operand stack. This simplifies
returning from loop traces as it is never required to return monitors or operand stack

values, while not restricting parameters and local variables that flow into loops.

Trace-based Compilation 32

Both restrictions are small and affect less than 1% of all loops we have seen so far. To
enforce those restrictions, we use abstract bytecode interpretation to simulate how the loop
interacts with the operand stack and with monitors. Figure 5.3 shows that our simulation
starts at the loop header with an empty operand stack and without any monitors. During
the simulation, we check whether the loop tries to use a non-existing operand stack value or
a non-existing monitor. If this is the case, the loop traces cannot be compiled separately.
Furthermore, we also verify for every loop exit that the operand stack is empty (only
exception handlers may have one stack value, which must be the exception object) and
that there are no remaining locked monitors. When the simulation ends, the loop is
marked as compilable or not compilable according to the simulation result. Loops that
are not separately compilable have all their traces inlined into their parent trace when the

parent trace is compiled.

Figure 5.4 (a) shows the control flow graph of a method that contains a loop, which has
the blocks 4 and 7 as its loop exits. A method-based compiler would compile the method
as a whole, while our trace-based compiler can compile the loop independently from the
remaining method. Figure 5.4 (b) shows a possible trace graph that is created when the
recorded method traces are compiled by our trace-based compiler. The loop is invoked by
the trace in block 1 and all required values are passed to the loop upon invocation. When
the loop exits, it returns all modified values as well as the bytecode index (BCI) of the
taken loop exit. Execution returns to the artificial block d that uses the returned BCI
to dispatch to the correct successor. In the given example, we assume that only block 7
was covered by traces so that execution deoptimizes to the interpreter if the loop exits to
block 4.

Figure 5.4 (c¢) shows the loop trace graph that is built when the recorded loop traces are
compiled. This compilation is independent from the compilation of the method traces so
that it can occur earlier or later. During its execution, the loop uses the values that were
passed upon loop invocation. When a loop exit is encountered, all modified values as well

as the BCI of the taken loop exit are returned to the caller.

5.3.2 Loop Calling Conventions

Restricting the way how loop traces can use monitors and the operand stack greatly
simplifies the invocation of loop traces, as it is only necessary to transfer parameters and
local variables. Figure 5.5 shows the calling conventions we use for loop traces. When
a loop is invoked, we pass an invocation pointer to an invocation area containing the
parameters and the local variables of the caller so that the loop can access those parameters
and local variables that it actually requires. Figure 5.5 (a) shows that this is simple when

the loop is invoked by interpreted code because the parameters and local variables are

Trace-based Compilation

1 boolean canBeCompiled(Loop loop) {

2 Queue worklist = new Queue();

3 worklist.push(loop.header());

4

5 while (!worklist.is_empty()) {

6 Block block = worklist.pop();

7 if (loop.isLoopExit(block)) {

8 State state = block.state();

9 if (state.hasMonitors() || state.stackvalues() > 1 ||
10 state.stackvalues() > 0 &&
11 Iblock.isExceptionHandler()) {
12 return false;
13
14 } else {
15 boolean success = simulateBytecodes(block);
16 if (success) {
17 for (Block sux in block.successors()) {
18 sux.mergeState(block.endState());
19 if (!sux.alreadyProcessed()) worklist.push(sux);
20 }
21 } else {
22 return false;
23 }
24 }
25}
26 return true;
27 }
28

29 boolean simulateBytecodes(Block block) {
30 State state = block.state();

31 boolean result = true;

32 for (Bytecode c in block.bytecodes()) {

33 result = result && state.popStack(c.requiredStackValues());
34 state.pushStack(c.createdStackvalues());

35 result = result & state.popMonitors(c.requiredMonitors());
36 state.pushMonitors(c.createdMonitors());

37 }

38 block.setEndState(state);
39 return result;
40 }

Figure 5.3: Bytecode simulation to determine if a loop can be compiled separately

deoptimize

(a) control flow graph (b) method trace graph (c) loop trace graph

Figure 5.4: Separating loops from methods

Trace-based Compilation 34

older frame older frame older frame
invocation N
pomnter parameters invocation compiled compiled
; area
.Iocal variables A frame frame
interpreter data | interpreted invocation invocation i
monitors frame pointer parameters | invocation Pointer parameters invogation
operand stack local variables area local variables area
ied ied interpreter data | interpreted
compile compile - loop frame
loop frame loop frame monitors P
top of top of | top of operand stack
stack stack stack
(a) interpreted method invokes (b) compiled code invokes (c) compiled code invokes
compiled loop compiled loop interpreted loop

Figure 5.5: Calling conventions for loop traces

explicitly contained in the interpreter frame. When the callee loop starts execution, it
reads the required values by addressing them relative to the invocation pointer. During
execution, it holds them in registers or spills them to the loop’s stack frame. Eventually,
execution reaches a loop exit where it writes back all modified values that the caller might
access, again using the invocation pointer as the base address. Finally, the loop returns the
BCT of the taken loop exit in a specific register. So, the interpreter can continue execution
at the returned BCI since the latest values of the parameters and the local variables were

written back to the interpreter frame.

If the loop is invoked from compiled code, such as in Figure 5.5 (b), the compiled caller
holds its values in registers or spill slots. So, the caller allocates an invocation area at
the top of its compiled frame, where it spills its live parameters and local variables before
invoking the loop. This brings the parameters and local variables into a defined order and
allows the caller to pass an invocation pointer to the callee. The callee loop reads the
required values upon loop entry and writes back all modified values when the loop exits.
The BCI of the taken loop exit is then returned in a specific register so that the caller can
determine where to continue execution. If the invoked loop has only one loop exit, the
caller can continue directly without checking the returned BCI. If the invoked loop has
more than one exit, the compiled caller uses the returned BCI to dispatch to the correct
location in the compiled code. Before execution actually continues, it first reads the latest

values from the invocation area.

When a loop is contained in an infrequently executed method part, it is often not useful to
compile the infrequently executed loop together with its hot caller trace. Therefore, our
calling conventions also support calling an interpreted loop from compiled code, as shown
in Figure 5.5 (c¢). At loop invocation, the compiled caller spills the live parameters and
local variables to the invocation area at the top of its frame. Because the parameters and

local variables are in the same order as in an interpreter frame, the interpreter just needs to

Trace-based Compilation 35

allocate a partial stack frame containing space for the interpreter-specific data, monitors,
and the operand stack. So, the invocation area becomes a part of the interpreter frame.
During loop execution, the interpreter can modify the parameters and local variables in
place. When the loop exits, the interpreter-specific part of the stack frame is discarded
and the loop exit BCI is returned in a specific register. Because the parameters and local
variables were modified in place, the invocation area already contains the latest values
so that no data has to be written back explicitly. The compiled caller then continues

execution as if a compiled loop was invoked.

The case shown in Figure 5.5 (c) also occurs after deoptimization of a compiled loop trace
that was invoked by compiled code. After deoptimization, the stack looks exactly as if
the compiled code invoked an interpreted loop. If this calling convention variant was not
supported, the compiled caller would have to be deoptimized as well, which could result in
cascading deoptimizations. By giving the deoptimized loop a separate interpreter frame,

we can isolate the effect of deoptimization so that it affects just a single stack frame.

Figure 5.6 shows that our calling conventions enable arbitrary transitions between inter-
preted and compiled traces. This adds a great amount of flexibility to our system. The

transitions can be grouped into the following 4 categories:

1. The first category covers transitions from interpreted to interpreted code. Those are
mainly relevant during startup when the application is executed in the interpreter
and hardly any code has been compiled yet. In later execution phases, those transi-

tions are still required because the compiled code may deoptimize to the interpreter.

2. The second category covers transitions from compiled code to interpreted code.
Those transitions occur, for example when frequently executed traces are compiled
and less hot traces are inlined during JIT compilation. The inlined less hot traces

may invoke other code that was not jitted yet.

3. The third category covers transitions from interpreted code to compiled code, which
occurs during startup when not yet compiled code invokes code that was already
jitted. This happens because more frequently executed code, e.g., code with multiple
callers, is hotter and therefore compiled earlier. After startup, those transitions still

occur when the caller was deoptimized and is therefore interpreted.

4. The fourth category covers transitions from compiled to compiled code. In non-trivial
applications, those transitions occur most frequently because all relevant code parts
are jitted eventually. So, to achieve a good peak performance most trace transitions

must fall into this category.

Trace-based Compilation

36

interpreted method traces| interpreted loop traces compiled method traces| compiled loop traces
infrequently executed code | infrequently executed | frequently executed code| frequently executed
or after deoptimization code code
interpreted method traces same frame
infrequently executed code yes (no explicit transition) yes yes
or after deoptimization
interpreted loop traces 1 3
after deoptimizing a
compiled loop or invoking yes same frame yes yes
. (no explicit transition)
an infrequently executed
loop from compiled code
compiled method traces
frequently executed code yes yes
2
compiled loop traces
frequently executed code yes yes

Figure 5.6: Transitions between interpreted and compiled traces

interpreted method interpreted loop compiled method compiled loop
infrequently executed code | infrequently executed frequently executed frequently executed
or after deoptimization code code code
!nterpreted method same frame OSR
infrequently executed code yes yes

(no explicit transition) converts the frame

or after deoptimization

interpreted loop interpreted loops never have a separate stack frame

compiled method
frequently executed code

same frame

yes (no explicit transition)

impossible yes

compiled loop compiled loops never have a separate stack frame

Figure 5.7: Transitions between interpreted and compiled methods

In comparison to that, Figure 5.7 shows the transitions possible in a traditional method-
based system. There, loops are always compiled with their enclosing method and do not

have separate stack frames.

We also considered a concept for register-based loop calling conventions. Such calling
conventions could be more efficient and could decrease the loop invocation overhead but
would significantly complicate the transition between interpreted and compiled code. Be-
cause the loop body is usually executed multiple times, execution tends to stay within a
called loop for a longer time than within a called method. Furthermore, for best peak
performance, it is more profitable to inline the loop, as mentioned in Chapter 6.3. So,
it is unlikely that peak performance would profit significantly from register-based calling

conventions for loop traces.

Trace-based Compilation 37

5.4 Exception Handling

Although exceptions should only be thrown in rare cases, some Java applications heavily
rely on exception handling. A few applications even use exception handling for control
flow decisions. Therefore, also a trace-based JIT compiler must support the most frequent

exception handling cases in an efficient way.

Exception handling in method-based compilers always either continues in the exception
handler of the executing method or it unwinds the call stack and handles the exception
in one of the callers. When a method frame is unwound, all values that were used within
the method are discarded as they are no longer needed. For a trace-based compiler,
unwinding the stack is more difficult. If an exception is thrown in a loop and caught in
the loop’s parent, any values that were modified in the loop have to be returned to the
parent when the loop frame is discarded. This is necessary so that execution can continue

in the exception handler using the latest values.

Previous trace-based compilers for Java [12, 31, 32, 47] either stopped or aborted trace
recording when an exception was thrown. Aborting trace recording has the effect that
exception throwing traces are never compiled to machine code. Stopping trace recording
also results in inefficient exception handling as it precludes that exception sources and ex-
ception handlers are compiled together in the same compilation unit. Our trace recording
approach supports exceptional control flow so that exception sources and exception han-
dlers frequently are within the same compilation unit, as shown in Figure 5.8 (a). If the
exception handler was covered by recorded traces and was therefore compiled to machine
code, exception handling is as efficient as possible because the compiled code can dispatch
directly to the exception handler. If the exception handler was not compiled, execution
deoptimizes to the interpreter. Because a trace-based compiler tends to have larger compi-
lation units than a method-based compiler (traces are smaller than methods and therefore
have a higher potential to be inlined), exceptions stay within the same compilation unit

most of the time.

compiled trace - g loop trace method trace
exception handler g exception handler | S exception handler &8
=5 =
calls e calls e
(7 17
(a) exception within (b) exception unwinds (c) exception unwinds
a compiled trace from a method trace from a loop trace

Figure 5.8: Exception handling

Trace-based Compilation 38

Figure 5.8 (b) shows the case where an exception unwinds from a method trace and
execution continues within a loop trace. When unwinding the method trace, all live
values can be discarded as they are not needed by the caller. In that case, our exception
handling is similar to exception handling in a method-based compiler. The same approach
is also taken when a loop trace throws an exception that is neither caught within the loop

trace nor within its enclosing method.

Figure 5.8 (c) shows the case where an exception unwinds from a loop trace and execution
continues in the trace of its enclosing method. The loop trace might have modified some
parameters or local variables, so execution must use the latest values when it continues in
the exception handler. This case is complicated by the fact that the involved frames can
be either interpreted or compiled. When a compiled loop trace throws an exception that
is caught in its enclosing method that was compiled separately, we deoptimize the loop
trace to the interpreter. This creates the case shown in Figure 5.5 (¢) and ensures that
the loop’s latest values are written back to the invocation area of the caller. Then, the
frame of the loop trace is unwound and exception handling continues in the caller. The
caller loads the latest values and rethrows the exception using the BCI of the instruction
where the exception initially occurred in the loop trace. Eventually, execution continues

in the correct exception handler with the latest values.

If this case occurs for an interpreted loop that was invoked by compiled code, we im-
mediately unwind the interpreter-specific part of the loop frame because the interpreter
modified the invocation area in place. So, the invocation area already contains the latest

values and exception handling can directly continue in the caller.

If an exception unwinds from a loop trace and the exception is caught in the enclosing
method, our approach has some overhead as it relies on deoptimization. This overhead
is only relevant for frequently thrown exceptions and can be addressed easily using loop
inlining (see Chapter 6.3) so that exceptions are thrown within the same compilation unit,

which is the most efficient way to handle exceptions.

5.5 Type-specific Optimizations

In addition to our calling conventions and the better exception handling, we added further
optimizations to our trace-based compiler. We added a type system that can store different
kinds of type information for every SSA value because the original type system of the Java
HotSpot client compiler was limited. Our new type system is especially useful for inlining
of polymorphic calls, where the receiver is represented by a single SSA value but its type

may vary for every inlined method. Furthermore, it is also possible to keep track of the

Trace-based Compilation 39

1: CharSequence concat(CharSequence a, CharSequence b) {

2: int totalLength = a.length() + b.length();

3: AbstractStringBuilder result;

4: if (a instanceof StringBuffer || b instanceof StringBuffer) {
5: result = new StringBuffer(totallLength);

6: } else {

7: result = new StringBuilder(totalLength);

8: }

9: return result.append(a).append(b);
10: }

(a) concatenation source code
o concat(string, string);
e concat(stringOrStringBuilder, string);
(b) concatenation callers

1: CharSequence concat(CharSequence a, CharSequence b) {

2: guard(a.getClass() == String.class);

3: int totallLength = inline(a.length()); // String.length()
4: guard(b.getClass() == String.class);

5: totalLength += inline(b.length()); // String.length()
6: StringBuilder result = new StringBuilder(totallLength);

7: return inline(result.append(a).append(b)); // StringBuilder.append()
8: }

(c) optimized concatenation for caller A

1: CharSequence concat(CharSequence a, CharSequence b) {

2: int totallength;

3: if (a.getClass() == String.class) {

4: totalLength = inline(a.length()); // String.length()
5: } else if (a.getClass() == StringBuilder.class) {

6: totalLength = inline(a.length()); // StringBuilder. length()
7: } else {

8: deoptimizeToInterpreter();

9: }
10: guard(b.getClass() == String.class);
11: totalLength += inline(b.length()); // String.length()
12:

13: StringBuilder result = new StringBuilder(totallLength);
14: return inline(result.append(a).append(b)); // StringBuilder.append()

(d) optimized concatenation for caller B

Figure 5.9: Type-specific optimizations

fact that the type of a value is a subtype of a specific class or that a value has multiple

possible types.

Figure 5.9 (a) shows the Java source code of the method concat() which concatenates
two character sequences. Two call sites that invoke concat() with different parameters
are shown in Figure 5.9 (b). When the callers are getting compiled, each caller inlines

those concat () traces that were recorded for this caller. This context-sensitivity allows

Trace-based Compilation 40

specializing the inlined code for the specific caller and reduces the number of types observed

for each value so that aggressive type-specific optimizations can be used more frequently.

The first caller only passes String objects to concat (), which is also reflected by the type
information recorded in the traces. When inlining those traces, the JIT compiler generates
the optimized pseudo-code shown in Figure 5.9 (¢) and uses run-time checks to guard the
assumption that only String objects are passed as ¢ and b. When such a run-time check

fails, the execution deoptimizes to the trace recording interpreter.

For the remaining compilation unit, the compiler knows that ¢ and b are always String
objects so that it is possible to change the CharSequence.length() interface calls to
String.length() calls. Unlike the interface calls, those calls can be inlined easily. Fur-
thermore, it is now also possible to eliminate the instanceof checks as neither a nor b are
StringBuffer objects. So, it is known that result is a StringBuilder object so that the

calls to append () can also be inlined easily.

Figure 5.9 (d) shows the optimized pseudo-code for the second caller that either passed
a String or a StringBuilder object as the first parameter and always used a String
object as the second parameter. The first call to CharSequence.length() is polymor-
phic as the type information in the traces indicates that a is either a String or a
StringBuilder. So, two type checks are added that dispatch to the inlined versions
of String.length() and StringBuilder.length(). If a is neither a String nor a
StringBuilder, the execution deoptimizes to the trace recording interpreter. For the in-
vocation of CharSequence.length() on b, a guard is added to ensure that b is a String
object. In the next step, it is possible to eliminate the instanceof checks as neither a nor
b is a StringBuffer. So, the result is a StringBuilder object and the calls to append ()

can be inlined.

By using the type information for optimizations such as removal of type checks and elimi-
nation of redundant guards, we increase the performance and help the compiler to reduce

the bookkeeping information that is required for deoptimization.

5.6 Tail Duplication

One optimization typical for trace-based compilers is tail duplication which duplicates
control flow along frequently executed paths [9]. If performed excessively, this results in
a trace tree [32] without any inner merge nodes and with exponential growth of compiled
code because of the control flow duplication. While this increases the size of the generated
machine code, it avoids ¢ instructions that are otherwise introduced due to control flow
merges. Having fewer ¢ instructions increases the optimization opportunities and therefore

the performance.

Trace-based Compilation 41

Our implementation avoids excessive tail duplication which is otherwise common to trace
compilation (see Chapter 9) by merging the control flow of multiple traces into a trace
graph. This hybrid between a traditional control flow graph and a trace tree supports
both control flow duplication and inner merge nodes. Merging the traces is explicitly done
by the JIT compiler, because by the time of JIT compilation all relevant traces have been

recorded.

Combining tail duplication and aggressive trace inlining can easily result in code bloat
because tail duplication may duplicate calls that are then inlined multiple times. Tail
duplication can also prevent inlining if the probabilities of the recorded traces are too
equally distributed. Due to the duplication, the trace graph may contain multiple rarely
executed calls instead of one call that was executed frequently. This is difficult for inlining

heuristics that use the execution probability to determine if a call is worth inlining.

When building the trace graph from the recorded traces, we control the amount of used
tail duplication with a tail duplication heuristic. We evaluated multiple simple heuristics
and observed that tail duplication hardly increases the average peak performance of Java
applications. However, it significantly increases the amount of generated machine code
and the time required for JIT compilation. When the same time and code size budget is
used to apply trace inlining instead of tail duplication, the increase in peak performance is
significant. For Java, tail duplication therefore mainly seems interesting when no further

peak performance increase can be achieved using trace inlining.

5.7 Runtime Changes

We modified the original deoptimization mechanism to support deoptimization of com-
piled traces instead of compiled methods. Figure 5.10 (a) shows the initial stack where a
compiled method trace invoked a compiled loop trace. First, we rescue all values that are

live in the current compiled frame to the heap.

Then, we remove the compiled loop frame from the stack as shown in Figure 5.10 (b). In
the next step, the appropriate number of interpreter stack frames is pushed. To fill the
interpreter frames with the rescued values, we access the debugging information that the
trace-based JIT compiler generated for the deoptimizing instruction. This information
tells us which rescued values should be placed at which locations in the interpreter frames.
Due to trace inlining, one compiled trace may correspond to multiple interpreted method
and loop traces. In this example, one method trace was inlined into the loop trace so that
the resulting stack looks as shown in Figure 5.10 (c). Furthermore, one partial trace is
pushed on the tracing stack for every inlined loop or method trace. The resulting tracing

stack is shown in Figure 5.10 (c), assuming that the tracing stack was empty before

Trace-based Compilation

42

-
compiled
method
trace

parameters | invocation
local variables area

compiled

loop trace
top of

stack

(a) stack before deoptimization

T
compiled
method
trace
parameters | invocation
top of local variables arfa
stack

(b) stack during deoptimization

top of

parameters

local variables

interpreter data

monitors

operand stack

parameters

local variables

interpreter data

monitors

operand stack

stack

T,
compiled
method
trace
L
invocation
area
1

interpreted
loop

interpreted
method

|

(c) stack after deoptimization

top of

loop

method

tracing stack

(d) tracing stack after deoptimization

Figure 5.10: Deoptimizing a loop trace

deoptimization. When execution resumes in the trace recording interpreter, it continues

trace recording using the partial traces from the tracing stack.

Trace Inlining 43

Chapter 6

Trace Inlining

Similar to method inlining, trace inlining replaces calls with copies of the actually called
code. In terms of performance, this is one of the most profitable optimizations. It removes
the call overhead and increases the compilation scope so that more code can be optimized
as a whole. This increases the effectiveness of many optimizations and may simplify both
the caller and the inlined callee. Our trace-based JIT compiler supports both static and

dynamic inlining heuristics by making use of the recorded trace information.

We start trace inlining by computing the maximum trace size that is acceptable to be
inlined at the current call site. This mainly depends on the call site’s relevance (see
Chapter 6.4) for program execution. Then, we use a heuristic to decide if it is worth to
inline the invoked traces at the current call site. To a large degree, this depends on the size
of the traces because inlining large traces causes code bloat. When doing trace inlining,

we distinguish between the inlining of method traces and loop traces.

6.1 Advantages Over Method Inlining

Trace inlining has several advantages over method inlining:

e The recorded traces contain context-sensitive information (see Chapter 6.5) about
which method parts are used by which caller. This information is preserved over
method boundaries and can be used to avoid inlining of method parts that were

executed frequently in total but are not required for the current caller.

e Trace inlining does only inline frequently executed traces instead of whole methods.
Method-based compilers try to use profiling data to avoid compilation of infrequently
executed method parts [28, 66, 68]. This is less effective than trace inlining because

the method-based profiling data typically is not context-sensitive.

Trace Inlining 44

e Traces also store information about the receivers of virtual calls and due to our
trace linking, this information is also context-sensitive. So, it might turn out that a
certain call site invokes only methods of a specific receiver type. This information
can be used for aggressive inlining of virtual methods. Method-based compilers also
use profiling data for aggressive inlining of virtual calls, but in most compilers this

information is not context-sensitive so that the profiling data is possibly polluted.

6.2 Method Traces

Inlining method traces is similar to method inlining except that the traces usually do not
cover all bytecodes of the callee. So, we build a trace graph from the traces that should be
inlined and replace the method invocation with the contents of that trace graph. Then,
return instructions that are located within the inlined bytecodes are replaced with direct
jumps to the instruction after the call and exception-throwing instructions are wired to

exception handlers located in the caller’s trace graph.

Figure 6.1 (a) shows the control flow graphs of two methods. Two traces through those
methods are shown in Figure 6.1 (b). After performing trace recording frequently enough,
the recorded traces are getting compiled. The resulting trace graph after trace inlining
(but without explicit control flow duplication) is shown in Figure 6.1 (c). This trace
graph is then compiled to optimized machine code. If one of the removed blocks must be

executed later on, the compiled code deoptimizes to the interpreter.

1

2/ »alb|flg|i]»2
20 »ald|flg|i]»2

3

K

3

(b) recorded traces

*}‘: 3 i Q) L)‘: h |
E :
ST —
S pie!
o Lo__
(a) control flow graphs (c) trace graph after trace inlining

Figure 6.1: Inlining method traces

Another interesting aspect in this example is that we also remove the edge from block 1

to block 3 although the trace graph does contain block 3. This is advantageous because it

Trace Inlining 45

avoids control flow merges, which otherwise could constrain compiler optimizations. So,

removing edges that are not executed results in better optimized machine code.

In most cases, we inline only those traces that were executed upon invocation by the
current caller. However, if the callee traces were compiled before trace recording was
started for the caller, the caller does not know which of the compiled traces it needs. In
those cases, we conservatively consider all callee traces as inlining candidates, except those
for which we can proof that they cannot be invoked by the current caller because of the
specific parameters that the caller passes to the callee. The used technique behind that is
similar to dead code elimination in a method-based compiler but allows eliminating whole
traces instead of basic blocks. To further reduce the number of inlined traces, we also

filter out infrequently executed traces (see Chapter 6.7).

For virtual method invocations, we combine the recorded trace information with the Java
HotSpot client compiler’s CHA to determine the possible receiver types for the current
call site. If the CHA identifies a single possible target method, the invoked method traces
are inlined in a similar way as the Java HotSpot client compiler inlines methods. If the
CHA finds multiple possible target methods, we try to use the recorded receiver classes for
inlining the method traces aggressively. For this, we add a run-time check that compares
the actual receiver type with the expected type and deoptimizes to the interpreter if the
types do not match. By combining CHA and context-sensitive trace information, we can
inline virtual calls with less code bloat than most method-based compilers while emitting

run-time checks only where necessary.

For inlining virtual calls and interface calls optimistically, based on the recorded type

information, we use the following run-time checks:

e If the recorded traces indicate that the invoked method has always belonged to the
same type of receiver, we do the inlining and guard it with a type guard that compares
the actual receiver type to the expected one and deoptimizes to the interpreter if

the types do not match.

o If a call site always invokes the same method but does it on different receiver types,
we enable this kind of inlining by guarding it with a so called method guard that
accesses the virtual method table of the actual receiver and compares the invoked
method with the expected method. If the methods do not match, we deoptimize to
the interpreter. This kind of inlining is especially advantageous if an abstract base
class implements a method that is not overridden by subclasses. However, it only
works for virtual calls and not for interface calls because interface calls do not have

an index into the virtual method table.

Trace Inlining 46

e If a call site always invokes the same method but does it via a receiver of an interface
type, we extend type guards to a switch-like structure so that they can check for
multiple receiver types. This is cheaper than the interface lookup and allows us to
inline invocations of interface methods in many cases. If the actual receiver type

does not match any of the expected types we deoptimize to the interpreter.

e Another optimization is the inlining of polymorphic calls. Figure 6.2 (a) shows a
method, where a virtual call might invoke two different methods. Because these
scenario methods are small, it pays off to inline them both. This results in the
control flow shown in Figure 6.2 (b) where block 2’ dispatches to one of the inlined
methods depending on the type of the actual receiver. Here, we also use switch-like
semantics so that several types can dispatch to the same inlined method. If the
actual receiver type does not match any of the expected types, we deoptimize to the

interpreter.

call” E

<" return

. call__

return_

(a) polymorphic call (b) polymorphic inlining

Figure 6.2: Polymorphic inlining

The Java HotSpot server compiler also inlines polymorphic calls but limits the number of
inlined methods to at most two, as a higher number could easily result in code bloat. Our
trace-based compiler inlines method parts more selectively due to the context-sensitivity
of the recorded traces. So, we can avoid inlining of method parts that were executed
frequently in total, but are not required for the current caller. Furthermore, the recorded
type information is also context-sensitive, which reduces the number of inlining candi-
dates. So, our trace-based compiler does not have to limit the number of inlined methods
but instead only limits the total size of all inlined methods depending on the execution
frequency of the specific call site. For applications with a high number of polymorphic
calls, this results in significantly better inlining and therefore a higher performance, while

avoiding issues with code bloat.

Trace Inlining 47

6.3 Loop Traces

Method-based JIT compilers compile whole methods (including loops) to optimized ma-
chine code. During compilation, the compiler collects information about the values that
are used within the method and the loops. This information may consist of types, con-
stant values, or the observation that an object does not escape the method. Common
optimizations such as inlining of polymorphic calls or constant folding make use of this
information. If a loop and its caller are compiled together this information can be used
for optimizations in the loop. However, if the loop is compiled separately before its caller,

the following problems occur:

e The invoked loop does not have much information about the incoming values. As a
large number of values may flow into a loop, this lack of information can preclude

optimizations in the invoked loop.

e The loop caller has the problem that a loop invocation kills all information about
the values that could be modified by the loop. This may preclude optimizations in
the caller and is a significant problem for nested loops, where the inner and the outer

loops operate on the same values.

The severity of those issues can be reduced by recording profiling data about the passed
values. To mitigate all disadvantages, trace-based compilation must perform loop inlining.
Figure 6.3 (a) shows a trace graph that was built for method traces that invoked loop
traces. The loop traces were not inlined yet, so the loop is represented as a black box that
is still unknown to the compiler. In the next step, a separate trace graph is built from the
loop traces as shown in Figure 6.3 (b). The actual inlining then replaces the black box in
the caller trace graph with the loop trace graph and links all loop exits to their correct
successor blocks using jump instructions. In this example, block b is linked to block e and
block ¢ is linked to block d, resulting in the trace graph shown in Figure 6.3 (c). This
allows the compiler to optimize the loop and its caller as a whole, which results in a similar
effect as method inlining. We use the recorded probability of entering the loop to decide

whether we should compile the loop separately or if it should be inlined.

When inlining loop traces, we consider all traces that were recorded for a specific loop
as inlining candidates. This is necessary because loop traces are never explicitly linked
to their caller trace, so no context-specific call information is available. However, we
use the information about the parameters and locals that flow into the loop to eliminate
those traces for which we can proof that they cannot be invoked by the current caller.

Furthermore, we also eliminate traces that were not executed frequently enough.

A more difficult case is that the inlined loop can have a loop exit for which no successor

exists in the caller’s trace graph. For example, in Figure 6.3 (a), block d could be missing

Trace Inlining 48

2] | 2]

5 5 5
1495 1497 1495 1497
3
i
2
E " @
(@) method trace graph (b) loop trace graph (c) after loop inlining

Figure 6.3: Inlining loop traces

because it was never recorded. However, both loop exits could still be present in the
recorded loop traces as shown in Figure 6.3 (b). One way how this can happen is when
the loop traces are compiled before trace recording is started for the method trace. In a
first approach, we addressed this issue by explicitly adding deoptimization points for all
loop exits that could not be linked to a successor, so that execution deoptimized to the
interpreter when such a loop exit was taken. However, it turned out to be better if we
simply eliminate loop traces that end in a loop exit that was not recorded for the current
caller. This reduces the number of inlining candidates, results in less generated machine

code, and also deoptimizes in case that the specific path has to be executed.

6.4 Relevance

The relevance of a call site is determined by the relevance of the trace graph block in
which the call site is located. We evaluated three different algorithms for computing the
relevance and illustrate their behavior on the two trace graph examples A and B shown in
Figure 6.4. Example A was built from four different traces that hardly share any blocks.
Example B also shows a trace graph built from four traces, but every block is shared with
at least one other trace. For computing the relevance of the trace graph blocks, we first
determine how often each block was executed by recorded traces. Figure 6.4 (a) shows
the trace graphs where every block is annotated with its execution frequency. Then, we
compute the relevance of each block by dividing its execution frequency with a reference
value. Depending on the reference value, the relevance is scaled differently. So, we use one

of the following algorithms to choose that reference value:

o Simple: The simplest way of computing the relevance of a trace graph block is to
divide its execution frequency by the total execution frequency of all traces merged

into the trace graph. The resulting value is in the range |0, 1] and assigns a high

Trace Inlining 49

(a) node execution counts (b) simple

(c) most frequent trace (d) path-based (c) most frequent trace (d) path-based

Figure 6.4: Different relevance computation algorithms

relevance to those blocks in which inlining has a positive effect during most execu-
tions, as shown in Figure 6.4 (b). This algorithm is well suited for minimizing the

size of the generated machine code, while obtaining a decent peak performance.

o Most frequent trace: Another way is to divide the block execution frequency by
the execution frequency of the most frequently executed trace ever merged into
the trace graph. Because traces are merged, trace graph blocks that are shared
between multiple traces have a higher execution count than they would have without
merging. So, this metric returns a high relevance for call sites that are within such
shared blocks, while returning a value in the range]0, 1] for call sites that are only
contained in individual traces. In Figure 6.4 (c¢), the colored blocks are shared and
therefore get a higher relevance. If many different traces were recorded and many
blocks are shared in the trace graph, then it can happen that every block in the

trace graph has a relevance greater than 1, as shown in example B of Figure 6.4 (c).

Trace Inlining 50

This algorithm can be used for aggressive trace inlining that results in best-possible

peak performance while generating large amounts of generated machine code.

e Path-based: Our third approach computes a variant of the most frequently executed
path through the trace graph. We start at the root block of the trace graph, mark
it as visited and determine the most frequently executed successor block. Then,
we mark this successor block as visited and continue with it recursively until we
either reach a block without successors or until we are back at the loop header. All
blocks that are visited during this algorithm are colored in Figure 6.4 (d). Then,
we use the lowest execution frequency of all visited blocks to compute the relevance
of all other blocks in the trace graph. This has the advantage that important call
sites, i.e., those on this path and on frequently executed split/merge points, have a
value in the range [1, oo, while less important calls have a value in the range]0, 1].
This algorithm also results in excellent peak performance but it often results in less

generated machine code than most frequent trace.

In detail, we evaluated those relevance computation algorithms with multiple trace inlining
heuristics in [38] and [39].

6.5 Context Sensitivity

Our trace recording infrastructure restricts traces to span at most one method so that
the trace-based compiler has to rely on aggressive trace inlining [38]. The trace recording
mechanism preserves context-sensitive information over method boundaries so that each
caller knows which parts of the callee it should inline. This helps the compiler to avoid
inlining of method parts that were executed frequently in total, but are irrelevant for
the current caller. It reduces the generated amount of machine code, and decreases the

number of merge points, which increases peak performance.

Also method-based compilers use profiling data to remove never executed code. However,
their profiling data typically lacks the context-sensitivity so that they cannot decide which
method parts are required for each specific caller. Context-sensitive profiling data could in
principle also be recorded for a method-based compiler but trace recording and trace-based

compilation clearly simplifies it.

Figure 6.5 shows the method index0f () of the JDK class ArrayList. The first part of
the method handles the rare case of searching null, while the second part searches the
list for non-null objects. Most callers will only require the second part of the method.
However, if there is at least one caller in the application that executes the first part of
the method, the profiling data in a method-based compiler would indicate that the first

part has been executed. So, whenever the method-based compiler inlines the method

Trace Inlining

o1

16 }

public int indexOf(Object o) {
if (o == null) {

for (int i = 0; i < size; i++) {
if (elementData[i] == null) {
return i;
}
}

} else {

for (int i = 9; 1 < size; i++) {
if (o.equals(elementData[i])) {
return i;
}
}

return -1;

Figure 6.5: Method ArrayList.index0f ()

public class LineBuilder {
private final Appendable buffer;

public LineBuilder(Appendable buffer) {
this.buffer = buffer;

public void appendLine(CharSequence sequence) {
buffer.append(sequence);
buffer.append("\n");

(a) code pattern

}\\ PrintStream.append|()

}\: P e StringBuilder.append)
appendLine() :::
. N N StringBuffer.append()

}/ BufferedWriter.append|()

(b) possible method invocations

,,,,H appendLine’() F---- PrintStream.append()

7--7H appendLine™() StringBuffer.append()

1

2

3

4

5

6 1}

7

8

9
10
1}
12 }
\ A.a()
\ B.b()
\ C.c)
\ D.d()
\ Aa()
\ B.b()
\ C.c()
\ D.d()

| +
> o) | > I
+ -

(et > I

(c) preferred inlining

Figure 6.6: Context-sensitive type information

Trace Inlining 52

index0f (), it does also inline this rarely executed method part. Due to our context-
sensitive trace information, our trace-based compiler can avoid inlining method parts that

were never executed for the current caller.

Because trace inlining is more selective in what it does inline, our trace-based compiler
can use a more aggressive inlining policy, i.e., it can inline individual traces through a
method where the whole method would be too large to be inlined. This allows more and
deeper inlining for a given maximum inlining size and thus increases the compilation scope
significantly. Especially, for complex applications, this results in better optimized machine

code and has a significant positive effect on peak performance.

Figure 6.6 (a) shows the class LineBuilder that wraps an Appendable object and pro-
vides the method appendLine(). If multiple LineBuilder objects are used to wrap in-
stances of different classes, such as PrintStream, StringBuilder, StringBuffer, and
BufferedWriter, then the invocations of append () on lines 9 and 10 will be polymorphic

calls that cannot be inlined easily, as shown in Figure 6.6 (b).

However, if the dispatch in appendLine () depends on its call site, e.g., because different
LineBuilder objects are used at different call sites, the inlining in Figure 6.6 (c) would
be preferable. Our context-sensitive trace information also stores the receiver types of
virtual calls. So, our trace-based compiler can do the preferable inlining indicated in
Figure 6.6 (c) by using this context-sensitive information for aggressive inlining of virtual
calls. If a compiler does not record the profiling data in a context-sensitive way, but just
accumulates all encountered types (i.e., PrintStream, StringBuilder, StringBuffer,
and BufferedWriter at buffer.append()) it will not have enough information to inline

such virtual calls.

6.6 Compilation Units

Figure 6.7 (a) shows the call graph for a certain set of methods. Every box represents
a method, and arrows are method calls. Within the call graph, method g contains a

polymorphic call where three target methods are possible.

Figure 6.7 (b) shows the compilation units for a method-based compiler that uses ag-
gressive method inlining. When method a is getting compiled, the methods b, ¢, and d
are inlined, leading to new calls that are inlined again. When the inlining reaches the
polymorphic call the inlining heuristic can either choose to inline none, some, or all target
methods. Inlining all target methods can cause significant code bloat so that, for example,
the Java HotSpot server compiler only inlines polymorphic calls with a maximum of two

target methods. So, the inlining stops at the polymorphic call and each target method is

Trace Inlining

93

Y

b » f =
+ o
/ \ 2 / 4
a c g<g+| > m > p
d 8-\‘j\‘n
N
(a) call graph
/=
b f > N > p
/ N
=
a » C ;f ;g<g. ;p
\ S
>
d Lgég_ ;p
\q

= -

b fi > g1 > h | > p1

a > C » f > g2 > i > m > P2
\d ‘g3 ;j\n kp3
7\

q

(c) compilation units in a trace-based compiler with aggressive inlining

pE

(d) compilation units in a trace-based compiler with less aggressive inlining

Figure 6.7: Compilation units

Trace Inlining 54

compiled as a separate compilation unit. This example results in 4 compilation units that

have a, h, i, and j as their root methods.

Figure 6.7 (c) shows the compilation units of our trace-based compiler that uses aggressive
trace inlining. When the method traces of a are getting compiled, the context-sensitive
trace information is used for inlining so that when the traces of f are getting inlined into b
and ¢, each caller only inlines those traces that it actually requires. The context-sensitive
traces and the type information for the receiver objects of virtual calls help the compiler
to avoid generating polymorphic calls. Assume that in this example, the polymorphic
call depends on the caller so that only one target method has been observed for every
variant of ¢g. So, with a sufficiently aggressive inlining policy, the JIT compiler can inline

all relevant code parts into one compilation unit.

Figure 6.7 (d) shows possible compilation units for a trace-based compiler that uses less
aggressive trace inlining. Here, the inlining stops earlier which results in smaller compi-
lation units so that the method entries of a, b, and 7 become the roots of the resulting 3
compilation units. However, the context-sensitive trace information still helps the compiler

to avoid the polymorphic call in this example.

Depending on the size of the resulting compilation units, the JIT compiler can perform
different optimizations. Large compilation units offer more opportunities for optimizations
but they also require more time for compilation and more machine code is generated
because inlining duplicates code parts. The time required for JIT compilation usually
increases more than linear with the size of the compilation unit as some optimizations
have a non-linear run time. For startup performance, small compilation units are usually
better so that the JIT compilation quickly results in machine code that can be executed
instead of interpreting the bytecodes. However, for best peak performance, the compilation

units should be sufficiently large to allow good optimizations.

6.7 Trace Filtering

When a trace is recorded, chances are good that the trace is important and will be ex-
ecuted frequently. However, sometimes recorded traces turn out to be rarely executed.
By eliminating such traces, we can ensure that only important paths are compiled. Fig-
ure 6.8 (a) shows the trace graph after merging all recorded traces. The graph edges are

annotated with the execution frequencies.

For every block, we determine the most frequently executed outgoing edge and compare
its frequency to those of all other outgoing edges of the same block. Then, we remove all

edges with a 100x lower execution frequency. After processing all blocks, we remove no

Trace Inlining 55

longer reachable blocks from the trace graph. Figure 6.8 (b) shows the resulting graph
after filtering.

200 400 200 400
o) o]
199 1 140 140 119 1 199 140 140 119
v v v v v
d] 9]]
199 1 140 140 119 1 199 140 140 119

(a) trace graph

Figure 6.8: Filtering out infrequently executed traces

The recorded trace information conserves the program behavior that was observed during
a specific time frame. At a later point of execution, infrequently executed (and therefore
eliminated) paths might become important as the program behavior may change over time.
This results in frequent deoptimization because not compiled paths get to be executed.
If too frequent deoptimization is detected, the compiled machine code is invalidated and
another compilation is triggered. This compilation avoids trace filtering for those cases

that resulted in frequent deoptimization.

Trace filtering has the following corner cases, where extra care must be taken:

e For most loops, the loop body is executed significantly more frequently than the
loop exits, see Figure 6.3 (c). So, the execution frequencies of the loop exits have
to be compared to the frequency of the loop entry instead of to the frequency of
the backwards branch. Otherwise, the loop exit edges would be filtered out, so that
deoptimization to the interpreter is required after executing a loop. This would
increase the deoptimization frequency and it would limit the possible compilation

scope when doing loop inlining.

e Aggressive trace inlining may also inline infrequently executed traces. Those inlined
traces may not necessarily reflect the typical execution behavior yet so that trace
filtering might eliminate important traces. This would result in frequent deopti-
mization so that trace filtering should be avoided for insufficiently trace-recorded

methods and loops.

Trace Inlining 56

6.8 Effect on Compiler Intrinsics

Java code can call native methods using the Java Native Interface (JNI). This mechanism
is mainly used to implement platform-specific features that could not be expressed in Java
otherwise. Some methods of the Java standard library, e.g., System.arraycopy(), are
implemented in a platform-specific way directly in the JVM. As no Java code is executed

for such methods, trace recording is not possible for those methods.

The Java HotSpot VM uses compiler intrinsics for the most important platform-specific
methods so that the JIT compiler can inline such methods. Those intrinsics are modeled as
HIR and LIR instructions so that the compiler can apply optimizations. If our trace-based
JIT compiler compiles a trace graph that contains the invocation of a native method that is
implemented as a compiler intrinsic, we do exactly the same inlining as the method-based

compiler.

Still, our trace-based compiler has one advantage: traces are smaller than methods so

that our trace-based compiler can inline Java traces more aggressively than a method-

public static void primitiveArraycopy(Object src, int srcPos, Object dest,
int destPos, int length) {

if (src == null || dest == null) {
throw new NullPointerException();

3

if (srcPos < @ || destPos < @ || length < @ ||

srcPos + length > src.length || destPos + length > dest.length) {

throw new IndexOutOfBoundsException();

}

if (!src.isArray() || !dest.isArray() || src.getClass() != dest.getClass()) {
throw new ArrayStoreException();

}

if (src == dest && isOverlapping(srcPos, destPos, length)) {
copyOverlapping(src, srcPos, dest, destPos, length);
} else {
copyNonOverlapping(src, srcPos, dest, destPos, length);
}
}

(a) unoptimized arraycopy for primitive type arrays

public static void primitiveArraycopy(Object src, int srcPos, Object dest,
int destPos, int length) {
// src != null 8&& dest != null && src.isArray() && dest.isArray() &&
// length >= 0 && src != dest && src.getClass() == dest.getClass()
// srcPos >= 0 && srcPos + length <= src.length &&
// destPos >= 0 && destPos + length <= dest.length
copyNonOverlapping(src, srcPos, dest, destPos, length);

(b) optimized arraycopy for primitive type arrays

Figure 6.9: Pseudo-code for System.arraycopy() when copying primitive type arrays

Trace Inlining 57

based compiler could inline Java methods. This results in a larger compilation scope so
that it is more likely that the caller of a native method has specific knowledge about
the parameters that are passed to the native method. The JIT compiler can use this

information to optimize inlined compiler intrinsics more aggressively.

Figure 6.9 (a) shows pseudo-code for the implementation of System.arraycopy (), which
is used to copy primitive type arrays. Depending on the compiler’s information about the
parameters that are passed to System.arraycopy(), it can optimize the intrinsic. Fig-
ure 6.9 (b) shows an optimized version of the method where the compiler could optimally
exploit the parameter values. The necessary parameter information is for example avail-
able when the source and the destination arrays are allocated in the same compilation
scope in which System.arraycopy() is inlined. So, increasing the compilation scope can

help the compiler to increase the performance of inlined compiler intrinsics.

Deriving Code Coverage Information from Recorded Traces 58

Chapter 7

Deriving Code Coverage Information
from Recorded Traces

Trace recording and the recorded trace information is what fuels a trace-based JIT compiler
so that it can perform optimistic optimizations that increase performance. However, the
recorded traces can also be used for other purposes outside the JIT compiler. We propose
an efficient technique for deriving exact code coverage information from the recorded
traces. Code coverage metrics are used to determine the statements, branches or paths
that were covered during the execution of a program. These metrics are useful for finding
out whether the program was tested extensively enough and are usually obtained by

instrumenting the application.

Figure 7.1 (a) shows the steps that are typically involved to record code coverage infor-
mation for a Java application. The first step is to instrument the application either in an
offline preprocessing step or online while the application is executed. The code coverage
tool inserts probes at all relevant positions of the control flow. When a probe is executed,
it marks a certain part of the application as covered. When the application exits, the cov-
erage data is persisted, either by storing it in a file or transmitting it to another machine.
The actual computation of the covered code parts is then done offline by analyzing the
recorded coverage data and combining this information with the application’s source code.
The problem with this approach is that instrumentation degrades the performance of the
executed program and is therefore typically only enabled during testing and switched off

in daily operation.

For Java, several tools exist that can be used for obtaining exact code coverage. To the best
of our knowledge, all of them add instrumentation code to the application or to the VM.
However, instrumenting an application has some disadvantages such as slowing down the
execution or even introducing bugs that cannot be reproduced without instrumentation.

Approaches to reduce the overhead of the code coverage probes can be divided into two

Deriving Code Coverage Information from Recorded Traces 59

application
instrumentation —inserts—
raw code <€records ﬁ
code coverage | analyzes and coverage data exec‘utes
information computes application "
source code
(a) explicit instrumentation
application
raw code < q
records
code coverage | analyzes and coverage data exec‘utes
information computes application v
source code

(b) our approach

Figure 7.1: Ways to obtain code coverage information

categories (see Chapter 9.3). The first category of optimizations tries to avoid redundant
probes so that fewer probes have to be inserted and less instrumentation code has to
be executed at run time. The second category removes code coverage probes when they
are no longer needed. Removing no longer required probes is efficient but increases the

complexity of the code coverage tools.

We propose a system where no instrumentation code has to be added explicitly to record
code coverage information. Instead, the code coverage information is derived from the
profiling data that is recorded by modern high-performance VMs for JIT compilation, as
shown in Figure 7.1 (b). We exploit the fact that modern high-performance VMs already
have an instrumented interpreter or baseline compiler that records profiling data. By
guaranteeing certain system properties, it is possible to derive code coverage information
from the profiling data that is recorded for JIT compilation. Normally, this profiling
data would only be used to guide aggressive and optimistic optimizations such as type
specialization and removal of never executed code during JIT compilation. Exploiting
this profiling data allows minimizing the implementation effort to obtain code coverage
information, while ensuring that the impact on peak performance is minimal because it is

unnecessary to instrument the executed application explicitly.

Deriving Code Coverage Information from Recorded Traces 60

7.1 Runtime System and Requirements

Figure 7.2 shows our modified runtime system that we use to derive accurate code coverage
information from the traces recorded for JIT compilation. Unlike our original trace-based
runtime system, the threshold for trace recording is set to zero so that the trace recording
interpreter is used from the beginning. While this has a negative impact on startup
performance, it ensures that every executed code is traced. Unexecuted code is not traced
and therefore not compiled. In other words, we can be sure that all compiled code has
been executed and traced before. When compiled code branches off to uncompiled code,
execution falls back to the trace recording interpreter that starts recording a new partial
trace. Therefore, the recorded traces always comprise those parts of the code that were
executed. So, code coverage information can be collected during trace recording and the
compiled code does not have to be instrumented. This avoids the negative impact on the

peak performance.

class loader
static analysis

T
loads

executes

records

\
. trace recording
o deoptimizes------ > interpreter

machine
code

generates JIT compiler | &—recorded often enough

Figure 7.2: Runtime system for recording coverage information

Our approach is not only applicable to runtime systems with trace-based JIT compilers,
but can be generalized to any JIT compiler that uses profiling data to guide its optimiza-

tions. It is only necessary to fulfill the following requirements and guarantees:

e The VM must use an interpreter or a baseline compiler that is instrumented for
recording profiling data. In particular, it is necessary that the recorded profiling
data indicates which code parts have been executed. To obtain edge coverage infor-
mation, the recorded profiling data must also store which control flow edges have

been executed.

e Profiling data must be recorded whenever uncompiled code is executed. Further-
more, the JIT compiler must only compile code that has been executed before. For

edge coverage, it is also required that the JIT compiler only compiles control flow

Deriving Code Coverage Information from Recorded Traces 61

edges that have been executed. So, even if a block is contained in the compiled
code, all unexecuted edges to that block must fall back to the interpreter so that the
profiling data is updated. Our trace-based JIT compiler does that as described in
Chapter 5.

e If code needs to be executed that has not been executed before, the system must fall
back to the instrumented interpreter or to the baseline compiled code so that the

corresponding profiling data is updated.

Our requirements for determining code coverage are few so that it should be easy to fulfill
them in most modern VMs. Thus, our approach could, for example, also be used for

Oracle’s method-based HotSpot server compiler as proposed in Chapter 10.1.2.

7.2 Computing Code Coverage

There are many different code coverage metrics such as method coverage, basic block cov-
erage, instruction coverage, edge coverage, or path coverage [33]. Our work concentrates
on deriving instruction and edge coverage from the recorded traces. In most cases, we
could also derive path coverage information from the recorded trace information. The
only problem with path coverage is that if partial traces were recorded, the path before
the partial traces might be indeterminable because partial traces do not start at a trace
anchor. If multiple paths from the enclosing trace anchor to the start of the partial trace
are possible, we cannot decide which path should be considered as the predecessor of the

partial trace.

Similar to the profiling data for a method-based JIT compiler, the recorded traces are
stored in main memory while the VM is running. When the VM exits (or upon user
request) we compute the code coverage information and write it to a file. Figure 7.3 shows
how we compute the code coverage information from the recorded traces. At first, we do
some pre-processing where we analyze the method bytecodes to compute all control flow
edges. Then, we query all trace anchors for the current method and iterate over all their
traces. The recorded traces only contain the raw information about the recorded control
flow decisions so that we explicitly simulate the control flow decisions of each trace to
determine which bytecodes it covers. Every bytecode that was covered by a trace is then
marked as covered. Furthermore, we check for every covered bytecode if it is a branching
instruction and if so, we mark the control flow edge that remains inside the trace as

covered.

After processing all traces, the covered bytecodes and control flow edges are mapped to
the source code using the line number table within the class file. However, the line number

tables are optional and are only placed in the class files when the Java source to class file

Deriving Code Coverage Information from Recorded Traces 62

1 Coverage coverage(Method m, LineNumberTable lineTable) {
2 List<Bytecode> coveredBytecodes = new List<>();

3 Edges edges = computeControlFlowEdges(m.bytecodes());
4

5 for (TraceAnchor traceAnchor: m.traceAnchors()) {

6 for (Trace trace: traceAnchor.traces()) {

7 List<Bytecode> tracedBytecodes =

8 computeTracedBytecodes(trace, m.bytecodes());
9
10 for (int i = @; i < tracedBytecodes.size(); i++) {
11 Bytecode b = tracedBytecodes.at(i);
12 coveredBytecodes.addIfMissing(b);
13 if (b.isBranch()) {
14 Bytecode target = tracedBytecodes.at(i + 1);
15 edges.markCovered(b, target);
16 }
17 }
18 }
19 }
20
21 return mapToSourceCode(lineTable, coveredBytecodes,
22 edges);
23 }

Figure 7.3: Computing code coverage from recorded traces

compiler is explicitly instructed to do so. If no line number tables are available, or for a
more in-depth look at the recorded code coverage, the coverage information can still be
visualized on the bytecode-level. The resulting coverage data is stored to a file and the

actual visualization of the covered code parts is performed offline.

The recorded traces also contain further data that could be visualized, such as execution
counts, type information, and information about the call targets of virtual calls. However,
unlike the code coverage information, this data is not accurate and only represents the

data observed during the executions in the trace recording interpreter.

Figure 7.4 shows line and edge coverage examples for the method Math.max(). Fig-
ure 7.4 (a) shows the CFG of the method Math.max (), while Figure 7.4 (b) shows two
traces for this method. Merging the traces results in the trace graph shown in Fig-
ure 7.4 (c). Figure 7.4 (d) visualizes the covered lines and control flow edges for this trace
graph on the source code level. Some of the source code lines are only partially covered
as not all bytecodes/edges have been executed. The presence of partial traces, such as
in Figure 7.4 (e), would change the trace graph to the one shown in Figure 7.4 (f). This

would also increase code coverage as indicated by Figure 7.4 (g).

Deriving Code Coverage Information from Recorded Traces

S
he] I i
‘maX1‘1‘2‘7‘8‘ +L,\
3]
o 121 7[5 @
(a) control flow graph (b) traces c) initial trace graph
byte-
codes edges
1: public static double max(double a, double b) {
67%| 1/2 2: if (a != a) return a; // a is NaN
50%| 1/4 3: if (a == 0.0d && b == 9.0d
0%| 0/2 4: && hasNegativeZeroDoubleBits(a)) {
0%| 0/0 5: return b;
6: }
100%| 2/2 7: return (a >=b) ? a : b;
8: }
(d) coverage for the initial trace graph
(0]
N
=
—Ey
gy
Ll
G’\.‘>
E
‘maxs‘ 727; 3 ‘ 4 ‘ 5 ‘ ry:—acaj—
7T } 7 : 8
‘mam‘ 2){ 3 ‘ 7 ‘ 9 ‘ —
(e) partial traces (f) final trace graph
byte-
codes D
1: public static double max(double a, double b) {
67%| 1/2 2: if (a != a) return a; // a is NaN
100% | 4/4 3: if (a == 0.0d && b == 0.0d
100%| 1/2 4: && hasNegativeZeroDoubleBits(a)) {
100%| 0/0 5: return b;
6: }
100%| 2/2 7: return (a >= b) ? a : b;
8: }

(g) coverage for the final trace graph

Figure 7.4: Coverage for the method Math.max ()

Deriving Code Coverage Information from Recorded Traces 64

7.3 Comparison to Other Code Coverage Techniques

Figure 7.5 compares different instrumentation techniques that can be used to record code
coverage information for Java. When source code is instrumented, probes are inserted
at the source code level and the modified source code is compiled to Java bytecode. In-
strumenting on this level greatly simplifies the mapping of the recorded code coverage
information to the source code so that this approach can even show within lines which
source code parts have been executed. All other techniques must use the line number
table within the Java class files to map the executed bytecodes to source code lines. The
biggest disadvantage of source code instrumentation is the language dependency, espe-
cially as there are several languages that can be compiled to Java bytecode. So, a separate

implementation is necessary for every language.

source code offline bytecode |online bytecode| our
instrumentation instrumentation instrumentation| approach
works without access to source code no yes yes yes
works with classes created at run-time no no yes yes
does not affect reflection fjepends on .the fiepends on .the Fiepends on .the yes
implementation implementation implementation
negative impact on peak performance high high high low
works for very large methods no no no yes
possible to instrument all JDK classes no no no yes
can instrument container files (.jar, .war) only ifinstrumented es es es
b before packaging y y y
. . — only if instrumented only if instrumented
can instrument signed container files : , yes yes
before packaging before packaging
supports explicitly thrown exceptions yes yes yes yes
only if probes are only if probes are
supports implicitly thrown exceptions inserted after instructions| inserted after instructions yes yes
that may throw that may throw
works without additional instrumentation no no no yes
independent of source language no yes yes yes
difficulty to map coverage to source code low high high high
VM independent yes yes yes no

Figure 7.5: Comparison of code coverage instrumentation techniques

Bytecode instrumentation inserts probes into the bytecodes after the source code has been
compiled to Java bytecode. This is either done in an offline preprocessing step or during
execution of the Java program. Offline bytecode instrumentation can directly modify the
class files, which reduces the run-time overhead. However, it causes problems for signed
class file containers as the signature no longer matches the modified class files. Online
bytecode instrumentation attaches an agent to the JVM Tool Interface (JVMTI) [58] and

Deriving Code Coverage Information from Recorded Traces 65

modifies the bytecodes after they have been loaded by the VM class loader. This makes
code coverage tools convenient to use as it allows transparent instrumentation of class
file containers such as .jar or .war files. Furthermore, the attached agent can be notified
when the application throws an implicit exception. This simplifies recording exact code
coverage information in case of implicit exceptions. Bytecode instrumentation must use
the line number table within the Java class files to map the executed bytecodes to source
code lines. However, several bytecodes may map to the same line so that it can be hard to
determine which parts of a line have been executed. So, it is common to report a coverage

percentage for those lines where not all parts have been executed [1, 2, 6].

All approaches that explicitly add instrumentation to the code suffer from the problem
that the JIT compiler generates machine code for the inserted probes. So, the probes are
also executed when the code is already compiled, which decreases the peak performance.
Compiling the probes also increases both the JIT compilation time and the size of the
generated machine code. Our approach avoids this problem as it does not need any
additional instrumentation. Instead, we reuse the profiling data that is recorded for JIT
compilation by already existing instrumentation. This allows retaining almost full peak
performance so that code coverage can even be recorded when the application is already

deployed on a production system.

Another advantage of our approach is that we also record exact code coverage in case of
implicit exceptions. For performance reasons, other approaches often only insert probes
at the end of every basic block so that the whole basic block is marked as executed when
this probe is executed. When an implicit exception happens before the probe, then the

whole block is not marked as covered although some instructions were executed.

Some implementations of source code or bytecode instrumentation add methods and fields
to the instrumented classes so that the bytecodes can update the coverage data more effi-
ciently. This reduces the instrumentation overhead but can have undesired effects as those
fields are visible using reflection. Modifying top-level classes such as java.lang.0bject
may also cause serious problems because the VM often relies on a specific object layout for
those classes. So, instrumenting an application and all its libraries in such a way is not al-
ways possible. Our approach is transparent and does not modify the executed application

in any way.

The only drawback of using profiling data to compute code coverage information is that

the technique is VM-dependent as every VM records profiling data in a different way.

Deriving Code Coverage Information from Recorded Traces 66

7.4 Code Coverage Tools

For Java, there are many open source and commercial code coverage tools of which we list

a few popular ones.

Source code instrumentation is, for example, used by CodeCover [3] (open source) and
Clover [4] (commercial). Because of instrumenting the source code these tools are language
dependent but have the advantage that they can map the executed probes to the source

code more easily.

EMMA [1] and Cobertura [2] are both open source tools that use bytecode instrumentation
and both have been popular for several years. However, EMMA and Cobertura are no
longer under active development and therefore they do not support the new language
features that were introduced with Java 7. JaCoCo [6] is a still supported open source
tool that does both online and offline bytecode instrumentation and supports the latest
Java features. The online bytecode instrumentation greatly simplifies the use of this tool
as it is sufficient to add just one command line flag to instrument a Java application
transparently. FclEmma [5] is an open source Eclipse plugin that can directly visualize
the coverage information in Eclipse. Previously, EclEmma used EMMA to record the code
coverage information but then switched to JaCoCo because EMMA was no longer under

active development and did not support the latest Java features.

Many code coverage tools do not support implicitly thrown exceptions so that the coverage
information is inaccurate when such an exception is thrown. For example, EMMA and
JaCoCo assume that all instructions before a probe are executed as one atomic unit so
that those instructions are only marked as covered after the successive probe has been
executed. This reduces the instrumentation overhead and increases the performance but
has the drawback that the code coverage information is inaccurate in the case of implicitly

thrown exceptions.

Figure 7.6 (a) shows the source code and Figure 7.6 (b) the bytecode of a simple method
that does some synchronization and returns the absolute value of a static field. When
the code is instrumented with JaCoCo, the bytecode in black type (0 to 41) shown in
Figure 7.6 (c) is generated. The bytecodes 0 to 3 are used to get an array of boolean
values that contains the recorded coverage data for the current method. This array is then
stored in a local variable that is accessed by the probes that update the code coverage
information (see bytecodes 7 to 10, 19 to 22, 29 to 32, and 37 to 40).

In this specific example, the bytecode instrumentation causes an unexpected performance
bug. Figure 7.6 (b) shows that no instruction in the synchronized block could throw an

exception (bytecodes 3 to 14). JaCoCo inserts three probes in the synchronized block and

Deriving Code Coverage Information from Recorded Traces 67

@ invokestatic $jacocoInit
3 astore coverageData
4 ldc A.class
6 monitorenter
1: static int getAbsValue() { 7 aload coverageData
2 synchronized (A.class) { 8 iconst 1
3 int result = value; 9 iconst 1
4 if (result < @) { 10 bastore
5: result = -result; 11 getstatic value
6 } 14 istore result
7 return result; 15 iload result
8 } 16 iflt jump to 26
9: } 19 aload coverageData
(a) source code 20 iconst 2
21 iconst 1
22 bastore
23 goto 33
26 iload result
27 ineg
0 1dc‘A.c1ass 28 istore result
2 mon1torgnter 29 aload coverageData
3 getstatic value 30 iconst 3
6 istore result 31 iconst 1
7 iload result 32 bastore
8 ifge jump to 14 33 iload result
11 iload result 34 ldc A.class
12 ineg

36 monitorexit

13 istore result 37 aload coverageData

14 iload result

38 iconst 4
15 ldc.A.class 39 iconst 1
17 monltorex1t 40 bastore
18 ireturn 41 ireturn
(b) uninstrumented bytecode // catch all exceptions

42 1dc A.class
44 monitorexit
45 athrow

(c) instrumented bytecode

Figure 7.6: Code instrumented with JaCoCo

all execute an array store to update the coverage array. However, the array store instruc-
tion bastore may throw an exception. Although those bytecodes are valid according to
the JVM specification [54], this results in a construct that a Java source to class file com-
piler such as javac would not generate. Those compilers always add a catch-all exception
handler that unlocks the monitor in case of an exception and rethrows the exception, see

bytecodes 42 to 45 in gray type in Figure 7.6 (c).

A Java JIT compiler can always decide to avoid compiling certain bytecode constructs
for performance or implementation reasons. So, before compiling a method or method
parts, the HotSpot compilers validate that the bytecode fulfills certain invariants and
assumptions, especially when monitors are used. In this example, it turns out that the
bytecodes 10, 22, and 32 may throw an ArrayIndexOutOfBoundsException that would

unwind the method although there are still locked monitors remaining. HotSpot does not

Deriving Code Coverage Information from Recorded Traces 68

allow this behavior for compiled code so that the bytecodes are not compiled by the JIT
compiler and are executed in the interpreter instead. The interpreter is prepared for such
bytecodes and in case of an exception it unlocks all remaining monitors before unwinding

the stack frame.

The trace-based compiler that is described in this thesis also checks the same invariants
and assumptions as the method-based HotSpot compilers. Thus, none of the HotSpot
compilers would generate machine code for this instrumented method so that this method
is only executed in the interpreter. Similar cases happened for a few methods in the
evaluated benchmark suites (see Chapter 8.3) so that this affected the performance of
some benchmarks when JaCoCo was used to determine code coverage. We also checked
this for the code coverage frameworks EMMA and Cobertura, which also use bytecode

instrumentation, and they suffer from the same issue.

7.5 Startup Performance

The unmodified trace-based runtime system uses two different interpreters: a normal and
a trace recording interpreter. The normal interpreter does not do any tracing and is used
during startup for executing the bytecodes. To obtain exact code coverage information,
our modified runtime system must only use the trace recording interpreter as shown in Fig-
ure 7.2. This decreases the startup performance because tracing happens more frequently

than before.

However, the recorded trace information is more accurate because more traces are being
recorded before compiling them to machine code. The trace-based JIT compiler uses the
recorded traces for optimistic optimizations so that more accurate information results in
fewer invalidated optimizations. So, deoptimization is required less frequently which has a
positive impact on the startup performance. Therefore, the startup performance depends
on how often traces are recorded for a trace anchor before a JIT compilation is triggered
as the positive effect of the more accurate trace information competes against the negative

effect of the higher trace recording overhead.

Figure 7.7 shows the used thresholds for three different configurations. The first config-
uration is the unmodified trace-based system that uses both the normal and the trace

recording interpreter.

For determining code coverage, the tracing thresholds for method entries and loop headers
were reduced to zero, so that only the trace recording interpreter is used. This results in
the configuration trace-based coverage untuned that mimics the compilation behavior of the

unmodified trace-based compiler by increasing the compilation thresholds accordingly.

Deriving Code Coverage Information from Recorded Traces

69

original trace-based | trace-based
trace-based | coverage coverage
system untuned tuned
method tracing threshold 3000 0 0
method traces compilation threshold 1000 4000 3000
loop tracing threshold 25000 0 0
loop traces compilation threshold 1000 26000 4000

Figure 7.7: Thresholds used for trace recording and JIT compilation

Depending on the executed application, this can have a significant impact on startup

performance because especially loops are trace recorded many times. In our configuration

trace-based coverage tuned, we significantly decreased the compilation threshold for loops

and we slightly decreased the compilation threshold for method traces. The evaluation in

Chapter 8.3 on page 86 shows that this improves the startup performance to the level of

the unmodified trace-based runtime system.

Evaluation 70

Chapter 8

Evaluation

We evaluate several variants of our trace-based compiler and our code coverage tech-
nique on the benchmark suites SPECjvm2008 [64], SPECjbb2005 [63], and DaCapo 9.12
Bach [13].

8.1 Methodology

Our trace-based JIT compiler was implemented for the TA-32 architecture of Oracle’s
Java HotSpot VM using the early access version bl12 of the upcoming JDK 8 [59]. For
benchmarks we use an Intel Core-i5 processor with 4 cores running at 2.66 GHz, 4 * 256 kb
L2 cache, 8 MB shared L3 cache, 8 GB main memory, and with Windows 8 Professional as
the operating system. All presented configurations use the parallel stop-the-world garbage
collector. Each benchmark suite was executed 15 times and we report the average of the
individual benchmark results along with the 95% confidence interval. Furthermore, we
show for each benchmark suite, the geometric mean of all its benchmarks, which is also

the official result for the benchmark suite.

In the following, we frequently use the term amount of generated machine code. For all
configurations, this includes both the executable machine but also the debugging infor-
mation necessary for deoptimization. This is necessary to ensure a fair comparison with
our trace-based compiler as it generates less executable machine code but more debugging

information because of its optimistic optimizations.

8.1.1 SPECjvm2008

The SPECjvm2008 benchmark contains 38 benchmarks that are grouped into 11 bench-
mark categories of which 10 measure peak performance. The 11*" benchmark category is

the startup category, in which the startup performance is determined by starting a new

Evaluation 71

VM for each sub-benchmark and measuring the time for performing one benchmark op-
eration. The left half of Figure 8.1 shows those categories and roughly characterizes their
workload. Furthermore, the figure also shows the average amount of machine code that
is generated when each category is executed with the Java HotSpot server compiler. This
indicates that the SPECjvm2008 benchmark suite contains several benchmarks, such as
mpegaudio and scimark, which are loop-intensive and very small in terms of hot code size.
Those benchmarks only consist of a few loops where all hot code is located and which are

executed over and over again.

The figures on the following pages only show 9 peak performance categories because we
combine scimark.small and scimark.large to reduce the verbosity. For computing the
average results, we internally treat them as two categories to ensure comparability with
other SPECjvm2008 peak performance results. Furthermore, we omit the startup category

as we did a better and more detailed startup performance analysis (see Chapter 8.2.4).

We use a heap size of 1024 MB and each SPECjvm2008 benchmark executes a 2 min-
utes warmup phase before measuring the peak performance for 4 minutes. Before starting
the warmup, every benchmark determines the available number of hardware threads and
spawns that number of worker threads. We executed the benchmarks on a machine with
4 cores so that 4 worker threads are spawned. The benchmark result is then the aver-
age number of benchmark operations per minute executed during the 4 minutes of peak

performance measurement.

description size' description size'
startup startup performance 0.3 avrora microcontroller simulation 0.9
compiler javac compilation 8.8 batik SVG processing 3.2
compress compression algorithm 05 eclipse Eclipse IDE performance tests | 22.6
crypto cryptography (AES, RSA,...) 0.9 fop PDF generation 34
derby database 3.0 h2 database 4.1
mpegaudio | MP3 audio decoding 0.8 jython Python implementation 9.1
scimark.small |FFT, LU factorization,... (small dataset)| 0.5 luindex builds a search index 14
scimark.large |FFT, LU factorization,... (big dataset) 04 lusearch keyword search in a dataset 1.6
serial (de)serialization 11 pmd analysis of Java classes 6.7
sunflow raytracing 11 sunflow raytracing 0.6
xml xml processing 47 tomcat queries a local webserver 7.8

tradebeans daytrading via JavaBeans 45

tradesoap daytrading via SOAP 10.2

xalan exports XML to HTML 3.8

! megabytes of generated machine code and debugging information when executed with the Java HotSpot server compiler

Figure 8.1: SPECjvm2008 and DaCapo 9.12 Bach benchmarks

Evaluation 72

8.1.2 SPECjbb2005

The SPECjbb2005 benchmark simulates a client/server business application where all
operations are performed on an in-memory database that is partitioned into so-called
warehouses where each warehouse is processed by one thread. How often the benchmark
is executed and which runs are considered as either warmup or peak performance depends
on the number of hardware threads. We used a system with 4 cores and a heap size
of 1200 MB for benchmarking so that the official SPECjbb2005 throughput in business
operations per second (bops) is defined as the geometric mean of the performance for the
warehouses 4 to 8 which were each executed for 4 minutes. The warehouses 1 to 3 were

considered the warmup phase and each warehouse was only executed for 30 seconds.

When executed with the Java HotSpot server compiler 1.3 MB of machine code and
debugging information are generated. So, in this aspect the benchmark has a comparable
size to SPECjvm2008 serial or DaCapo 9.12 Bach luindex.

8.1.3 DaCapo 9.12 Bach

The DaCapo 9.12 Bach benchmark suite consists of 14 object-oriented applications, as
shown in the right half of Figure 8.1. We executed each benchmark with a heap size of
1024 MB for 20 times with the default data size so that the execution time converges.
The first run shows the startup performance of the VM, while the fastest run shows the
peak performance. Many benchmarks of the DaCapo 9.12 Bach benchmark suite are
considerably larger than the SPECjbb2005 benchmark or the SPECjvm2008 benchmarks.

Some examples for those large benchmarks are eclipse, jython, and tradesoap.

8.2 Trace-based Compilation
In terms of peak performance, we evaluated the following configurations:

e Our baseline is the unmodified method-based Java HotSpot client compiler from
the early access version b12 of the upcoming JDK 8 because our trace-based JIT
compiler is based on the client compiler. All results are normalized to the results of

this configuration which is only shown implicitly in the figures as the 100% mark.

e The configuration tracing peak performance represents our trace-based JIT compiler
and uses aggressive trace inlining and all exception handling mechanisms described
in this thesis. It is optimized for peak performance while generating still reasonable
amounts of machine code. For nested loops we ensure that inner loops are at least

inlined into the outermost loop of the same method. This increases the performance

Evaluation 73

when the inner and the outer loops operate on the same values, because the loops

are optimized as one compilation unit.

e The configuration tracing minimum code also represents our trace-based JIT com-
piler and uses all exception handling mechanisms described in this thesis. However,
less aggressive trace inlining is used so that loop traces are less frequently inlined and
more often compiled separately. This decreases the amount of generated machine

code while not sacrificing too much peak performance.

e The configuration HotSpot server represents the unmodified, method-based Java
HotSpot server compiler from the early access version b12 of the upcoming JDK 8.
This JIT compiler is explicitly designed for best peak-performance and performs
significantly more optimizations than our trace-based compiler, e.g., escape analysis

and sophisticated loop optimizations.

8.2.1 SPECjvm2008

Figure 8.2 shows that all our trace-based configurations outperform the method-based
HotSpot client compiler. Our tracing configurations show the highest speedups on the
benchmarks derby and serial. On the benchmarks compress and sunflow, our configuration
tracing peak performance even outperforms the Java HotSpot server compiler. This is
mainly due to the aggressive trace inlining but the type system with the context-sensitive
information also has some impact. So, this indicates that a significantly simpler structured
trace-based compiler can outperform one of today’s best method-based JIT compilers. In
general, our tracing configurations achieve a peak performance that is somewhere between
the Java HotSpot client and the HotSpot server compiler. On average, the speedup to the

client compiler is 17% with aggressive inlining and 12% with moderate inlining.

For rather small and loop-intensive benchmarks such as crypto, mpegaudio, and scimark
we achieve only a small speedup compared to the client compiler. This is the case be-
cause our trace-based compiler does not perform any sophisticated loop optimizations yet.
Furthermore, trace inlining does not have a significant advantage over method inlining on
small and loop-intensive benchmarks because a method-based compiler can also inline all

relevant code parts [38].

The dark bars in Figure 8.3 show the total amount of generated machine code, while the
light bars indicate the amount of machine code that was invalidated because optimistic
optimizations deoptimized too frequently. The figure shows that our tracing configura-
tions generate less machine code than the client compiler on average. Especially our
configuration tracing minimum code is efficient in terms of generated machine code. For

the benchmarks compiler and zml, some of our tracing configurations use too aggressive

200%

150%

100%

50%

0%

200%

150%

100%

50%

0%

350%
300%
250%
200%
150%
100%
50%
0%

Figure 8.4: SPECjvm2008: time required for JIT compilation

Evaluation 74
o
= 2 BT 2
o S S~ T- O
- 5 @ 2§87 23 &
o X o ~ N - <) [ae)
RN 2 2 -
~— — o~ o X
- 88 | 8
® tracing minimum code
W tracing peak performance
O HotSpot server
T T
compiler compress crypto derby mpegaudio scimark serial sunflow xml mean
Figure 8.2: SPECjvm2008: peak performance
X
S . ® tracing minimum code 2y
oS W tracing peak performance =
©
- O HotSpot server
=
N B
= S
[a0) ~
) 2
= e R
e ~__©
to") [Ye) 3 [fe)
<
compiler compress crypto derby mpegaudio scimark serial sunflow xml mean
Figure 8.3: SPECjvm2008: generated machine code
<= = = = = = = = = =
Iop) P2 (o2} N o (Yol [ee] D < (co) (Yol
S| ~— [se) (Yol (e} o © N < [co)
®|& «© o = =2 ™~ * ™~ =2 2
| | ®@tracing minimum code ||
W {tracing peak performance =
= | | O HotSpot server ||]
g = -
N S
S ° R = R
X = < © 2 2 © = © ©
&3 g 83 o
[BN B B AR |
compiler compress crypto derby mpegaudio scimark serial sunflow xml mean

higher is better——>»

<«— lower is better

<«— lower is better

Evaluation 75

optimizations during startup, so that the overspecialized code deoptimizes frequently and
must be recompiled later on, which results in a fairly high amount of invalidated machine
code. Small and loop-intensive benchmarks do not show a large increase in code size, even
when our most aggressive trace inlining heuristic is used. On such benchmarks, a trace

inlining heuristic can only be too conservative but never too aggressive.

Figure 8.4 shows the time required for JIT compilation. On average, our tracing config-
uration tracing minimum code spends 34% less time on JIT compilation than the client
compiler, while our configuration tracing peak performance still needs 12% less time than
the client compiler. The server compiler, which is explicitly designed for peak perfor-
mance and which performs significantly more optimizations than our trace-based compil-
ers, spends more than 12x as much time on JIT compilation as our configuration tracing

peak performance.

8.2.2 SPECjbb2005

Figure 8.5 shows the peak performance, the generated machine code and the compilation
time for the SPECjbb2005 benchmark. Both trace-based compiler variants outperform the
client compiler significantly in terms of peak performance. More aggressive trace inlining
results in a higher performance but also generates more machine code and requires a
longer compilation time because of the larger size of the compilation units. The peak
performance of the SPECjbb2005 benchmark clearly profits from increased trace inlining
aggressiveness. In terms of compilation time and amount of generated machine code, our
configuration tracing minimum code is especially efficient, while reaching a decent peak
performance. However, the SPECjbb2005 benchmark profits heavily from some of the
time-consuming optimizations of the server compiler, so that our trace-based compiler

reaches only 69% of the server compiler’s peak performance.

Figure 8.6 shows the SPECjbb2005 peak performance for different numbers of warehouses.
The maximum peak performance is reached with 4 warehouses as every warehouse is pro-
cessed by one thread and our benchmarking system has 4 cores. With a higher number of
warehouses, the additional threading overhead decreases the performance for all configu-
rations. The figure shows that our tracing configurations outperform the method-based

client compiler independently of the used number of warehouses.

8.2.3 DaCapo 9.12 Bach

Figure 8.7 shows the peak performance results for the DaCapo 9.12 Bach benchmark suite.
Compared to the client compiler, our configurations tracing minimum code and tracing

peak performance show a similar or higher peak performance on all benchmarks. For

Evaluation 76

=< =]
200% e © 10 T
X |
o 3 3
150% {55] = = 5
- = 3 100 +—— £
- @\ - e» o» e g
100% i |] g_ ’ - e a» a» e» e o 2
S =
=< 2
£ (=)
50% A W tracing minimum code = 50 - = = = HotSpot client H =
W tracing peak performance tracing minimum code
O HotSpot server e {racing peak performance
0% - - HotSpot server
peak generated compilation time 0 T T T T T T
performance machine code (lower is better) 1 2 3 4 5 6 7 8
(higher is better) (lower is better) number of warehouses
Figure 8.5: SPECjbb2005 results Figure 8.6: SPECjbb2005 peak perfor-
mance for different numbers of ware-
houses

the benchmarks luinder, pmd, and sunflow, our configuration tracing peak performance
even outperforms the server compiler. The benchmarks luindexr and sunflow profit from
the aggressive trace inlining and the context-sensitive type information, while the high
performance of pmd is the result of trace inlining and the good exception handling of our
trace-based compiler. However, on some of the benchmarks the configuration tracing peak
performance is already over-aggressive so that more machine code is generated without a

measurable change in peak performance.

In general, our tracing configurations achieve a peak performance between the client and
the server compiler, where tracing peak performance is on average 20% faster than the
client compiler and only 6% behind the server compiler. Compared to the client compiler,
we achieve the highest speedup on the benchmark jython, which executes a large number
of virtual calls that can be inlined by our compiler. This benchmark also profits from

trace inlining and the larger compilation units of our trace-based approach.

The dark bars in Figure 8.8 show the total amount of generated machine code, while
the light bars indicate the amount of machine code that was invalidated because opti-
mistic optimizations deoptimized too frequently. Our configuration tracing minimum code
generates less machine code than the client compiler, while the configuration tracing peak
performance generates more machine code. The HotSpot server compiler invalidates signif-
icantly less machine code than our configuration tracing peak performance. This indicates

that our trace-based compiler uses more optimistic optimizations.

Figure 8.9 shows that our configuration tracing minimum code requires 25% less time
for JIT compilation than the client compiler, while tracing peak performance requires

14% more time than the client compiler. The server compiler performs significantly more

7

Evaluation

<«<—— Jop9q sl Jaybly ———

W tracing minimum code

W tracing peak performance

O HotSpot server

200%
150%
100%

50% A

0% -

DaCapo 9.12 Bach: peak performance

Figure 8.7

——— Ja)eq sl lamo] ——

W tracing minimum code

W tracing peak performance

O HotSpot server

%€E8
0861

%602

%89

%/

250%

150%

DaCapo 9.12 Bach: generated machine code

Figure 8.8

——— Jayeq sl Jamo] ——

ALETL _
%yl L
%S.
0851
%011
%SL
A
%601
%8.L
%816
099
C0LL
%66
%
%889 A
0€G
0599
(]

256/
g [AIT
o 5 %Y
6991 S £
(&)
3
968 £ m. m -
£ £ H1%S0l
o O ..m
288Y m m I
EEO %l
_ %
2CC0)
%161
096
nCQCC
%ILG1
086
2296
%96
%69
298
%931
%]
X X X KX KX K =8
o o o o o o o
S 8 8 8B €

©
&
N

&

N
@

&
Q
&

DaCapo 9.12 Bach: time required for JIT compilation

.
.

Figure 8.9

Evaluation 78

optimizations and spends more than 12x as much time on JIT compilation as the client

compiler.

8.2.4 Startup Performance

The Java HotSpot client and server compilers as well as our trace-based JIT compiler
are all designed for multi-threaded background compilation. So, we evaluate the startup

performance in the following scenarios:

e The first scenario executes 1 application thread, while the VM uses up to 4 JIT
compiler threads. So, on our 4 core benchmarking system, up to 3 cores can be

exclusively used for JIT compilation.

e In the second scenario, 4 application threads are executed while the VM uses up
to 4 JIT compiler threads. On our 4 core benchmarking system, the JI'T compiler
threads compete with the application threads. The Java HotSpot VM assigns a
higher priority to JIT compiler threads as early JIT compilation has a positive effect

on startup performance.

All presented results are normalized to the performance of the Java HotSpot client compiler
with 1 JIT compiler thread. We do not present any startup performance results for the
SPECjbb2005 benchmark as this benchmark is only designed to measure peak performance
so that first results are obtained after 30 seconds where all configurations are already close

to their peak-performance.

For the SPECjvm2008 benchmark suite, we measured the startup performance by ex-
ecuting one operation for each benchmark. Figure 8.10 shows the scenario when JIT
compilation can be offloaded to otherwise idle cores. There, the HotSpot server compiler
shows the best startup performance because the SPECjvm2008 benchmark suite contains
several small benchmarks where there is little to compile and which almost reach their
peak performance after compiling the innermost benchmark loop. This is the ideal case
for the server compiler which does optimize loops especially well so that its peak perfor-
mance advantage also affects the startup performance results if idle cores are available for
compilation. Figure 8.12 shows the scenario where the compilation threads compete with
the application threads. There, the HotSpot client compiler and our trace-based compiler
achieve good results as both spend little time on JIT compilation and are therefore less

affected by the increased number of application threads.

The figures also show that the number of compiler threads hardly affects the client compiler
or our trace-based compiler because both JIT compilers require little time for compilation.

The server compiler requires much more time for compilation and therefore greatly profits

Evaluation 79
150% 150%
o\o °\° 2 =)
o R S = 2 28 Ry 258
ST Bwer” Tex’ 88%\ S82xr 2828
~ S,— > ~ ‘o_ ~ oS ~— — = ~ > ~
100% > > 2 H o5 100% 5 - 5
@ @
ie] e}
o ®
&)
= =
50% 1 . H = o 1 . H =
O HotSpot client < O HotSpot client <
W tracing minimum code W tracing minimum code
W tracing peak performance W fracing peak performance
O HotSpot server O HotSpot server
0% 1 T L 0% T T 1
1 compiler 2 compiler 4 compiler 1 compiler 2 compiler 4 compiler
thread threads threads thread threads threads

Figure 8.10: SPECjvm2008 startup per-
formance with 1 application thread

150%
Se® Se®x Sexe
100% 8Os o3 88 &
© ©
M~ o)
®
-
50% 11 ! | =
° O HotSpot client -
®tracing minimum code
W tracing peak performance
O HotSpot server
0% - T -
1 compiler 2 compiler 4 compiler
thread threads threads

Figure 8.11: DaCapo 9.12 Bach startup
performance with 1 application thread

Figure 8.12: SPECjvm2008 startup per-
formance with 4 application threads

150%
= = 2
S ..o S . S _ e
==) - E
100% B 53 S5o& &
[[se) =
~ <5}
o)
®
2
50% 1 - 2
° O HotSpot client =
B tracing minimum code
W tracing peak performance
O HotSpot server
0% = =
1 compiler 2 compiler 4 compiler
thread threads threads

Figure 8.13: DaCapo 9.12 Bach startup
performance with 4 application threads

from more than one compilation thread, especially if there are idle cores that can be

used.

For the DaCapo 9.12 Bach benchmark suite, we measured the startup performance by

executing one iteration for each benchmark. The benchmark results are shown in Fig-

ure 8.11 and Figure 8.13. Again, the number of compiler threads hardly affect the client

compiler or our trace-based compiler because those require too little time for compilation.

In contrast to that, the server compiler profits when more than one thread is used for JIT

compilation. However, our configuration tracing peak performance always shows a higher

startup performance than the server compiler, even if the server compiler can use idle

cores for JIT compilation. This is the case because the DaCapo 9.12 Bach benchmarks
are significantly more complex than the SPECjvm2008 benchmarks [37] so that the JIT

compilation performance is the dominating factor for startup performance.

Evaluation 80

So, on the DaCapo 9.12 Bach benchmarks, our trace-based configurations show a roughly
10% slower startup performance than the HotSpot client compiler. While our trace-based
compiler often requires even less time for JIT compilation than the HotSpot client compiler,
it shows a lower startup performance because of the additional overhead for trace recording
and deoptimization that mainly incur during startup. Furthermore, when our trace-based
compiler compiles traces for the first time, it may happen that not all relevant paths have
been recorded yet. This is a common problem for trace compilation, as different parts of
a method might be hot during different execution phases of the application [69]. However,
this drawback is outweighed by the significantly improved peak performance. Unlike the
HotSpot server compiler, our trace-based compiler does not rely on idle cores to achieve a

good startup performance.

8.2.5 Importance of Exception Handling

Exceptions are often seen as rare events that hardly have an effect on performance, no
matter how efficient the exception handling mechanism is implemented. We evaluated the
following configurations to show the importance of exception handling for Java applica-

tions:

e Our baseline is the unmodified method-based Java HotSpot client compiler from
the early access version b12 of the upcoming JDK 8 because our trace-based JIT
compiler builds on the client compiler. All results are normalized to the results of

this configuration which is only shown implicitly in the figures as the 100% mark.

e The configuration tracing peak performance is the same configuration as we used to
evaluate our tracing implementation in terms of peak performance in the previous
chapter. It uses aggressive trace inlining and all exception handling mechanisms
described in this thesis.

e The configuration tracing abort on exception is also optimized for peak performance
but aims to illustrate how important good exception handling is for the peak per-
formance of complex applications. When an exception is thrown, this configuration
aborts trace recording and omits the currently recorded traces. This simple ap-
proach is commonly used in literature [12, 31, 32] but has the disadvantage that
those instructions which always throw an exception are never compiled. We also
tried another variant that stops recording the current trace when an exception is
thrown so that the instruction that throws the exception and the corresponding ex-
ception handler are never within the same compilation unit. This approach was for
example used by [11] and [47] but shows almost identical performance as aborting

the traces so that we omit detailed results.

200%

150%

100%

50%

0%

Evaluation 81

Figure 8.14 shows the peak performance for those SPECjvm2008 and DaCapo 9.12 Bach
benchmarks where the changed exception handling has an impact on peak performance.
The SPECjbb2005 benchmark is not shown in the figure, because changing the exception
handling has no impact on peak performance there. Most SPECjvm2008 benchmarks are
rather small so that there are only few places where exceptions are thrown. So, changing
the exception handling only has a modest impact on the two largest benchmarks compiler
and zml. However, several of the DaCapo 9.12 Bach benchmarks use exceptions so that
the bad exception handling of the configuration tracing abort on exception significantly
affects the performance. For some benchmarks, such as lusearch and pmd, good excep-
tion handling is crucial. Ignoring exception handling during trace recording, as done in
most of the related work, leads to unacceptable slowdowns for some applications and is
therefore not suitable for production use. Our tracing of thrown exceptions as well as our
trace inlining approach ensure that frequently thrown exceptions are compiled together
with the corresponding exception handler. This significantly increases the performance
of benchmarks with lots of exception handling. Compiling frequently executed exception
throwing bytecodes and their corresponding exception handlers has a hardly measurable
effect on the size of the generated machine code and the compilation time so that we omit

detailed results.

T — i
W tracing abort on exception
M tracing peak performance
[1 [1

x o
o S o o

X R XN o o <o o X S o X E =

S22 N4 — ~ o Q [[=2) N X

2~ N — © © ~ — o S N

~ = A = - = - = -— = g e
(=} A
=

compiler xml mean eclipse h2 lusearch pmd tomcat mean
SPECjvm2008 DaCapo 9.12 Bach

Figure 8.14: Importance of exception handling for peak performance

8.2.6 Effect of Larger Compilation Scope

Similar to method-inlining, trace inlining is an optimization that has positive effects on
other compiler optimizations due to the larger compilation scope. Figure 8.15 compares
the impact on peak performance for different high-level optimizations that are used by
both the method-based HotSpot client compiler and our trace-based compiler. Depending

on the benchmarks the individual optimizations show different gains. Overall, we see the

higher is better ——»

Evaluation 82

highest increase in effectiveness for canonicalization, which performs simple optimizations
such as constant folding and dead code elimination. The larger compilation scope results

in more values being constant which has a positive effect.

client compiler speedup tracing compiler speedup (peak perf.)

SPECjbb2005 SPECjvm2008| DaCapo 9.12| SPECjbb2005 SPECjvm2008 DaCapo 9.12
canonicalization ' 2% 3% 1% 4% 4% 2%
conditional expression elimination? 1% 0% -1% 0% 0% 0%
block merging "2 0% 0% -1% 0% 1% 1%
value numbering 0% 2% 0% 0% 2% 1%
load/store elimination ' 0% 1% 0% 0% 0% 0%
null-check elimination 2 2% 2% 1% 4% 2% 1%
all optimizations " 5% 7% 4% 9% 8% 6%

"local optimization that is applied while building the high-level intermediate representation
2 global optimization that is applied after building the high-level intermediate representation

Figure 8.15: Impact of high-level optimizations on peak performance

Figure 8.16 shows how the peak performance of the DaCapo 9.12 Bach benchmark suite
and of its benchmarks batik and jython is affected when changing the amount of trace
inlining. The benchmark jython is an example for an application that profits from aggres-
sive trace inlining, i.e., the peak performance increases when inlining up to 250 bytecodes
per call site. On the other hand, the benchmark batik hardly shows an increase in peak
performance when inlining more than 50 bytecodes per call site. The average performance

of the DaCapo benchmarks increases up to 200 inlined bytecodes per call site.

Figure 8.17 and Figure 8.18 show how trace inlining affects the amount of generated ma-
chine code and the time required for JIT compilation. The benchmark batik and the mean
over all DaCapo 9.12 Bach benchmarks show a steady increase for both metrics when
we increase the amount of inlining. However, the benchmark jython behaves differently.
There, both the amount of generated machine code and the time required for JIT compila-
tion decrease when more than 150 bytecodes are inlined per call site. This occurs because
our trace inlining policy avoids inlining traces that were already compiled separately and
resulted in large amounts of machine code. In that case, we assume that the previous
compilation unit was already sufficiently large to allow good optimizations and we do not
do the inlining to avoid code bloat. So, when more than 150 bytecodes are inlined per
call site, different compilation units are chosen because of this heuristic. A more detailed

analysis of different trace inlining heuristics can be found in [38] and [39].

83

Evaluation

200% l
150% e & i k T
S
—o —_ 0 * ¢ # g
100% - »
3
batik =

50% === ython

=== mean |

0% T T T T T T 1

0 50 100 150 200 250 300 350

maximum inlined bytecodes per call site

Figure 8.16: DaCapo 9.12 Bach: effect of trace inlining on peak performance

200%
150% — !
[
M E
100% 2
: 2
batik °
50% e=fr==jython [
=== mean
0% T T T T T T
0 50 100 150 200 250 300 350

maximum inlined bytecodes per call site

Figure 8.17: DaCapo 9.12 Bach: effect of trace inlining on the amount of generated
machine code

150%

100%

50%

<«—— lower is better

00/0 T T T T T T
0 50 100 150 200 250 300 350

maximum inlined bytecodes per call site

Figure 8.18: DaCapo 9.12 Bach: effect of trace inlining on the compilation time

Evaluation 84

8.2.7 Trace Transitioning

Figure 8.19, Figure 8.20, and Figure 8.21 show the average trace transition frequencies
when the benchmark suites SPECjvm2008, SPECjbb2005, and DaCapo 9.12 Bach are exe-
cuted with the configuration tracing minimum code. Most transitions occur from compiled
code to compiled code, which is the fourth category according to Figure 5.6 on page 36.
This is the case because all relevant code parts have been compiled when the application
reaches its peak performance. Furthermore, the number of transitions to compiled method
traces is significantly larger than the number of transitions to compiled loop traces. This
has two reasons. First, compiled loops are invoked less frequently as execution stays within
loops for a longer time than within methods because the loop body is typically executed
multiple times. To directly compare those two numbers, the loop invocations would have
to be scaled by the average number of loop iterations. Second, it is disadvantageous to
focus solely on compiling loops as aggressive trace inlining might result in huge compi-
lation units before inlining reaches the next loop. Furthermore, the compiler would still

lack information about the values that flow into the loop because those values are passed

in from the enclosing method.

Figure 8.19: Transition frequencies in thousands for the SPECjvm2008 benchmarks

w interpreted interpreted compiled compiled
|Mm method traces loop traces method traces loop traces
interpreted method traces 5030 same frame 8303 356
interpreted loop traces 5274 same frame 23026 0.1
compiled method traces 715 165 1494019 156765
compiled loop traces 91 04 463860 39832

w interpreted interpreted compiled compiled
|Mm method traces loop traces method traces loop traces
interpreted method traces 2847 same frame 226194 190
interpreted loop traces 0 same frame 46 0
compiled method traces 289 0.3 3597458 103074
compiled loop traces 9 0 3795197 0

Figure 8.20: Transition frequencies in thousands for the SPECjbb2005 benchmark

w interpreted interpreted compiled compiled
|Mh method traces loop traces method traces loop traces
interpreted method traces 13427 same frame 52715 528
interpreted loop traces 3 same frame 22 1
compiled method traces 2655 2 1288883 83227
compiled loop traces 286 0.1 504250 38755

Figure 8.21: Transition frequencies in thousands for the DaCapo 9.12 Bach benchmarks

Evaluation 85

8.2.8 Further Evaluations

Varying the heap size only results in a slight performance difference due to the different
garbage collection overhead. This is the case because no tracing-specific modifications

were necessary to the JVM garbage collectors.

We also experimented with even more aggressive trace inlining than that used in our
configuration tracing peak performance. If the maximum inlining size is increased further,
the size of generated machine code increases without an additional positive effect on the
peak performance. This seems to be the case because of two reasons. First, for many
benchmarks the configuration tracing peak performance already results in large compilation
units so that good optimizations are possible. Second, deoptimizing to the interpreter gets
more expensive with an increasing trace inlining depth because more values are alive and
must be saved during deoptimization. This also results in more interpreter frames that

must be created and filled with the saved values.

Our bytecode preprocessing step, which is performed once for every method, is already
implemented efficiently but could be optimized further. While executing the Dacapo 9.12
Bach benchmark tradesoap, the class loader processes classes with a total of more than
80,000 methods. This is the highest number used in any of the benchmarks and stresses our
bytecode preprocessing step that took 170 msec on our benchmarking system in that case.
By only processing actually executed methods, we could reduce this time and improve the

startup performance.

For most benchmarks, 1% to 2% of the compiled traces must be recompiled because
deoptimization is required too frequently. With nearly 13% recompilation, the benchmark

aml.validation of the SPECjvm2008 benchmark suite is a worst-case example.

8.2.9 Discussion of Results

Our tracing configurations perform especially well on large applications such as the Da-
Capo 9.12 Bach benchmarks, where aggressive trace inlining results in large compilation
units and better optimized machine code. On some of the benchmarks, our configuration
tracing peak performance even outperforms the server compiler due to our aggressive trace
inlining and optimizations that use the context-sensitive type information that is recorded
in the traces. This is especially interesting as the server compiler is designed for best peak
performance and implements significantly more optimizations than our trace-based com-
piler. Our results show that a fairly simple trace-based compiler can achieve an excellent
peak performance by performing only basic traditional optimizations and aggressive trace

inlining. Depending on the target platform, we also think that our configuration tracing

Evaluation 86

minimum code is interesting as it combines a good peak performance with little generated

machine code and an excellent compilation time.

Our trace-based compiler does not do any loop optimizations such as loop unrolling or
loop-invariant code motion, so that there is only a small performance gain for small and
loop-intensive benchmarks. On those benchmarks, the server compiler is especially strong
as it does perform sophisticated loop optimizations. However, this also shows that our
trace-based compiler still has plenty of potential as it performs only basic traditional

optimizations so far.

8.3 Code Coverage

We evaluated two configurations of our trace-based code coverage system in comparison

to the state-of-the-art code coverage framework JaCoCo:

e The baseline is our unmodified trace-based JI'T compiler and all results are normal-
ized to the results of this configuration. In the figures, this configuration is only

shown implicitly as the 100% mark.

e The configuration JaCoCo shows the performance of the JaCoCo [6] code coverage
tool in the version 0.62 when used with our unmodified trace-based runtime system.
We use JaCoCo’s online bytecode instrumentation mechanism as this greatly sim-
plifies instrumenting the benchmark suites which do a significant amount of class

loading at run time.

e The configuration trace-based coverage untuned uses the trace-based compiler and
our modified runtime system to record code coverage information. So, the trace
recording interpreter records traces from the beginning. Eventually, the recorded

traces are compiled to optimized machine code.

e The configuration trace-based coverage tuned also uses the trace-based compiler and
our modified runtime system to record code coverage information. However, we
reduced the compilation thresholds as described in Chapter 7.5 on page 68 so that

the startup performance improves because traces are compiled earlier.

Figure 8.22 shows a comparison between the features of JaCoCo and our approach. One
important difference between JaCoCo and our approach is that JaCoCo does not record
code coverage information for the classes on the boot classpath, while our approach records
code coverage information for all loaded classes. JaCoCo also excludes all classes defined
in the rt.jar file such as String and ArrayList which are used frequently. Code coverage
information for those classes is usually not particularly interesting but it can, for example,

be used to identify the JDK parts that are used by an application. Besides that, we

Evaluation 87

tried to stress the code coverage instrumentation as much as possible so that we did not
exclude any application classes from the collection of code coverage information. For many
applications it would be possible to further reduce the amount of instrumentation done

by JaCoCo by limiting code coverage to a minimum set of interesting classes.

JaCoCo our approach

. . . online or offline bytecode no additional
instrumentation technique) o . ,

instrumentation instrumentation
line coverage yes yes
detects partially covered lines yes yes
edge coverage yes yes
path coverage no partially2
supports explicit exceptions yes yes
supports implicit exceptions no yes
records execution counts no partially®

. excludes classes on the
can instrument all classes yes
boot classpath

" we use online instrumentation as it allows us to instrument the application transparently
2 some information is lost for partial traces
® only recorded while code is executed in the interpreter

Figure 8.22: Features of the evaluated tools

8.3.1 SPECjvm2008

Figure 8.23 shows the performance results for the SPECjvm2008 benchmark suite. In this
diagram, the startup and the peak performance for each benchmark category are shown on
top of each other. The startup performance was measured by executing each benchmark
for one benchmark operation in a new VM. Both runs are shown relative to the fastest

run of the baseline.

In comparison to the unmodified trace-based compiler, both trace-based code coverage
configurations succeed in preserving full peak performance. This is the case because the
compiled machine code does not contain any instrumentation so that there is no overhead
when executing the compiled code. In terms of startup performance, our configuration
trace-based coverage tuned reaches the same performance level as the unmodified trace-
based JIT compiler (not shown in the diagram). Tuning the compilation thresholds reduces
the impact of trace recording on startup performance so that the startup performance of all

benchmarks improves in comparison to the configuration trace-based coverage untuned.

When the bytecodes of the benchmarks are instrumented using JaCoCo, the added probes
have a significant negative effect on the peak performance because they are compiled to

machine code and also executed in compiled code. One exception is the benchmark serial,

150%

100%

50%

0%

250%

200%

150%

100%

50%

0%

250%

200%

150%

100%

50%

0%

Evaluation

88

100%
100%

99%
101%
100%
100%
100%

98%
100%
100%
100%
100%

100%
101%
101%
99%
100%

W trace-based coverage untuned
W trace-based coverage tuned
OJaCoCo

compiler

compress crypto derby mpegaudio scimark serial sunflow xml

Figure 8.23: SPECjvm2008: startup and peak performance

100%
100%

mean

W trace-based coverage untuned
W trace-based coverage tuned

Figure 8.25: SPECjvm2008: time required for JIT compilation

OJaCoCo 2
=) = g
> e
<
~ =[]
=R L
o N —
S~ o 2
3 sl | B
] . . |
compiler compress crypto derby mpegaudio scimark serial sunflow xml mean
Figure 8.24: SPECjvm2008: amount of generated machine code
=
2 8
= =
= N
o o\o o\o o
0 — S o =
’_I_ P 3 & 2 SN 2 28
~ SN =S X9 -
© — =~ o S =
= <S= T FST X
i S =3 >
. W trace-based coverage untuned
W trace-based coverage tuned
O JaCoCo
n T T T T T T T
compiler compress crypto derby mpegaudio scimark serial sunflow xml mean

higher is better

<«——— lower s better

<«——— lower is better

Evaluation 89

which mainly executes JDK methods in its performance-critical code parts. JDK methods
are not instrumented by JaCoCo and the probes within the actual benchmarking logic do

not impact the peak performance of this benchmark.

The dark bars in Figure 8.24 show the total amount of generated machine code, while the
light bars indicate the amount of machine code that was invalidated because optimistic
optimizations deoptimized too frequently. The configuration trace-based coverage untuned
generates less machine code than the unmodified trace-based compiler because it does
record traces for a longer time before compiling them. So, the recorded trace information
is more accurate and it is less likely that the compiled machine code deoptimizes and
has to be invalidated and recompiled because of too frequent deoptimization. In contrast
to that, the configuration trace-based coverage tuned generates more machine code than
the unmodified trace-based compiler because of two factors. Traces are recorded fewer
times so that the trace information is less accurate and deoptimization and invalidation
of machine code occurs more frequently. Second, the SPECjvm2008 benchmarks are loop
intensive and due to the lower compilation threshold for loops, more loops are compiled
during startup. Some of this generated code becomes redundant later when the enclosing

method traces are compiled, and the loop traces may get inlined.

When the benchmarks are instrumented with JaCoCo, the amount of generated machine
code increases heavily because the instrumentation code is also compiled. A similar be-
havior can also be seen in Figure 8.25, which shows the amount of time required for JI'T
compilation. However, the increase in compilation time is not as significant because the

instrumentation code is simple and hardly complicates the compilation.

8.3.2 SPECjbb2005

Figure 8.26 shows the peak performance, the generated machine code, and the compilation
time for the SPECjbb2005 benchmark. Both trace-based code coverage configurations
significantly outperform the case when JaCoCo is used to instrument the benchmark.
However, the trace-based configurations also lose several percent in terms of peak perfor-
mance because traces are now also recorded during startup so that the trace-based JIT
compiler uses different trace information to guide its optimizations. The additional trace
information that is recorded during startup, does not represent the warmed up benchmark
behavior which has a negative impact on optimistic type-specific optimizations and trace
inlining. So, the amount of generated machine code decreases due to the less aggres-
sive trace inlining, while the compilation time increases because of the additional trace

information that must be processed.

However, the instrumentation that is added by JaCoCo has a significantly higher impact

on peak performance. The instrumentation hinders trace inlining because it increases the

Evaluation 90

150%

110%

105%
97%

94%
94%
93%
97%
96%

100%

B tracing coverage untuned
W tracing coverage tuned

O JaCoCo
0% T :

peak generated compilation time
performance machine code (lower is better)
(higher is better) (lower is better)

50%

Figure 8.26: SPECjbb2005 results

size of the recorded traces and larger traces are less likely inlined. Furthermore, the instru-

mentation is also present in the generated machine code where it reduces performance.

8.3.3 DaCapo 9.12 Bach

Figure 8.27 shows the performance results for the DaCapo 9.12 Bach benchmark suite.
In this diagram, the startup and the peak performance for each benchmark category
are shown on top of each other. Both runs are shown relative to the fastest run of the

baseline.

On average, both code coverage configurations that use our trace-based runtime system
nearly achieve the same peak performance as the baseline. However, for a few benchmarks
such as avrora, jython, and luindexr our approach for recording code coverage informa-
tion has some impact on peak performance. This happens because different parts of the
execution are trace recorded due to the changed thresholds. So, the recorded trace in-
formation also covers code that is only required during startup. Those differences in the
trace information may result in less effective compiler optimizations which reduces the
peak performance. However, the JaCoCo instrumented run is still far slower despite not
recording any coverage information for classes on the boot classpath. The main exception
is the benchmark tomcat which spends most of its time in native functions where neither

JaCoCo nor our approach places any instrumentation.

In terms of startup performance, the configuration trace-based coverage tuned reaches the
same level as the unmodified trace-based JIT compiler (not shown in the diagram). The
benchmark tradesoap is the only one that does not benefit from the startup performance
tuning. Here, the reduced compilation threshold results in slightly more frequent deopti-

mization which reduces the startup performance again.

91

Evaluation

<«<—— Jo)9q sl Jayfly ————

W trace-based coverage untuned
W trace-based coverage tuned

OJaCoCo

200%

150%

N

DaCapo 9.12 Bach: startup and peak performance

Figure 8.27

Jopeq s lomo] ——
%
el
(5]
cC T
22
S3
[)
(o Re)]
o ©
[R5
> >
[ole)
(SN &)
Eelxel
[N
88 o
QLO
[ooxel
SS8%®
EEO
%91 1
%E61
%Ll
%¢9l Pq
%88
%E61 | w7
o l €
%8 2
T T A%
=X X X =X =X X
o o o o o o
[Yel o Yol o (Yol
N N ~ ~—

DaCapo 9.12 Bach: amount of generated machine code

Figure 8.28

——— Ja)jeq sl Jlamo] ——

W trace-based coverage untuned
W trace-based coverage tuned

OJaCoCo

%€02
%061

250%
200%

150%

DaCapo 9.12 Bach: time required for JIT compilation

Figure 8.29

Evaluation 92

The dark bars in Figure 8.28 show the total amount of generated machine code, while
the light bars indicate the amount of machine code that was invalidated because opti-
mistic optimizations deoptimized too frequently. The configuration trace-based coverage
untuned generates less machine code than the unmodified trace-based compiler because
the recorded trace information is more accurate so that less code has to be invalidated and
recompiled. By decreasing the threshold for JIT compilation, the configuration trace-based
coverage tuned increases the startup performance but also generates more machine code.
However, due to the more accurate trace information (traces are still recorded 3 to 4 times
more often before compilation), deoptimization and recompilation of traces is required less
frequently than in the unmodified trace-based JIT compiler. The configuration JaCoCo
generates by far the largest amounts of machine code because the instrumentation code is

also compiled.

Figure 8.29 shows the time required for JIT compilation. For most benchmarks, the instru-
mentation added by JaCoCo increases the time required for JIT compilation. Exceptions
are the benchmarks h2 and tradesoap where several trace anchors cannot be compiled
because the instrumentation violates invariants assumed by HotSpot, see Chapter 7.4.
Especially for h2, this also impacts the startup and peak performance. Figure 8.30 shows
for every benchmark how many hot trace anchors are not compiled because the instru-

mentation added by JaCoCo violates some HotSpot invariant.

not compiled | compiled trace not compiled | compiled trace
trace anchors anchors trace anchors anchors
compiler 0 2508 avrora 5 664
compress 0 384 batik 0 1573
crypto 0 566 eclipse 50 5377
derby 39 1627 fop 2 1325
mpegaudio 0 530 h2 25 1059
scimark 0 350 jython 0 1648
serial 0 736 luindex 5 618
sunflow 0 619 lusearch 3 571
xml 0 1451 pmd 0 1835
sunflow 0 454
tomcat 25 3227
tradebeans 32 2018
tradesoap 63 3839
xalan 6 1345

Figure 8.30: Hot trace anchors that are not compiled because of JaCoCo

Another interesting case can be observed for the benchmark eclipse. Both trace-based
coverage configurations require significantly more time for JIT compilation than the un-

modified trace-based runtime system. This happens because the different trace information

Evaluation 93

leads to different trace inlining decisions. Therefore, some compilation units get signif-
icantly larger, which increases the compilation time by a non-linear factor. However, it

also results in slightly better optimized code so that the peak performance increases.

8.3.4 Memory Usage

Figure 8.31 shows some statistics about the recorded traces when the benchmark suites are
executed with the trace-based baseline and the configuration trace-based coverage tuned.
When code coverage information is being recorded, a significantly higher number of full
traces (i.e. those that start at trace anchors) is being recorded. This also increases the
amount of memory that is used by the traces but on average the traces still use only a few
megabytes of memory. So, it should be possible to record code coverage for large server

applications without a significant increase in memory usage.

baseline trace-based
coverage tuned
SPECjvm2008 0,30 2,68
total trace size in MB DaCapo 9.12 Bach 117 4,51
SPECjbb2005 0,23 2,13
SPECjvm2008 4052 31953
number of full traces DaCapo 9.12 Bach 12651 45351
SPECjbb2005 2050/ 21669
SPECjvm2008 449 242
QTR §ELEIRTERESIE DaCapo 9.12 Bach 861 423
SPECjbb2005 211 92

Figure 8.31: Trace recording statistics

The figure also illustrates that the DaCapo 9.12 Bach benchmark suite contains the most
complex benchmarks. For the benchmark eclipse more than 100,000 traces are recorded
with the baseline configuration, which occupy nearly 12 MB on the heap. When executing
eclipse with our trace-based code coverage variant, the number of recorded traces increases
to 270,000 which occupy 33 MB on the heap. This is by far the highest number measured

for any of the benchmarks.

8.3.5 Discussion of Results

In comparison to existing code coverage frameworks such as JaCoCo, our approach does
not add any instrumentation to the application. This avoids that the generated machine
code contains instrumentation that would degrade performance and unnecessarily increase

the amount of generated machine code as well as the time required for JIT compilation.

Evaluation 94

Due to the changed trace recording and compilation thresholds, our trace-based config-
urations record different trace information. This may change the optimizations used by
the JIT compiler and can affect performance. However, our approach still has a very low
performance and memory overhead so that it can also be used to record code coverage in

daily operation.

We also validated our JaCoCo performance results, by executing the JaCoCo-instrumented
benchmarks with an unmodified version of the HotSpot server compiler. The results were

similar to those seen with our trace-based JIT compiler.

Related Work 95

Chapter 9

Related Work

The main topic of this thesis is trace-based compilation and in the following we compare
our work to other trace-based compilation approaches. Because trace inlining is our most
profitable optimization, we also illustrate the commonalities and differences when com-
pared to various method inlining strategies. Furthermore, we cover some code coverage
literature and compare it to our approach that uses the recorded traces to derive exact

code coverage information.

9.1 Trace-based Compilation

Bala et al. [9] pioneered trace compilation in their Dynamo system for dynamic and trans-
parent optimization of native instruction streams. They used a software interpreter to
execute binary applications and to identify hot instruction sequences during execution.
For those identified traces, optimized code fragments are generated and directly executed.
The interpretation overhead decreases with the number of compiled traces, resulting in a
speedup eventually. In contrast to our trace compilation approach, the Dynamo system
assumes that every backward branch is a possible loop header. This however leads to
detection of false loops [42], which may affect the performance negatively. In contrast to
Dynamo, we identify traces in Java bytecode instead of in a native instruction stream, and
we perform a static analysis to detect loops in the bytecode. This simplifies trace recording
and avoids problems with false loops. Furthermore, we limit individual traces to at most
one method and at call sites we link the recorded traces to preserve context-sensitive trace
information across method boundaries. This allows us to delay the inlining decision to the

time of compilation instead of doing it already during trace recording.

Rogers [62] implemented a compilation variant for Java, where frequently executed basic
blocks are detected and compiled. Related blocks, which may also span multiple methods,

are grouped and optimized as an entity when executed frequently. In comparison to

Related Work 96

method-based compilation, this approach compiles up to 18% fewer bytecodes. Our system
records and compiles traces and uses trace inlining to increase the peak performance.
When compiling the traces, we apply general and tracing-specific optimizations before

generating machine code.

Trace-based compilation is also used for compiling dynamically typed languages such as
ActionScript [17], JavaScript [30], or Python [14]. In those cases, the recorded traces
contain information about the encountered types so that the trace-based compiler can
perform type specialization. This results in high speedups as boxed types can be replaced
by primitive types so that operations such as adding two integers can be replaced by
a single hardware instruction instead of a method call. Our trace-based JIT compiler
targets Java, which is a statically typed language so that most type information is already
available at compile time. Therefore, similar optimizations are mostly not applicable for
Java. However, we use the recorded type information to perform aggressive inlining of

virtual calls.

The next approaches implemented different variants of trace-based compilation for Java [12,
31, 32, 47]. However, all approaches have in common that traces may span more than one
method, so that inlining must be performed during trace recording. In contrast to that,
we assume that one method is the maximum scope of a trace and use trace linking to
preserve call information between traces. This allows delaying the inlining decision to the
time of compilation when more information is available. So, our inlining can be more
selective while using simple inlining heuristics that result in increased peak performance

and a reduced amount of generated machine code.

Gal et al. [31, 32] implemented trace-based compilation for Java on resource-constrained
devices. Traces start at frequently executed backward branch targets and side exits of
existing traces. To improve the accuracy of loop detection, a backward branch is only
considered as a loop header if its execution frequency exceeds a certain threshold. Each
trace may span multiple methods so that inlining is performed during trace recording. If a
Java exception is thrown during trace recording, they abort trace recording and invalidate
the recorded traces. After recording a trace, it is immediately compiled to machine code.
When a trace is left via a side exit during execution, the side exit is recorded in a separate
trace and that trace is attached to its parent. This results in tree-like structures with
explicit tail duplication and without merge points. While the trace tree simplifies many
optimizations, it cannot be used for applications with a complex control flow because
excessive tail duplication results in code bloat. Still, this approach is fairly popular and
a similar concept is used by the Dalvik VM [15, 18, 57] on Android-based mobile devices.
In contrast to that, we merge individual traces into a trace graph before compilation to
avoid excessive tail duplication. This addresses the problems with tail duplication and

allows us to handle also complex traces efficiently.

Related Work 97

Bebenita et al. [12] implemented trace compilation for the meta-circular Maxine VM. In-
stead of using an interpreter, the Maxine VM uses a non-optimizing baseline JI'T compiler
to generate code that is used for the initial executions. This baseline JIT compiler was
modified to generate instrumentation for trace recording. When a Java exception is thrown
during trace recording, they abort and invalidate the recorded traces. To avoid unneces-
sary tail duplication, the recorded traces are merged into trace regions which have explicit
control flow merge points. Those trace regions are then jitted using a SSA-based optimiz-
ing compiler. The evaluation is done using a subset of the DaCapo 2006 and SPECjvm2008
benchmarks and they achieved an excellent speedup for loop-intensive benchmarks due to
various loop optimizations. However, their compiler performs worse than a method-based
compiler on benchmarks with fewer loops. Our work is complementary as we focus on
complex applications that are not loop-intensive such as DaCapo 9.12 Bach jython. We
achieve excellent speedups for those applications, while achiving only small speedups on
loop-intensive benchmarks, because our trace-based compiler does not perform any so-

phisticated loop optimizations yet.

Inoue et al. [47] added a trace-based JIT compiler to the IBM J9/TR JVM by modifying
the method-based JIT compiler. Similar to the Dynamo system, trace recording focuses
on linear and cyclic traces where no join points except the head of cyclic traces are present.
To reduce the transition overhead between interpreted and compiled code, a code sequence
is generated for every potential trace exit to ensure that the stack is compatible to the
interpreter. Such code sequences are also required for every bytecode that might throw
an exception. When the application throws an exception during trace recording, the trace
recording stops and the trace is stored. This is slightly better than aborting trace recording
but still does not support the case that the exception source and the exception handler are
in the same compilation unit. The implemented trace-based JI'T compiler does not support
all optimizations of the normal method-based JIT compiler so that a method-based JIT
compiler with a reduced set of optimizations was chosen as the baseline. On average, the
trace-based JIT compiler achieves 96% of the baseline performance on the DaCapo 9.12
Bach benchmarks excluding the benchmark tradesoap. The benchmark jython showed the
highest speedup with 26% but the benchmarks tomcat and eclipse were approximately
20% slower than the baseline. The size of the generated machine code depended highly
on the specific benchmark and ranged from 52% smaller to 390% larger. Wu et al. [71]
extended that work by avoiding short-lived traces and unnecessary trace duplication. This
reduced both the amount of generated machine code and the compilation time, while peak
performance was not affected. This work is the closest to ours as it does also build on an
existing production quality method-based JIT compiler. In contrast to their work, we limit
individual traces to span at most one method so that we can delay the inlining decision to
the time of compilation. This increases the peak performance while reducing compilation

time and the size of the generated machine code for most benchmarks. Furthermore, we

Related Work 98

do not need to generate compensation code for every exception-throwing bytecode, as we
rely on deoptimization instead. Our trace-based compiler sometimes even outperforms the

Java HotSpot server compiler, although it performs significantly fewer optimizations.

9.2 Method Inlining

Method inlining is a well-researched topic that is extensively covered in literature. The
remaining related work therefore concentrates on ways to inline method parts instead of
whole methods as this is closest to our work. Still, these approaches are complementary
to trace compilation as method parts are explicitly excluded there, while trace recording

identifies method parts that should be compiled.

Partial method compilation [28, 68] uses profiling data to detect rarely executed method
parts. Those parts are then excluded from compilation, so that less bytecodes are compiled
to machine code. If code must be executed that was excluded from compilation, execution
falls back to the interpreter or another version of the code is compiled on demand. The
approach is evaluated on various applications and on the SPECjvm98 benchmark suite.
The results show a reduced compilation time and a 10% increase of the startup performance
on average. Our approach is even more selective as we record and compile only frequently
executed traces. Because the recorded trace information is context-sensitive, we can avoid
compiling method parts that were executed frequently in total, but are not required for
the current caller. Furthermore, we use the saved compilation resources for aggressive

trace inlining, which increases the peak performance.

Suganuma et al. [65, 66] implemented a region-based compiler where compilation heuristics
and profiling data are used to exclude rarely executed method parts from compilation.
Furthermore, method inlining is used heavily to group frequently executed code into a
single compilation unit, a so called region. If a method part must be executed that
was not compiled, the affected method is recompiled and on-stack-replaced so that the
execution continues in the recompiled code. For SPECjvm98 and SPECjbb2000, this
approach reduces the compilation time by more than 20% and increases the performance
by 5% on average. Trace-based compilation does not explicitly exclude method parts from
compilation but only compiles frequently executed traces that are identified using trace
recording. The recorded trace information is context-sensitive so that it can be used for

optimizations such as context-sensitive trace inlining and tail duplication.

Bradel et al. [16] analyzed the usage of traces for method inlining. An offline feedback-
directed system was implemented for the Jikes RVM, which considers return instructions
and backward branch targets as trace anchors. Then, hot call sites are identified within

the recorded traces and this information is used to guide method inlining. Their evaluation

Related Work 99

with the benchmarks SPECjvm98 and Java Grande shows a 10% performance increase,
while 47% more machine code is generated. Our system records traces during execution
in the interpreter and only compiles and inlines method parts covered by traces. This
improves the performance and also reduces the size of the generated machine code signifi-
cantly. Furthermore, we establish loops as top level compilation units so that they can be

compiled and invoked independently from method traces.

Hazelwood et al. [43] implemented context-sensitive inlining for the method-based Jikes
RVM compiler. Timer-based sampling and recording of call information are used to gather
profiling data to guide inlining decisions during compilation. For the benchmark suites
SPECjvm98 and SPECjbb2000, the size of the generated machine code and the compilation
time could be reduced by 10%, without affecting the performance. We record traces
in a call-graph-like data structure, which gives us even more detailed context-sensitive
information. Depending on the inlining heuristic, this either increases peak performance

or reduces the amount of generated machine code significantly.

Trace compilation is also suitable for compiling dynamic scripting languages as shown
by Bebenita et al. [11], Bolz et al. [14], Chang et al. [17], or Gal et al. [30]. In such an
environment, the recorded type information can be used to perform type specialization.
This may result in high speedups as boxed types can be replaced by machine-specific types
such as integer or double. Java is a statically typed language so that exact type information
is available at compile time. Therefore, similar type specialization optimizations are mostly

not applicable.

Another major difference between our and related work is the way how we record and inline
traces. Other approaches allow traces to span more than one method, so that inlining must
be performed during trace recording. We assume that one method is the maximum scope
of a trace and use trace linking to preserve call information between traces. This allows
delaying the inlining decision to the time of JIT compilation when more information is

available so that the inlining can be performed more selectively.

9.3 Code Coverage

The approaches related to our work can be roughly divided into two categories. The first
category tries to place instrumentation more selectively so that fewer probes are required.

The second category removes instrumentation as soon as it is no longer needed.

Related Work 100

9.3.1 Selective Instrumentation

Ball et al. [10] propose an efficient algorithm for path profiling. They add instrumen-
tation at certain positions in a method so that the instrumentation computes a path
identifier when executed. This path identifier exactly identifies the executed path. Our
trace recording interpreter records control flow decisions and other information such as
observed types while the application is being executed. This additional information is
valuable for aggressive and optimistic compiler optimizations and helps us to increase the

peak performance.

Agrawal [7, 8] does a variant of dominator computation to identify leaf blocks that must be
instrumented to record code coverage information. Instrumenting only leaf blocks greatly
reduces the amount of instrumentation. However, in case of exceptional control flow, this
technique is less efficient because it requires every potentially exception throwing instruc-
tion to be instrumented. Otherwise, an exception could leave the current block or method
without marking already executed code as covered. Our approach is complementary as
we do not add any instrumentation to record code coverage. Instead, we use the already
existing tracing infrastructure in the interpreter that records profiling data, in our case
traces. This avoids any instrumentation in the compiled code and thus minimizes the

impact on peak performance.

9.3.2 Disposable Instrumentation

Another approach that is related to ours is to reduce the instrumentation overhead by
removing the instrumentation as soon as possible. Pavlopoulou et al. [61] instrument the
bytecodes of Java applications to record coverage information. Then, the instrumented
application is executed multiple times with different parameters. Whenever the application
finishes running, all executed and therefore no longer needed probes are removed from its

class files. This reduces the amount of instrumentation with every execution.

Tikir et al. [67] combine selective instrumentation and removal of no longer needed in-
strumentation to decrease the overhead of determining code coverage. They dynamically
instrument binary code while it is executed to record code coverage information and -
similar to Agrawal - they use dominator tree information to reduce the number of inserted
probes. Their system periodically checks if there are any probes that are no longer needed
and can be removed. So, the amount of instrumentation is gradually reduced without

stopping the executed application.

Kumar et al. [51, 52] developed a framework for dynamic instrumentation of binary code.
They also adapted their tool for the Jikes RVM so that Java applications can be instru-

mented on the machine code level. The machine code of the Java application is generated

Related Work 101

by the Jikes JIT compiler which keeps track of which machine code instructions map to
which bytecodes. Using this information, they can map positions within the machine code
to bytecode, and also to source code if the class file contains a line number table. Probes
can be added and removed at run time and are implemented as fast breakpoints [49] that

branch to the instrumentation code.

Chilakamarri et al. [19, 20] use bytecode instrumentation to record code coverage infor-
mation. They modified the Kaffe JVM interpreter in such a way that the instrumentation
bytecodes are overwritten with nop instructions once they have been executed. This effec-
tively removes the instrumentation immediately after execution and increases the perfor-
mance. However, when the Kaffe JIT compiler is used, they only support method coverage

which is simple to implement.

Similarly to Tikir et al, Li et al. [53] combine selective instrumentation and removal of no
longer needed instrumentation to decrease the overhead of code coverage instrumentation.
They propose to do an offline analysis step with their super nested block algorithm, which
aims at reducing the number of required probes and is similar to the dominator-based
approach of Agrawal. The results of this offline analysis is then used when instrumenting
the application at run time, so that probes do not need to be added to every basic block.

After a probe was executed, they remove it in a similar way as Tikir et al.

Dmitriev [25, 26] uses the hotswapping API of the HotSpot JVM to dynamically instru-
ment Java applications. The hotswapping API provides mechanisms to replace methods
and classes with different versions at run time. This approach can be used to add in-
strumentation to an application but it can also be used to remove no longer needed in-
strumentation. Hotswapping has a certain run-time overhead but when focusing on peak

performance, the possibility to remove the instrumentation outweighs this overhead.

Forax [29] uses bytecode instrumentation to insert code coverage probes into Java ap-
plications. The probes are modeled as Java 7 invokedynamic bytecodes. When an in-
vokedynamic bytecode is executed for the first time, the VM invokes a developer-defined
bootstrapping method that resolves the target method. For subsequent executions, the
target method is cached so that it can be invoked directly. Forax exploits this behav-
ior and updates the code coverage information in the bootstrapping method and returns
a reference to a method that does not perform any operations. This ensures that the
code coverage information is updated properly, while the run-time overhead is kept small

because subsequent executions invoke an empty method.

Our approach is different from all those approaches as we avoid the explicit instrumentation
of applications by reusing the already existing tracing infrastructure of our trace recording
interpreter. Because we do not add any instrumentation, we also do not have to take

care of removing it later. Instead, hot code parts are compiled by the JIT compiler and

Related Work 102

the compiled code never contains any instrumentation. Thus, our approach gives us code
coverage information while avoiding the run-time overhead of instrumentation in compiled

code.

Summary 103

Chapter 10

Summary

The project started in July 2010 and was funded by the Austrian Science Fund (FWF)
until September 2013. From January to March 2012, the project was paused because the
author of this thesis did an internship at Oracle Labs.

During the first few month of the project, we concentrated on different trace recording
techniques and eventually developed the trace recording approach described in this thesis.
This approach has the significant advantage of delaying the inlining decisions to the time
of JIT compilation. During the main project part, we modified and extended the Java Hot-
Spot client compiler to support trace-based compilation. The resulting first prototype was
only able to compile traces that started at method entries. Loop traces always had to be
inlined. Later on, we addressed this limitation and defined suitable calling conventions for
invoking compiled loop traces. Then, we added further optimizations to the trace-based
JIT compiler and experimented with trace inlining to increase the peak performance.
Towards the end of the project, we concentrated on additional topics such as the approach

to derive code coverage from the recorded traces.

10.1 Future Work

Both in trace-based compilation and in code coverage computation, the following further

improvements would be possible.

10.1.1 Trace-based Compilation

When the project started, we decided to choose the Java HotSpot client compiler as the
basis for our trace-based JIT compiler because the client compiler is far simpler and there-
fore more approachable to the changes that were necessary. However, the HotSpot server

compiler performs significantly more optimizations so that it would be interesting to see

Summary 104

how those optimizations are affected with the increased compilation scope that is achieved
due to the context-sensitive trace information. The server compiler also has a more pow-
erful intermediate representation which might simplify some trace-specific optimizations.
Transforming the server compiler into a trace-based JIT compiler would be a significant
effort.

A more feasible approach would be to stay with the concept of method-based compilation
but replace the method-based profiling data with the context-sensitive trace information.
This would result in a method-based compiler that only compiles parts that are covered
by traces. The recorded context-sensitive trace information is more accurate than the
method-based profiling data so that method inlining could be replaced with our effective
trace inlining technique. Loops would always be compiled with their enclosing method so
that it is unnecessary to establish loops as top-level compilation units. While this would
reduce the flexibility to choose certain compilation units, it would greatly simplify the
implementation as the trace transitioning is one of the most complex parts of a trace-
based compiler. The resulting hybrid between a method-based and a trace-based compiler
should be able to combine the best parts of both worlds.

10.1.2 Code Coverage

Our approach should be applicable to most of today’s high-performance VMs that have
an aggressive JIT compiler and an already instrumented interpreter or baseline compiler
that records profiling data. We decided to implement our approach for a trace-based JIT
compiler instead of for a method-based compiler, because the recorded traces are path-
based and contain more information than the profiling data recorded for a method-based
compiler. The next logic step would be an implementation of our approach for Oracle’s
HotSpot server compiler, which is one of the most used Java JIT compilers. For this, the

following steps would be necessary:

e The HotSpot interpreter is already instrumented to record profiling data for the
server compiler. However, to maximize the startup performance, profiling data is
only recorded after a method was executed a certain number of times. This threshold

would have to be set to zero so that the profiling data is recorded from the beginning.

e In most cases, the server compiler already avoids compiling unexecuted code and
unexecuted control flow edges. However, in a few cases such as when on-stack-
replacement (OSR) [46] is used to optimize a long running loop, unexecuted code
may get compiled. This would have to be changed so that only executed Java

bytecode is compiled to machine code.

Summary 105

Another important field, which we hardly spent any time on, is visualizing the coverage
information. All commonly used code coverage tools visualize the code coverage in a user
friendly and intuitive way. While we prototypically implemented a basic visualization to

validate the recorded data, it still lacks most convenience features.

10.2 Conclusions

We presented a trace recording mechanism and a trace-based JIT compiler for Java that is
integrated into Oracle’s production quality Java HotSpot VM. Traces have the advantage
that they cover only the executed method parts. The runtime system supports traces that
start at method entries or at loop headers and we employ efficient calling conventions for
invoking traces from interpreted and from compiled code. Furthermore, our trace-based
compiler can handle exceptional control flow efficiently, which is an important factor to

achieve good peak performance for complex Java applications.

To avoid false loops, we detect loop headers in the Java bytecodes using static analysis dur-
ing class loading. Our trace recording approach restricts individual traces to at most one
method, while preserving context-sensitive information by linking caller and callee traces.
Furthermore, we delay inlining decisions from trace recording to the time of compilation as
more information is available at that time. This allows more selective trace inlining. Prior
to compilation, we merge the recorded traces into a trace graph to avoid unnecessary tail
duplication. During JIT compilation, we apply general and tracing-specific optimizations
such as constant folding and trace inlining. The recorded traces are context-sensitive so
that we can inline different method parts depending on the specific call site. This allows
aggressive trace inlining while generating reasonable amounts of machine code. To reduce
the amount of generated machine code, we avoid generating compensation code for side
exits but rather rely on deoptimization. Furthermore, we eliminate infrequently executed
traces before compilation to ensure that only the most frequently executed traces are

compiled to machine code.

Compared to the Java HotSpot client compiler we achieve up to 59% speedup (20% on
average) for complex benchmarks such as DaCapo 9.12 Bach jython and on some of the
benchmarks we even outperform the Java HotSpot server compiler. Furthermore, we also
showed that trace inlining achieves larger compilation scopes that increase the effectiveness
of common compiler optimizations and eventually result in a better peak performance.
These results are promising as we show that a fairly simple trace-based compiler, that
uses only basic traditional optimizations, can achieve an excellent peak performance that

sometimes even outperforms one of today’s best optimizing JIT compilers for Java.

Summary 106

We also presented a novel runtime system which allows us to obtain code coverage in-
formation without explicitly instrumenting an application. Instead, we derive exact code
coverage information from the profiling data that is already recorded for an optimizing JI'T
compiler. This gives us coverage information almost for free while avoiding instrumenta-
tion in the compiled code parts and thus keeping the run-time overhead to a minimum.
While we implemented our approach for a variant of the HotSpot VM that uses a trace-
based JIT compiler, our approach is general enough to be also applicable to most other
modern VMs. Measurements showed that our approach hardly affects the performance of

applications so that it can also be used in daily operation systems.

List of Figures 107

List of Figures

1.1
1.2

2.1
2.2
2.3

3.1

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Layers involved when executing native and Javacode 2
Java exampleo 2
System overviewo e 6
Java HotSpot VM profiling data 8
Deoptimization 10
Reverse-post-dominator processing order 12
Possible traces through two methods 16
Trace-based Java HotSpot VM 17
Tracing stack while trace recording 20
Recorded traces L 23
Code for storing a recorded trace 24
Different high-level intermediate representations and partial traces 28
Context-sensitive trace informationo 29
Bytecode simulation to determine if a loop can be compiled separately . . . 33
Separating loops from methodso 33
Calling conventions for loop traces 34
Transitions between interpreted and compiled traces 36
Transitions between interpreted and compiled methods 36
Exception handling 37
Type-specific optimizations oL 39
Deoptimizing a loop trace 42
Inlining method traces L L 44
Polymorphic inlining o L 46
Inlining loop traces 48
Different relevance computation algorithms 49
Method ArrayList.index0f(), 51
Context-sensitive type information 51

Compilation units 53

List of Figures 108

6.8
6.9

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28

Filtering out infrequently executed traces 55

Pseudo-code for System.arraycopy () when copying primitive type arrays . 56

Ways to obtain code coverage information 59
Runtime system for recording coverage information 60
Computing code coverage from recorded traces 62
Coverage for the method Math.max() 63
Comparison of code coverage instrumentation techniques 64
Code instrumented with JaCoCo 67
Thresholds used for trace recording and JIT compilation 69
SPECjvm2008 and DaCapo 9.12 Bach benchmarks 71
SPECjvm2008: peak performance 74
SPECjvm2008: generated machine code 74
SPECjvm2008: time required for JIT compilation 74
SPECjbb2005 results 76
SPECjbb2005 peak performance for different numbers of warehouses 76
DaCapo 9.12 Bach: peak performance 77
DaCapo 9.12 Bach: generated machinecode 77
DaCapo 9.12 Bach: time required for JIT compilation 77
SPECjvm2008 startup performance with 1 application thread 79
DaCapo 9.12 Bach startup performance with 1 application thread 79
SPECjvm2008 startup performance with 4 application threads 79
DaCapo 9.12 Bach startup performance with 4 application threads 79
Importance of exception handling for peak performance 81
Impact of high-level optimizations on peak performance 82
DaCapo 9.12 Bach: effect of trace inlining on peak performance 83

DaCapo 9.12 Bach: effect of trace inlining on the amount of generated

machine code e 83
DaCapo 9.12 Bach: effect of trace inlining on the compilation time 83
Transition frequencies in thousands for the SPECjvm2008 benchmarks . . . 84
Transition frequencies in thousands for the SPECjbb2005 benchmark 84
Transition frequencies in thousands for the DaCapo 9.12 Bach benchmarks 84
Features of the evaluated tools 87
SPECjvm2008: startup and peak performance 88
SPECjvm2008: amount of generated machine code 88
SPECjvm2008: time required for JIT compilation 88
SPECjbb2005 results 90
DaCapo 9.12 Bach: startup and peak performance 91

DaCapo 9.12 Bach: amount of generated machine code 91

List of Figures 109

8.29 DaCapo 9.12 Bach: time required for JIT compilation 91
8.30 Hot trace anchors that are not compiled because of JaCoCo 92
8.31 Trace recording statistics L Lo 93

Bibliography 110

Bibliography

1]
2]
3]
[4]
[5]
[6]
[7]

[11]

[12]

EMMA: a free Java code coverage tool, 2005. http://emma.sourceforge.net/.
Cobertura, 2010. http://cobertura.sourceforge.net/.

CodeCover, 2011. http://codecover.org/.

Clover, 2013. Atlassian, Inc. http://www.atlassian.com/software/clover/.
EclEmma, 2013. http://www.eclemma.org/.

JaCoCo, 2013. http://www.eclemma.org/jacoco/.

Hira Agrawal. Efficient Coverage Testing Using Global Dominator Graphs. In Pro-
ceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Soft-
ware Tools and Engineering, pages 11-20. ACM Press, 1999.

Hiralal Agrawal. Dominators, Super Blocks, and Program Coverage. In Proceedings of
the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 25-34. ACM Press, 1994.

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A Transparent
Dynamic Optimization System. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 1-12. ACM Press, 2000.

Thomas Ball and James R. Larus. Efficient Path Profiling. In Proceedings of the
ACM/IEEE International Symposium on Microarchitecture, pages 46-57. IEEE Com-
puter Society, 1996.

Michael Bebenita, Florian Brandner, Manuel Fahndrich, Francesco Logozzo, Wolfram
Schulte, Nikolai Tillmann, and Herman Venter. SPUR: A Trace-Based JIT Compiler
for CIL. In Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, pages 708-725. ACM Press, 2010.

Michael Bebenita, Mason Chang, Gregor Wagner, Andreas Gal, Christian Wimmer,
and Michael Franz. Trace-Based Compilation in Execution Environments without
Interpreters. In Proceedings of the International Conference on the Principles and

Practice of Programming in Java, pages 59—68. ACM Press, 2010.

http://emma.sourceforge.net/
http://cobertura.sourceforge.net/
http://codecover.org/
http://www.atlassian.com/software/clover/
http://www.eclemma.org/
http://www.eclemma.org/jacoco/

Bibliography 111

[13]

[14]

[17]

[19]

[21]

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking development and
analysis. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, pages 169-190. ACM Press, 2006.

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing
the Meta-Level: PyPy’s Tracing JIT Compiler. In Proceedings of the Workshop on
the Implementation, Compilation, Optimization of Object-Oriented Languages and

Programming Systems, pages 18-25. ACM Press, 2009.

Dan Bornstein. Dalvik VM Internals. Presented at the Google 1/O developer confer-
ence, 2008. http://sites.google.com/site/io/dalvik-vm-internals.

Borys J. Bradel and Tarek S. Abdelrahman. The Use of Traces for Inlining in Java
Programs. In Proceedings of the International Conference on Languages and Compil-

ers for High Performance Computing, pages 179-193. Springer-Verlag, 2005.

Mason Chang, Edwin Smith, Rick Reitmaier, Michael Bebenita, Andreas Gal, Chris-
tian Wimmer, Brendan Eich, and Michael Franz. Tracing for Web 3.0: Trace Com-
pilation for the Next Generation Web Applications. In Proceedings of the ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments, pages

71-80. ACM Press, 2009.

Ben Cheng and Bill Buzbee. A JIT Compiler for Android’s Dalvik VM. Presented
at the Google I/O developer conference, 2010. https://www.youtube.com/watch?
v=Ls0tM-c4Vfo.

Kalyan-Ram Chilakamarri and Sebastian Elbaum. Reducing Coverage Collection
Overhead With Disposable Instrumentation. In Proceedings of the International Sym-
posium on Software Reliability Engineering, pages 233-244. IEEE Computer Society,
2004.

Kalyan-Ram Chilakamarri and Sebastian Elbaum. Leveraging Disposable Instru-
mentation to Reduce Coverage Collection Overhead. Software Testing, Verification
€9 Reliability, 16(4):267-288, 2006.

Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam
Midkiff. Escape Analysis for Java. In Proceedings of the ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications, pages 1-19.
ACM Press, 1999.

http://sites.google.com/site/io/dalvik-vm-internals
https://www.youtube.com/watch?v=Ls0tM-c4Vfo
https://www.youtube.com/watch?v=Ls0tM-c4Vfo

Bibliography 112

[22]

[24]

[25]

[26]

[27]

28]

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph. ACM Transactions on Programming Languages and Systems,
13(4):451-490, 1991.

Jeffrey Dean, David Grove, and Craig Chambers. Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis. In Proceedings of the European
Conference on Object-Oriented Programming, pages 77-101. Springer-Verlag, 1995.

David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. Garbage-First
Garbage Collection. In Proceedings of the International Symposium on Memory Man-
agement, pages 37-48. ACM Press, 2004.

Mikhail Dmitriev. Application of the HotSwap Technology to Advanced Profiling.
Technical report, Sun Microsystems Laboratories, USA, 2002.

Mikhail Dmitriev. Profiling Java Applications Using Code Hotswapping and Dynamic
Call Graph Revelation. In Proceedings of the International Workshop on Software and
Performance, pages 139-150. ACM Press, 2004.

Evelyn Duesterwald and Vasanth Bala. Software Profiling for Hot Path Prediction:
Less is More. SIGPLAN Notices, 35:202-211, 2000.

S.J. Fink and Feng Qian. Design, Implementation and Evaluation of Adaptive Recom-
pilation with On-Stack Replacement. In Proceedings of the International Symposium
on Code Generation and Optimization, pages 241-252. IEEE Computer Society, 2003.

Rémi Forax. JSR 292 Goodness: Fast code coverage tool in less than 10k, 2011.
https://www.java.net/blog/forax/archive/2011/02/12/

jsr-292-goodness-fast-code-coverage-tool-less-10k.

Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Moham-
mad R. Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason Orendorff,
Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael Bebenita, Mason Chang,
and Michael Franz. Trace-based Just-in-Time Type Specialization for Dynamic Lan-
guages. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 465-478. ACM Press, 2009.

Andreas Gal and Michael Franz. Incremental Dynamic Code Generation with Trace
Trees. Technical report, Donald Bren School of Information and Computer Science,
University of California, Irvine, USA, 2006.

https://www.java.net/blog/forax/archive/2011/02/12/jsr-292-goodness-fast-code-coverage-tool-less-10k
https://www.java.net/blog/forax/archive/2011/02/12/jsr-292-goodness-fast-code-coverage-tool-less-10k

Bibliography 113

[32]

[37]

[39]

[40]

[41]

[42]

Andreas Gal, Christian W. Probst, and Michael Franz. HotpathVM: An Effective
JIT Compiler for Resource-constrained Devices. In Proceedings of the International

Conference on Virtual Execution Environments, pages 144-153. ACM Press, 2006.

C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering,
2nd Edition. Prentice Hall, 2003.

Google. V8 JavaScript Engine, 2013. https://code.google.com/p/v8.

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java®
Language Specification, Java SE 7 Edition. Addison-Wesley, 2013.

Robert Griesemer. Generation of Virtual Machine Code at Startup. In OOPSLA
Workshop on Simplicity, Performance, and Portability in Virtual Machine Design.
Sun Microsystems, Inc., 1999.

Christian Hadubl and Hanspeter Mossenbock. Trace-based Compilation for the Java
HotSpot Virtual Machine. In Proceedings of the International Conference on the
Principles and Practice of Programming in Java, pages 129-138. ACM Press, 2011.

Christian Héubl, Christian Wimmer, and Hanspeter M&ssenbock. Evaluation of Trace
Inlining Heuristics for Java. In Proceedings of the ACM Symposium on Applied Com-
puting, pages 1871-1876. ACM Press, 2012.

Christian Haubl, Christian Wimmer, and Hanspeter M&ssenbock. Context-sensitive
Trace Inlining for Java. Computer Languages, Systems and Structures, 39:123-141,
2013.

Christian Haubl, Christian Wimmer, and Hanspeter Modssenbock. Deriving Code
Coverage Information from Profiling Data Recorded for a Trace-based Just-in-time
Compiler. In Proceedings of the International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages, and Tools,
pages 1-12. ACM Press, 2013.

Christian Haubl, Christian Wimmer, and Hanspeter Méssenbock. Trace Transitioning
and Exception Handling in a Trace-based JIT Compiler for Java. ACM Transactions
on Architecture and Code Optimization, 2013. Accepted for publication.

Hiroshige Hayashizaki, Peng Wu, Hiroshi Inoue, Mauricio J. Serrano, and Toshio
Nakatani. Improving the Performance of Trace-based Systems by False Loop Fil-
tering. In Proceedings of the International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 405-418. ACM Press, 2011.

https://code.google.com/p/v8

Bibliography 114

[43]

[47]

[51]

[52]

Kim Hazelwood and David Grove. Adaptive Online Context-Sensitive Inlining. In
Proceedings of the International Symposium on Code Generation and Optimization,
pages 253-264. IEEE Computer Society, 2003.

David Hiniker, Kim Hazelwood, and Michael D. Smith. Improving Region Selection
in Dynamic Optimization Systems. In Proceedings of the IEEE/ACM International
Symposium on Microarchitecture, pages 141-154. IEEE Computer Society, 2005.

Urs Holzle, Craig Chambers, and David Ungar. Debugging Optimized Code with
Dynamic Deoptimization. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 32-43. ACM Press, 1992.

Urs Hoélzle and David Ungar. Optimizing Dynamically-dispatched Calls With Run-
time Type Feedback. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 326-336. ACM Press, 1994.

Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and Toshio Nakatani. A Trace-based
Java JIT Compiler Retrofitted from a Method-based Compiler. In Proceedings of
the International Symposium on Code Generation and Optimization, pages 246—256.
IEEE Computer Society, 2011.

Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Handbook:
The Art of Automatic Memory Management. Chapman & Hall/CRC, 2011.

Peter B. Kessler. Fast Breakpoints: Design and Implementation. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 78-84. ACM Press, 1990.

Thomas Kotzmann, Christian Wimmer, Hanspeter Mossenbock, Thomas Rodriguez,
Kenneth Russell, and David Cox. Design of the Java HotSpot Client Compiler for
Java 6. ACM Transactions on Architecture and Code Optimization, 5(1):7:1-7:32,
2008.

Naveen Kumar, Jonathan Misurda, Bruce R. Childers, and Mary Lou Soffa. FIST: A
Framework for Instrumentation in Software Dynamic Translators. Technical report,
University of Pittsburgh, USA, 2003.

Naveen Kumar, Jonathan Misurda, Bruce R. Childers, and Mary Lou Soffa. Instru-
mentation in Software Dynamic Translators for Self-Managed Systems. In Proceedings
of the ACM SIGSOFT Workshop on Self-Managed Systems, pages 90-94. ACM Press,
2004.

Bibliography 115

[53]

[64]

J. Jenny Li, David M. Weiss, and Howell Yee. An Automatically-Generated Run-
Time Instrumenter to Reduce Coverage Testing Overhead. In Proceedings of the
International Workshop on Automation of Software Test, pages 49-56. ACM Press,
2008.

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java® Virtual
Machine Specification, Java SE 7 Edition. Addison-Wesley, 2013.

Sun Microsystems. Memory Management in the Java HotSpot™ Vir-
tual Machine, 2006. http://www.oracle.com/technetwork/java/javase/tech/
memorymanagement-whitepaper-1-150020.pdf.

Mozilla. IonMonkey, 2013. https://wiki.mozilla.org/IonMonkey/Overview.

Hyeong-Seok Oh, Beom-Jun Kim, Hyung-Kyu Choi, and Soo-Mook Moon. Evaluation
of Android Dalvik Virtual Machine. In Proceedings of the International Workshop on
Java Technologies for Real-time and Embedded Systems, pages 115-124. ACM Press,
2012.

Oracle Corporation. JVM Tool Interface, 2007. http://docs.oracle.com/javase/
7/docs/platform/jvmti/jvmti.html.

Oracle Corporation. Java Platform, Standard Edition 8 Developer Preview Releases,
2013. http://jdk8. java.net/download.html.

Michael Paleczny, Christopher Vick, and Cliff Click. The Java HotSpot Server Com-
piler. In Proceedings of the Java Virtual Machine Research and Technology Sympo-
sium, pages 1-12. USENIX, 2001.

Christina Pavlopoulou and Michal Young. Residual Test Coverage Monitoring. In
Proceedings of the International Conference on Software Engineering, pages 277-284.
ACM Press, 1999.

lan Rogers. Optimising Java Programs Through Basic Block Dynamic Compilation.

PhD thesis, Department of Computer Science, University of Manchester, 2002.

Standard Performance Evaluation Corporation. The SPECjbb2005 Benchmark, 2005.
http://www.spec.org/jbb2005/.

Standard Performance Evaluation Corporation. The SPECjvm2008 Benchmarks,
2008. http://www.spec.org/jvm2008/.

http://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepaper-1-150020.pdf
http://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepaper-1-150020.pdf
https://wiki.mozilla.org/IonMonkey/Overview
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html
http://jdk8.java.net/download.html
http://www.spec.org/jbb2005/
http://www.spec.org/jvm2008/

Bibliography 116

[65]

[67]

[71]

[72]

Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. A Region-Based Com-
pilation Technique for a Java Just-In-Time Compiler. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages
312-323. ACM Press, 2003.

Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. A Region-Based Compi-
lation Technique for Dynamic Compilers. ACM Transactions on Programming Lan-
guages and Systems, 28:134-174, 2006.

Mustafa M. Tikir and Jeffrey K. Hollingsworth. Efficient Instrumentation for Code
Coverage Testing. In Proceedings of the ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 86—96. ACM Press, 2002.

John Whaley. Partial Method Compilation using Dynamic Profile Information. SIG-
PLAN Notices, 36:166—179, 2001.

Christian Wimmer, Marcelo S. Cintra, Michael Bebenita, Mason Chang, Andreas
Gal, and Michael Franz. Phase Detection using Trace Compilation. In Proceedings
of the International Conference on Principles and Practice of Programming in Java,
pages 172-181. ACM Press, 2009.

Christian Wimmer and Hanspeter Mdssenbock. Optimized Interval Splitting in a
Linear Scan Register Allocator. In Proceedings of the ACM/USENIX International
Conference on Virtual Execution Environments, pages 132-141. ACM Press, 2005.

Peng Wu, Hiroshige Hayashizaki, Hiroshi Inoue, and Toshio Nakatani. Reducing Trace
Selection Footprint for Large-scale Java Applications without Performance Loss. In
Proceedings of the ACM International Conference on Object Oriented Programming

Systems Languages and Applications, pages 789-804. ACM Press, 2011.

Thomas Wiirthinger, Christian Wimmer, and Hanspeter Mossenbock. Array Bounds
Check Elimination for the Java HotSpot™ Client Compiler. In Proceedings of the
International Symposium on Principles and Practice of Programming in Java, pages
125-133. ACM Press, 2007.

All URLSs were last accessed on 14-December-2014

	1 Introduction
	1.1 Java
	1.2 Motivation and Contributions
	1.3 Structure of the Thesis

	2 The Java HotSpot Virtual Machine
	2.1 Interpreter
	2.2 Just-in-time Compilers
	2.3 Memory Management
	2.4 Deoptimization

	3 The Client Compiler
	3.1 Front End
	3.2 Back End
	3.3 Optimizations

	4 Trace Recording
	4.1 Overview
	4.2 Bytecode Preprocessing
	4.3 Normal Interpreter
	4.4 Trace Recording Interpreter
	4.4.1 Tracing Stack
	4.4.2 Recorded Trace Information
	4.4.3 Thresholds

	4.5 Partial Traces

	5 Trace-based Compilation
	5.1 Front End
	5.2 Back End
	5.3 Trace Transitioning
	5.3.1 Separating Loops from Methods
	5.3.2 Loop Calling Conventions

	5.4 Exception Handling
	5.5 Type-specific Optimizations
	5.6 Tail Duplication
	5.7 Runtime Changes

	6 Trace Inlining
	6.1 Advantages Over Method Inlining
	6.2 Method Traces
	6.3 Loop Traces
	6.4 Relevance
	6.5 Context Sensitivity
	6.6 Compilation Units
	6.7 Trace Filtering
	6.8 Effect on Compiler Intrinsics

	7 Deriving Code Coverage Information from Recorded Traces
	7.1 Runtime System and Requirements
	7.2 Computing Code Coverage
	7.3 Comparison to Other Code Coverage Techniques
	7.4 Code Coverage Tools
	7.5 Startup Performance

	8 Evaluation
	8.1 Methodology
	8.1.1 SPECjvm2008
	8.1.2 SPECjbb2005
	8.1.3 DaCapo 9.12 Bach

	8.2 Trace-based Compilation
	8.2.1 SPECjvm2008
	8.2.2 SPECjbb2005
	8.2.3 DaCapo 9.12 Bach
	8.2.4 Startup Performance
	8.2.5 Importance of Exception Handling
	8.2.6 Effect of Larger Compilation Scope
	8.2.7 Trace Transitioning
	8.2.8 Further Evaluations
	8.2.9 Discussion of Results

	8.3 Code Coverage
	8.3.1 SPECjvm2008
	8.3.2 SPECjbb2005
	8.3.3 DaCapo 9.12 Bach
	8.3.4 Memory Usage
	8.3.5 Discussion of Results

	9 Related Work
	9.1 Trace-based Compilation
	9.2 Method Inlining
	9.3 Code Coverage
	9.3.1 Selective Instrumentation
	9.3.2 Disposable Instrumentation

	10 Summary
	10.1 Future Work
	10.1.1 Trace-based Compilation
	10.1.2 Code Coverage

	10.2 Conclusions

	List of Figures
	Bibliography

