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Kurzfassung

Optimierung stellt einen wichtigen Bestandteil in Betrieb und Planung mod-
erner Stromnetze dar. Zeitgleich tragt der aktuelle Wandel der Versorgungs-
paradigmen elektrischer Energie - hin zu so genannten Smart Grids - neue
Anforderungen an Optimierungsanwendungen mit sich: Optimale Entschei-
dungen miissen zunehmend in dynamischen und unsicheren Systemen getrof-
fen werden. Gleichzeitig verlangt die Steuerung einer Vielzahl verteilter
Endgerate nach Skalierbarkeit der eingesetzten Methoden.

In diesem Kontext gewinnen heuristische Optimierungsverfahren an Bedeu-
tung. Speziell mit simulationsbasierter Optimierung kénnen Probleme in
komplexen und unsicheren Szenarien bearbeitet werden, wodurch das method-
ische Fundament dieser Arbeit begriindet wird. Mittels Analyse aktueller
und zukiinftiger technologischer Herausforderungen in Stromnetzen werden
sowohl statische als auch dynamische Optimierungsprobleme formuliert, be-
handelt und analysiert. Darauf aufbauend wird ein Ansatz der simula-
tionsbasierten evolutiondren Approximation von so genannten policies en-
twickelt, welcher sowohl generisch beschrieben, aber speziell fiir dynamische
und stochastische Lastflussprobleme entwickelt und validiert wird. Speziell
diese Verquickung von evolutionarer Simulationsoptimierung und der policy-
basierten dynamischen Optimierung fiir reellwertige Entscheidungsprobleme
bietet einen neuartigen methodischen Ansatz.

Zur Bewertung entwickelter Methoden werden statische Benchmark-Szenarien
optimaler Lastflussprobleme um stochastische wie auch dynamische Elemente
erweitert, um realistische Testinstanzen darzustellen. Hier werden zentrale
Eigenschaften der entwickelten Optimierungsmethoden erprobt, namlich ein-
erseits die Fahigkeit der Errechnung robuster nah-optimaler Entscheidungen
in unsicheren und dynamischen Systemen, andererseits aber auch die Skalier-
barkeit in Hinblick auf zukiinftige Steuerung einer Vielzahl verteilter Gerate.
Der zweite experimentelle Teil spezialisiert sich auf Herausforderungen in
zukiinftigen Smart Grids, hier speziell auf die optimale Steuerung verteilter
Lasten. Da die technische Realisierung dieses “Demand Side Management”
in Zukunft vielgestaltige Auspriagungen annehmen kann, wird eine gener-
ische Problemformulierung vorgenommen. Fiir experimentelle Zwecke wird
darauf aufbauend ein konkretes Szenario mit steuerbaren Elektrofahrzeugen
definiert, welches unter Riicksichtnahme dezentraler erneuerbarer Einspeiser
ein illustratives Problem fiir zukiinftige Laststeuerung darstellt. Aufgrund
der Notwendigkeit der Steuerung unter unsicheren und volatilen Bedingun-
gen fiir eine hohe Anzahl an Elektrofahrzeugen wird hier einmal mehr die
simulationsbasierte evolutioniare Approximation von policies angewandt und
validiert.






Abstract

The electric power systems research society early identified the necessity
of optimization both for planning and operation tasks, where formulations
such as the optimal power flow (OPF) problem shape this research domain
ever since. At the same time, technological changes to electric power grids
challenge new methods, requiring optimization in both dynamic as well as
uncertain systems. Additionally, optimization tasks for the control of numer-
ous distributed devices fundamentally require scalability aspects.

In this context, heuristic optimization methods have evolved as being capa-
ble of managing many of those upcoming needs. Simulation optimization
with metaheuristics provides a promising fundament for optimization under
uncertainty, and offers the basic approach for handling manifold challeng-
ing optimization issues within this work. While various aspects of future
power grid optimization tasks are being analyzed, simulation-based methods
both for static but mainly for dynamic problems are developed. Further on,
simulation-based evolutionary policy function approximation is being dis-
cussed for dynamic power flow control problems, which is presented both in
a generic manner as well as tailored to the electric engineering domain.

In a first experimental part, the developed methods are applied both to a
static probabilistic planning problem and to a dynamic OPF control task
within benchmark systems. Showing that approximate optimal policy-based
control yields competitive results compared to reference solutions, it addi-
tionally is able to make quick and robust control actions within dynamic and
stochastic environments, being scalable to numerous devices.

The second experimental part treats optimal load control issues in the smart
electric grids context. Electric vehicle (EV) charging control is defined as a
generic problem for optimal load control over time. Existing works in the
literature are being analyzed while major lacks can be identified that need
to be tackled. Here, once more simulation-based evolutionary policy func-
tion approximation comes into play, which is shown to evolve control policies
for a holistic electric vehicle charging problem that unifies all important re-
quirements for smart EV charging. Finally, policies are evolved that enable
intelligent charging decisions to multiple EVs within an experimental system.
These decisions are even able to satisfy system-wide goals while being flexi-
ble to dynamic and uncertain conditions. Comparisons to deterministically
optimized charging decisions in a test simulation show its validity.

Finally, a scalable technology has been presented, which enables approxi-
mate optimal control in volatile as well as uncertain systems. Representing
a technology for managing dynamic stochastic optimal power flow problems
makes it highly promising for future smart electric grid control.
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Static Optimization
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Dynamic
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Chapter 1

Synopsis

1.1 Motivation

Electric power grids are operated all over the world, representing complex
technical systems while both appropriate planning and operation are of high
economic impact. Here, the constitution of these systems most often corre-
sponds to the traditional paradigm, that energy needs to be transported from
central large-scale supply plants to numerous spatially distributed customers.
While - due to the law of power balance - the load (customers’ demand) and
supply (power generation) need to be equal at any given point in time, in
conventional operation the supply plants’ generation is adapted continuously
according to the non-controllable system load. This principle which charac-
terizes power grid operation ever since is entitled by load-dependent genera-
tion.

Since the economic impact of decisions both in planning as well as opera-
tion of power grids is high, optimization has established as essential tool in
power grid engineering. Here, fundamental formulations such as the optimal
power flow (OPF) provide a generic framework which is applied to manifold
applications in order to derive optimal planning and operation decisions in
power grids. While the traditional OPF aims at optimally controlling a set
of generation units in order to meet the demand at lowest financial costs,
in the meanwhile it has been adapted to diverse decision problems in power
grid engineering, such as different kinds of control units, objective functions,
and constraints.

While the general principles of both construction and operation of electric
power grids seemed to be invariant along many decades, in recent years a
paradigm shift characterizes the electric power industry, introducing princi-
ples of so called smart electric grids as enabler for more efficient, reliable
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and sustainable electric power generation and distribution. This paradigm-
shift not only raises diverse technical challenges, it also asks for new problem
formulations as well as methods for power grid optimization. Especially
when regarding optimal power flows and corresponding control tasks, central
changes that come along with smart electric grids are a decentralization of
the distribution grid operation on the one hand (i.e. small and distributed
devices for supply, storage as well as controllable demand), and an inver-
sion of the traditional load-dependent generation scheme on the other hand.
While in traditional operation the controllable generation units are sched-
uled in order to meet uncontrollable demand, controllable load devices shall
be operated for enabling efficient usage of available generation resources (i.e.
uncontrollable supply from renewables) in smart power grids. From an op-
timization point of view, these diverse changes can be summarized in three
important aspects:

e Increasing Quantity of Control Variables
Due to the change to generation-dependent load as well as the imple-
mentation of numerous distributed controllable devices, the quantity of
control variables for power flow actions increases significantly, afford-
ing scalable computational methods that are capable of handling high
amounts of variables.

e Higher Volatility
On the one hand, control will be performed on lower power grid levels,
where dynamics of single decisions are higher than on upright levels.
On the other hand, the progressive penetration of fluctuating renew-
able small-scale power plants further increases the volatility of power
grid behavior on these lower levels, necessitating control methods that
provide power flow decisions quickly.

e Need for Incorporation of Uncertainty
Similar reasons hold when considering uncertainty. Both the supply-
side as well as the demand-side within the power grid cause increasing
probabilistic influences, which need to be integrated appropriately for
making optimal decisions in smart grids. This is an important issue
in order to provide robust decisions under uncertainty that guarantee
secure as well as reliable operation.

Hence, new formulations of existing optimization problems need to be
conducted that are able to include all these aspects on the one hand. On
the other hand, innovative optimization methods need to be investigated

4
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being capable of treating these problems for still deriving optimal decisions
in operation (dynamic optimization) and planning (static optimization) of
future smart electric grids.

1.2 Research Questions

Based on these new requirements to electric power grid optimization, central
research questions can be formulated that are treated within this work:

e [s it possible to derive new formulations of the optimal power flow
(OPF) problem that meet future requirements in order to still provide
a generic framework for electric power grid optimization?

e How can increasing uncertainties be considered for deriving robust de-
cisions in both planning as well as operational aspects?

e Which methods will be needed in order to provide robust actions for
dynamic and stochastic optimal power flow control?

e Is it possible to develop such methods for complex real-world power
systems with high amounts of control variables?

1.3 Overview of the Thesis

Stating the fundamentals of electric power grid operation as well as smart
grid principles and challenges in Sections 2.1 and 2.2 respectively, Chapter 3
proceeds with a discussion on simulation-based optimization being a central
enabler for optimization in stochastic systems. While a clear distinction be-
tween static and dynamic optimization will be defined, the latter is capable of
providing optimal control abilities over time using evolutionary simulation-
based approximation of flexible control policies, being developed in Chapter
4. After discussing the fundamentals of this new technology with special
respect to the power grid operation domain, the reader will be supplied with
experimental validations when applying it to selected OPF benchmark prob-
lems in Chapter 5. Having shown its capabilities, Chapter 6 develops essential
smart grid scenarios together with challenges that come up with them, that
will finally be solved using the investigated technology of evolutionary policy
optimization, also validating this technique. Here, related achievements in
literature will be discussed as well as the existing lacks that finally get di-
minished. After applying the discussed policy optimization techniques to an
electric vehicle charging control scenario which comprises typical smart grid
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features, Chapter 7 provides concluding remarks and an outlook to potential
future research issues.

1.4 Main Research Contribution

The scientific contribution when handling the defined research questions is
twofold: on the one hand, new methods are introduced for enabling dynamic
and stochastic power flow control, namely simulation-based evolutionary pol-
icy approximation. On the other hand, future smart grid challenges are an-
alyzed with respect to optimization, leading to an extension of the optimal
power flow problem that is valid for manifold emerging technologies. Apply-
ing the developed policy approximation technology to a generic smart grids
scenario completes the research work while both validating the investigated
methods as well as handling real-world research issues and applications.

1.4.1 Dynamic and Stochastic Optimal Power Flow

Providing appropriate techniques for dynamic and stochastic optimal power
flow control is a fundamental challenge. Simulation optimization is demon-
strated as being a promising principle that allows the integration of both very
complex systems as well as their uncertainties into the optimization process.
As this is an important achievement for both dynamic as well as static issues,
the latter will be demonstrated for a probabilistic planning scenario.

Especially in the field of dynamic optimization, there are many open issues
in the scientific literature. For the application of power flow control it is
shown that a technology is necessary which allows scalability for controlling
huge amounts of devices on the one hand, but which additionally is able
to deliver fast and robust actions within complex and uncertain systems on
the other hand. Therefore, simulation optimization gets extended in order to
evolutionary approximate policy functions for dynamic control. Such policies
are analytical functions that return an approximate optimal action given a
state, without doing optimization at runtime. Simulation-based evolutionary
policy approximation shows to be scalable while being suitable for large-scale
systems (both in means of input as well as control variables). Additionally,
from the point of view of policy approximation, a central requirement states
the necessity of evolving policies of arbitrary mathematical structure without
the need of a-priori knowledge of this structure. Being an important enabler
of policy-based optimization in complex real-world systems, the policy evo-
lution with genetic programming satisfies this requirement and is elaborated
within this work. Different approaches on how to evolve policies out of given
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inputs get discussed, while a central achievement is the derivation of pol-
icy functions out of abstract rules rather than directly out of systems’ state
variables. This principle has the advantage that information from many hun-
dreds or even more state variables within large systems can be compressed
into policies on the one hand, but delivers individual actions to each of many
distributed devices on the other hand. Additionally, these abstract rules
provide generic information entities that do not need to be tailored to a spe-
cific problem instance (such as a specific power grid model), rather provide
a generic information representation for policy evolution. Being combined
with genetic programming enabled metamodel-less policy approximation, a
general methodology for dynamic and stochastic optimal power flow control
can be stated.

1.4.2 Smart Grid Optimization Challenges and
Electric Vehicle Charging Control

Many future optimization issues in the power grid area demand multi-period
considerations, where optimal decisions have to be made over time while sat-
isfying constraints robustly under stochastic conditions.

Such multi-period considerations are often necessary for control issues. Espe-
cially in future smart electric grids, the control of huge amounts of distributed
devices is a crucial task for enabling this technological change.

Within this work, it is shown that the control for various future technolo-
gies can be realized through an extension of the OPF problem. Here, an
electric vehicle charging scenario is defined that generically represents future
load-control problems, while being a hot-spot in actual smart grids research.
Lacks of existing research works are identified, requiring a technology which
is capable of integrating both the demand-side’s as well as the supply side’s
uncertainties with high detail. The ability of deriving robust decisions with
respect to actually resulting power flows in the system is an additional re-
quirement in order to guarantee reliable power grid operation during control.
A holistic optimization problem is specified that closes existing lacks in lit-
erature and is finally treated using the investigated technique of simulation-
based evolutionary policy approximation, further validating this technology.
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Chapter 2

Theory I: Electric Power Grids

2.1 Overview: Optimization and Control in
Power Grids

This work discusses approaches for the optimization of stochastic as well as
dynamic power flows, building an essential technology in future smart electric
grids. In order to understand the treated issues of optimization, the reader
shall be provided with fundamentals of electric power grid operation and
control. Thus, a short introduction to necessary principles from electric- and
energy-engineering will be discussed on a very general level before taking a
more detailed view on optimization issues.

2.1.1 Electric Power Grid Operation - An Outline

The traditional operation of electric power systems - considered at an ab-
stract level - can be simplistically entitled by the term load-dependent gen-
eration. In an electric grid, the demand caused by (domestic, commercial
and industrial) customers effects an electric load that can typically not be
influenced. Since obviously the power-balance has to be maintained within a
system (i.e. supply and demand have to be equal at any point in time), the
generation has to be adapted continuously according to the demand, which
is performed by the (distribution/transmission) system operators. This term
load-dependent generation is very important for later considerations when
talking about so called smart grids.
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Generation Unit Scheduling

The demand within a system follows daily load profiles, which vary depending
on season and weekday. These profiles based on measurements and statis-
tical investigations are sufficiently exact so that an anticipatory scheduling
of generation units is enabled at a long time horizon (hours to days). Since
real-time demand is influenced by individual behavior of customers and thus
is partly uncertain, control-methods are applied in order to adapt the sched-
uled generation to the real-time demand continuously within small time units
(less than seconds to some minutes). Depending on the time horizon, dif-
ferent control schemes are applied, classified into primary, secondary and
tertiary control. The principle of such a load-dependent generation scheme
is depicted in Figure 2.1, where a typical daily load profile (dotted line) is
given being obtained from statistical investigations, serving as sufficient de-
mand forecast for power grid operation. Based on such forecasts, generation
units are scheduled in order to meet the demand at lowest possible costs.
However, since real-time demand varies from the predicted one to a certain
degree (such an uncertainty of e.g. +4% is illustrated by the blue solid lines),
generation has to be adapted online within short time ranges using the men-
tioned control schemes!. Thus, generation units try to “follow” the predicted
load, which is commonly entitled as load-dependent generation.

0.8+ Real-Time Adaptation
0.61

04r
0.2r

Relative System Load

O I I I
12 24
Time [h]

Figure 2.1: Principle of Load Dependent Generation

The scheduling of generation units is not only necessary to satisfy the elec-
tric demand, but to guarantee this satisfaction at lowest possible financial

LAt this point, the differentiation between active- and reactive-power control is being
neglected for simplicity reasons. In fact, this differentiation is indeed fundamental to power
grid operation.
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costs. Note that the economic impact of such scheduling is high, consider-
ing that 21% [25] of the total energy consumption in the European Union is
caused by electric energy. To give an estimate on this scheduling issue: in
central europe the relative difference between the lowest demand in summer
and the highest demand in winter is 100%. Furthermore, considering the
electricity spot market in Europe?, the price of electric energy injected to
power grids may vary by 300 - 700% during a day. Thus, accurate power
grid control is not only of technical, but also of economic interest.

Modeling Electric Power Grids

Power grids are operated at different (voltage-) levels, ranging from low volt-
age grids for supplying small customers over distribution- to transmission
grids which finally perform the bulk power transmission throughout regions
of different scale (ranging from regional to international connections), where
the voltage level increases in the same order from 230/400 Volts (V) to many
10 or even many 100 Kilovolts (kV). In traditional power grid operation,
mainly the upper levels - where most generation units are connected to - are
of interest for scheduling issues. While the smart grid developments intro-
duce distributed controllable small-scale devices at lower levels, these will
become of higher interest within this work as well.

The mathematical models as well as computational methods for power grid
simulation are similar along the different levels, while a strong differentia-
tion has to be mentioned concerning the considered time domain: namely
between steady-state and transient models.

Steady-State vs. Transient Representations

For simplicity reasons, at this point we consider generation units to be the
only controllable devices in power grids, where continuous control of volt-
age magnitude, real power injection and reactive power production takes
place (sure, especially in actual technologies manifold controllable devices
are available, but these three quantities are considered to remain the same).
By measuring voltage as well as frequency® values of the power grid, error
signals are derived (for turbine exciter as well as governor systems in the
case of generation units) as input for respective control mechanisms. How-
ever, response times of such control schemes are quite low (0.01 — 0.1s for

2European Power Exchange, http://www.epexspot.com
3While the frequency measurement is related to the real-power balance of the system,
the voltage-value provides a measurement on the reactive-power balance.
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exciters, 0.1 — 1s for governors). Since load variations are slow compared
to these response times, it is valid to assume that perfect (voltage and fre-
quency) control is always present as long as the power grid is within secure
operation state. Hence, usual power grid operation is to a high degree si-
nusoidal steady-state operation. Only during system faults or immediately
after switching operations, transient computations are needed [73]. Summing
up, steady-state computation is sufficient for considering power flow decisions
respectively dispatching actions that happen at a time scale of minutes or
even longer (which is an important point for later discussions), no matter if
these decisions address generation units, controllable loads, voltage regula-
tion devices or even other equipment.

The complete theory on power grid operation and control would be too
extensive to be discussed at this point, filling hundreds of practical as well
as scientific books and other literature since many decades. The provided
information is given at an abstract level, supplying the reader with sufficient
knowledge for understanding the herein considerations. For further reading,
appropriate literature is recommended [73, 96, 116]. More detailed discus-
sions on specific aspects will be provided when needed herein.

2.1.2 Optimization - A Central Tool for Power Grid
Operators

Survey on Power Grid Optimization

Optimization plays an essential role in power grid engineering, offering a wide
range of different practical applications in for example power flow studies,
maintenance scheduling or infrastructure planning. Here, numerous find-
ings in systems engineering and analysis as well as actual achievements in
computer sciences enabled an established usage of optimization in todays
operation centers.

To give some brief overview on established optimization issues: Back in the
early 1960s, the economic dispatch has been stated as the basic optimiza-
tion problem in power system engineering, which tries to find an optimal
configuration of supply units in a system in order to meet economic satis-
faction of power demand [116]. Extending this formulation with additional
constraints from a physical transmission/distribution grid point of view, the
optimal power flow problem (OPF) aspires to meet optimality while incorpo-
rating power flow restrictions [73, 116]. Various OPF-formulations exist for
realizing different aspects of power grid security at the constraints side, while
numerous investigations have been performed using varying objective func-

12
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tions like the minimization of fuel costs, active power losses or environmental
impacts [2, 73]. Including additional aspects from generation plant opera-
tion, unit commitment can be stated as third basic problem. It incorporates
OPF for finding an optimal commitment of available units, considering dy-
namic characteristics like up- and down ramps of possible generation capacity.
Based on these essential formulations, further optimization applications have
been identified within the last decades like infrastructure planning issues or
computation of optimal maintenance schedules of supply, transmission or
distribution equipment [73].

When talking about actual developments within this research field, mainly
two areas need to be mentioned: namely the deployment of novel optimiza-
tion applications on the one hand, which actually gets pushed by the smart
grid vision. On the other hand, the evolution of recent solution methods such
as metaheuristic algorithms, which is mainly supported by the steady growth
of available computational resources as well as parallelization abilities, needs
to be considered at this point.

Recent Practical Developments

Regarding the progress to novel applications, various trends can be identified:
Venayagamoorthy [106] and Werbos [114] provide a sophisticated overview of
computational intelligence issues to modern power grids respectively smart
grids, which are majorly dominated by optimization aspects. Here, new de-
central infrastructure abilities offer a highly challenging research ground like
distributed small-scale storages, decentral and partly non-dispatchable gen-
eration, integration of plug-in electric vehicles (EV), distributed switchable
appliances, as well as combinations of them, which offer innovative control
abilities. While probabilistic characteristics arise within these new fields,
especially the optimal control of electric vehicle charging strategies provide
numerous optimization topics. While the minimization of additional electric
load for peak-shaving aspects as well as system losses can be stated here
as central claims [23, 24, 100], numerous objective functions have been in-
vestigated in recent works [22], like financial considerations [94] or optimal
incorporation of probabilistic renewables like wind power plants [109].

While all these novel control issues address variants of decision prob-
lems, these can be practically implemented due to the emerging trend of
automated control in distribution systems. Here, actual ICT capabilities in
modern power grids provide deep-going automation possibilities in order to
realize intelligence in smart grids. This trend is clearly substantiated taking

13
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a look at actual standards like the IEC 61850 [26] for substation automa-
tion, which is used as well as extended in numerous works. [42] shows this
trend when harmonizing this standard with the IEC 61499 in order to en-
able distributed automation in electric power grids, using well-established
software architectures from state-of-the-art industrial automation systems.
When talking about decision problems for optimal integration of electric ve-
hicles as discussed above, essential standards have already been established
like the IEC 61851 [27] for PWM%-based charging current control for con-
ductive charging. The probably most important development in recent times
from an ICT- point of view is the higher sophisticated standard IEC 15118
for vehicle to grid communication.

In the end it can clearly be stated, that optimization already plays an
important role in power grid operation and control, whose significance tends
to increase steadily. Additionally, the control of distributed (small-scale)
devices in even lower-level networks is no more a theoretic concept, but yields
real-world implementations all over the world and represents a key-technology
within the deployment of smart electric grids.

Novel Methodical Trend: Application of Heuristic Search
Strategies

From a methodical point of view, especially heuristic algorithms have been
proven to be capable of solving upcoming optimization problems in electric
power grid engineering in recent years. While basic OPF problems have been
tackled with extended aspects like multiobjectivity [3], actual smart grid is-
sues have been handled as well with various heuristic methods, ranging from
simulated annealing to population-based strategies such as particle swarm
optimization [1, 94], but being mainly dominated by variants of evolutionary
algorithms like used by [4, 109].

General advantages of using metaheuristics have already been identified in
the power engineering society [73], like capabilities of multiobjectivity and
parallelization, performance on objective functions that are hard to opti-
mize (discontinuities, non-linearity), or the ability of escaping local optima
in multimodal problems, substantiating their increasing application as stated
above. Especially when trying to compute optimal charging decisions for a
huge number of EVs, these advantages come into play. Numerous researchers
already identified the application of metaheuristics for this class of problems,
using algorithms ranging from particle swarm optimization (PSO) [94, 106]

4Pulse Width Modulation
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to various evolutionary algorithms like genetic algorithms (GA) , estimation
of distribution algorithms (EDA) [103] or evolution strategies (ES) [52]. A
more detailed overview will be provided in Chapter 6, when discussing EV
charging control in the context of smart electric grids.

Not only to the electric vehicular problem domain, but also to manifold other
fields heuristic (especially metaheuristic) methods play an essential role, like
infrastructure planning issues [7, 59] or different kinds of OPF problems
[2, 3, 73], to name just a few.

Thus, heuristic optimization founds a fruitful ground in electric power sys-
tems research, offering new abilities in various fields in power grid operation
and planning. However, with the actual technological revolution to intelli-
gent power grids, so called smart grids, operational aspects of power grids
are faced with a significant change, that raises new challenges to respective
optimization issues.

2.2 Smart Electric Power Grids

2.2.1 General Motivation of Smart Grids

In coming decades, the electric power grids are faced with decentralization,
liberalization of the energy market, and an increasing demand for high-
quality and reliable electricity [9]. The change to smart electric grids is
seen to be a promising approach to match these upcoming needs.
Concerning the term smart electric grid, multiple definitions exist in the
literature all partially varying in the features that the power grids should
implement. Among them, the standard is the usage of sensors and com-
munications technologies, enabling more efficient use of energy, improved
reliability, and additionally enabling consumer access to a wider range of
services [83]. Therefore, a core feature will be the integrated intelligence,
which allows more efficient energy generation and distribution through bet-
ter information. The term “efficient” thereby addresses on the one hand a
decrease in overall energy consumption, on the other hand an increase of the
reliability of electrical power supply while, at the same time, improving envi-
ronmental friendliness. This smart electrical grid requires new technologies
for power system operation, where especially optimization issues get more
complex, being faced with completely new challenges.

The reasons for this increasing complexity are obvious: the progressive de-
centralization of comparatively smaller generation units and the hype of en-
vironmentally friendly zero-emission generators like photovoltaic plants or
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wind turbines that cause stochastic delivery of electric power, complicate the
supply-side situation in the power grid drastically. At the other side of the
grid, the consumer side, the possibility of demand side management (load
control) as well as the utilization of small-scale distributed storages leads to
additional control parameters for optimization problems.

2.2.2 Changes Related to Operation and Optimization

In order to provide the reader with the necessary understanding on smart
grid functionalities, those features shall be deepened that have main impact
to the optimization area. As the optimal power flow (OPF) is a main tool
for power grid operation and planning, the focus is laid on core aspects of
smart electric grids that influence power flow optimization.

Reliability

As proposed before and building a central aim of [9], a major requirement
to future power grids will be increased reliability of power supply due to the
fact that so many critical infrastructures like communications and finance
depend on reliable electrical power supply. Just this reliability is getting
more and more stressed because of decentralization, stochastic behavior of
zero-emission plants and complex interdependencies in the grid.

So, a central feature of smart electric grids should be the provisioning
of autonomous and fast power flow control actions, preserving security and
reliability considerations in power grid operation. Additionally, increasing
stochastic influences (like from renewable generation units) have to be con-
sidered both in control as well as planning tasks for keeping power supply
reliable’.

5When discussing reliability in power grids, the appropriate usage of such a well defined
term makes it necessary to specify that this is a challenging topic in power systems research.
Numerous complex partial problem classes such as security, stability, static and dynamic
analysis as well as other subtopics belong to it. In this context, reliability is generally
understood as the ability to supply appropriate electric service over a period of time
[63], which yields - considering optimization applications - the guaranteed satisfaction of
security constraints. In this work, this definition is assumed to be sufficient.
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Availability and Usage of Distributed Electrical Storage

The application of energy storage in the electric grid has been a long-time
issue of research and development, not only investigated in terms of the imple-
mentation of smart electric grids. For example, large scale storage units like
pumped hydroelectric power plants or the technology of compressed air en-
ergy storage are already established for maintaining control reserves and en-
abling peak-shaving functionalities. Concerning reliability and its aspects like
voltage stability, the application of smaller electrochemical storages, for in-
stance lead-acid batteries, for critical infrastructures like large server-centers,
is an important practice in modern power grids.

Complementary to the mentioned large-scale storage devices, the progressive
development of small-scale storages like lithium-ion or sodium-sulphur bat-
teries establish new possibilities for the modern grid in regard to cost aspects,
energy- and power-densities or duration of load cycles of storage devices. Es-
pecially these small-scale devices substantiate the way to the implementation
of distributed energy storages, being a major characteristic of smart grids.

There exists a large spectrum of possible applications. For example, di-
urnal peak shaving of energy storage devices would actually reduce transmis-
sion and distribution losses. Another aspect especially of distributed storage
is the ability of storing energy in multiple locations closer to the end-use
consumer, which would lead to increased reliability and lower system losses.
Particularly considering renewable sources, the ability of time-shift generated
energy from the moment of generation to a later point when it is needed or
when transmission /distribution capacity is available is an important benefit.
However, such small-scale storages would need to be implemented and con-
trolled at lower power grid levels and in a highly distributed manner. Their
operation will need to consider complex interdependencies between stochas-
tic supply from renewables and volatile demand situations.

Hence, in the area of electrical storages for power grid operation, con-
trol methods need to be developed for handling high quantities of distributed
devices (i.e. high amounts of control variables) in dynamic power flow envi-
ronments.

Load Control

At the customer-side in the smart electric grid, another important charac-
teristic is the usage of automated meter reading for generation and load
control. Digital meters provide real-time energy consumption data to the
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utility, realized through interconnected devices installed at each end-user,
the so called smart meters. Additional to the simple reading of actual power
consumption, advanced metering systems should enable the possibility to
control load demand. Therefore, the customer accepts the risk of delay or
refusal of energy-use by the utility in order to receive some discount, which
enables the so called load control. This advanced metering technology not
only allows end-users to actively influence their energy consumption, it is im-
portant for utilities and distribution companies to control the demand side
effectively during times of emergency or peak-demand and thus gaining con-
trol energy for reliability services.

From a computational point of view, both features concerning distributed
electrical storages as well as load control functionalities have a tremendous
influence on optimization problems since they increase the amount of con-
trol variables for providing accurate control decisions. For example, taking
the general OPF formulation, not only power supply decisions from central
generation units need to be made, but numerous control variables are re-
lated to all the distributed appliances in a system that need to be controlled.
Additionally, reliability concerns challenge optimization methods to provide
robust solutions under increasingly stochastic influences, both for fast control
actions as well as reliable planning decisions.

For concluding all these issues, methods need to be developed that en-
able (approximate) optimal control and planning of volatile, noisy as well as
nonlinear distributed power systems. Hence, new techniques for power flow
optimization strongly need to deal with stochasticity, dynamics as well as
scalability to numerous devices.

2.2.3 Central Challenge: Dynamic and Stochastic Op-
timal Power Flow

Intelligence Through Optimization

“How can we develop the algorithms needed in order to better approximate
optimal control over time of extremely large, noisy, nonlinear systems?”

P. J. Werbos [112]

Since the early years when researchers started to investigate what they
called “artificial intelligence”, optimization represents a fundamental build-
ing block, since nearly every “intelligent” decision making process can be de-
scribed by formulating an optimization problem. Essential statements have
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been published decades ago, when Simon [77] and Raiffa [88] showed that
“intelligent” problem-solving or goal-seeking behavior in any case can be un-
derstood as an application of optimization over time. However, this insight
shapes research in computational intelligence since that time. Considering
power grids, OPF provides a framework of integrating manifold decision is-
sues across a complex power system, where stochasticity as well as dynam-
ics have to be taken into account. Researchers already identified this aim,
stating the solution of dynamic stochastic optimal power flows (DSOPF) as
core-issue for enabling intelligent control of future power grids [69, 72, 114].

Optimization over Time / Dynamic Optimization in Power Grid
Engineering

Many works in smart grid research are being performed to improve the OPF
by adding the “S” (stochastic) rather than the “D” (dynamic). Sure, these
investigations are important for increasing the understanding of stochastic
issues, but at the same time do not enable the essential ability of making
predictive, foresightful control, integrating future states as well as their im-
pact into present decisions.

Taking a look at power grid optimization, tasks that necessitate fast and
robust dynamic control are obvious. Taking exemplarily the general OPF as
mentioned before, the aim is to find the optimal configuration of all control-
lable units for satisfying a given load situation, using steady-state represen-
tation of the power grid. Thus, the solution of this problem addresses exactly
one stationary state J(t), disregarding possible states in the near future or
eventual uncertain conditions in the system. Considering the system one
time step later (J(¢ 4 1)) due to changing conditions of weather, customer-
behavior or any other influence, the power flow in the system would change,
hence, requiring a new solution to the optimal power flow problem further
necessitated by the non-linear behavior of an electric power distribution sys-
tem. Such a new computation would require a robust and fast-converging
solution method, that guarantees quick support with a new optimal solu-
tion, independent of system complexity and starting point, which cannot
be guaranteed by traditional steady-state OPF methods® [111]. This con-
cern is further complicated by the steady increase of the number of control
variables in smart grid applications, as stated above. Thus, electric power
systems fundamentally represent applications that require dynamic optimiza-
tion techniques, respectively methods that enable optimization over time.

SEspecially when considering large-scale systems and mixed-integer formulations with
different kinds of controllable appliances.
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Principally, anticipatory optimal solutions can be computed in a deter-
ministic way for future time steps ¢ + K, assuming that the near future can
be predicted sufficiently. In such a case, K solutions can be obtained be-
forehand, considering variations of the system in the near-term interval, but
expecting them to be deterministic and ignoring their potential stochastic
nature. Such approaches entitled by the term deterministic lookahead opti-
mization [86] are intuitive but have the disadvantage of being unable to react
to volatile situations.

However, in a dynamic and volatile system such as an electric power grid, it
is more appropriate to make decisions as they come up, and therefore react
to new situations very quickly without computing a completely new solution
at each time step . This can be seen as the general aim of so called optimiza-
tion over time respectively dynamic (control-) optimization. In order to meet
future smart grid requirements, a scalable and generic approach is needed,
that enables such dynamic optimization in volatile as well as stochastic en-
vironments.

Especially in the field of dynamic optimization within stochastic systems,
principles related to so called policy function approxzimation [86] have evolved
in recent years. Policy function approximation assumes that K arbitrary op-
timal solutions in the future can be approximated by an analytic function
(i.e. policy) that returns a (near-) optimal action given a specific state at
runtime. Here, the optimization problem aims at finding this function, while
avoiding the need of doing (re-)optimization at runtime. Such a technology
will have to be developed in the field of optimal power flow control in order
to meet future operational issues in smart electric grids.

Having discussed the principles of the problem domain as well as the
challenges that evolve herein concerning optimization, one central aim of this
work is the development appropriate methods in order to overcome these
challenges. Therefore, optimization under uncertainty plays an important
role where the next chapter aims at building the methodical fundament for
later optimization methods development.
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Chapter 3

Theory II: Simulation
Optimization and Dynamic
Optimization Under
Uncertainty

3.1 General Introduction: Optimization in
Stochastic Systems

Whenever optimizing a system, an appropriate representation of this system
is needed - such representations are commonly called “models”. Generally,
an operations researcher seeks finding a model in a form that is manageable
from an optimization point of view, such as a linear model, which allows the
application of deterministic, robust and exact optimization methods. In the
more general case, as long as it is possible to derive a closed-form algebraic
model, well-established analytic optimization methods exist in a high vari-
ety, that can be applied to find solutions deterministically and in a robust
manner. To name just a few, most popular methods are simplex method,
originally developed by Dantzig [30, 31] and multiply extended like by Nelder
and Mead [76], or gradient descent-based methods [38]. A manifold of di-
verse other methods exist as well, being too extensive to be discussed at this
point.

However, for many real-world applications stochastic systems have to be
considered, that are governed by the uncertain nature of (random) variables.
For such systems, it is very hard or even not possible to derive a closed-form
algebraic model, but computational methods can be applied to obtain the
system’s estimated response to a given situation with respect to specified



Theory II: Simulation Optimization and Dynamic
Stephan Hutterer o .
Optimization Under Uncertainty

control variables by drawing samples of the random variables from their dis-
tributions. As during optimization one aims at minimizing or maximizing
this response, it is called objective function. Thus, for stochastic optimization
problems one has to deal with optimization methods that perform without
knowing an analytical expression of this objective function, while - in the
general case - two approaches can be distinguished: one general approach
is to approximate the stochastic system by a deterministic one (in order to
apply deterministic optimization methods to it), the other is to work with
optimization methods that only rely on function evaluations for given points
in the solution space - so called (heuristic) search based optimization meth-
ods. The latter will be the core technology within this work, since they allow
the integration of a system’s stochastic behavior into the optimization pro-
cess without the need for approximations.

At this point it needs to be defined that the term stochastic problem is
distinct from stochastic optimization. While the latter addresses the stochas-
tic optimization procedure (such as metaheuristic search methods), the first
term considers the stochasticity of the problem. Within this work “stochastic
optimization problem” is defined to denote that the treated problem itself is
stochastic, where this definition is independent from the concretely applied
optimization method.

3.2 Review on Existing Approaches

Several general approaches exist for optimizing stochastic systems, an overview
shall be given in order to position this work into the contextual literature.

State Space Discretization: Scenario Trees and Markov
Decision Processes

The application of scenario trees is a suitable approach for handling stochas-
tic optimization problems, where a stochastic system is reduced to a set of
discrete system states (i.e. scenarios), which are later used for optimization.
A scenario tree therefore is a discrete approximation of the evolution of the
system’s uncertainties over time, considering a root-state at time ¢ and all
its possible successor states at time t+1 ... t+ K, where K is the considered
time horizon. The scenario tree consists of a finite set of decision making
points that represent system states obtained by sampling the probabilistic
variables. Since each state is connected to its predecessor respectively succes-
sors via transition probabilities, this approach as exemplarily shown in Figure
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3.1 is similar to modeling a system as a Markov Decision Process (MDP).
Here, the evolution of the system beginning from a defined root state is de-
picted, where transition probabilities are indicated with P !. Performing op-
timization on such a model usually means finding a solution with the highest
expected objective function value over all paths in the network (respectively
graph) of the considered states, taking into account the states’ probabilistic
interdependencies. [81] used this approach for computing control variables
for a wind-integrated power system based on particle swarm optimization.
As similar approach, [38] extensively describes the optimization of stochastic
systems using Markov Decision Processes in operations research generally
(and will come into play once more later), while [60] describes a smart grids
related application when scheduling decentral load devices under uncertain
price conditions.
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Figure 3.1: Principle of State Space Discretization

Surrogate Modeling

Another approach of approximating a stochastic optimization problem by a
deterministic one is based on creating metamodels. Different principles exist
like kriging (coming from geostatistics), response surface modeling, surro-
gate modeling or simply metamodeling, that all address mainly the same
issue. The general aim is to draw samples from the stochastic model and

IThe variable P is only used within this explanation for denoting a probability.
Throughout the rest of the thesis, P provides a variable for real-power values (as in the
list of symbols).
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approximate them using an exact (partly closed-form) representation that is
suitable for subsequent optimization. Here, local approaches model neigh-
boring points by comparably simple models that estimate local gradients
used for gradient-based optimization methods, building trust-region methods
(33, 110]. Those local estimates are based on interpolation, linear, piecewise-
linear, quadratic or Gaussian models [110] or nearest neighbor regression
[38]. Global methods address the aim of finding an overall model based on
sampled points from greater regions in the state space, where more powerful
modeling methods are applied like artificial neural network (ANN) regression
38].

Surrogate modeling is considered as alternative but less popular approach for
handling stochastic problems and will not be treated further within this work.
More detailed information can be obtained from the referenced literature.

Heuristic Optimization Under Uncertainty

Most established linear as well as nonlinear programming methods require a
closed-form model for optimization. Many of those exact/analytic methods
base on the computation of a system’s derivatives.

In numerous real-world applications, a closed-form mathematical represen-
tation of the treated system cannot be obtained. Reasons for this are mostly
too high system complexity, discontinuous variables or probabilistic influ-
ences. Therefore, operations researchers tend to apply simplifications using
Markov Decision Chains, queuing theory or even simulation for describing the
system. Here, a high interest in optimization methods evolved over the last
decades, that do not require a closed-form. So called heuristic optimization
methods have been developed, that do not need derivatives, but only rely on
the value of the objective function at any given point. Contrary to analyt-
ic/exact methods, they have the advantage of performing without a closed
form model. Additionally, since they deploy an informed search procedure,
they avoid the need of enumeratively evaluating the complete solution space.
Furthermore, they do not require specific solution representations (such as
vectors of real-valued numbers). With heuristic search methods, a solution
candidate can take any arbitrary representation such as a graph-structure, a
set of rules, a tree, or even any other. Thus, they provide a fruitful ground
for optimizing complex decisions in large-scale stochastic real world systems,
where the closed form is mostly unobservable, but the objective function
value can be evaluated at any point, for example with simulation. This abil-
ity is essential when treating stochastic systems.
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Solution Evaluation Within a Stochastic System

At this point, the issue of solution evaluation in stochastic systems needs
to be considered.

For a deterministic system (in case of minimization), if solutions u; and wus
both satisfy all defined constraints, then u, is of higher quality than us if and
only if f(uy) < f(ug) (with f(u) being the objective function). In stochastic
systems, this relation is much more difficult.

A system is defined to be stochastic if its state variables depend on random
influences, which causes a special challenge for optimization. When perform-
ing heuristic optimization as stated above within a stochastic system, the
issue arises that the objective function evaluation at a given point in solu-
tion space is not deterministic, but has to be approximated by its estimate.
This issue will be discussed more in detail later. However, since most stochas-
tic and complex systems cannot be described in closed form, it is common
to model them using simulation.

3.3 Simulation-Based Optimization

In simulation optimization (synonym: simulation-based optimization), the
aim is to unify simulation with (search-based) optimization methods. Here,
the objective function value of a given solution is evaluated by simulation,
where - especially for stochastic systems - this evaluation only gives an esti-
mation of the objective function value rather than the true value. This issue
can be considered as stated in Equation 3.1, where f’(u) gives the estimate
of the true objective function value f(u) that is biased by some noise €. u
represents the solution, whereas its concrete outlook will be discussed later.

f'(u) = fu) + € (3.1)

Many investigations in literature on simulation optimization are about min-
imizing the difference between f’(u) and f(u) for objective function evalua-
tion, thus, maximizing the estimate’s quality. While estimating the objective
function value is of great importance, the interested reader shall be referred
to related literature. A complete overview can be obtained from works by
Branke [18], Rinott [90] or Stagge [102]. However, since the core of this
work will be laid on developing control optimization methods in stochas-
tic, dynamic, large scale “intelligent power grids”, an appropriate estimation
method for f’(u) is considered to be given and will not be discussed in more
detail.
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3.3.1 Metaheuristic Simulation Optimization

For simulation optimization, metaheuristic algorithms are already proven
to be suitable optimization algorithms [38, 54], since they principally offer
generic problem-independent functionality, even if their specific configura-
tion has to be tuned according to the concretely applied problem instance.
The operations research society already identified the capabilities of sim-
ulation optimization methods when treating probabilistic (and partly dy-
namic) systems, profound reviews can be found in survey papers such as
(11, 19, 36, 37, 67, 104]. Successful applications have been performed in
popular areas like logistics planning, production scheduling or even business
process optimization. However, the simulation optimization principles seem
to be suitable to the herein defined issues, hence, shall now be considered for
dynamic and stochastic optimization tasks in power grid engineering.

As discussed before, the main idea of simulation optimization is to eval-
uate the fitness of a solution candidate through simulation, thus the only
needed information of a candidate (i.e. point in solution space) is its objective
function value f(u) (respectively its estimate f’(u)). Generating candidates
according to a specific strategy, the optimization algorithm further searches
for optima in a given state space that is defined by simulation. This proce-
dure is shown in Figure 3.2. Since evaluation within the stochastic system
representation is uncertain, for a given solution candidate, varying objective
function values result from simulation. In order to overcome this variance,
each solution candidate has to be simulated multiple times in order to get
an appropriate estimate f’(u) of the solution’s performance. This is mostly
referred to the term “sampling”.

Sampling Quality of Solution

v | v
Simulation far= Optimization
Software : Software

P 1 !

Candidate Solution

Figure 3.2: Principle of Simulation Optimization
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Computational Costs

Using metaheuristic simulation optimization is a big issue of computational
time, since in most applications many 1000 points in solution space have to
be evaluated. Additionally, when stochastic simulation is applied, compu-
tational costs of evaluating a solution candidate grow additionally because
of the need for multiple sampling. Many researchers already investigated
this issue [18, 90, 102], where the central aim is to find a tradeoff between
computational costs of solution evaluation and the quality of the estimate
f'(u). Since the accuracy of this estimate grows with 1/4/s, with s being
the number of samples, a suitable choice for s is crucial. While a high value
increases the estimate’s accuracy, it leads to waste of computational effort
for worse solution candidates. At the other hand, a too low sampling rate
would lead to misjudgment of a solution’s quality, which may decrease the ef-
ficiency of a metaheuristic search process. A thorough overview on this issue
can be obtained from the referenced literature, while the author of this work
proposed a new sampling scheme with special consideration of offspring se-
lection genetic algorithms (OSGA) [44]. An appropriate sampling scheme is
assumed to be given within this work and will be specified when experimental
investigations are conducted.

3.3.2 Unifying Simulation with HeuristicLab

Simulation tools already exist both in high quantity and with manifold func-
tionality. Generally, too many tools exist in the field of power grid engineer-
ing to be mentioned here, a detailed overview can be found in [12]. At this
point, Matlab has to be discussed in more detail, since it is probably the
most popular framework when talking about simulation. Matlab provides an
extensive method base containing general simulation solvers as well as anal-
ysis functions. Even if it is a quite general framework applied in different
technical and scientific fields, Matlab-based simulation tools for power grid
engineering have come up in recent years, applied all over the world. To
name just a few, SimPowerSystem, Power System Analysis Toolbox (PSAT)
as well as MATPOWER, provide all standard-functionalities used in power
system analysis. Especially the last two mentioned tools are open source
and therefore highly attractive to not only practitioners, but researchers as
well. Within this work, finally MATPOWER proved to be the best choice,
both because of its extensive power system analysis functions as well as its
usability and extension capabilities.
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At the same time, optimization frameworks have evolved in the meta-

heuristics community. This is primarily due to the No-Free-Lunch theorem
[115], which expresses that no single algorithm can beat any other on all
possible applications. Hence, especially when applying metaheuristic opti-
mization to practical problems, appropriate algorithm selection and tuning
is necessary in order to obtain good solutions. Therefore, experimentation
abilities need to be offered by such frameworks, that mostly provide an ex-
tensive workbench consisting of different algorithms. A thorough overview
and comparison of frameworks is provided in [82], while in this work Heuris-
ticLab is applied.
In the increasing field of simulation optimization various complete tools
evolved too in recent years, where [36] and [37] give an overview on existing
solutions. However, all these solutions are restricted to a specific spectrum
of optimization functionalities tailored to the concrete application domain,
curtailing the full power of metaheuristic algorithms. A richer approach is
to provide an optimization environment that is independent from the simu-
lation software, and which provides additional optimization specific features.
It is a powerful approach to realize simulation-based optimization by connect-
ing arbitrary simulation tools to a sophisticated framework for metaheuristic
optimization, making full use of both frameworks’ abilities. This can be
realized using HeuristicLab, which is an open source framework whose archi-
tecture is designed especially for plug-in based extension and therefore offers
a suitable solution for generic simulation-optimization interoperability.

Interprocess Communication

For performing simulation optimization according to Figure 3.2, interprocess
communication is needed for enabling the interplay of simulation and opti-
mization software. All experiments of this work are performed by unifying
HeuristicLab with Matlab-MATPOWER for simulation optimization. The
interface is realized using Matlab automation server, which uses component
object model (COM) protocol. Therefore, a HeuristicLab plug-in controls
COM objects exported by Matlab. Within these objects, simulation is per-
formed and the fitness of the solution candidate is assigned. This architecture
is equal for all following experiments within this work, thus forms the basic
framework for experimentation. Further information in simulation optimiza-
tion with HeuristicLab can be obtained from [54] as well as the HeuristicLab
documentation?.

2http://dev.heuristiclab.com
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3.4 Optimization Paradigms: Static and
Dynamic Optimization

At this point, the specific structure of a solution candidate has not been
specified, but depends on the optimization problem. Here, the choice whether
a static or dynamic problem is at hand yields essential consequences on the
needed optimization method respectively the solution representation.

3.4.1 General Description: Static vs. Dynamic
Problems

Essentially, two different problem classes can be distinguished which char-
acterize the time domain of the optimization, namely static and dynamic
optimization problems. Static optimization mainly aims at finding a set of
parameters to a system in steady-state condition (often called parametric op-
timization). For dynamic optimization, the principal task has to be handled
that the treated system changes continuously, requiring flexible solutions or
reoptimization of them. Most often dynamic optimization problems are re-
lated to control optimization. Since within this work approaches for dynamic
stochastic optimization problems are developed for the power grid engineer-
ing problem area, the following considerations regarding the time domain
of optimization shall be conducted with respect to the optimal power flow
problem as reference application.

3.4.2 Optimal Power Flow Problem Statement

The standard optimal power flow problem aims at minimizing the fuel cost
per hour of a power system in steady state conditions, while fulfilling all
equality and inequality constraints. The OPF problem can be mathemati-
cally formulated as follows [73, 116]:

Minimize : C(%, ) (3.2)

subject to:
g(z,u) =0, (3.3)
h(z,u) <0, (3.4)
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where C(Z,u) gives the objective function, ¢(7, %) is the set of equality con-
straints and represents typical load flow equations, h(Z,u) are the (inequal-
ity) system operation constraints. The inequality constraints h(Z,u) reflect
the limits on physical devices in the power system as well as the operational
limits created to ensure system security.

T and u are the vectors of dependent and independent variables. The vector
7 consists of (dependent) state variables: slack bus® real power output Pg,,
load bus voltages V7, load bus power demands P, and ()1, generator reactive
power outputs ()¢ and branch power flows Ppg.

The vector w comprises control variables: generator voltages Vi, generator
real power outputs Py, transformer tap settings T},, and the output of shunt
VAR compensators (). Hence, both vectors are expressed as:

.TT = [PG17VLI"'VLNL7PLI"'PLNL7QLI"‘QLNL7QGI"'QGNG7PBI“'PBNB]
(3.5)

UT = [VG1 "'VGNG7 PGQ"'PGNG7 Eapl"'napNTa ch "'QCNC]7
(3.6)

with NL, NG, NB, NT and NC being the number of load buses, generator
buses, branches, transformers and shunt VAR compensators respectively.

The objective function is to minimize the total fuel costs per hour over
all generators. The individual costs of each unit are expressed typically by a
polynomial:

C(Pg,) = ag+ by x Pg, 4 c4 * Pég, (3.7)

with ag4, b, and ¢, representing each generation unit’s cost coefficients.

While minimizing the objective function, the following constraints have
to be satisfied, considering real- and reactive-power generation capacities

ngn < Pg, < Pg;““””, (3.8)
and
Q" < Qa, < QB (3.9)

3The slack bus method is used in power flow computation, where the injection (gen-
eration) value of one defined bus in the system is not fixed beforehand, but gets adapted
at the end of the computation in order to meet the system losses and thus satisfy power
balance in the system. This bus is entitled as slack bus.
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as well as the voltage deviation being restricted to

‘/jmin S ‘/j S V}max (310)
over all buses j = 1,...,J and all generators g = 1,..., NG. Branch power
flows shall be constrained to

P, < Bt (3.11)
for all branches b = 1, ..., NB for enabling secure distribution grid operation.
Equations 3.8 - 3.11 define standard load flow constraints in power grids

an will be necessary too in most experiments later.

Additionally, the control variables for transformer tap settings and VAR
compensators need to be restricted to the ranges:

T < Trapy < Ty, (3.12)
and
Qo™ < Qcne < Qo™ (3.13)

for all transformers nt = 1...NT and VAR compensators nc = 1...NC. The
variable )¢,,. represents the reactive power output from the shunt-connected
static reactive power compensators. These VAR-devices are applied for man-
aging reactive-power balance, hence, are used for voltage regulation. The
variable Ti,,,, gives the tap position for transformers with tap-changing
mechanisms. This technology allows the secondary-side adaptation of the
actual number of used turns along a winding, enabling voltage regulation at
the transformer output.

The traditional OPF formulation aims at finding a static solution u for
a given situation, thus, determining concrete values for all control variables.
However, in dynamic situations it would be more appropriate to have flexible
control actions on hand that guarantee (near-) optimal power flow control,
rather than static values for control variables.

3.4.3 Static and Dynamic Optimal Power Flow

The traditional OPF as stated above is a classical application of static opti-
mization, where the solution u gives a vector of real-valued control variables
for a certain steady-state situation. However, as discussed in Section 2.2.3,
power flow control clearly exhibits situations where dynamic optimization
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is necessary, making OPF a fruitful benchmark problem for describing dy-
namic stochastic optimal control approaches. The following considerations
will concentrate on power flow optimization, thus, constructing the related
approaches based on this electrical engineering domain. Here, the formula-
tions are based on the traditional statement of the optimal power flow (OPF)
problem with the target of obtaining a scalable control method for dynamic
stochastic optimal power flows, which will later be extended according to
smart grid considerations.
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Chapter 4

Optimization Methods

So far, simulation optimization seems to build a fruitful ground for optimiza-
tion under uncertainty of complex systems. From this methodical fundament,
methods shall be developed in order to provide stochastic and dynamic op-
timization in future electric power grids.

4.1 Static Optimization of Stochastic Prob-
lems

As already discussed, static optimization can be considered as the process
of finding best-performing parameter values for a given problem, seeking a
steady-state solution. Static optimization is probably the most investigated
class (compared to dynamic optimization), also providing lots of methods
as well as applications for simulation optimization in literature, a profound
overview can be found in [36, 38].

4.1.1 Description of Static Power Flow Optimization

The principal functionality of simulation-optimization has already been shown
in Figure 3.2, which holds both for static as well as dynamic problems. Refer-
ring to this Figure, for static problems the solution candidate is represented
by a set of (discrete or continuous) values. These values directly serve as in-
put parameters to the simulation model and yield the quality of the solution
after simulation. Considering a practical example, the steady-state OPF as
formulated above provides a typical static optimization problem, where the
solution u is a parameter vector

UT = [PGQ"'PGNG7 VGl...VGNG, QCI"'QCNC7 Ttapl'-'TtapNT]
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of fixed size, yielding the resulting costs per hour of operation as quality.

Besides the traditional OPF, a plurality of other optimization problems
exists in power grid research seeking static solutions, like placement decisions
for infrastructure planning, unit commitment, or maintenance scheduling,
all discussed in the introductory chapter. Additionally, very popular general
problem formulations from operations research mostly aim at finding static
solutions (at least in their original formulations), like so called backpacking
problems, traveling salesman problems or quadratic assignment problems.

4.1.2 Limitations of Static Considerations

While static approaches only consider a system J(t) in steady-state condition,
they disregard possible dynamics of the system or even force a recomputa-
tion of the solution after a changing event. In such a case, it would be more
appropriate to make a solution flexible for reacting to dynamic conditions,
unchaining it from its steady-state limitation. Therefore, dynamic consid-
erations have to be integrated into the OPF control, which can be realized
with simulation optimization.

Detailed experimental illustrations of the limitations of static considera-
tions will be provided in Chapter 6, while the general seek for flexible and
dynamic solutions is obvious now.

4.2 Policy-Based Optimization of Dynamic
Stochastic Problems

While the term dynamic optimization can generally be understood as the
issue of determining optimal actions in a dynamic environment, related tech-
niques find applications in manifold practical fields. Methods for this class of
optimization have successfully been developed for applications like logistics
or financial engineering [86], while considerations for power flow control build
the core of this work.

4.2.1 Related Approaches in Literature

The operations research society early identified the need for dynamic opti-
mization methods. Much like Dantzig formulated fundamental insights for
linear optimization problems (both deterministic as well as stochastic) that
shaped this optimization class ever since, quite at the same time Bellman
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specified sequential dynamic problems to be solved by dynamic programming
[13], and formulated his famous optimality equation for describing sequential
optimization. While in classic dynamic programming the integration of un-
certainties into optimal sequential decision problems has been a challenging
issue since then, the general conjunction of dynamic and stochastic optimiza-
tion remained residual for some decades.

Arriving in the late 90s, operations researchers determined essential ap-

proaches for enabling this conjunction when unifying dynamic programming
methods with approximation approaches.
Werbos [113] developed a class of methods to perform this kind of optimiza-
tion in any engineering application, stating Approximate Dynamic Program-
ming (ADP) as flexible and scalable technology being suitable for future
smart grid issues as well. While classical Dynamic Programming [13] is an
exact method being limited by the so called “curse of dimensionality”, ADP
comes up with concepts of finding - as the name already says - sufficiently
accurate approximate solutions to control problems. Coming from ADP, a
family of Adaptive Critic Designs (ACD) were proposed that combine ADP
with reinforcement learning techniques for finding an optimal series of con-
trol actions that must be taken sequentially, not knowing their effects until
the end of the sequence. While the standard ACD combines a set of neural
networks within a neurocontroller for approximating the Hamilton-Jacobi-
Bellman equation associated with optimal control theory, further concepts
like Dual Heuristic Programming, Globalized Dual Heuristic Programming
and Action-Dependent Heuristic Programming extend this formulation and
build the family of ACDs.

Several researchers already picked up this idea of ACD, applying these
concepts to electric power grid problems. Venayagamoorthy adapted it for
building an automated voltage regulator of a generator system in [107, 108|
or even for operating a 12-bus power grid with an ACD-enabled Dynamic
Stochastic Optimal Power Flow (DSOPF) controller in [69]. The necessity of
solving such a DSOPF in future power grid operation has been substantiated
by Momoh [72, 74] sufficiently, stating its generality for being suitable to a
plurality of problems. Xu [117] even applied a simpler variant of ADP for
solving an electric vehicle charging control problem.

However all approaches related to ACD evolved from optimal control the-
ory and thus try to approximate the Hamilton-Jacobi-Bellman equation with
computational intelligence techniques. Building an alternative approach for
optimization over time, the evolution of flexible control policies using meta-
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heuristic algorithms as demonstrated within this work shows validity for
electric power engineering problems as demonstrated further on. A differ-
entiation from existing methods in the area of ACDs will be deepened later
in Section 4.2.10.

4.2.2 Simulation-Based Evolutionary Policy Approxi-
mation

“Policy function approximations (PFAs) are used when the struc-
ture of the policy seems obvious. A PFA is an analytic function
that returns an action given a state, without solving an imbedded
optimization problem.” Warren B. Powell et al. [36]

When optimizing power flows over time in a given distribution system,
the aim is to find actions wu(t) for controllable units that lead to optimal
behavior over a given time interval [¢, (¢ + K)|. In such a case, if all possible
information of the system in near-future states J(t + 1)....J(t + K) could be
predicted accurately, it would be possible to compute anticipatory solutions
(actions) u(t + 1)...u(t + K) beforehand that are optimal to each near-future
state, enabling optimal power grid operation in the near future (deterministic
lookahead optimization). Here, steady-state optimization would be appropri-
ate for finding an accurate solution to each predicted state separately. But,
what if the system changes at time ¢ + k& with & < K7 This event would
cause the necessity of computing a completely new solution (or at least the
adaptation of a solution), making the usage of such a predictive steady-state
optimization less attractive in dynamic systems. Here, it would be more ap-
propriate to not compute all actions u(t + 1)...u(t + K) beforehand, but to
make decisions online in a robust and quick way. Therefore, flexible policies
can be used that are trained offline but lead to accurate decisions that react
to new situations quickly, avoiding the need of re-optimization in each event
while being able to consider full volatility and uncertainty of the system.
Figure 4.1 illustrates these two variants, namely the predictive computation
of steady-state solutions in the upper part of the figure, versus the offline-
training of a flexible policy, that takes system states at runtime and directly
computes accurate actions online. While the first approach computes fixed
solutions beforehand, that are unable to react to dynamic and uncertain
conditions, the policy-based approach keeps full flexibility during operation.
Equations 4.1 and 4.2 should formalize this distinction between predictive
steady-state solutions and flexible (approximative) policies.
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Figure 4.1: Policy-Based Control vs. Lookahead Optimization

u= ar%GIEin[E(Z C(uy))] (4.1)
p= ar%gf;in[E(Z Clp(J(1))))] (4.2)

While in Equation 4.1 for each state at time t = 1...T" a deterministic

action u; € u needs to be defined beforehand that minimizes the expected
costs (objective function), using a flexible policy p in Equation 4.2 the spe-
cific action at time ¢ does not directly depend on the value of ¢, rather than
of the whole state J(t) respectively the inputs that the policy receives from
the system at this time.
As for control problems, actions (respectively control variables) are typically
real-valued numbers, according to Equation 4.1 the vector u has to be opti-
mized in the set of real numbers R. When optimizing a policy p with regard
to Equation 4.2, this issue is a bit more complex, since p takes the form of
an analytic function, thus needs to be optimized in the space of potential
policies P. More discussions on this issue will done later when considering
the mathematical structure of policies.
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Considering the steady-state solution to the general optimal power flow,
the vector w typically consists of generator real power outputs (except the
slack bus), generator voltages (including slack bus), shunt VAR compen-
sators’ outputs as well as transformer tap settings. Hence,

' = [Py...Pna, Vi Vg, Q1 Qe nes Trap - Tiapxr)

with number of generator buses NG, number of VAR compensators NC' and
the number of switchable transformers NT'. Thus, for the predictive steady-
state optimization, one would need to compute u for each future state, hence
the solution would be

u = [uy.. ug/,

for t = 1... K. When using flexible policies, each variable (Pg, Vi, Qc, Tiap)
is represented by a policy. This policy p(J(t)) is a function of the system’s
global state as well as the unit’s local conditions and outputs the unit’s ac-
tions M in order to achieve the optimal power flow in the grid.

Now, after having defined the principal functionality of policy-based opti-
mization, how can such policies be computed, that lead to (near-) optimal
control actions at runtime?

4.2.3 Requirements for Policy Approximation

Before discussing the technology for obtaining policies, one will need to define
the requirements that a desired policy approximation shall satisfy. When
considering the defined dynamic OPF problem on the one hand, but also
the general power flow control requirements in future smart electric grids (as
provided in Section 2.2) on the other hand, the following requirements can
be derived:

1. Policies need to be learned within a stochastic environment.

2. Robust control decisions will have to be derived from the policy under
stochastic and volatile situations.

3. Learning/approximation and application can be performed on arbitrary
large systems (i.e. number of state-variables).

4. Control needs to be scalable to numerous, distributed and interdepen-
dent devices.

5. Policies need to be able to identify complex, nonlinear relationships in
real-world systems without a-priori knowledge of the their structure.
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The first two requirements consider the general nature of control issues in
dynamic and uncertain power flow environments. While on the one hand the
robustness of derived actions at runtime is of high importance, during the
approximation (learning) of policies this has to be integrated appropriately.
Thus, the learning-phase needs to implement optimization under uncertainty.
Regarding requirements number 3 and 4, the scalability issue of such appli-
cations is addressed. This scalability is twofold: while power flow control
problems occur in differently sized systems ranging from small low-voltage
distribution feeders to large-scale transmission networks, especially with re-
gard to future decentralization in power grid operation as well as emerg-
ing distributed control devices an increase of controllable units needs to be
tackled. Hence, both the scalability with respect to system size (i.e. num-
ber of system/state variables) as well as the scalability to control increasing
amounts of devices are of importance.

Finally the last requirement is the most challenging one especially when
considering existing approaches in literature. As stated in the quote at the
beginning of this section very clearly, policy approximation is attractive when
the structure of the policy p is obvious. But, what if we do not know about
the outlook of this structure? Here, a technology will be needed that is able
to evolve policies without a-priori knowledge of their mathematical structure.

All these requirements will need to be satisfied in order to build a tech-
nology for dynamic stochastic optimal power flow control based on policy
approximation. In later sections, these requirements will be referred in order
to judge the developed approaches on a qualitative level.

At this point, it is obvious to discuss about the information that a poten-
tial policy will need to take for deriving power flow control actions, while
discussions on approaches for evolving such policies will be provided later.

4.2.4 Policy Design: System Variable Synthesis

Tentatively, we assume a fixed mathematical structure p(i)! that represents
the policy, where the vector i contains all relevant input variables for deci-
sion making. This policy p(i) serves as optimal power flow controller and
provides the controllable unit respectively the grid operator with fast and
robust actions.

In order to determine such a policy, one has to discuss the available variables
when considering steady-state power flow computations. As defined previ-

13 has not been discussed yet, but shall be denoted as a generic vector that contains
inputs to a control policy, without having specified these inputs so far.
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ously when stating the OPF formulation, the nomenclature has evolved of
defining 7 as the vector of input variables, Z contains the (dependent) state
variables and % comprises independent control variables. Thus, i addresses
all variables that come from the power grid’s environment and cannot be
controlled (like usually customer demand and many others). The (depen-
dent) state variables T concern those quantities that result from the values
of i and u because of physical relations. The values of these variables are
obtained from the power flow simulation.

Since a power flow controller obviously aims at providing control actions with
respect to information from its environment, it would be obvious to define a
desirable policy to be a function p(i). In first considerations, 7 is assumed to
comprise system variables from the power grid’s model that are important for
power flow decisions - this is the aim of so called system variable synthesis®.

In order to make the idea of system variable synthesis (SVS) clearer, it

should be related to the OPF problem within a specific power grid model,
namely the IEEE 14-bus test case [21].
Figure 4.2 shows the layout of this grid model, where the 5 generator buses
are indicated with G, arrows represent loads. The slack bus (needed for power
flow simulation) is shown in black. For this model, we now want to define the
input variables that a generator would need to consider in order to control
its output variable Pg with the objective of system-wide cost minimization
(as in traditional OPF), i.e. the real power injection of the unit. For making
a valid action on Pg, a policy would need to take the following inputs:

e Real and reactive load values of all buses; Pr,...Pr,,,Qr,...Pr,, for
NB = 14,

max

e Real and reactive generation limits of all generators; Pg*...PE%,

Quer...Qpee for NG =5,

G

e Polynomial cost coefficients of all generators; a;...ang, b1...bng, b1...bnG
for NG = 5,

e Real power flow limits of all branches F*... B for Nb = 20.

Thus, the vector of needed input variables that the final policy P (i) takes
is:

2In this work, the term synthesis specifies the process of combining complex decision
policies out of single information entities (such as system variables).
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ar...aNg, bl...bNg, Cl...CNg].

In Figure 4.2, these variables are illustrated exemplarily for two buses,
while one of these two is a generator bus.

For All Generator-Buses:

1 G /”.\ [PGmaX,QGmaX, a, b, C]
T () .
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2 LG 6 j For All Branches:
| T ™
3 G 1 —
T T TN
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::,—jg [PL ’ QL]
14

Figure 4.2: 14-Bus Test Case Layout for System Variable Synthesis

Finally, for system variable synthesis, the optimization problem aims at
finding optimally performing policies p(i) for all controllable units in the
system. Considering real power injection as the only controllable unit for
simplicity reasons, for all NG — 13 generators? a policy Pg(i) needs to be
computed.

3When doing power flow computation, usually NG-1 generators are controllable, while
the slack-bus generator is non-controllable and gets adapted at the end of the (iterative)
computation in order to meet the resulting power losses in the system.

4Note that lower case p is generally used for a policy, while P in this case addresses a
policy for the variable Pg- real-power injection.

43



Stephan Hutterer Optimization Methods

Deficiencies of System Variable Synthesis

Synthesizing policies directly out of system variables implies some disad-
vantages. On the one hand, a comparatively high amount of variables has
to be considered when deriving the final policies, which makes the respective
optimization process a quite hard computational problem during the learn-
ing phase. Taking variables from each branch and each bus in the system
as input lets the dimensionality of the solution space grow with the size of
the considered power grid (see also Section 5.5 for explicit discussions on
that). On the other hand, each decision-making device in the system (i.e.
generation unit, transformer, etc.) requires a proper policy that has to be
learned, while all policies are indeed interrelated and have to be learned syn-
chronously. Both facts increase the problem complexity proportionally with
the size of the power grid model and thus handicap the scalability of this
approach significantly.

Taking for example the considered 14-bus test case, NG — 1 = 4 genera-
tors need to be controlled each with two variables (Pg, Vi), and additionally
3 transformer tap changers and 1 VAR compensator are available as control-
lable units, yielding (NG — 1 %)+NG + NQ + NT =4+5+3+1 = 13
policies that would need to be evolved synchronously®. Taking exemplarily
a medium-sized 57-bus test case as used for experimental investigations in
Chapter 5, for all controllable units in sum 6+ 7+ 3+ 17 = 33 policies would
need to be learned all at a time. For the hardest problem instance that will
be treated, the 300-bus test case, even 68 + 69 + 8+ 107 = 252 policies would
be necessary.

Hence, it is more appropriate to build an approach that is more scalable,
being less dependent on considered power grid’s size. Such an approach can
be built by abstracting information from the input variable vector ¢ in such a
way, that this information is invariant from the power grid’s size while being
generic to the decision-making units, but still provides the finally derived
power flow controller with sufficient data.

SWhile the reference voltage Vg is controlled for all NG generators, Pg is controllable
for all generators except the slack-bus.

6Since these variables are interrelated, it is not possible to optimize the policies one-
by-one; hence, they have to be co-optimized in parallel.
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4.2.5 Policy Design: Abstract Rule Synthesis

We assume that it is not necessary for the policy to consider the whole set of
variables 4, but to only use abstract metrics that are important for power flow
decisions. Thus, for these metrics so called “abstract rules” are introduced,
that gather necessary information from the system’s state, supposing that
this information is sufficient for achieving valid and accurate actions. All
abstract rules for dynamic OPF were generated based on domain knowledge
in the context of this work [46, 55| and are shown in Table 4.1. Thus, some
kind of feature processing is applied based on expert knowledge for reducing
the set of input variables 7 to a set of abstract rules 7 , where |F| << |i| holds
for most systems.

These rules take the general information i from the system’s state and out-
put a specific information quantity that is tailored to the considered unit
(for instance a specific generator). For example, at a specific situation, the
neighboring load factor N LF for the generator at bus number 12 is different
from its value at bus number 6, as these buses have distinct neighborhoods.
The same holds for the other rules as well.

This set of rules is considered to sufficiently describe the power grid’s state
in order to derive accurate actions for power flow control; the experimental
validation will be performed later in Chapter 5. Here, the third column
indicates which rules are necessary for learning a policy of a given variable.
For example, the policy for variable Py of a generator bus is a function

Po(LLF,NLF,GLF, MARF, MERF, LCCF,QCCF).

For further details, the implementation of this set of rules is shown in Ap-

pendix A.1, written in Matlab notation based on MATPOWER data struc-
tures.
The application of abstract rules instead of using all input variables i is
twofold: First, the cardinality of 7 is much lower for most power grid mod-
els than the number of relevant input variables which is advantageous to
the optimization. Second, the rules are completely independent of the grid’s
topology, making this approach applicable to any distribution or transmission
grid model in a generic way. For example, the rule GLF makes a controllable
unit considering the global load situation, but instead of considering all load
values Pr,...Pr, , throughout all buses in the system as with system variable
synthesis (SVS), only one single value (namely the output of the rule GLF)
has to finally be integrated into the structure of the policy, making this ap-
proach scalable and generic.
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Rule | Explanation Variable

LLF Local Load Factor: active load at bus divided by | Py
maximum active power injection at bus

NLF | Neighboring Load Factor: sum of active load at di- | Pg, Vg,
rectly connected buses and their neighbors divided | Q¢, Tiap
by maximum active power injection at those buses

GLF | Global Load Factor: sum of total active load in grid | Pg, Vg,
divided by sum of maximum active power generation | Qc, Tap

MARF| Max Rating Factor: maximum rating (power flow) | Pg, Q¢
of connected branches divided by maximum rating
of all branches

MERF| Mean Rating Factor: mean rating (power flow) of | Pg, Q¢
connected branches divided by maximum rating of
all branches

LCCF | Linear Cost Coefficient: linear cost coefficient of | Pg
generator divided by maximum linear cost coeffi-
cient of all generators

QCCF| Quadratic Cost Coefficient: quadratic cost coeffi- | Py
cient of generator divided by maximum quadratic
cost coefficient of all generators

NRLF | Neighboring Reactive Load Factor: sum of reactive | Vi, Q¢,
load at directly connected buses and their neigh- | T},
bours devided by maximum reactive power output
at those buses

GRLF | Global Reactive Load Factor: sum of total reactive | Vg, Qc,
load in grid divided by sum of maximum reactive | T},

power output
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Having the set of abstract rules 7, the policy p(7) has to be computed.

Therefore, some mathematical structure needs to be assumed which gets op-
timized by evolutionary algorithms. Since rules are normalized (by division
with the maximum value in each rule), they can be integrated into any given
mathematical structure.
For each considered class of controllable units, a policy is principally the
same (like for the real power injection Py of all generators in the system),
but using information about the unit’s specific situation through its abstract
rules, it derives individual actions for each unit. Referring to the 14-bus
case as discussed before, instead of NG — 1 policies for variable P for all
generators, only one flexible policy needs to be learned. Since this holds for
all considered output variables, only 4 policies (Pg(T), Va(T), Qo (T), Tiap(T))
would need to be learned instead of 13. For bigger models, this number of
needed policies keeps constant, making this approach suitable for scalable
technologies.

Further discussions on abstract rule synthesis (ARS) will be performed
when applying it to practical benchmark problems for building a dynamic and
stochastic optimal power flow controller in Chapter 5. Before, some theoretic
considerations have to be conducted concerning the policy approximation.

4.2.6 A Learning Approach

The determination of policies in order derive optimal power flow control
clearly describes a learning procedure, where the aim is to learn the policy
with the best estimated performance in future operation. This procedure is
hard to fit into traditional learning schemes. On the one hand, it cannot
be defined being related to reinforcement learning, since its aim is not to
find a defined sequence of actions (from a finite set of actions) that have
to be taken. The herein considered policies form continuous functions that
output real-valued control actions over time, independent of a certain se-
quence. To a greater degree, the proposed policy learning scheme fits into
traditional supervised learning considerations, where the finally best found
policy optimizes some kind of reward (like financial costs of power supply)
over a simulated time span, rather than any error function from a given set of
samples/data points. Even if learning is based on the simulation-evaluation
of candidate solutions rather than any error function from samples, basic
principles from supervised machine learning hold as well and need to be
considered.
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Overfitting vs. Underfitting

Let us assume that we want to find a policy p(i,w), with 7 containing the in-
put information from the system and w defining the set of optimal parameters
to this policy. The aim of the learning procedure is to optimize the reward
(or value of the cost function) C(p(i,w)) within the simulation model. Con-
sidering principles of supervised machine learning, the aim is not to optimize
the reward with respect to the given training samples, but to optimize the
estimated reward for future samples (see also empirical risk minimization vs.
structural risk minimization [32, 105]). The analogue definition holds here as
well, where a policy’s reward has to be optimized for future operation (rather
than for the actual simulation model), thus C(p(7 , @)) needs to be optimized
rather than C'(p(i,w)), with i describing the future inputs. Thus, one has to
avoid the risk of “overfitting” the policy, i.e. build an accurate policy p(i, W),
that only performs well within the actual simulation model but generalizes
poor during future operation. This concern is strongly related to choosing an
appropriate complexity of the policy (model complexity in traditional super-
vised learning), where a too high complexity tends to overfit while a too low
complexity is not capable of identifying a system’s complex interrelations for
making accurate decisions and thus is “underfitted”. Further discussions on
supervised learning theory shall be obtained from literature [32, 41, 105], the
described outline is assumed to be sufficient at this point.

4.2.7 Metamodel-Based Synthesis

So far we did not discuss the concrete structure of a control policy p. The
issue of choosing an accurate structure is related to defining a suitable model
class in supervised learning, which strongly influences the risk of overfit-
ting /underfitting. Within this work, two principal approaches can be distin-
guished for deriving a policy with evolutionary computation.

First, fixed mathematical structures (i.e. metamodels) are used for com-
bining input values (such as abstract rules) and thus synthesizing the final
policy out of them, using fixed-order polynomials. Realizing for instance the
linear combination of rules according to Equation 4.3 (exemplarily shown for
variable Pg), the set of weights W has to be optimized when learning the pol-
icy for Pg, with N R being the cardinality of rules 7, n indicating the index
of the controllable unit. ¢ additionally represents a constant that is evolved
during the optimization process as well”. Using the second representation as

"This constant is necessary for building accurate policies and can be interpreted as
analogy to the bias within the simple linear perceptron model [91] respectively within

48



Optimization Methods Stephan Hutterer

shown in Equation 4.4, policies are combined using polynomials of degree 2,
thus, for each rule two weights (nr,1 and nr,2) are learned. This principle
can be extended to arbitrary polynomials (or even other expressions).

Zivr]il rnr,n * Why

NR 2
P an:l an’,n * wm"71 + rnr,n * wm”yz + (4 4)
G, — Cc .
NR

However, polynomials of arbitrary degree (or any other generic function)
could be assumed to be the metamodel. But while increasing the polyno-
mial’s degree, the model-complexity increases too and leads to a higher risk
of overfitting. Hence, low polynomial degrees need to be considered.

Assuming the following policies to be optimized for all variables:

P, G(wLLF,Py WNLF,Py,WGLF,Py WMARF,P, WMERF,P, WLCCF,P, WQCCF,P, CP),
Va(WNLry, WaLE YV, WNRLEV , WGRLEV , CV ),
QC(wNLF,Qa WGLF,Q; WMARF,Q; WMERF,Q, WNRLF,Q, WGRLF,Q> CQ)7

Ttap(wNLF,T, WGLFT, WNRLF,T, WGRLF,T CT)7

21 real-valued weights contained by (w) and 4 constants in (¢) would need
to be optimized, yielding 25 control variables for the exemplary linear syn-
thesis in case of OPF as defined before (46 for the polynomial synthesis). In
order to satisfy bounding constraints for the variables Pg, Vi, Q¢ and Ti,p,
the output of the respective policy is multiplied by the variable’s maximum
value while guaranteeing that this value is not exceeded. Therefore, each rule
needs to be designed in order to output a value in the range [0, 1].

The optimization of such metamodels requires a real-valued vector as so-
lution representation, which is evaluated through simulation for expressing
its fitness value. Figure 4.3 describes the decomposition of the real-valued
solution vector into single policies for OPF control.

The solution vector in this case is created by concatenating all weights and
constants of each policy accordingly, and can easily be decomposed when
evaluating a solution.

artificial neural networks (multilayer perceptrons) [16].
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P(r,w,c) Vr,w,c) o(r,w,c) I(r,w,c)
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Figure 4.3: Decomposition of the Solution Vector Into Policies

4.2.8 Genetic Programming: Metamodel-Less
Synthesis

Even if the rule synthesis using a fixed-order polynomial is quite intuitive and
will lead to competitive results for certain applications (like shown in Chapter
5), it seems to be inflexible, being unable to approximate any nonlinear
behavior that may occur in real-world. Thus, this approach may tend to
underfit the problem for very complex systems. Therefore, a second approach
is introduced that allows a more flexible combination of abstract rules without
the need of assuming a metamodel, namely genetic programming (GP) [6].

Introduction to Genetic Programming

Extending the principle concept of genetic algorithms, GP uses evolutionary-
inspired concepts for the heuristic search process, but is able to evolve com-
puter programs. Within this work, these computer programs take the ap-
pearance of trees, where leafs represent inputs (rules) as defined before, that
are combined by arbitrary mathematical operators which are incorporated
by inner nodes. This kind of solution representation allows arbitrary mathe-
matical combinations of abstract rules, where the applied operators for inner
nodes are defined by the used grammar to a final decision-making policy.

To give some overview on GP, finding first research activities in the 1980s,
the computationally expensive concept of GP was pushed essentially by the
steady increase of computational power in the last two decades. One of the
most important publications in this field was provided by Koza [62], stating
GP as automated invention machine for numerous practical applications like
the artificial ant problem or later applications of symbolic regression [6], to
name the most popular ones, [66] finally provides profound analysis of GP
in the context of GA schema analysis. This ability of GP to automatically
construct new solutions (programs) to a given problem is enabled by its spe-
cial kind of solution representation, that is not restricted to a fixed structure
(like fixed-length one-dimensional array as in standard GA), but forms a hi-
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erarchical computer program of variable length, consisting of functions and
terminals.

Synthesizing Policies With Genetic Programming

Figure 4.4 gives an exemplary tree (GP solution) that could represent a
policy for variable P within the OPF problem. Here, inner nodes that repre-
sent functions are indicated in dotted style, while terminal nodes using either
rules or constants are plotted in solid style. In this case, the policy would
consider the load situation at neighboring buses (NLF), the global load sit-
uation (GLF) as well as the linear costs of the respective generation unit
(LCF). Out of this mathematical combination, finally a numerical value is
derived that represents a decision for the unit’s real power output.

Figure 4.4: Exemplary Policy with GP

The great advantage of this kind of flexible solution representation com-
pared to the application of a fixed-order polynomial is that GP is able to
find complex mathematical coherences between rules with variable length.
Hence, it enables the search for performant policies within a solution space
of both variant shape and size. Using any arbitrary combination of mathe-
matical operators as inner nodes (grammar), the degree of freedom for finding
performant policies gets increased drastically. Moreover, since GP is not con-
strained to use the whole set of rules for solution creation, simpler policies
can be found too. Here, an implicit feature selection happens during the ge-
netic search, where specific rules that where used within successful solution
candidates are more likely to finally build the best found solution (see schema
theorem analysis [6]). In the end, the disadvantage of policy synthesis with
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GP is that the possible solution space increases with the cardinality of the
applied grammar. For overcoming this problem and pruning the solution
space, the possible grammar is restricted to a set of operators. Grammars in
this case may include arbitrary algebraic operators like arithmetic operators,
exponential, sinoidal and other functions, and even logical and conditional
operators. Concretely applied grammars will be discussed when performing
experimental studies later.

Beside all these facts, one feature of applying GP remains fundamental:
namely the ability of evolving policies independently from any predefined
mathematical structure, hence, without the need of a-priori knowledge of
the policy. This ability is a fundamental enabler for policy-based control
in real-world problems and clearly distinguishes this work from related ap-
proaches in literature.

4.2.9 Co-Optimization of Interdependent Policies

When evolving policies for OPF control, the issue arises that multiple units
will have to be controlled that need proper policies, while these are interre-
lated. Considering for instance the problem formulation of OPF policy op-
timization, the four policies Pg, Vo, Q¢ and Ty, are indeed interrelated (for
instance it is obvious, that the voltage control performed by the tap changer
Tiap depends on the voltage control Vi of the generator units). Thus, it is
not sufficient to evolve these policies one-by-one independently (i.e. treat-
ing their optimization as partial problems), but they have to be evolved all
at a time, preserving their interrelationships during the optimization process.

When applying metamodel-based policy synthesis as discussed in Section
4.2.7, this issue is less problematic since the respective solution representa-
tion of a real-valued vector contains the control variables for all four policies,
which gets decomposed into the single policies according to Figure 4.3 as
discussed before.

For synthesis with GP, this issue is a little more tricky. Here, it is not useful
to put all four policies (i.e. solutions in the form of trees) into one solution
representation, since their grammar is different® which would cause genetic
operators being highly inefficient. In such a case, it is more appropriate to
consider the different policies as distinct species that have to be evolved while
taking care of their relationships, necessitating a coevolution-related scheme?.

8Note that these policies take different abstract rules, i.e. different terminals.

9 Another valid approach would be to put all 4 trees into one representation (vector),
but to perform some repair after each crossover in order to fix invalid branches. This
alternative method is not considered herein.
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Coevolution is often essential when considering real-world problems. Such

problems naturally consist of distributed entities that have own behavior but
a global goal needs to be achieved as result of their interactions, hence, coevo-
lution is strongly related to multi-agent systems [43, 85]. Here, coevolution-
ary algorithms have emerged that use parallelization techniques for evolving
disjunct subpopulations of different species, such as with coevolutionary ge-
netic algorithms.
Originally, in evolutionary computation two main parallelization schemes
have emerged, namely island models and diffusion models [6]. However,
these models evolve populations of a single species, while individuals of this
species exist within different subpopulations. Contrary, the aim of coevo-
lutionary GA is to realize the coexistence of several species (in this case
different control variables) that aim at a common goal (such as minimization
of generation costs). Another distinction has to be made between cooperative
and competitive coevolution [84, 92], while in this case clearly a cooperative
scheme lies on hand.

Coevolutionary Genetic Programming

Numerous approaches for coevolutionary genetic algorithms have been devel-
oped in recent years, many of them realizing multi-agent or game-theoretic
approaches for matching parallelized populations [35]. In the context of this
work, a method has been developed (also proposed in [55]) using a more
straight-forward coevolutionary scheme, where a global fitness function is
shared along parallely executed genetic programming processes. The idea
is that ¢ subpopulations X;...X, are evolved within separate processes of
same population size z, where evolutionary operations (mutation, parent se-
lection, recombination) are applied separately and independently from each
other. Each process evolves one of m policies using its individually defined
grammar. The only information that the processes share is the common fit-
ness of individuals belonging to the same solution. Thus, a complete solution
X consists of ¢ partial solutions (policies), i.e. X = {X;, Xs,...X,}. This
principle is shown Figure 4.5. When evaluating a solution candidate X, all
policies that belong to X serve as input to the simulation model. After com-
puting the fitness function value, it is shared along all partial solutions.

While all other genetic operators are executed locally, survivor selection hap-
pens globally. Being realized by a proportional selection scheme, complete
solutions (such as a row {X;1,Xo1,..., X 1} in Figure 4.5) are selected for
replacement, rather than making this selection within each process indepen-
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dently. This is important regarding the nature of coevolutionary systems,
where the fitness of a partial solution is always an objective (global) measure
depending on other partial solutions, rather than a subjective measure.

X, X, X,
SR T\ —
X1 X1 X1 Solution 1
PN X1, N X5, E Xq.2
(%] (%] 1%}
3 Xi3 S Xy3 S Xq3
S S S
[a [ a .
Xl.z XZ‘z Xq.z Solution z
Generation g
Generation g+1

Figure 4.5: Process Model for Coevolutionary GP

In the herein case, ¢ = 4 holds for the OPF policies, hence, X =
{Pc, Ve, Qc, Tiap}- For realization, HeuristicLab is chosen offering sophisti-
cated implementations for genetic programming. Here, 4 separate processes

are executed where fitness values are shared using MPI (Message Passing
Interface) in Windows OS.

4.2.10 Discussions on Simulation-Based Evolutionary
Policy Approximation

Section 4.2.1 already provided some overview on existing approaches for the
optimization in dynamic stochastic problems, namely a class of methods
called approzimate dynamic programming (ADP). Now, some comparative
discussion on the proposed simulation-based evolutionary policy approxima-
tion shall be provided both with respect to the general theory on optimal
control with dynamic programming according to Bellman’s optimality equa-
tion as well as especially in the context of ADP.

54



Optimization Methods Stephan Hutterer

Dynamic programming applies the fundamental idea of Bellman’s opti-
mality principle, that a dynamic optimization problem is considered as a
multi-stage problem with ¢ = 1...T" time steps. While a state J(t 4+ 1) is
reached via applying an action u; to the state J(t), the sequence u = [uy...ur|
needs to be found that optimizes the (estimated) objective function value at
the end. Here, Bellman’s optimality principle states that an optimal se-
quence of actions - whatever the initial state J(1) and initial decision u; are
- has to constitute an optimal sequence regarding the state resulting from
the first decision [13]. Taking the herein notations for policy approximation,
Bellman’s optimality equation in form of a recursive definition of the policy
function can be stated as:

p(Ji) = max (Ce(Ji, ur) + Ep(Jera)| ), (4.5)

where the costs of a policy’s action at the beginning Cy(J;, u;) are separated
from the estimated costs of the policy in the future E[p(Ji1)|J:].

When handling such sequential decision problems via dynamic program-

ming in practice, the common approach is to apply some state-space dis-
cretization (as described before in Section 3.2) where the system is discretized
through a set of states that are linked with both actions as well as transi-
tion probabilities. Throughout this set of states, the aim is finally to obtain
the sequence of actions that fulfills the bellman optimality equation. This
discrete-state modeling via so called Markov Decision Processes [38] and the
subsequent search for an optimal sequence of actions within the Markov
model is capable of tackling dynamic and uncertain systems, but raises a
major problem: the curses of dimensionality [38, 87].
This issue is twofold: on the one hand, the number of states may get very
high for real-world applications (no matter if a combinatorial or a real-valued
decision problem is considered). On the other hand, the number of possible
actions that link the interconnected states grows fast as well. Hence, the
curses of dimensionality concern both the dimension of the state-space as
well as the dimension of the action-space.

In this context, the previously discussed class of approximate dynamic
programming (ADP) methods has evolved, major achievements in this field
have been mentioned in Section 4.2.1. ADP aims at overcoming the curses
of dimensionality by not considering a complete model of the state-action
space, but rely on approximations of it, making this technology attractive to
real-world dynamic stochastic optimization problems. However, even if per-
forming approximations, ADP still necessitates the description of the system
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via state-action pairs and related transition probabilities, hence, still needs
the transformation of the real-world system to some approximated Markov
Decision Process where dynamic programming can be applied to for finding
an optimal sequence of actions.

Contrary to this idea, simulation-based evolutionary policy approxima-

tion proposes a more straight-forward way of tackling such problems. While
the optimization is performed directly in a multi-stage simulation model,
where the discrete states of this model result from probabilistic simulation,
the formulation of some Markov model is not needed. This principle makes
it more suitable to real-world problems, where a simulation model is often
already available or even can be built with reasonable effort.
Additionally, contrary to ADP the aim is not to find a defined sequence of
actions that has to be taken starting at some fixed time step ¢, but to evolve
a general policy that outputs near-optimal actions in whatever state of the
system it is applied to. Hence, instead of traversing some action-space for
searching an optimal sequence of actions, the policy-space P gets traversed.
While P (as indicated in Equation 4.2) may indeed get very complex for real-
world problems, a directed search via evolutionary algorithms is applied that
finds good policies in reasonable time.

4.2.11 Summarizing the Developed Techniques

Manifold scenarios in smart power grid engineering challenge optimization
methods that are capable of handling stochastic systems successfully. While
stochasticity is one feature that characterizes power grid control and plan-
ning problems, the necessity of dealing with dynamic conditions and making
control actions in an anticipatory manner is of higher interest.

Especially for such dynamic stochastic optimal power flow (DSOPF) prob-
lems, the actual literature provides only few approaches, while the general
interest in solving such problems is high. Policy approximation has been
identified herein as potential concept, where a set of requirements was de-
fined that would need to be satisfied by a technology that makes this concept
suitable to DSOPF problems in future smart grids. Simulation-based evo-
lutionary optimization of flexible control policies was developed that is able
to fulfill these requirements. Here, the application of simulation as system
representation allows to fully integrate the complex as well as stochastic be-
havior of power grids into the optimization process. Furthermore, the method
of learning/approximating control policies offline that later provide flexible
and valid control actions during operation online builds a suitable class of
techniques for approximate optimal control, which avoids the need of any
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reoptimization at runtime.

Building a technique for dynamic optimization, contrary to related approaches
in literature, the application of simulation-optimization avoids the need of
building some system representation such as Markov Decisions Processes. In
this way, the curses of dimensionality of dynamic programming problems get
overcome and eases the application to real-world problems. Especially the
application of GP allows the evolution of policies without a-priori knowledge
of their structure, which is a powerful ability when treating complex systems.
It is important to mention at this point that the herein used mathematical
structures for policy synthesis (i.e. metamodel-based synthesis with polyno-
mials and metamodel-less synthesis with GP) only build a subset of possible
methods. Any other generic function approximators like for instance artifi-
cial neural networks could be fruitful as well, but will not be treated herein.
The next section presents experimental applications of the developed tech-
niques to practical problems in power grid planning and control. Both static
as well as dynamic problems will be treated with respect to stochastic con-
siderations, which founds core findings for later applications to smart grid
control.
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Chapter 5

Simulation Optimization in
Electric Power Grid
Operation and Planning

In the previous chapter, fundamentals on simulation optimization have been
discussed, both for static as well as dynamic stochastic optimization prob-
lems. A new technique has been developed - namely the simulation-based
evolutionary approximation of power flow control policies - which is capable
of enabling dynamic stochastic optimal power flows. The reader shall now
be provided with practical show cases in order to foster the understanding of
evolutionary simulation optimization. Experimental studies will show the va-
lidity of the developed techniques, both for static as well as dynamic problem
classes.

5.1 Static Deterministic Benchmark
Optimization - Proof of Concept

While all following empirical studies will treat multi-period power flow con-
siderations, benchmarks exist in literature for the class of steady-state opti-
mal power flow problems. These benchmarks provide deterministic models
and are used in literature since many years for validation of optimization
methods. In order to experimentally show the principal capabilities of meta-
heuristic simulation optimization, these benchmarks shall now be treated
with comparison to reference solutions.



Simulation Optimization in Electric Power Grid
Stephan Hutterer
Operation and Planning

5.1.1 Formal Problem Description

The definition of the general OPF problem has already been stated in Sec-
tion 3.4.2, respectively in Equations 3.2 - 3.13. This definition remains the
same, where the objective is to minimize costs of power supply over all avail-
able generation units while satisfying constraints of power grid operation.
Therefore, the vector of control variables u will be computed statically for
a steady-state situation that is given by the benchmark descriptions. As
in the OPF definition, the solution contains values for generator voltages
Ve, generator real power outputs P, transformer tap settings 7},, and the
output of shunt VAR compensators (Qc. Since constraints are considered
within the heuristic search through penalization, Equation 5.1 gives the final
fitness function. Here the objective function C(Pgs(w)) denotes the supply
costs from the generation units that in turn depend on the control vari-
ables. While constraint violation is penalized by adding a penalty term to
the objective function value, the vector wgy gives the relative weight of each
constraint, where its violation is contained by C'V.

F(u) = C(Ps(u)) + weoy * CV (1) (5.1)

5.1.2 Experiments Description

Throughout the different benchmarks, both the model’s size (in means of
dependent variables) as well as the amount of control variables vary.

A set of five different quasi-standard OPF benchmarks exists, where distri-
bution grid models as well as generator cost data are given in the IEEE test
case archive [21], published by Richard D. Christie in IEEE Common Data
Format [20, 39] notation.

Distribution Grid Model Data

Table 5.1 characterizes these steady-state load flow models that build the
fundament of later experimental investigations within this work by showing
their key figures. Concerning structural properties of these test cases, not
only various complexities in means of system size (and thus computation
time for load flow simulations), but also different sets of control variables
exist (see lines 3-6 in Table 5.1), building a suitable set for also proving the
scalability of the developed techniques in subsequent discussions.
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Property 14-Bus | 30-Bus | 57-Bus | 118-Bus | 300-Bus
# Buses 14 30 o7 118 300

# Branches 20 41 80 186 411

# Generators 5 6 7 54 69

# Tap Changers 3 2 3 9 8

# VAR 1 4 17 12 107
Compensators

Table 5.1: IEEE Power Flow Benchmark Problems

The smallest two cases are very well investigated, providing lots of solu-
tions to their steady-state OPF in literature. Very popular works are pub-
lished by Alsac and Stott [8] when solving the traditional OPF for the 30-Bus
system in an analytic way. Many other researchers did various extensions in
means of different objective functions or constraint formulations when apply-
ing metaheuristic algorithms [1, 64]. All used constraints data not comprised
by the test case archive can be obtained from Appendix A.2, given in MAT-
POWER data format.

Algorithmic Settings

For optimizing the real-valued solution vector w, evolution strategies (ES)
according to [14] will be used, being proved to be performant metaheuristic
optimization algorithms for real-valued optimization problems. In principle,
ES is a nature-inspired population-based optimization algorithm, that tries
to improve a set of solution candidates until a certain stopping criterion
is reached. Contrary to other related evolutionary algorithms, ES selects
(deterministically) the best p individuals within each generation out of A
offspring individuals and tries to improve them where mutation is the main
evolutionary operator, hence the primary source of genetic variation. ES
is generally proven to be a powerful and efficient metaheuristic algorithm
for real-valued optimization problems, supplied by its special ability of self-
adaptiveness within the search process.

For the herein experiments, (4 A)-ES is applied with one endogenous strat-
egy parameter 7 that adapts the mutation strength dynamically (as imple-
mented in HeuristicLab).

The following settings given in Table 5.2 are used when treating the dif-
ferent benchmark instances.
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Parameter Value
ES Type 14-Bus and 30-Bus Cases: (5+20)

57-, 118- and 300-Bus Cases: (10+50)
Manipulator SelfAdaptiveNormalAllPositions- Manipulator
Strategy Parameter | Learning Rate 7 = 0.5
Recombinator Discrete Crossover

Parents per Child 2
Stopping Criterium | Maximum Generations: 10000

Table 5.2: Parameters for Benchmark Cases

5.1.3 Experimental Results & Conclusion

Within these 5 benchmark instances, the OPF solution gets computed with
evolutionary simulation optimization. The distribution grid models are im-
plemented in MATPOWER. When evaluating a solution candidate, power
flow simulation is performed within MATPOWER in order to derive the so-
lutions’ fitness function value (consisting of both objective function value and
constraints penalization), see Algorithm 1 for further details.

At this point it is important to mention, that these benchmark instances
represent steady-state problems that are given deterministically. Hence, nei-
ther stochastic nor dynamic optimal power flows are treated. Rather, these
experiments shall proof the general capability of evolutionary simulation op-
timization for the general OPF computation, since deterministic exact solvers
are available here for comparison reasons.

Algorithm 1 Calculate fitness of steady-state OPF solution u
initializeGrid M odel();
setControlV ariables(solutionCandidate); {// for Vi, P, Tiap and Qc'}
per formPower FlowComputation();
fitness < (power Losses + constraintsPenalty);

In order to validate reachable solution qualities, a primal dual interior
point method as implemented in MATPOWER is taken for creating refer-
ence solutions. This method can be seen as standard solver for static OPF
problems both in industry as well as in academia.

Figure 5.1 illustrates boxplots! where for each instance the 10 best found

'The red line gives the median, the borders of the box represent the 25th and 75th
percentiles, the whiskers reach to most extreme data points (not considered outliers),
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Figure 5.1: Simulation-Based OPF: Distribution of Best Found Solutions’
Fitness Values

solutions’ fitnesses are given (by their relative distance to the reference so-
lution), in order to not only highlight the best obtained solution for these
problems, but also the heuristic optimization’s robustness.

For most cases, the evolutionary optimization robustly finds near-optimal
solutions that are below 0.5% worse in means of fitness function from the
reference solution. Only for the largest case - the 300-bus case - the heuris-
tic search is less robust, but even finds solutions that are better than the
reference. This is possible because of the implementation of the the interior-
point method in MATPOWER, which uses a linearized approximate model
of the non-linear power flow equations for optimization, while the simulation
optimization uses the actual power flow simulation model without approx-
imations. Hence, the simulation-based method even is able to find better
solutions, since it does not need for any simplification of the problem. Es-
pecially for very complex power flow models this is an important advantage,
where linearized approximations may describe the system insufficiently.

The results from this boxplot are concluded numerically in Table 5.3.
Here, the median relative distance corresponds to the distance from the ref-
erence solution to the median fitness of the 10 best found ones, while the

while outliers are indicated individually (red plus symbols). The whisker length is defined
to be 1.5, which corresponds to immediately +2.70 and 99.3% coverage if the data is
normally distributed.
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minimum relative distance addresses the single best found solution.

14-Bus | 30-Bus | 57-Bus | 118-Bus | 300-Bus

Best Found
Solution’s Fitness | 8185.4 802.77 | 41781.0 | 129690.0 | 535070.0

Reference
Solution’s Fitness | 8151.46 | 802.66 | 41772.40 | 129661.0 | 538743.0

Median Relative
Difference 0.0044 | 0.00036 | 0.00030 0.0020 0.0047

Min Relative

. 0.0042 | 0.00014 | 0.00021 0.00022 -0.0068
Difference

Table 5.3: Results to Static IEEE OPF Benchmark Optimization, Fitness
Function Values in [$/h] Operation Costs

Since - as mentioned above - for the two smallest test cases (14-Bus and
30-Bus) lots of solutions to the OPF exist in literature, the best found solu-
tions herein are given in Appendix A.3. The interested reader may compare
these with related solutions, for example from [1, 8, 64].

Concluding Remarks

These experiments were conducted in order to provide some proof-of-concept
that evolutionary simulation optimization is able to supply competitive so-
lutions compared to state-of-the-art OPF solvers. While for most cases the
evolutionary simulation optimization finds near-optimal solutions that are
only some 0.1% worse than the reference solutions, it is even possible to find
better solutions than the state-of-the-art OPF solver for the largest test case.
In these experiments, still the originally formulated steady-state OPF prob-
lem was treated, being a central optimization problem in power grid engi-
neering and research since many decades. In the following chapters, the OPF
problem will be extended in order to consider real-world relevant issues in
future power grids. These extensions will consider multiperiod-formulations,
the inclusion of uncertainty as well as the integration of numerous distributed
controllable units. While applying herein developed optimization concepts
to these extended formulations, new methods for power flow optimization in
smart electric grids get discussed.
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5.2 Static Stochastic Optimization Problems
- Plant Placement Under Uncertainty

Coming from the general OPF as a static (parametric) and deterministic
optimization problem, an extension of this problem shall now enable the
treatment of a probabilistic planning scenario in power grids. Therefore, a
combinatorial problem will be handled, that concerns the placement of dis-
tributed renewable power plants under uncertainty - a challenging issue in
smart grid engineering.

One of the most popular planning problems in actual developments con-

siders the placement of renewable sources like wind power and photovoltaic
plants [7, 56, 59]. While these sources have the advantage of delivering zero-
emission electric power, they may be dangerous to existing grid infrastruc-
tures because of their intermittent and non-deterministic behavior, jeopar-
dizing security constraints of power grid operation. As placement of these
sources influences the reachable penetration of renewable supply, optimiza-
tion problems are formulated for obtaining placement decisions. A thorough
overview on this problem, possible objectives as well as respective approaches
for solution in literature can be found in [59, 75].
The formulation of this infrastructure planning issue is based on the well
known IEEE 118-bus test-case (see Table 5.1). The test-case is downscaled
by a factor of 10 in means of generation as well as load values. Within this
distribution grid, 10% of the installed generation capacity should be substi-
tuted by renewable supply from wind power and photovoltaic plants. These
distributed power sources shall be placed optimally in a way that efficient
as well as secure power grid operation is guaranteed. A combinatorial op-
timization problem is defined where at 54 potential generation buses? any
combination of four different plants (photovoltaic and wind power, each in
two different sizes) or none may be placed (i.e. 16 possible states per bus).
Thus, the resulting solution space is of size 16°*. As the simulation of a single
solution candidate (= plant locations) takes up to 1 second?, intelligent opti-
mization algorithms are required for obtaining good solutions in reasonable
time (exhaustive search would take obviously around 16°* seconds). Since a
plant placement has to be valid throughout different system states that may
occur over time, its performance is evaluated within a probabilistic multi-
stage simulated.

2As being defined in the test case description.
3In Matlab 7.12 (R2011a, 64 bit) under Windows 7, on an Intel Core i7-2620M CPU
at 2.7 GHz, 8 GB RAM.
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5.2.1 Formal Problem Description

Equations 3.8 - 3.11 as defined previously in the general OPF formulation
build the set of standard load flow constraints in power grids and will be
applied here as well.

While satisfying the defined constraints, the objective function is defined of
minimizing real power system losses

T

min» _ Li(PpL), (5.2)
t=1

with t being a discrete time step during the simulated time span of length 7.

Ppr in this case represents the binary vector defining the plant placement,

using 4 bits per generator bus describing the existence of the 4 available

plants (photovoltaic and wind power, each of two possible sizes).

To avoid infeasible solutions, penalty terms are added to the objective func-

tion when evaluating a candidate’s fitness. The final fitness function is de-

fined as:

[L+(PpL) + Wov * CVi(Prr)], (5.3)

] =

F(ppr) =

t

1

where the objective function L;(ppr) is penalized according to the respec-
tive degree of constraint violations CV,(ppr) within each simulated time
step, where Wgy contains each constraint’s (Equations 3.8 - 3.11) individ-
ual weight. 7' is chosen to be 24, hence, a candidate solution is evaluated
within 24 discrete equidistant time steps over a simulated day. By this means,
the general OPF gets extended in direction of a multiperiod consideration,
where the solution ppy itself is a static (parametric) one, but has to perform
within a dynamic and uncertain environment.

5.2.2 Experiments Description

The optimal placement of renewable power plants forms a probabilistic com-
binatorial problem, since a possible placement of plants has to guarantee
validity in manifold system states that could appear in power grid opera-
tion, which are mainly influenced by nondeterministic behavior like weather
conditions or uncertain demand situations. The great advantages of using
simulation optimization for this problem are obvious: On the one hand, the
modeling of the system through simulation enables the full integration of
uncertain and intermittent characteristics of sources as well as their effects
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through probabilistic models. On the other hand, the usage of evolutionary
optimization is able to overcome the effects of state space explosion of such
combinatorial problems.

Since the resulting optimal placement of renewable plants needs to guar-
antee valid and secure power grid operation under uncertainty, the evaluation
of a solution candidate is performed within different simulated system states
(along a time horizon of length T'). For imagination of the present simulation
optimization issue, its architecture is illustrated in Figure 5.2.

HeuristicLab:
Optimization Algorithm

Heuristic
Optimization

Solution Candidate:
Static Plant Placement

Fitness Interprocess Communication Candidate |
Power Flow Probabilistic Supply
Simulation Simulation

Simulation: Problem

Figure 5.2: Infrastructure Optimization Architecture

As introduced before, HeuristicLab is chosen as suitable framework for heuris-
tic optimization, where Matlab is used for external solution evaluation with
probabilistic simulation.

The simulation problem consists of probabilistic models for describing the
uncertainty of renewable supply plants connected to a power flow compu-
tation. Finally, a sufficient description of the system’s operation states is
provided that constitutes the respective fitness of the solution. For wind
power modeling, the corresponding wind speed values at the plant sites are
sampled from a Weibull-distribution as described in [109]. The plants’ power
curves are assumed such that each site reaches its maximum rated output at
a windspeed of 16 m/s. With the sampled wind speed values, the resulting
power output of the plant can be modeled using the plant’s power curve.
Photovoltaic-plants follow a typical daily generation profile that is random-
ized in each time step with a standard deviation of 10%, considering a typical
uncertainty in photovoltaic-generation forecasting. The renewable plants are
assumed to have two possible sizes in means of nominal injection, namely 5
MW and 2.5 MW for wind power plants, as well as 0.5 MW and 0.25 MW
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for photovoltaic plants respectively.

As loadflow-algorithm, Newton’s method is chosen as implemented in MAT-
POWER. The demand within this system follows typical daily load profiles
that are distributed throughout the buses, while the concrete demand value
at each bus is randomized normally distributed within each simulation run,
using a standard deviation of 4%. For modeling reasons, a constant power
factor is assumed for both load and injection values, which is taken from the
testcase description.

The evaluation procedure is indicated in Algorithm 2 in pseudocode-notation.
Each evaluation is performed S = 6 times in order to overcome the uncer-
tainty of the evaluation.

Algorithm 2 Calculate fitness of candidate renewables’ placement ppr,
for all s =1...6 do
initializeGridModel();
set Renewable Plant Placements(solutionCandidate);
for allt=1..T do
sample(renewableSupply);
sample(demandV alues);
per formPower FlowComputation();
fitnessTimeSteplt] < (powerLosses + constraints Penalty);
end for
sampledFitness[s| «— sum( fitnessTimeStep);
end for
fitness <— mean(sampledFitness);

For illustrating the simulation optimization principle, the evaluation of a
randomly chosen solution candidate (plant placement) over a simulated day
is described in Figure 5.3 as it happens during the optimization process.

At the upper part of the figure, the simulated variables of renewable supply
(black bars: photovoltaic plants, gray bars: wind power plants) as well as
mean demand (dotted line) are shown, each scaled to its maximum value.
The lower part indicates the cumulated system losses with white bars, as well
as the penalization caused by operational constraint violations (line overload-
ing, voltage deviation,...) with dashed bars. All values are scaled again in
order to allow a qualitative imagination on the simulated system behavior.
One can clearly see, that a possible placement decision has to guarantee valid
power grid operation throughout manifold and differing system states, where
e.g. in the early time steps where demand is low, significant constraint vio-
lations occur, making this exemplary placement invalid. Thus, probabilistic
simulation throughout multiple periods is necessary for estimating a candi-
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Figure 5.3: Simulation-Based Evaluation of a Solution Candidate

date’s performance within later uncertain real-world operation.

The simulation not only allows to fully integrate the system’s uncertainty
within the optimization process, it further enables to gather information on
the resulting power flows using load flow computation based on renewable
supply. Thus, a complete picture of the power grid’s state can be formed
and allows to evaluate a placement’s performance. Here, minimizing system
losses while satisfying power flow security constraints over a simulated day
characterize the optimization problem.

5.2.3 Experimental Results & Conclusion

The full experimental details as well as algorithm configurations for applied
genetic algorithms can be obtained from a published paper [54]. Some com-
parisons shall be taken from this publication and will be extended.

Figure 5.4 shows some algorithmic comparisons of reachable fitness values
for this optimization problem, also being illustrative for showing the inter-
play of objective function L(ppr) and the penalty for constraints violations
woy * CVi(ppr). Here, two selection schemes are compared, each paired
with single-point crossover (SPX), two-point crossover (NPX) and uniform
crossover (UX). While a best selection scheme is not even capable of finding
valid solutions (notice that fitness values above 600 mostly result because of
constraint violations), best found solutions reach a fitness value of around
458. This value corresponds to the objective function of cumulated losses in
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MW over all buses over all 24 evaluated discrete time steps, with zero con-
straint violations. For these solutions, a plant placement is found that allows
a partial substitution of the system’s supply with renewables (10%), while
minimizing system losses and still guaranteeing security constraints satisfac-
tion under stochastic influences.
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Figure 5.4: Experimental Results to Plant Placement Problem

To get an estimate of this placement issue, 1000 random solutions have
been created by adding random photovoltaic or wind power plants of given
sizes to random buses until the required 10% substitution is fulfilled. Figure
5.5 shows that these random solutions (regardless of the system losses they
would cause) violate secure power grid operation, hence, are invalid. The
ordinate shows the mean penalty violation over all random solutions when
simulating their performance. The violation of the branch flow constraint
(see Equation 3.11) indicates the squared error from P*** in MW | while
the voltage deviation contraint (see Equation 3.10) shows the violation? of
ijm in per unit (p.u.) notation. The squared errors are cumulated over all
branches b = 1, ..., N B respectively all buses 7 = 1, ..., J. While this Figure
only illustrates the mean penalty violation, it has to be mentioned that none
of the 1000 random solutions showed to be valid (i.e. yielded zero constraint

4An oversupply leads to voltage drops, i.e. violates ijm_
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violations). Thus, an optimization procedure in this case is necessary for de-
riving a placement that both guarantees secure power grid operation within
a stochastic environment (constraint satisfaction) as well as minimizes ex-
pected power losses.
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Figure 5.5: Constraint Violations of Random Solutions

The handled problem describes a typical application, where stochastic
power flows need to be considered for an optimal planning task. Even if it is
not about power flow control, it is strongly related to SOPF (stochastic OPF,
see introductory chapter). Through simulation, the static solution is evalu-
ated within a dynamic multi-period environment - notice that the simulation
is performed along a time span of T" steps - that is governed by stochastic vari-
ables (uncertain demand as well as uncertain renewable supply). Since the
placement of plants cannot change during operation, a static solution repre-
sentation is suitable, even if the system itself is dynamic as well as stochastic.

Next, a DSOPF problem shall be treated experimentally, showing the
validity of the developed technique of learning flexible power flow control
policies within a dynamic stochastic environment.
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5.3 Dynamic Optimization - Dynamic
Stochastic Optimal Power Flow

In Chapter 3, based on the mission statement of this work, the developed
policy optimization approach has been discussed in order to enable dynamic
stochastic optimal power flow (DSOPF) control. For showing the validity
of the policy-based OPF approach as well as for fostering the reader’s un-
derstanding of this method, it shall be demonstrated by solving benchmark
steady-state OPF problems with respect to synthetic dynamic environments.
Several publications of the author already treated parts of the subsequent ex-
planations [46, 55].

5.3.1 Formal Problem Description

Within this show case, optimal policies for dynamic power flow control shall
be approximated. Once more, for a considered power grid model, the dy-
namic behavior along a specific time horizon of T" discrete time steps is simu-
lated. But rather than optimizing any inflexible parameters (like placement
decisions), a dynamic problem is considered where flexible control policies
shall be optimized that take system states as input and derive (near-) opti-
mal power flow control actions within each time step in order to guarantee
economic power grid operation at runtime.

This application treats a dynamic stochastic optimal power flow problem
as discussed in the previous chapter, where policies for the control variables
Pe,Qc, Ve and Ty, have to be evolved that perform approximate optimal
power flow control both in the simulation model for learning, as well as in
estimated real-world operation. For learning such policies, a multi-period
simulation model is set-up that simulates the dynamics of a given power
system along a time interval of T discrete time steps. This simulation model
is used for evaluating a policy’s performance within a synthetic dynamic as
well as stochastic environment.

While within each time step standard steady-state security constraints
(see Equations 3.8 - 3.11) need to be satisfied, the objective function shall be
defined as minimizing financial costs of power generation along the simulated
time span over all generation units, i.e.:

T NG

min Z Z C(Pg, )

t=1 n=1

Since a dynamic case is considered where the power injection at a gen-
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eration site may vary over time, additional ramping constraints need to be
defined for variable Py in order to ensure that this variation is within certain
physical limits. Thus,

VRVt : |PGn,t+1 - PGn,t| S APGn,ma;v’ (54)
needs to be satisfied additionally.

Considering proportional penalization for constraint violation, the final
fitness function is defined as:

min» Y [C(Pa,): + Wav * CV (Pe, )i, (5.5)

where the cardinality of w equals the number of considered constraints. The
real power injections of the controllable generators Fg,...Pq,,, directly result
from the policies, while the slack generator’s injection value P, is implicitly
derived from power flow simulation.

5.3.2 Experiments Description

Within these experiments, the same distribution grid models are taken as
before (specified in Table 5.1), while creating dynamic multi-stage optimal
power flow problems out of them.

For modeling the power flow control in a dynamic and uncertain environment
based on these test cases, the power grid is simulated using MATPOWER
along a time-horizon of 7" = 96 discrete time steps (At = 15 minutes, i.e.
time horizon equals one day) in order to build a multi-period dynamic en-
vironment out of steady-state situations®. Here the load changes over time
according to statistical profiles from power grid operation, but is addition-
ally randomized in order to simulate real-world uncertain conditions. At
each time-step, steady-state power flow computation is performed, where
the stochastic variables (i.e. load values) are sampled from respective dis-
tributions. Notice that steady-state power flow computation is a sufficient
simulation method within the discrete time steps even if a dynamic envi-
ronment is created out of them, since the time domain of decisions is high
enough (in the order of minutes) - as discussed in the introductory chapter
when considering steady-state versus transient power flow simulation.

5Some researchers already identified the application of creating a dynamic OPF prob-
lem out of steady-state scenarios, where the general term of so called multiperiod-OPF
problems has evolved in recent years [65].
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Training: Learning Optimal Policies

Within this simulation, policies are trained in order to lead to (near-) opti-
mal power flows within uncertain future system states. For this reason, each
solution is evaluated within 20 simulated power grid states that are randomly
(equally distributed) spread along the considered time horizon within each
evaluation. Additionally, in order to avoid overfitting the learned policies to
specific demand situations, one out of four load profiles is selected randomly
(equally distributed) at the beginning of each evaluation. These profiles as
shown in Figure 5.6 are used for power grid operation in Austria within the
APG regulation zone.They represent typical load trends for domestic (H0)
as well as commercial (G0,G6) and agricultural (L0) customers, based on
APCS® load profiles for the 2.7.2012. A fifth profile is indicated as well being
a randomly generated one for enabling the later testing of the policies to
arbitrary volatile situations. All profiles are scaled to the interval [0, 1].
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Figure 5.6: Applied Load Profiles

Notice that - when considering the cumulated demands throughout a
power grid - such high load variations induced with the applied load profiles
are not realistic. But in order to show the capability of the approach to
handle highly volatile demand situations for power flow control, an appro-
priate variance of higher order is assumed herein. To additionally model the

6 Austrian Power Clearing & Settlement, http://www.apcs.at/
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uncertainty of load forecasts in power grid operation, at each time step the
load value at each bus is randomized normally distributed with ¢ = 0.04.
The procedure of evaluating a solution candidate (= policies for all required
variables) is depicted in Figure 5.7. After randomizing the demand situation,
the computed policies are evaluated for all output variables (i.e. elements
of @) which yields - after power flow computation - the resulting constraints
violations as well as the objective function value. Performing this evaluation
for 20 randomly selected time steps along the simulated time horizon, the
fitness of a solution candidate is obtained.

Policy Evaluation &
Power Flow Simulation

For All Time Steps

Model Initialization & For All Output Variables
Randomization v
Compute Output Of The Policy
Load Test Case Model +
+ Set Policy-Output Within The
Distribution Grid Model
Randomly Select Load Profile +
+ \ _5 Compute Fitness of Solution
! Perform Power Flow Simulation ! Candidate
Randomize Each Single Load Value
with N(0,0.04) +
+ Evaluate Constraint Violations
Set Load Values Within The
Distribution Grid Model +

Evaluate Objective Function

Figure 5.7: OPF Policy Evaluation Procedure

At this point, the reader shall be made aware, that this application still
treats the traditional OPF, where the generation is scheduled for meeting a
given (stochastic) demand. Thus, load-dependent generation is operated.

Testing: Evaluating the Learned Policies

In order to evaluate the validity of the learned flexible policies on a separate
test scenario, a proper load profile is applied which is randomly generated
(see Figure 5.6) in order to test the found policies on arbitrary dynamic sit-
uations that are independent from the training environment.

For making the results comparable, when simulating the distribution grid
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with the random load profile along the time horizon, ten discrete (static) sys-
tem states equally distributed over time are expressed from the simulation.
For these ten test states (i.e. 10 chosen time steps), the exact steady-state
solution to the OPF is computed with primal dual interior point method
(same solver as before in Section 5.1), implemented in MATPOWER. These
steady-state solutions are then compared to the solutions that the policies
would lead to in each state (i.e. time step).

Algorithmic Settings

The following parameter settings have finally been applied for the optimiza-
tion experiments. When optimizing policies of fixed structure (i.e. using
a metamodel), the control variables comprise real valued weights given by
the vector w as defined before (see the concept of metamodel-based synthe-
sis, Section 4.2.7). Therefore, real-valued optimization is performed, where
evolution strategies are applied as for the steady-state benchmark systems
optimization in Section 5.1.

When applying ES to uncertain optimization problems (where only an esti-
mate f'(w) of the true fitness function value f(w) can be provided by the
solution evaluation), it is important to use a comma selection scheme in order
to avoid that overestimated solutions of poor quality remain in the popula-
tion. Full parameter settings are given in Tables 5.4 and 5.5.

When applying genetic programming for metamodel-less synthesis of poli-
cies, another class of metaheuristic algorithms is applied; namely genetic
algorithms (GA). Contrary to ES, GA’s major operator for solution space
exploration is crossover. Especially when being applied for computing sym-
bolic expressions with genetic programming (as herein), high population sizes
as well as high mutation rates are needed in order to overwhelm the huge
solution space. Respective settings that are used for all test cases are given

Parameter Value

ES Type (5,20)

Manipulator SelfAdaptiveNormal AllPositions- Manipulator
Strategy Parameter | Learning Rate 7 = 0.5

Recombinator Discrete Crossover

Parents per Child 2

Stopping Criterium | Maximum Generations: 1000

Table 5.4: Parameters for Test Cases: IEEE 14 Bus, IEEE 30 Bus
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Parameter Value
ES Type (10,40)
Manipulator SelfAdaptiveNormal AllPositions- Manipulator

Strategy Parameter | Learning Rate 7 = 0.5

Recombinator Discrete Crossover

Parents per Child 2

Stopping Criterium Maximum Generations: 2000

Table 5.5: Parameters for Test Cases: IEEE 57 Bus, IEEE 118 Bus, IEEE

300 Bus

in Table 5.6. Similar to using comma-selection in ES, with GA no elitism is
applied in order to avoid that (probabilistically) overestimated solutions of
poor quality become elites and thus remain in the population.

For better

understanding, the resulting trees that get evolved by the

genetic programming process can be formalized as follows:

tree(L,root, R) =< L,root, R >,

with left and right subtree L and R as well as the root node root. Here, the
following holds:

root = inner Node

L = tree|terminal Symbol

R = tree|terminal Symbol
innerNode = “+7|“ ="]“x7|“/”
terminal Symbol = constant|rule
rule €T

constant € R

Parameter Value
Maximum Generations | 200
Population Size 400
Mutation  Probability | 15

7]

Crossover  Probability | 100
7]

Continued on next page
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Parameter Value
Selector Tournament Selector
Group Size: 5
Mutator Multi Symbolic Expression Tree Manipula-

tor”: Replace Branch Manipulation, Change
Node Type Manipulation, Full Tree Shaker,
One Point Shaker

Crossover Subtree Swapping Crossover

Elitism No Elitism

Maximum Tree Depth 8

Maximum Tree Length | 80

[nodes]
Tree Grammar Arithmetic Operators
Real-Valued Constants

Table 5.6: GP Parameters: All Test Cases

5.3.3 Experimental Results & Conclusion

Techniques for OPF policy learning have been introduced in Chapter 3 and
shall now be applied to the defined test cases. Comparisons will be conducted
throughout these different test cases (power grid models) in order to provide
experimental results underlining the abilities of the respective techniques.

System Variable Policy Synthesis

As introduced previously in Section 4.2.4, system variable synthesis (SVS)
is probably the most obvious approach for evolving policies out of system
information from an engineering point of view. Therefore, system variables
1 are directly taken as policy inputs without the step of deriving abstract
rules. Within this experiment, SVS shall be applied primarily to the 14-bus
test case, which is the smallest one within the given set of models in means of
needed system variables. Within this scenario, all the information needed for
building the policy for the variable Pg , i.e. Pg(i), is contained by the input
vector 4 defined as follows (this issue has already been discussed in 4.2.4):

"Multi Symbolic Expression Tree Manipulator as implemented in HeuristicLab: Ran-
domly applies one of the defined operators with equal probability.
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T: [PL1 PLNB7QL1 QLNB? mm Pmm mm Qmm ma:p _ pmaz

GnG? GnG? GnG?
ma:c max max max
Q QGNG’ P y @ aNG’abl-nbNGaCl-ncNG]a

with all respective load values P and (), generation limits of all buses
Ps™ and Qg™**, branch flow limitations P,** as well as all generator
cost coefficients a4, b, and ¢4. In order to maintain the voltage deviation
constraint (Equation 3.10), this information on voltage boundaries would be
needed as well. As it is assumed that V™ is equal for all buses (in p.u.?),
this information is not needed additionally, while this constraint is fixed to
Vmin — 0.94p.u. and V™ = 1.06p.u.. Thus, for the 14-bus test instance,
the cardinality of 7 equals® 49. Since policies for 4 generators need to be
evolved (NG = 5 generators minus the slack bus which cannot be controlled
directly), 4 * 49 = 196 control variables (i.e. weights) would be needed for
linear synthesis only for the variable Pg (according to Equation 4.3)!

Within these experiments for SVS, only the generators’ real power injec-

tion (variable Pg) will be used for policy optimization, while this variable
indeed has the highest impact on power flow control and thus on the consid-
ered cost function. Variables Vi, T,y and Q¢ are fixed to scalar values given
in the model data for keeping the solution space manageable within these
experiments, but will be considered later.
Building policies out of the defined variables i, polynomial synthesis with
linear as well as quadratic functions (as used later) has shown to be invalid
in this case, which is obvious since the powerflow within a distribution grid is
strongly nonlinear with respect to 7 (the interested reader could take a look
at general power flow formulations [116] at this point). Thus, synthesis with
GP is the only remaining choice herein, since it enables the identification of
even nonlinear policies. The GP parameter settings are given above, while
arithmetic operators are used for combining the input variables in 7 to the
final policies. The best found solutions are given in Appendix A.4, Equa-
tions A.1-A.4. While for each generator Fg,...FPq,, a proper policy has to be
learned, a coevolutionary optimization according to Section 4.2.9 has been
applied as all these generators are indeed interrelated.

8The per unit (p.u.) notation system is used in the power engineering field for express-
ing quantities as fractions of defined base-unit quantities. For modeling issues, normally
base-quantities are defined (mostly power and voltage) so that all other quantities in the
model are defined as a multiple of them. In the case of the voltage deviation this means
that £6% from the reference voltage are allowed.

INB+ Nb+3+ NG =49
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For exemplary reasons, a representative illustration is given in Figure 5.8
showing the performance of an arbitrary solution taken during the training
process (policies Pg...Pg5) with SVS. Additionally, along all time steps
within this evaluation, the exact steady-state OPF solution is computed with
interior point method implemented in MATPOWER. The fitness of this exact
static solution in each discrete state (dotted blue line, right hand ordinate)
is plotted with respect to the fitness of the policies’ outputs within these
states (solid blue line, right hand ordinate), where the relative difference is
indicated (red line, left hand ordinate) over a simulated day. This evaluation
is performed on a simulated scenario using HO load profile as appearing during
the optimization process for training.
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Figure 5.8: 14-Bus Case: Illustration of SVS Solution Evaluation

In this figure, one can see that along this simulated day the power flow
actions generated by the obtained SVS policy are mostly only around 9%
worse in means of resulting fitness value compared to the deterministic in-
terior point solution within each discrete state. This gap from the fitness of
the deterministic solution (which is assumed to be the best one within each
state but which disregards dynamic near-future behavior) shall further be
entitled as error.

This relative error is defined as follows:

f(p)t - f(aexact)t
f(ﬂexact)t ’ (56)

with f(p), representing the fitness of the policy’s output and f(Uezqaer), giving
the exact solution’s fitness at time ¢.

REt -
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Note that for final comparisons (in Table 5.7) a proper test set is used
based on a random load profile. During the optimization, the interior point
solution is not known to the process, while the quality (i.e. fitness function
value in fuel costs per hour) of the solution candidate is the only known
information for the metaheuristic search.

Building a Test Set

Since within each discrete time step (state) the static OPF solution can be
computed exactly with interior point method, this introduced “error” (i.e.
the dynamic solution’s relative distance from the exact static solution within
a state) is suitable for validating the found policies. As discussed before, a
proper random load profile is applied to the power grid model for building
a separate test scenario of arbitrary volatility. Out of the simulation of this
scenario along 24 hours, 10 randomly chosen discrete states are expressed
that build the test set. For these 10 states, the error value is computed.

Table 5.7 shows the final validation of the trained best found solutions on
the test set, where the reachable qualities (i.e. relative errors as defined in
Equation 5.6 within ten chosen discrete time steps of the test scenario) are
compared for the best found solutions of system variable synthesis with GP.
Additionally, for comparing system variable synthesis (SVS) with abstract
rule synthesis (ARS), a policy for variable Py has been learned with ARS
as well, both with polynomial metamodels (linear and quadratic) as well as
with GP.

Time Step | SVS GP | ARS linear | ARS quadratic | ARS GP
1 0.0013 0.1008 0.0156 0.0023
2 0.0050 0.0387 0.0312 0.0013
3 0.0103 0.1528 0.1700 0.0246
4 0.0070 0.0929 0.1064 0.0093
5 0.0068 0.0870 0.1001 0.0082
6 0.0044 0.0825 0.0185 0.0022
7 0.0044 0.0825 0.0185 0.0022
8 0.0047 0.0599 0.0230 0.0017
9 0.0060 0.0554 0.0666 0.0032
10 0.0055 0.0351 0.0448 0.0014
MRE 0.0055 0.0788 0.0595 0.0056

Table 5.7: Results 14-Bus P System Variable Synthesis
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These results show that it is possible to derive comparable policies for
the variable Pg both with SVS as well as with ARS, that are in average
only 0.55% worse than reachable solutions with deterministic optimization
in each state. Compared to metamodel-based approximation with linear and
quadratic models, these results are superior. Linear and quadratic policies
are nevertheless capable of approximating optimal power flow actions with
an error of 7.88% and 5.95% respectively due to the application of abstract
rules. Additionally, the qualitative facts substantiate ARS, where the num-
ber of needed control variables (and thus the solution space complexity of
the optimization problem) is huge for SVS and grows with the size of the
treated power grid, while it can be reduced significantly when building ab-
stract rules!. Additionally, this application to a relatively small scenario
illustrates, that all the needed information for deriving power flow control
actions is contained within the defined set of abstract rules (since both SVS
and ARS lead to similar results), making the use of all system input variables
unnecessary and unattractive.

Further experiments shall now be conducted, where ARS will be used for
evolving policies for all other control variables as well.

The following experiments shall demonstrate the capabilities of power
flow control policy approximation with Abstract Rule Synthesis. While scal-
ability of this technology is an important issue, experiments will be conducted
on all IEEE testcases defined above. For all these cases, the complete set
of policies { Pg, Qc, Vi, Tiap} Will be learned both using metamodels as well
as applying metamodel-less approximation with GP. At this point it is im-
portant to mention, that with SVS, policies would need to be learned for
every controllable unit in a system (like for all NG — 1 generator real-power
outputs). At the same time, with ARS only one policy needs to be evolved
for all units of same type, like for all generator real-power outputs, generator
voltages, VAR compensators or transformer taps. This fundamental feature
is enabled through the usage of abstract rules that provide unit-specific infor-
mation to the policy, making a policy’s output individual to each unit even
if the policy itself is generic.

10This scalability issue has already been treated in Section 4.2.5 and will be deepened
in Section 5.5.
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Abstract Rule Synthesis - Polynomial Metamodels

Based on the abstract rules defined in Table 4.1, policies will be learned with
a given fixed mathematical structure (i.e. metamodel), namely polynomials
of degree {1,2}, i.e. linear and quadratic functions. Therefore, real-valued
optimization is necessary for finding performant values of the weights-vector
w, which takes 25 respectively 46 elements (independent of the power grid’s
size!).

Table 5.8 shows the results when validating the best found solutions on the
test set, where once more the relative error in means of fitness is shown be-
tween the policies’ actions and the deterministic interior point solutions for
ten randomly chosen discrete time steps. Comparisons are performed for all
previously mentioned IEEE distribution grid test cases.

Time Step | 14-Bus | 30-Bus | 57-Bus | 118-Bus | 300-Bus
1 0.0248 0.0085 0.0311 0.0603 -
2 0.0363 0.0071 0.0663 0.0527 -
3 0.1405 0.0061 0.0311 0.0588 -
4 0.0923 0.0071 0.0663 0.0539 -
5 0.0876 0.0057 0.0415 0.0784 -
6 0.0270 0.0074 0.0459 0.0687 -
7 0.0270 0.0059 0.0439 0.0542 -
8 0.0303 0.0098 0.0399 0.0709 -
9 0.0625 0.0062 0.0603 0.0573 -
10 0.0463 0.0097 0.0647 0.0803 -
MRE 0.0575 | 0.0074 | 0.0491 0.0636 -
Model Class | quadratic | linear | quadratic | quadratic -

Table 5.8: Results Metamodel-Based Synthesis

In contrast to the other cases, for the 30-bus test case, the linear syn-
thesis reached an equivalent solution quality compared the synthesis with a
quadratic function. While the best found solutions for all cases are provided
in Appendix A.5, the found policies for the 30-bus case shall be given here for
illustrative reasons in Equations 5.7-5.10, where the policies are synthesized
according to Equation 4.3.
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Pg(F) = (LLF + 0.7859 * NLFS + GLF + 0.4303 * MRF
+0.5329 x MERF + 0.3474 « LOCF + QCCF)/7+0 (5.7)

Va(F) = (0.5312 « NLFS + 0.5624 « GLF + 0.6094 « NRLF
+0.728 * GRLF) /A + 0.7976 (5.8)

Qco(T) = (09679« NLF + 0% GLF +0.9492 x M RF

+0.6566 * MERF + 0+ NRLF + 0.3444 « GRLF') /6 + 0.1996
(5.9)

Tyup(F) = (0% NLF + 0.1743 « GLF + 0.814 x NRLF+
0.3958 x GRLF) /4 + 0.147 (5.10)

For most cases, the mean relative error in means of fitness when com-
paring the policies’ actions to exact steady-state OPF solutions on a defined
test set is in the range of 5% to 6%, and even below 1% for the 30-bus case.
However, for the largest instance, the 300-bus test system, this method has
not been able to find valid policies. For this system, a polynomial metamodel
seems not to be capable of approximating optimal decisisons appropriately.
As visualized in the illustrated solution to the 30-bus instance, some rules
are weighted with 0, which clearly shows that their information is not nec-
essary in this case respectively is contained by other rules. Thus, some kind
of feature selection could be of advantage, reducing the complete set of rules
T to only a necessary subset.

The results clearly demonstrate the power of the policy-based approach
throughout a given set of test instances, where a flexible policy is learned
offline and avoids any re-optimization during the operation of a volatile and
uncertain power grid. Using abstract information (ARS) rather than a huge
set of system input variables (SVS) as before, it can be shown for this set
of standard test instances, that relatively simple (and even linear!) mathe-
matical structures are sufficient for building policies which derive accurate
as well as valid power flow decisions at runtime. However, a more sophisti-
cated method may be needed especially for the 300-bus case, which is able to
identify more complex relationships for synthesizing more powerful policies
out of the set of rules.
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Abstract Rule Synthesis - Genetic Programming

Genetic programming - as discussed before - provides a method for synthe-
sizing policies free from a predefined mathematical structure (metamodel).
Here, within an evolutionary optimization process, policies are built out of
a set of input variables (abstract rules) and a given grammar (set of mathe-
matical operators) being represented by tree structures.

HeuristicLab offers implementations for GP, algorithmic settings have

already been given. Once more, when applying GP for evolving multiple
interrelated policies (such as Pg(7), Qc(7), Ve (7) and Ti,,(T)), cooptimization
as proposed in Section 4.2.9 was necessary.
Experiments are conducted for the whole set of distribution grid test cases as
before, where the test set performances of best found solutions are compared
in Table 5.9. As indicated before in Table 5.6, only arithmetic operators
are comprised by the used grammar for the sake of search space limitation,
while numerous additional operators would be possible such as sinoid or
exponential functions.

Time Step | 14-Bus | 30-Bus | 57-Bus | 118-Bus | 300-Bus
1 0.0074 | 0.0051 | 0.0368 0.0083 0.0160
2 0.0053 | 0.0049 | 0.0142 0.0048 0.0201
3 0.0105 | 0.0056 | 0.0368 0.0075 -0.0151
4 0.0045 | 0.0049 | 0.0142 0.0079 0.0033
5 0.0041 | 0.0058 | 0.0081 0.0173 0.0030
6 0.0071 | 0.0060 | 0.0060 0.0127 0.0046
7 0.0071 | 0.0059 | 0.0067 0.0051 0.0048
8 0.0064 | 0.0060 | 0.0467 0.0137 0.0033
9 0.0034 | 0.0052 | 0.0103 0.0067 0.0030
10 0.0042 | 0.0057 | 0.0222 0.0181 0.0082
MRE 0.0060 | 0.0055 | 0.0202 | 0.0102 0.0051

Table 5.9: Results of Metamodel-Less Synthesis with GP

The great advantage of synthesizing policies with GP is that it allows
arbitrary mathematical combinations of abstract rules and thus is able to
identify even complex (non-linear) coherences between rules without a-priori
knowledge of these relationships. Additionally, contrary to applying a fixed
mathematical structure, GP enables an implicit feature selection mechanism
and thus builds policies that do not necessarily take all |[F| abstract rules into
account for the final solution, but is able to perform with only a subset of 7
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if successful during the genetic search.

Overall, when performing the test set comparisons, throughout all test
cases impressive solutions have been achieved with approximate policy-based
control, with errors of even below 1% for three of five instances. Even in one
test state (300-bus instance, time step 3), the approximate policy-based so-
lution leads to a better quality than the exact one. The reason for this is
the same as before, namely that the interior-point method in MATPOWER
uses a linearized approximate model of the non-linear power flow equations
for optimization, while the simulation optimization of policies uses the actual
power flow simulation model without approximations.

Equations 5.11-5.14 give the best found solution for the 30-bus case. Since
within this work GP solutions are evolved represented by trees with arith-
metic operators as inner nodes, these solutions provide algebraic equations.
For making them more readable, real-valued constants are extracted (by the
variables rc,) and listed in Table 5.10.

Po(F) =rcy * (reg x mer f 4+ res x glf —reg x lef)
(TG0l (2 glf — rer v Lef)
pef?

+regx glf xmrf)+reg (5.11)

_,_ —rc*nlfsq
Qolr) = merf x glf
—rewx glf xmrf xnlfsq (5.12)

+ rey xnlfs+re x glf —regs x merf

Va(T) =reis xnlfs — regg xnlfsq
rcig * glf
—rcig * glfq 4 regg x nlfsq

 (reyy * nlfsq + )+ rea (5.13)

rcog * nlfsq

Tiap(T) = glfq

(5.14)

While these policies tend to be more complex than those provided by
synthesis with fixed-order polynomials, they lead to significantly better per-
forming solutions. Anyway, because of the implicit feature selection in GP, it
is possible to derive simpler policies as well. The policy for the transformer
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Constant | Value Constant | Value
rcy 0.022584392 rC12 0.193319217
rco 0.300369793 rci3 0.127834428
rcs 1.156898808 rC1a 0.643195687
rey 0.482939198 rcis 0.029170953
rcs 3.209932224 rC16 0.043287062
rcg 1.241398697 reir 1.672301840

rcy 0.482939198 rCig 0.814501832
rcg 8.870819778 TC19 0.757900514
rCy 0.281666168 TC20 1.468518450
TC10 0.077008964 rC21 0.955877454
rci 0.238363556 T'C22 6.724411552

Table 5.10: Real-Valued Constants Assignment 30-Bus ARS

tap setting T}4,(7) in Equation 5.11 represents an illustrative example there-
fore.

The obtained results clearly demonstrate the power of GP for this ap-
plication, where its ability of finding more complex policies without being
restricted to a predefined metamodel leads to superior solution qualities on
the test states.

Especially for the largest instance, the 300-bus test case with (NG — 1) +
NG+ NQ+NT = 252 control variables (that are controlled by only 4 distinct
policies Pg, Vi, Q¢ and Ty,,), GP was still able to produce an accurate set of
policies, while no valid solution has been achieved with polynomial synthesis.

At this point, it is important to mention that only 4 policies have been
learned here in each instance for numerous control variables (like 252 vari-
ables in the largest case). If another distribution grid would be considered
with for example a higher number of controllable generation units, still only
4 policies would be needed for dynamic OPF control on this power grid.
Thus, the technology of learning flexible control policies with abstract rules
is highly scalable to applications with lots of distributed control devices. Es-
pecially the synthesis with GP allows the identification of complex nonlinear
relationships between the abstract rules while providing an implicit feature
selection, enabling the optimization of powerful control policies within dy-
namic and stochastic environments.
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5.4 Complexity of Approximated Policies

From prior experiments, it was concluded that it is possible to approximate
policies of high quality (i.e. low error values) while keeping their mathemati-
cal complexity low. The reason for this is twofold: on the one hand, abstract
rules are able to aggregate information from the power grid’s state in a highly
compressed manner, enabling to build simple (even linear) policies that are
still able to approximate optimal power flow decisions. On the other hand,
GP enables an implicit feature selection that is able to identify those input
variables (no matter if 4 or 7) that are important to the decision process.
Thus, not only the best obtainable quality of a policy is of interest, but also
the relation of a policy’s quality and complexity.

GP provides a suitable technology for performing experiments that ana-

lyze this relation. Here, mathematical expressions of arbitrary structure can
be evolved, where the only restriction is the maximum allowable tree size as
well as the provided grammar. While in above experiments this tree size has
been fixed in the way that the GP process has a sufficiently large degree of
freedom for finding best performing expressions, the relation between quality
and complexity shall be investigated in following experiments.
Therefore, optimization experiments are designed where the solution com-
plexity in means of allowable tree length is increased incrementally while
computing the best obtainable solutions for each length value. Beside the
tree size, the GP configuration remains the same as above.

Figure 5.9 illustrates the results to this experiments performed on the
14-bus test case. Here, policies for variable Pg are evolved both with SVS
as well as with ARS (variables Vi,Q¢ and Ti,, are fixed to discrete values
for easing experiments'!). The obtainable solution quality in means of er-
ror on the test case is analyzed for the 5 best found solutions within each
fixed maximum tree length, where the length value is increased starting with
small steps and increasing step size for estimating the potential of very large
expressions.

In this figure, the left side shows the analysis for SVS, while ARS results are
given on the right hand side. Here, two main outcomes can be derived: first,
the correlation of achievable quality and solution complexity emerges clearly,
where the improvement in quality stagnates with large trees. Second, this
improvement is significantly steeper for ARS than with SVS and stagnates

1The decision on variable Pg has the most significant impact on the power grid oper-
ation, making this approach valid.
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earlier. This is due to the fact that abstract rules compress information from
7 and thus enable derived policies to come along with smaller complexities.
This observation additionally substantiates the application of abstract rules
that are able to simplify control policies while still preserving high quality
values. Especially for ARS a maximum tree length of 24 nodes seems to be
promising, not only leading to best results, but also to a most robust heuristic
optimization process. Higher allowed length values make the genetic search
more difficult due to the increased solution space size, while not promising
better solution qualities.
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Figure 5.9: Policy Complexity Analysis for 14-Bus Case

The same analysis is performed for a larger test instance as well, namely
the 30-bus test case illustrated in Figure 5.10, where once more policies for
variables Pgs...Paye are evolved, while Vi, Q¢ and T}, are fixed. Here, the
observed facts remain the same, but the quality improvement is flatter along
the tree length steps especially for SVS. This is obvious since this test case
is larger and exhibits a more complex behavior as well as a higher amount of
input variables ¢, demanding policies of higher complexity. Once more, ARS
seems to perform well with policies of lower size than approximation with
SVS. Additionally, for those experiments in a more complex system, ARS in
general leads to slightly better results regarding the best achieved solutions.
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For both analysis, the best achievable solution quality is comparable for
SVS and ARS. This is an important indicator that the set of rules 7 contains
all necessary information from 4, but is able to compress this information and
enables the policy approximation with mathematical expressions of lower
complexity. Besides this complexity issue, another essential advantage of
using abstract rules is the scalability in order to control high amounts of
distributed devices. This fact shall be considered more in detail now.
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Figure 5.10: Policy Complexity Analysis for 30-Bus Case

5.5 Scalability Issues with SVS and ARS

The scalability of a control technology has already been stated as central
requirement, which is important especially with regard to future decentral
and distributed devices in electric power grids. Abstract rules have been
shown to be promising therefore, since they reduce the amount of needed
input variables, making policy-based control attractive to high-dimensional
decision problems. Additionally, abstract rules deliver unit-specific informa-
tion, enabling policies to provide a general decision system across multiple
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devices. While with SVS, for example a specific policy for real-power injec-
tion Pg, would need to be derived for each of NG generation units, with
ARS it is possible to compute only one general policy Pg(7) which is valid
for all units. Table 5.11 illustrates this issue for all power flow test cases.

Property 14-Bus | 30-Bus | 57-Bus | 118-Bus | 300-Bus
# Buses 14 30 o7 118 300
# Branches 20 41 80 186 411
# Generators 5) 6 7 54 69
# Tap Changers 3 2 3 9 8
7+ VAR 1 4 17 12 107
Compensators

7+ Control 13 17 33 128 252
Variables — _

# Policies p(7) 13 17 33 128 252
# Policies p(T) 4 4 4 4 4
# Variables |i] 49 89 158 466 918
# Rules |7 7 7 7 7 7

Table 5.11: Scaling of Test Cases

For each test case, 4 types of controllable units need to be considered,

namely Pg, Qc, Ve and Ti,,. For each type of unit, a number of controllable
devices exist, yielding the number of needed control variables which varies
between 13 and 252 for the smallest and the largest test case respectively.
While with SVS a specific policy would need to be approximated for each
control variable (yielding 252 needed policies in the largest case), with ARS
still only 4 policies are needed since they provide device-specific decisions.
Hence, policy approximation with ARS is highly fruitful for controlling huge
amounts of distributed devices.
A second consideration needs to be done with regard to the number of vari-
ables that a policy needs to include: when modeling policies out of all input
variables ¢ with SVS, in the largest case a policy would need to take up to 918
variables. Using ARS instead, the number of rules remains constant and the
relation |F| << [i| gives an important advantage to the optimization process
in general.

5.6 Findings & Preliminary Statement

Future power flow control tasks in smart electric grids require optimization
methods that are capable of deriving fast and robust control actions in dy-
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namic and uncertain environments for potentially high amounts of control-
lable devices. Thus, the need for scalable technologies enabling dynamic
stochastic optimal power flows is fundamental.

A new approach for dynamic approximate power flow optimization has been
proposed, where flexible control policies are learned offline that later pro-
vide (near-) optimal control actions at runtime. One special ability of this
approach is that respective policies are learned out of abstract information
entities - so called abstract rules - that make it highly scalable. The learning
procedure is realized using evolutionary simulation optimization. Since un-
certainties of a complex power grid have to be taken into account for evolving
valid policies for real-world optimization, simulation is applied as system rep-
resentation that allows to fully integrate the probabilistic system behavior
into the optimization process.

Finally, the proposed technology has been validated on well-known bench-
mark systems in the power grid engineering society, the IEEE distribution
grid test cases. Out of these benchmarks, dynamic multi-period power flow
problems have been simulated for evolving policies. It has been shown, that
for randomly chosen sets of discrete steady-state test states, the policies’ out-
puts lead to competitive power flow control actions when comparing them to
statically optimized exact solutions within these states. Thus, a technology
is available for accurate and scalable dynamic stochastic optimal power flow
control.

Here, the application to the general OPF has been demonstrated for IEEE

benchmark systems for illustrating its validity, but numerous additional ap-
plications could be of interest like shown in [50], that potentially benefit from
using the discussed principles. For example, with the same approach policies
could be evolved for intelligent and autonomous control of distributed smart
appliances like controllable plug-in electric vehicle charging infrastructures.
Thus, a generic, flexible and scalable approach was presented being capable
of representing a fundamental tool for future smart electric grids.
The next chapter shall motivate this application to future power grid engi-
neering, where a generic and illustrative smart-grid scenario with numerous
distributed devices will be developed. Applying the discussed policy opti-
mization techniques finally shows its capabilities for large-scale distributed
control issues.
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Chapter 6

Scalable Dynamic Stochastic
Optimal Power Flow Control
in Smart Grids

Having developed a policy approximation approach as scalable technology
for dynamic stochastic optimal power flow control, its application has been
shown to benchmark systems that represent traditional power grid control
schemes. This approach seems to be capable of handling numerous dis-
tributed control units within uncertain as well as volatile environments,
hence, creates a fruitful ground for enabling optimal power flow control in
future smart electric grids. This chapter is now about demonstrating this
issue, where a typical smart grids scenario is developed that is representative
for multiple future technologies. By applying the simulation-based evolution-
ary policy approximation to this scenario, the utilization of this developed
technology to power flow control in smart grids will be illustrated.

6.1 Developing a Smart Grids Scenario

In Section 2.2 the general features of this desired technological change to
smart grids have been discussed. Beside many other challenges, the issue
of guaranteeing robust as well as fast power flow control in volatile environ-
ments is of central concern.

Regarding power flows and related control tasks, important changes that
come along with smart electric grids are a decentralization of the distribution
grid operation on the one hand (i.e. small and distributed devices for supply,
storage as well as controllable demand), but an inversion of the traditional
load-dependent generation scheme on the other hand. While in traditional
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operation the controllable generation units are scheduled in order to meet
uncontrollable demand, in smart power grid operation, controllable load de-
vices shall be operated for enabling efficient usage of available generation
resources (i.e. uncontrollable supply from renewables). Thus, a new scheme
of generation-dependent load comes up in smart power grid operation, which
has to be enabled through respective computational methods for operating
optimal power flow control. Here, the efficient interplay of load control with
renewable non-deterministic supply is a common objective [58, 95].

6.1.1 Generic Power Flow Control Formulation for
Smart Grids

Section 2.2 stated the major challenges that come up with smart electric
grids, leading to new requirements for power flow control. However, even if
future smart grid implementations will come up with different shapes and
characteristics, common and generic requirements can be formulated for de-
veloping smart power flow control technologies. Their basic motivation has
already been discussed in Section 2.2 and shall now be considered in more
detail referring to the OPF problem.

Increasing Quantity of Control Variables

Due to the change to generation-dependent load as well as the implemen-
tation of numerous distributed controllable devices, the quantity of control
variables for power flow actions increases significantly, demanding for scal-
able computational methods that are capable of handling high amounts of
variables.

Higher Volatility

On the one hand, control will be performed on lower power grid levels,
where dynamics of single decisions are higher than on upright levels. On the
other hand, the progressive penetration of fluctuating renewable small-scale
power plants further increases the volatility of power grid behavior on these
lower levels, necessitating control methods that provide power flow decisions
quickly.

Need for Incorporation of Uncertainty

Similar reasons hold when considering uncertainty. Both the supply-side as
well as the demand-side within the power grid cause probabilistic influences.
This issue needs to be considered when deriving power flow actions in order
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to guarantee robust decisions under uncertainty that preserve secure as well
as reliable operation.

To discuss these issues in a formal way, a more detailed consideration shall
be given with respect to the general optimal power flow formulation, more
especially the set of dependent (state-) and independent (control-) variables
as defined in Equations 3.5 and 3.6.

With the change from load-dependent generation to generation-dependent
load, the definition of these sets changes. While load devices become partly
controllable, a distinction has to be made between still dependent load vari-
ables P, belonging to T and independent controllable load variables P ¢
within w. Thus, the cardinality of T decreases while the cardinality of con-
trol variables u increases. These vectors have to be reformulated for the
smart grids scenario accordingly:

.Iz = [PG1; VLI"’VLNL7 PLl"'PLNLNC’7 QGl"‘QGNG7 PBl"'PBNB]
(6.1)

uz = [VGl"‘VGNG7 PGQ"'PGNG7 PL,Cl'"PL,CNLc7TlmTNT; QCl"‘QCNC]7
(6.2)

with NLC being the number of controllable load units and NLNC' giving
the number of non-controllable load units respectively.

However, with such formal considerations, power flow control within smart
grids can be described in a generic way. Referring to Section 2.2, major
technologies that will influence power flow decisions are distributed storages,
distributed switchable loads (like for instance cooling devices/air condition-
ers), and finally controllable electric vehicle charging infrastructures. No
matter which of these technologies will finally be considered for power flow
control, common to them is the property that they are abstracted through
the variable P, . While switchable load devices are obviously described by
this variable, distributed storages are nothing else than a positive load when
being charged and a negative one when injecting stored energy to the grid.
For controllable electric vehicles the same applies. Thus, manifold technolo-
gies can be modeled by only assigning the appropriate value to P, ¢, but the
defined OPF formulation is still valid. Finally, smart controllers for optimal
power flow need to be able to handle the increasing cardinality of ul, while
being able to cope with dynamic as well as stochastic conditions.

Being now able to integrate the generation-dependent load scheme into the
OPF formulation, the remaining issues such as higher volatility, increasing
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uncertainty as well as high quantities of control variables can be handled by
the discussed approach of policy function approximation when being applied
to OPF. Here, robust (near-) optimal control can be enabled under dynamic
environments, being highly scalable as shown in previous experiments.
Hence, a generic technology for dynamic stochastic OPF is available with the
developed simulation-based methods for evolutionary policy approximation
and shall now be applied to a smart grid scenario. Therefore, an electric
vehicle charging control problem with consideration of fluctuating renewables
will be defined, being a representative issue for smart power flow control.

6.1.2 A Generic Scenario: Electric Vehicle Charging
Control

Controlling charging processes of electric vehicles - as already discussed in
Section 2.2 - is highly promising to the smart grid concept and already rel-
evant to practical implementations. Within this work, based on this idea a
scenario for power flow control shall be developed that is representative for
other smart grid applications too, hence, provides a suitable basis for testing
the developed policy approximation techniques to smart grid optimization
tasks.

While the general aims of controlled charging have already been shown, it is
a representative scenario due to multiple reasons:

e Electric vehicles - plugged to charging infrastructures - represent spa-
tially distributed and controllable load devices scattered throughout
distribution grid areas.

e Like other controllable load appliances (e.g. thermal devices), charg-
ing load is governed by human individual behavior and needs, hence
exhibits probabilistic situations.

e Even if being governed by such uncertain influences, individual be-
havior typically follows statistical patterns to a certain degree which

enables their consideration through probabilistic models.

e Both high charging power values as well as long parking intervals at
charging lots allow promising degrees of freedom for control aims.

e Being interrelated with non-deterministic and volatile renewable sup-
ply, complex power flow control scenarios can be constructed.
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Hence, optimal electric vehicle charging control can be applied as repre-
sentative issue, unifying manifold characteristics of future smart power flow
control problems.

6.2 Controlled EV Charging - A Survey

6.2.1 General Aim

The mentioned integration of plug-in electric vehicles can be clearly stated
as one of the hot-spots in power grid engineering nowadays. Being a possible
chance for balancing fluctuating supply from decentral renewables, possibly
critical effects may come up as well with the revolution to electric mobility
caused by the non-deterministic nature as well as the comparably high load-
values associated to charging processes.

Various researchers examine the problem of integrating electric vehicles op-
timally into power grids. The main idea is that some kind of central or de-
central control influences the individual charging behavior in order to avoid
critical peak loads on the one hand, and to flatten the overall load curve on
the other hand [22, 23, 24, 57]. While these approaches generally have in
common that they try to control the resulting charging power of each EV
directly, a second trend needs to be mentioned that employs indirect con-
trol. Here, various works have been performed [29, 71, 99], using an indirect
market-based approach for influencing EV charging. Final charging decisions
are left to the end users, but electricity price tariffs are designed to encourage
them to make charging decisions similar to what direct control of charging
would aim at. Therefore a time-of-use (TOU) rate would charge a lower price
for electricity during defined hours of the day. This could provide users with
an incentive to delay charging, for example from peak time in the evening,
when they arrive at home, to off-peak hours at night. Furthermore, real-time
pricing (RTP) is a second common issue, which dynamically allocates prices
based on the real-time electricity market and could provide EV users with
even finer grained price information.

However, purely price-based control is not able to ensure secure power grid
operation at all (i.e. enable guaranteed constraints satisfaction) since it still
allows uncontrolled behavior, even if it is generally capable of globally shifting
charging to off-peak hours. Hence, at the point where the charging decision is
finally made, the actual physical condition of the power grid has to be taken
into account for example in order to avoid overloading of devices, causing the
fundamental need for direct control schemes.
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6.2.2 Direct Control Strategies

Direct charging control manages the charging power of controllable EVs di-
rectly during operation. Several researchers already identified the abilities
of direct control and therefore formulated manifold optimization problems,
that can be grouped to a set of general classes when considering their objec-
tives as well as the modeling assumptions. A holistic overview on existing
approaches and common assumptions for optimal charging control shall be
provided as follows:

Clement et al. [23] investigated influences on the distribution grid when
proposing an optimal charging control that minimizes power losses. While
scheduling the load of EV charging to off-peak time periods of the base load,
the system peak demand as well as the overall power losses are reduced. With
similar motivation, Sortomme et al. [100] defined an EV charging problem
as a quadratic program, also considering a given distribution grid area, rela-
tionships among power losses, load factor and load variance. Popular works
have also been published by Saber and Venayagamoorthy [93], that used
EV charging control with particle swarm optimization for unit commitment.
Sousa et al. [101] published a thorough overview of different approaches when
applying simulated annealing for matching renewable supply with charging
demand, also considering power flow computation. However, they assumed
both consumer as well as renewables to behave according to deterministic pat-
terns, disregarding uncertainties. All these works apply steady-state power
flow computation, which is valid for power flow decisions respectively charg-
ing control actions on a time scale of some minutes and more.

With the deployment of smart grid technologies, controlling and scheduling
of EV charging on a lower time scale may become possible as well, making
charging control a fruitful ground for services such as frequency regulation.
Using a V2G (Vehicle-to-Grid) aggregator model, Han et al. [40] proposed
the scheduling of EVs for frequency regulation, where an optimization pro-
cedure was applied for deciding between charging and regulating with the
target of optimal costs for the customer. With similar intention, [98] formu-
lated a quadratic program for the optimization of charging schedules. Given
these schedules, frequency regulation was performed in distribution feeders.
All these works principally consider the power grid operation as primary mo-
tivation for optimizing charging decisions, building one general class of direct
control approaches.

A much simpler but also common approach is to disregard power flow com-
putation, but only consider the resulting load profile as grid-side metric to
be sufficient. [51] and [119] for instance used charging control in order to
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flatten peak-load in the overall resulting load profile..

Another class considers purely supply-oriented charging as central aim, with
the objective of optimally using energy from renewables. Comprehensive dis-
cussions can be found in [10] [94] and [109]. Their common feature is the
general aim of considering grid-wide renewable supply plants in order to op-
timally use their power output for charging EVs. Besides grid-wide control,
similar works consider local objectives (like for instance at a single charging
infrastructure that is connected to a small-scale supply plant) for scheduling
the EV charging. A thorough overview can be found in [68], that also for-
mulated a linear program for optimally matching photovoltaic supply with
EV charging load at single grid nodes.

While this class of approaches is very promising for both enabling higher
penetration rates of renewable supply on the one hand, but making electric
individual traffic more ecologically attractive on the other hand, the general
difficulty is the uncertainty that comes up with both renewable supply as
well as EV user behavior, that both have to be considered for making valid
control decisions but get disregarded in most existing approaches.

No matter if direct or indirect control, the mentioned approaches for op-
timization of charging decisions can generally be assigned to three classes as
shown in Figure 6.1. While these classes are generally not disjunct (some
approaches may consider two of these motivations together), they generally
provide a rough overview of existing issues. However, for a real-world appli-
cation of large-scale charging control, all these aspects have to be considered
in common. For example, an end-user would aim at charging with lowest
possible financial costs while at the same time the distribution system op-
erator needs to maintain secure operation (i.e. has to guarantee various
grid-parameters within certain ranges) under probabilistic supply as well as
demand conditions. Thus, a desired technological solution should be able to
consider a holistic optimization procedure unifying all these aspects.

Besides the formulation of the optimization problem itself, another major
challenge is the modeling of the EV usage that characterizes electric vehicle
charging load. Respective approaches typically assume usage patterns that
are considered as being sufficient for obtaining time and duration of charg-
ing demand. Different approaches try to tackle this task using load profiles
from statistical investigations [23], representations of individual behavior us-
ing Queuing Theory [109] or simulation via Monte Carlo Methods [100]. All
these works generally have in common that they apply some mathematical
procedure in order to compute deterministic profiles of electric vehicle charg-
ing load that are later used within certain optimization methods. A richer
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Figure 6.1: Classes of EV Charging Control Optimization

approach would be to directly integrate the EV users’ uncertain behavior
into the optimization process for deriving actions of both high quality as well
as high robustness under dynamic and stochastic environments.

Using common assumptions as in related works, an optimization problem
shall now be treated that characterizes most developments in literature.

6.2.3 Optimizing Deterministic Models

The optimization problem that will now be formulated represents typical
assumptions of most works in literature, where a fleet of EVs is given with
known driving patterns that should be charged with respect to some objective
function, having a joint power limit. This power restriction represents for
instance the limiting power capacity over all charging spots of a parking
area, or the maximum free capacity that a power grid is able to use for
charging. The objective function may be the minimization of charging costs
(given some tariff data) or the optimal usage of renewable energy (given
some forecast of for example photovoltaic injection). Thus, the optimization
problem can be defined as follows:

Let Pgy,, be the charging power of EV n at time step ¢. Considering a
time horizon of length T', the aim is to minimize some utility (cost-) function
throughout this time horizon, where at each time step the value of this func-
tion is cf;. Knowing that all NV EVs have a common power constraint pasax,
that provides the maximum power capacity that is available for charging at
time step t, the control variables represent the “share” of this power capacity
U, that each EV receives for charging. Thus,
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Pgvy, = Un * Draxy. (6.3)

While all EVs together are restricted to this common power capacity,

each EV has a proper maximum charging rate cryax,, that gives its local
power constraint! which may be distinct throughout different EVs.
Since each EV needs to satisfy a specific minimum state-of-charge (SOC)
when leaving the charging point, Ey/rn, gives the minimum charged energy
at the end of the time horizon for each vehicle. Hence, all constraints can be
formulated as:

VtVn . um X pMAXt S CTMAXt,m (64)
N
VY g, <1 (6.5)
n=1
Ty
Vn : Z PEVt,n * At S EMINna (66)
t=1

with At being the length of a time step ¢ in hours, and T,, the time horizon
(i.e. time steps until leaving) of each EV n. While Equations 6.4 and 6.5
give the local (of each EV) and global (throughout all EVs) power capac-
ity constraints, Equation 6.6 ensures a minimum charged amount of energy
when leaving.

Furthermore, the objective function is stated as:

N T,
F(u) = ZZ[ut,n*pMAxt*At*cft], (6.7)
n=1 t=1
where u gives all the control variables. While the objective function aims at
minimizing costs of charging, the actually charged energy is multiplicated by
the utility function value within each time step and summarized over all EVs
and all time steps.

Since both objective function as well as all constraints are linear, exact
methods can be applied for solving the optimization problem. As in most
works in literature, all data is assumed to be given deterministically. This

!The maximum charging rate of an EV may be constrained due to the installed charg-
ing infrastructure (i.e. the technical limitations of the charging point) or the charging
controller of the EV itself. In the latter case, the maximum charging rate may vary along
time.
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means that for each vehicle its time of departure, its arrival-SOC (and so
the needed amount of energy until departure), the common power capacity
Puaxy as well as the individual maximum charging rate craax,,, are known.
As utility function, the electricity tariff can be taken that varies over time.

For following analysis, the defined optimization problem is implemented
in Matlab using Simplex solver within the linprog()- function. A more de-
tailed discussion on the implementation can be obtained in Appendix A.7.
Now, optimization experiments shall be performed for illustrating the defined
problem.

Experiments’ Data

As underlying motivation, a charging scenario shall be treated that may
occur at a company with a car pool of N = 8 EVs that are used by its em-
ployees for commercial reasons. In actual developments, such scenarios are
seen as primary applications for first-generation electric vehicles, as being
investigated in an Austrian demonstration project [80].

In such a scenario, the situation may occur that all EVs come back from
their morning-trips around noon and need to be charged until the next trip
begins (such situations actually occur with high probability as shown in the
CMO project [80]). Thus, the following arrival- and departure-times result
as shown in Table 6.1.

EV # | Arrival | Departure | cryax [KW] | Eyrn [kWh]
1 12:00 16:00 10 8
2 10:30 13:30 10 8
3 12:30 15:30 10 6
4 11:00 15:00 10 7
5 11:00 14:30 10 9
6 13:00 17:00 10 5
7 12:30 16:45 10 8
8 12:30 17:30 10 8

Table 6.1: Vehicle Data for Demonstration Scenario

For simplicity reasons, it is assumed that all charging points as well as
all EVs are equipped with the same technology, i.e. the maximum charging
rate of cryrax = 10kW is constant?. After arrival, the users prefer to fully
recharge their batteries, hence, Fjy;;n gives the consumed energy from the

2Batteries are assumed to be ideal, taking a constant charging current.
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last trip (which took between 20 and 32 km assuming a consumption of 0.25
kWh/km as being typical for actual market-available EVs).

The common power capacity pyax is defined to be 25kW (installed power
for charging infrastructure), which is reduced to 17kW during office hours
(8:00-19:00). Within this scenario, the objective shall be to minimize finan-
cial costs for charging. For doing so, a dynamic electricity tariff is assumed
as utility function c¢f with regard to electricity spot market prices. Both
global power capacity pyrax (red) and utility function cf (electricity price,
blue) are shown in Figure 6.2.

100 T T T T T T T — 30
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N
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Electricity Spot Market Price [€/MWh]
>

0 3 6 9 12 15 18 21 24 1°

Time [h]
Figure 6.2: Electricity Price Utility Function and Common Power Capacity
Constraint

For the given situation, the optimization problem can be solved exactly
according to the definition above. At is chosen to be 15 minutes, which is a
common time granularity for control in low voltage distribution networks.

In this show case, the consideration of local renewable supply is neglected.
However, this can easily be integrated by extending the objective function
with some incentive-term that favors charging with renewable energy. The
resulting objective function would result to:

N T,
F(u) = ZZ[ut,n*pMAXt*At* (cfi — pi)], (6.8)

n=1 t=1
where p; gives the profit at time step t for favoring charging with renewable

energy. The unit of p; needs to be the same as that of cf;, thus, [,;E;‘[}"}f ].
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Experimental Results

The solution to this optimization problem shall now be discussed. For com-
parison reasons, Figure 6.3 gives the resulting charging power that would
result when using a fair scheduler for charging control instead of an opti-
mization procedure. This fair scheduler considers the common power capac-
ity pamax, at time step ¢ and distributes this capacity fairly to all EVs that
are demanding energy (i.e. are plugged to the charging infrastructure and
are not fully charged yet) at this moment. The parking durations (i.e. the
potential time intervals for charging) are indicated for each EV with a solid
blue line, where the charging power is given in the range [0, crpsax]. These
charging schedules resulting from a fair scheduler tend to charge at the ear-
liest possible time, disregarding the electricity tariff.
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Figure 6.3: Results of Fairly Scheduled Charging Control

Figure 6.4 gives the optimized charging control according to above prob-
lem definition, obtained with Simplex solver in Matlab. Similar to the fairly
scheduled control, the charging demand is satisfied with respect to all con-
straints, but the utility function (i.e. price for charging) is minimized. Com-
paring the resulting costs for charging all EVs, the fair solution comes to 3.98
Euro while the optimal solution leads to costs of 3.64 Euro®. Since the time

3Notice that stock market prices are used as utility function; real-world consumer prices
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Figure 6.4: Optimal Charging Control Solution

intervals for charging are situated at times of high costs, this difference is
quite small (around 9%) and would be higher when considering for example
parking at night.

However, the optimized solution strictly uses “cheap” time steps for charging
(which is obvious), thus, it may occur that charging is shifted to time steps
immediately before departure (consider for example EVs nr. 1,3,4,5,6,7 in
Figure 6.4). Hence, resulting schedules are only valid as long as all departure
times can be predicted exactly (which is the assumption in most works in
literature). In the case that certain EV users would leave the parking lots
earlier than predicted, their EVs’ batteries would not be charged fully, vio-
lating the Ej;y-constraint (Equation 6.6).

Hence, in an uncertain environment where EV users behave according to
individual decisions, such a deterministic optimization is not appropriate.
With such a scenario, it can illustratively be shown that the integration of
uncertainty as well as of the system’s dynamics is of fundamental necessity
for deriving valid control decisions.

are a multiple higher depending on taxes and grid operation costs in the respective region.
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Many of the prior considerations are related to the Clean Motion Offensive
demonstration project [80], where manifold strategies for controlled charging
as well as its real-world applicability are evaluated. The numerical results
together with underlying scenario data have been collected as described in
[48]. A more detailed discussion on the Matlab-implementation of this opti-
mization problem can be found in Appendix A.7.

6.2.4 The Need for Power Flow Consideration

Another fundamental issue is the consideration of the physical power grid
model in order to not strain distribution equipment and maintain secure grid
operation when making charging decisions. Many researchers therefore in-
corporate constraints into the optimization process to restrict for instance
the common charging power capacity of all EVs to a maximum value (such
as pyax before). However, when optimizing a system like a distribution grid
with complex interrelations between numerous instances of demand, supply
as well as distribution equipment, a more thorough approach is needed that
considers the actually resulting (local) power flows throughout the entire grid
for each possible operation point. Here, a general power constraint (such as
pmax) that neglects local conditions in the grid may be too unprecise and
would even lead to local constraint violations. Moreover, probabilistic condi-
tions need to be analyzed in more detail in order to find an efficient incorpo-
ration of EVs, domestic and commercial loads, distribution equipment and
renewable supply sites.

A simple demonstration model should substantiate the idea that both
thorough power flow modeling of the network as well as the consideration of
uncertain conditions are essential for computing valid charging decisions. A
synthetic model is set up as shown in Figure 6.5 that describes a quite simple
form of a distribution feeder. Detailed model data is given in Appendix A.8
of this document and is not necessary now for the following demonstration.
There are 3 load buses in the system (3,4,5) that are connected to a higher
power grid level via Bus 1. Bus 3 and 4 serve domestic areas, each of around
40-50 households. At bus 3 there are additionally charging stations installed
for EVs that are used by its residents. At bus 5, a large commercial area is
connected to the grid that is equipped with charging infrastructure and an
additional photovoltaic plant with peak power of 25 kW. Since in the near
future mainly mode 2 charging with up to around 10kW will be applied as
charging mode, therefore, a charging power of maximum 10kW is assumed
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Variable Constraint| Variable Constraint
Power Flow Through | < 500kW Power Flow Through | < 300kW
Line 1-2 Line 2-4
Power Flow Through | < 200kW Power Flow Through | < 200kW
Line 2-3 Line 4-5
Charging Power per | < 10kW Cumulated Charging | < 150kW
EV Power all EVs

Table 6.2: Constraints Demonstration Scenario

for each EV in the system. This specification is related to a three-phase
charging process with 400V and 16A, as exemplarily possible when using
a Mennekes VDE (Type 2) plug connector!. 20 EVs are existing within
this system and behave individually, demanding electric power when getting
charged. In order not to overload the electric distribution equipment, a max-
imum cumulated charging power of pyrax = 150kW is defined for all EVs
which forms a possible constraint to optimization algorithms. For guaran-
teeing secure distribution grid operation, the following simple constraints are
formulated in Table 6.2 for restricting power flows over cables.

Three experiments will be discussed now in order to get an idea of different
states of this system during a synthetic day. For reasons of simplification,
all exact power flow results are listed in the respective appendix, only the
necessary key-values are used now.

Experiment 1: Weekday, 8:00 p.m.
This experiment should show a typical weekday at around 8:00 p.m., where
15 of the 20 EVs have already left the owner’s working location at bus 5. 10

4This configuration, as existing for example when charging the well known Tesla Road-
star or many other actually market-available EVs, is certainly one of the most important
technical specifications in this field in actual developments.
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of them already arrived at home, were plugged to the charging infrastructure
immediately after arrival and are still charging. 5 EVs are on the streets
or already reached a full battery SOC, thus do not demand electric power
at this time. The remaining 5 EVs belong to owners that are at bus 5 and
charge their cars for later departure. Since 8:00 p.m. is peak-hour in most
distribution grids, the base load caused by domestic consumers is high. The
photovoltaic plant supplies only a quite small amount of power, 5 kW are
assumed. The total load data is given in Table 6.3.

Bus Nr. | Base Load [kW] | EV Charging load kW]
3 90 100 (10 EVs at 10 kW each)
4 91

5 60 50 (5 EVs at 10 kW each)

Table 6.3: Load Data Experiment 1

The power flow calculation provides the following results for line flows in
Table 6.4.

Cable | Power Flow [kW] | Cable | Power Flow [kW]
1-2 388.0 (of 500) 24 197.1 (of 300)
2.3 | 190.2 (of 200) 45 | 105.5 (of 200)

Table 6.4: Power Flow Result Experiment 1

As a result, no violations occur when considering the constrained active
power flows over distribution cables. Hence, all plugged-in EVs are allowed
to charge with their maximum power of 10kW from a power grid point of
view. The constraint that all EVs together have a cumulated charging power
of maximum 150kW holds.

Experiment 2: Weekday, 1:00 p.m.

The second experiment shows another typical weekday, but around 1:00 p.m.,
where some part-time workers already arrived at home or are on the streets,
the rest remain at work. Since even if it is cloudy, supply from the pho-
tovoltaic plant is quite high at this time (15 kW), all residing EVs at the
commercial center are charging. 13 EVs are assumed to remain at bus 5 at
this time and are plugged-in for charging. 4 EVs are on the streets or already
fully charged at bus 5, 3 EVs belong to part-time workers, immediately ar-
rived at home and plugged in at bus 3, 1 of them is already at home and
fully charged. The resulting load data is given in Table 6.5. The base-load
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Bus Nr. | Base Load [kW] | EV Charging load kW]
3 65 20 (2 EVs at 10 kW each)

4 91

5 93 130 (13 EVs at 10 kW each)

Table 6.5: Load Data Experiment 2

around noon is quite at peak both for the commercial center, as well as for
domestic customers.

Executing power flow calculation, the resulting line flows are listed in Table
6.6:

Cable | Power Flow [kW] | Cable | Power Flow [kW]
12 | 387.0 (of 500) 24| 301.0 (of 300)
2-3 85.0 (of 200) 4-5 209.0 (of 200)

Table 6.6: Power Flow Result Experiment 2

It can be seen clearly that even if only in sum 150 kW are used for charg-
ing the EVs (i.e. the pyax constraint is satisfied), cables 4-5 and 2-4 are
overloaded. Thus, a simple global constraint py;4x on maximum cumulated
charging power for all EVs in the system is not sufficient, a thorough consid-
eration of the resulting power flows in the grid is necessary for evaluating the
system state. In this case, intelligent charging decisions are necessary for de-
creasing the charging power of single EVs in order to not stress distribution
equipment.

Experiment 3: Weekday, 1:00 p.m., Probabilistic Consideration

The last simple experiment should show the influence of uncertain be-

havior within the system. Experiment 2 is used with equal load data, but
uncertainty is added at the supply side. What if, for example, the atmo-
spheric condition is very volatile at this time and solar irradiance increases
rapidly because of decreasing cloudiness, yielding higher power supply from
the photovoltaic plant of for instance 25 kW peak injection? The resulting
line flows come up to the values in Table 6.7.
Now, due to increased supply from the fluctuating renewable plant at bus
5, line flow constraints are all satisfied, even if the load data is equal to
experiment 2. Thus, it is clear that the degree of uncertainty in a given
system has to be added for finding valid charging decisions. In this case,
uncertainty is only given at the supply side, but in real world it additionally
occurs at the demand side as well.
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Cable | Power Flow [kW] | Cable | Power Flow [kW]
12 | 376.8 (of 500) 24 | 290.9 (of 300)
2-3 85.0 (of 200) 4-5 198.9 (of 200)

Table 6.7: Power Flow Results Experiment 3

Concluding these three simple experiments within a synthetic test model, it
can be clearly stated that modeling the power flows in a given grid thor-
oughly is essential in order to find valid charging decisions. Interrelations
in an electric network are too complex as to just form a constraint like re-
stricting the cumulated charging power of all vehicles to a maximum value
puvax- Additionally, variabilities of uncertain conditions in the system like
the supply of renewables have to be taken into account in order to preserve
robust system operation.

Since it has been shown that accurate simulation of the distribution grid’s
state with all its uncertainties is fundamental for validating the situation,
an optimization approach is needed that is able to incorporate this into the
computation of charging decisions.

6.2.5 Conclusion: Lack of Existing Work

As stated, plenty of research has already been performed to optimize EV
charging decisions, but there are still open issues that have to be addressed
in more detail. One problem is the uncertain behavior of the system, which
is caused both by probabilistically behaving EV end-users at the demand
side as well as fluctuating and non-deterministic power plants on the supply
side. Many approaches aim at integrating both renewables’ supply as well as
EV users’ power demand into optimization problems, but they mostly derive
some deterministic patterns of them for building the problem-model, disre-
garding uncertainties as well as the dynamics of these influences. Therefore,
an optimization method is needed that incorporates both the uncertainty as
well as the dynamics of the system when computing optimal charging deci-
sions.

Another important issue is the consideration of actually resulting power flows
as well as local conditions throughout the entire system. Even if integrat-
ing power flow computation into the optimization problem formulation is a
complex issue, it is necessary for deriving valid control actions under consid-
eration of secure and reliable power grid operation.

Hence, a more holistic optimization problem formulation needs to be per-
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formed, which is capable of integrating both the demand side’s as well as the
supply side’s uncertainties. The ability of deriving decisions with respect to
actually resulting power flows in the system is an additional requirement in
order to maintain reliable power grid operation during charging control. Such
a problem will have to be tackled with an appropriate method for stochastic
and dynamic optimization, which is provided by the developed simulation-
based evolutionary policy approximation scheme that shall later be applied.

6.3 EV Charging Control: Holistic Optimiza-
tion Problem

Until now, EV charging control has been identified as generic problem sce-
nario for future smart grid operation and optimization tasks. While reviewing
existing approaches in literature and investigating some representative sce-
narios, the main requirements have been worked out that need to be satisfied
for making valid charging decisions, which cannot be fulfilled all together with
existing approaches:

e Inclusion of power flow computation for maintaining reliable power grid
operation during charging control.

e Providing a holistic system representation, containing appropriate rep-
resentations of the EV user side, the physical power grid as well as the
probabilistic demand side.

e Consideration of systems’ uncertainties both existing at the demand as
well as at the supply side.

e Dynamic optimization for providing quick and robust control actions.

Therefore, the EV charging control optimization problem from Equations
6.3 - 6.7 needs to be reformulated and extended as follows.

6.3.1 Formal Definition

A formal description should clarify the statement of the holistic EV charging
control problem. Test scenarios derived from this description will be pro-
vided with additional data later in order to build the base for experimental
investigations.
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Given a fleet of n EVs within some distribution grid area, over a future
time interval of £ = 1...T" time steps optimal values for Pgy,,, shall be com-
puted that give the active charging power of each EV. Assuming that the
system’s behavior can be predicted to a certain degree within the considered
time interval, this prediction is related to uncertainty of various random sys-
tem variables (i.e. photovoltaic injection, EV departure times, etc.). Thus,
the aim is to optimize control variables ugy with the objective of minimizing
the expected utility function value, hence:

min» _ E(F(Tgv,)). (6.9)

At the end of the considered time interval, each EV must have received a
specific amount of energy for satisfying its daily demand. As additional load
caused by charging of electric vehicles could endanger power grid security,
operational power flow constraints have to be satisfied that ensure secure
distribution grid operation within each discrete time step® t. Steady- state
security constraints need to be considered as already defined in the general
OPF formulation (see Equations 3.8 - 3.11) for ensuring lower and upper
bounds for generator real and reactive power output, maximal power flows
over lines/branches as well as admissible voltage deviations within each time
step. These constraints need to be considered by performing power flow com-
putations in order to integrate the distribution grid operation into charging
control optimization as postulated before.

In order to guarantee feasibility of solutions from the EV fleet point of
view, different restrictions have to be satisfied as well which can be stated
as inequality constraints: at the end of the scheduling horizon, the energy
demand of each single EV has to be satisfied as before, thus the constraints

Vt‘v’n . PEVt,n S CTMAXt,na (610)
T
Vn : Z PEVt,n x AL S EMINna (611)

t=1

still hold for each EV. Therefore, the sum of charged energy over all discrete
time steps t has to reach a minimum to satisfy user’s needs as well as the
charging infrastructure’s physical restrictions.

®Notice that charging decisions will be made on a time scale of more than some minutes,
thus, once more steady-state power flow considerations are sufficient.
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Once more, the set of constraints is considered through penalizing the con-
straint violation C'V with a weight wey . Assuming that the vector of control
variables contains the charging power value for each EV at the specific time
steps, i.e. Pgv., = Ugv,n], the final objective function can be stated as
follows:

min Z (upvs) + Woy * CV (ugyy)], (6.12)

Since this optimization task is related to uncertainty, the aim is to opti-
mize the expected fitness function value (as well as the expected constraint
violation) rather than the exact one (which indeed is not observable), hence
Equation 6.12 becomes to:

min Z E[F(upy,) +Wav * CV (ugy,)], (6.13)

In the end, this holistic optimization problem formulation considers both
the EV charging problem formulation as before, but additionally integrates
power system operation aspects. Since uncertain system variables have to
be integrated into the optimization of control decisions over time, it can be
expressed as a dynamic stochastic optimal power flow (DSOPF) problem.
Here, simulation-based evolutionary policy approximation is applied as be-
ing the core technology of this work, where the estimated performance of a
solution candidate (Equation 6.13) is computed through simulation.

6.3.2 Simulation Model

Now, the simulation model of the system shall be described in detail, con-
sisting of the distribution grid model together with renewable supply plants,
and the traffic model that represents the electric power demand over time of
EVs.

Distribution Grid Power Flow

One great aim of integrating the distribution grid model into the holistic sim-
ulation model is to derive the resulting state of the physical power grid for a
solution candidate. Therefore, power flow simulation is applied for comput-
ing the electric voltage and current magnitudes throughout the entire grid
for ensuring appropriate operation of distribution equipment with respect
to defined OPF security constraints (Equations 3.8 - 3.11). Additionally,
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this simulation is necessary in order to completely evaluate the total power
consumption (including losses) within a given state that indeed affects the
objective function value.

The mathematical models applied for representing the distribution grid are
presented now in order to provide a complete formulation of the problem:

Branches are modeled using the standard “single-phase line model”, with
complex series impedance and line charging capacitance. The complex cur-
rent injection at the beginning and the end of each branch is computed with
Equation 6.14, using the branch admittance matrix Y, that takes real- and re-
active part of the impedance as well as the line charging capacitance. In case
of an ideal phase-shifting transformer at the beginning of a branch, phase
shifting angle and tap ratio are added for computing the branch admittance
matrix.

[be o %e

] yi ] 010
Generators and loads are modeled as complex power injections at specific
buses. For instance, for generator j, the injection is given by

Saj = Po;+j%xQa;° (6.15)

A complex load is a negative constant generator. Both for loads and gener-
ators, a constant power factor is assumed during all experimental investiga-
tions.

The network equations can be obtained by formulating a general branch
admittance matrix over all branches b as well as a general bus admittance
matrix over all nodes (buses) j in the system. Using these matrices, resulting
nodal injections S; can be derived, such that a general AC-power balance
equation for each bus j can be stated, split into its real and reactive parts:

P(©,V)+ P, — Pz =0 (6.16)
Q;(0,V)+ QL —Qc=0 (6.17)

For solving the AC load flow, slack bus method is applied according to [116],
where load-buses are represented as so called PQ)-nodes with fixed real- and
reactive injection. Generator-buses are PV -nodes with fixed real-power in-
jection and voltage magnitude, furthermore, a single slack bus is defined with

6Notice that the index j gives the bus number, while the other j indicates the imaginary
part.
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fixed voltage angle © and real power slack. Newton-Raphson method is ap-
plied for solving the n PV +2n P() dimensional system of nonlinear equations.
Further information about solving the steady-state AC load flow can be ob-
tained from the literature [116] in general and in the MATPOWER-manual
considering the specifically used implementation [120].

Probabilistic Renewable Power Supply

As stated before, the combination of EV-charging as controllable load with
fluctuating supply from renewable plants is a promising future scenario for
smart electric grids. Therefore, these renewable power plants have to be
integrated into the distribution grid model appropriately, in order to repre-
sent their influence on the power flows in the grid and the resulting charging
decisions respectively. Each plant is modeled as a generator according to
Equation 6.17, where its real-power value depends on a probabilistic distri-
bution. Since supply from renewables can be forecasted with partly high
accuracy, this distribution describes the uncertainty of the forecast.

Wind Power Plants

Prediction of available power is a major concern for many stakeholders in the
electric power supply sector like for instance power grid operators or electric-
ity market retailers. Therefore, plenty of effort has been invested in building
accurate methods for forecasting. Especially the modeling of wind power is a
highly challenging task, since wind speed depends both on atmospheric and
meteorologic features as well as geographic properties of the surface around
wind power plants. Therefore, forecasting techniques and features used for
building models depend on the modeling horizon. While short-term predic-
tion of wind power is primarily applied using purely data-based time-series
methods for modeling wind speed, mid-term and long-term forecasting is be-
ing performed by using numerical weather prediction with meteorologic data
and analytical modeling techniques [15] [70]. Generally for both short as
well as medium and longterm forecasting, accuracies around 10% to 15% are
reachable, depending on the specific site’s characteristics.

Within probabilistic power flow studies, intermittent wind power sup-
ply is generally modeled using Weibull distributions together with a physical
model of the wind power plant [109]. For deriving the resulting power output
of the plant in herein experiments, within each simulation run the forecasted
wind speed value is sampled from a Weibull-distribution. With this resulting
wind speed value, the corresponding power output can be computed using
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the plant’s power curve. The power curve describes a simplified relation be-
tween the wind speed and the electric power output of a specific wind power
plant considering its physical characteristics within a simple two-dimensional
function [70]. For most applications, this simplification is a sufficient repre-
sentation. The power curve of a plant is usually available with its data sheet
and is valid for the herein performed system modeling, Figure 6.6 gives an ex-
emplary one. Here, the so called cut-in speed (where the mechanical torque
exerted by the wind is high enough to make the turbine blades rotate) is
around 2 m/s. There is an exponential increase in power output (which pri-
marily makes the integration of wind power plants critical for grid operation)
until the plant reaches its rated output at around 16 m/s, where it reaches
the maximum capacity of the generator (40 kW in this case). For higher wind
speed values, the plant limits the output which is most often performed by
adjusting the blade angles (but other techniques exist as well). At around 25
m/s, most plant technologies cut-down the generation. Since the mechanical
torque exceeds critical limits and could endanger the construction, this is
called cut-off speed.

40_ T T T T T -

Power Output [kW]
N w
o o

-
o
T
I

O 1 1 1 1 1
0 5 10 15 20 25 30

Wind Speed [m/s]
Figure 6.6: Exemplary Power Curve

Hence, for simulating the output of a power plant, a predicted wind speed
value (sampled value from the Weibull distribution) yields the real power out-
put by applying it to the power curve.

Photovoltaics
In principle, wind power plants are the more critical issue in electric power
grid operation, which is caused by the facts that wind speed is more fluctu-
ating (both due to meteorologic reasons as well as because of the exponential
increase of wind speed as illustrated above) than solar irradiance on the one
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hand, but their installed capacities are much higher than for photovoltaic
(PV) plants on the other hand. Nevertheless, PV plants have to be consid-
ered as well since they form the second important renewable source beside
wind power and provide well predictable but still uncertain power output.

Since modern PV stations are typically equipped with power point track-
ing controls, their output can be assumed to be linear with the solar irradi-
ance, i.e. no mapping is needed such as a power curve. Usually reachable
accuracies for PV generation prediction lie around 10% as well, hence, a
probability distribution has to be added for describing this uncertainty. For
PV output modeling, a normal distribution can be applied similar to [34] for
describing the accuracy of the forecasted power supply, where the assumed
mean value represents the predicted power output.

All these small-scale distributed power plants are integrated into the dis-
tribution grid power flow model by just assuming them to be a complex
injection according to Equation 6.15 and adding this injection to an appro-
priate bus. Similar to loads where a constant power factor is assumed, for
renewable generation units as well a constant relation between active- and
reactive-power injection is defined. This relation is taken from the original
model definition (i.e. the IEEE 33-bus test feeder in later experiments).

Electric Individual Traffic Charging Demand

The consideration of individual traffic is necessary in order to model at which
time single EVs will be parked and ready for charging on the one hand, but
further for evaluating if each single vehicle received the demanded energy
on the other hand. This model has to be accurate to specify location and
charging demand of each single EV, but has to be efficient for supporting low
computational effort for solution candidate evaluation. In [51], discrete event
simulation has been proposed for traffic behavior simulation. The advantage
of using this simulation method is that with probabilistic queues an exact
model of waiting EVs can be built that queue at the same charging spot.
Thus, interrelations between single entities (EVs) can be described very ac-
curately. Since actual surveys on near-future electric mobility show that the
lions’” share of charging processes will take place at domestic charging spots
and that charging infrastructure will be available in higher quantity than
EVs exist, it is valid to assume that each EV has it’s own charging spot
once it reaches a location where charging infrastructure is available. Hence,
a simpler simulation approach can be applied.
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In [44] and [52] the simulation of randomized driving patterns has been
introduced where for each EV a separate driving profile is generated according
to its usage pattern. Such a synthetic driving profile is simulated at each run
for each EV that represents time interval and location of being parked and
plugged to a charging infrastructure. An exemplary profile of a vehicle over
a day is shown in Figure 6.7, which is either being parked at home, at any
location at work or free time, or is currently on the way.

Free Time

Work

Home

On The Way

0:00 a.m. 12:00 p.m.

Figure 6.7: Driving Pattern Representation

For each vehicle, at the beginning of the simulation the necessary data for
generating these profiles needs to be available, namely the general pattern
that gives information such as estimated departure time in the morning, typ-
ical work duration, or duration for driving from work to home location. Dur-
ing simulation, all these figures get randomized in order to obtain real-world
uncertainty of individual decisions and influences from the environment.

If the vehicle is parked at any location, it is potentially ready for charg-
ing as far as charging infrastructure is available. Therefore, additional prob-
abilities are assumed that model the availability of charging equipment at
potential locations, namely ppome for parking at home, pyo for parking at
work as well as pyre. for locations in free time.

Real-world data about driving behavior is used as essential information
for the simulation model that will be described in more detail when setting
up scenarios for experimental investigations. A thorough discussion on the
traffic simulation as well as the applied assumptions for later experiments
can be found in Appendix A.10.

120



Scalable Dynamic Stochastic Optimal Power Flow Control

Stephan Hutterer
in Smart Grids

Interaction of the Simulation Model Components

The so defined simulation model components aggregate to the system
representation as shown in Figure 6.8.

EV Charging Behavior Renewable Supply
Randomization of Driving Profiles Probabilistic Injection Models
Matlab Matlab
Distribution Grid
Power Flow Simulation Matlab: MatPower
System Representation

Figure 6.8: Holistic Simulation Model

From the electric vehicle charging behavior simulation, the resulting charging
load is sampled and inserted into the electric power grid model. Sampling
solar irradiance and wind speed from the probabilistic models of renewable
supply, the respective power generation is computed before updating the
distribution grid simulation model and computing the resulting power flows.
Thus, a complete state-description of the entire grid and its distribution
components is obtained through the power flow solution, which is the only
deterministic component in the system representation. Since the complete
simulation is governed by random variables, i.e. delivers varying outputs
for same inputs, each solution candidate’s evaluation has to be sampled a
sufficient number of times in order to get a valid estimate of its performance.
A complete illustration on the optimization procedure is provided in Figure
6.9, where the metaheuristic algorithm is abstracted to a single block in order
to highlight the fact, that this procedure is independent from the concretely
applied search procedure.

So far, only the system representation has been discussed without consid-
eration of the concrete outlook of a solution candidate. The following section
shall discuss possible solutions in more detail when finally applying policy
function approximation for charging control.
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Figure 6.9: Flowchart Simulation Optimization for EV Charging Control

6.4 Solving the Holistic Charging Control Op-
timization Problem

The defined optimization problem shall now be treated using evolutionary
simulation optimization. While real-valued optimization in the form of de-
terministic lookahead optimization will be applied for comparative reasons,
simulation-based policy function approximation as technique for dynamic
stochastic optimization once more comes into play as promising technology.

6.4.1 Simulation-Based Lookahead Optimization

As in the optimization of a simpler deterministic model on EV charging with
exact methods (see Section 6.2.3), the aim is to directly use the charging
power values Pgyq ;...Pgy v as control variables which are optimized over a
predicted time interval T'. Similar approaches as discussed in the introduc-
tory chapters on smart grids as well as on optimization under uncertainty
(see Sections 2.2 and 3) that perform kinds of lookahead optimization ensure
optimal behavior beforehand, considering forecasted states of the system (see
Figure 4.1) deterministically. This approach seems to be the easiest and most
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intuitive way for tackling this problem, but may easily lead to solution space
explosion and lacks of flexibility for making adaptive decisions to volatile
situations. When for example handling the N = 300 EVs within a given
distribution grid area with 7" = 24 time steps to be controlled in a predictive
manner, 300 * 24 control variables for Pgy,, will be needed. For suchlike
or even bigger scenarios, the dimension of the control variables vector may
exceed a manageable problem size for evolutionary algorithms. In this case,
clustering can applied as the author described in [44], where agents (EVs)
with similar behavior and similar local appearance in the power grid get
clustered into groups of size m using the same solution, thus reducing the
solution space drastically.

Beside the exploding problem size, deterministic lookahead optimization ad-
ditionally shows the disadvantage that it considers volatile behavior of the
stochastic system in advance, being very inflexible to dynamic conditions.
Thus, such an optimization approach is incapable if incorporating anticipa-
tory and flexible behavior into charging decisions, which would be necessary
when considering a stochastic and dynamic system. However, this method
provides promising reference solutions and shall be applied for comparison
reasons.

Hence, the solution in form of a vector of control variables as well as the
final fitness function come up to:

T
min » _ E[F (v + Wov * CV (Upy )i), with (6.18)
t=1

Ty = [Pevia--Pevra.l, (6.19)

where N, gives the number of clusters with N, = N/m.
Finally, a real-valued optimization problem needs to be solved, with a T« N~
dimensional solution vector.

6.4.2 Simulation-Based Policy Function Approximation

At the very beginning of this Chapter 6, the general outlook of smart power
flow control tasks has been discussed, deriving that manifold future smart
grid technologies just lead to extensions of the OPF problem. Hence, besides
using lookahead optimization for directly computing the solution vector wgy
of charging decisions for EVs, simulation-based evolutionary policy approxi-
mation can be applied as technology for DSOPF-related charging control.
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In this application, the aim is to find some flexible policy pgy (i) that de-
rives (near-) optimal charging decisions (=actions) at runtime, avoiding the
need of computing these decisions beforehand. The author already published
several considerations on this application domain [47, 50]; their common fea-
ture is once more the idea of creating a set of abstract rules 7 instead of using
the extensive set of input variables 7.

Figure 6.10 shall demonstrate the functionality when applying policy-
based control to the EV charging problem, where the policy evaluation is in-
dicated for a given EV that arrives at an arbitrary location which is equipped
with charging infrastructure.

Agent/EV

| NaSE

Residence Period

Charging

T Action / Decision

| Policy |

Rule Synthesis T
] Abstract Rules |

Global Local Agent-Specific
Parameters Parameters Parameters
Environment

Figure 6.10: Illustration of Policy-Based Control Principle for EV Charging
Control

Principally, the optimized policy which finally decides the EV’s charging
power at a given time step t is synthesized from abstract rules that consider
parameters from its environment. Out of these parameters, abstract rules
derive agent-specific information for evaluating the EVs power demand as
well as the state of its environment. Here, three different parameter classes
can be distinguished from each other:

e Agent-specific parameters concern the EV’s driving behavior and charg-
ing demand, including its residence time at the actual charging station
or its likelihood of getting parked at another charging spot later on.
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e Local parameters consider other EVs immediately affecting the local
situation in the power grid. For example, if the power grid is stressed
locally because of a high amount of EVs charging at the same bus, their
charging power may has to be reduced in the next time step in order
to avoid critical power flow conditions.

e Global parameters consider information describing the whole system’s
state, such as the total load to the distribution grid, totally expected
supply from renewables or financial aspects considering costs of elec-
trical power supply.

Using these parameters as input for the abstract rules, each rule delivers a
numeric result in the interval [0,1] that defines the agent’s priority for charg-
ing. 0 would indicate that the corresponding EV should not charge at the
actual time step, 1 advises it to charge with maximum power. Since a variety
of criteria has to be taken into account for computing the optimal charging
power of an EV, as can be estimated from the parameter classes defined
above, multiple rules have to be defined that finally get combined in order
to synthesize a final policy.

In this case, each abstract rule indeed gives indication on the priority and
is not only an aggregated information of the environment. Thus, the term
“rule” is significant herein.

Table 6.8 gives the set of defined abstract rules according to [50] that will be
used within this application.

Rule Acronym| Description

Residence Time So | RT Total residence time during all previ-

Far ous time steps

Estimated Time to | ETTD Remaining residence time at actual

Departure charging station

Passed Residence | PRT Passed residence time at actual

Time charging station

Estimated Remain- | ERT Estimated  remaining  residence

ing Time throughout the time horizon

Actual Irradiance Al Actual solar irradiance relative to
known maximum

Past Irradiance PI Past mean solar irradiance during
PRT

Estimated Irradiance | EI Estimated mean solar irradiance dur-
ing ETTD

Continued on next page

125



Scalable Dynamic Stochastic Optimal Power Flow Control

Stephan Hutterer
in Smart Grids

Rule Acronym | Description

Actual Wind Speed | AWS Actual wind speed relative to known
maximum

Past Wind Speed PWS Past mean wind speed during PRT

Estimated Wind | EWS Estimated mean wind speed during

Speed ETTD

Actual Base Load ABL Actual base load relative to peak load
value

Past Base Load PBL Past mean base load during PRT

Estimated Base Load | EBL Estimated mean base load during
ETTD

Actual Price AP Actual price relative to peak price
value

Past Price PP Past mean price during PRT

Estimated Price EP Estimated mean price during ETTD

Distance to Peak | DTP Absolute temporal distance from

Load time of peak load

Mean MVA Rating MMVA Mean rating (maximum allowed
power flow) of connected branches
relative to maximum ratings in the

grid
Number of EVs at | NREVB | Actual number of EVs remaining at
Bus bus
Mean Number of | MNREVB | Mean number of EVs remaining at
EVs during PRT bus at each time step during PRT

State Dependent Rules
Number of EVs | NREVC | Total number of EVs charging during

Charging last time step

Number of EVs | NREVCB | Total number of EVs charging during
Charging, Same Bus last time step at same bus

Mean Charging Rate | MCR Mean charging rate (relative to max-

imal charging power) per EV during
last time step over all EVs

Mean Charging Rate, | MCRB Mean charging rate (relative to max-
Same Bus imal charging power) per EV during
last time step over all EVs at same
bus

Continued on next page
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Rule Acronym| Description

Already Charged | ACE Sum of already charged energy dur-

Energy ing simulated time span related to
minimum needed amount of energy

Table 6.8: Formulation of Abstract Rules

While the first three rules consider agent-specific information of the con-
sidered EV, additional rules using local (at the same bus) and global (in
the entire grid) information are formulated for regarding the power grid’s
operation point. Irradiance as well as wind speed data during the whole res-
idence period of an agent is taken into account since using renewable power
for charging batteries should be forced. Base load data is used with the in-
tention of shifting charging to off-peak hours. Since the objective function
of the optimization problem aims at minimizing financial costs, price data
is used as well. For representing local distribution grid aspects, data from
connected branches is included as well as information about how many EVs
are remaining at the same bus during the considered time steps, using local
information.

The lion’s share of rules can be seen as absolute values that do not depend
on the states before, i.e. on the evaluation of the policy in step ¢ — 1, while
the last 5 rules consider state-dependent rules. Here, the evaluation of the
rules depends on the evaluation (i.e. the value of the policy) at the steps
before, where the actual charging rate is taken into account that resulted
from policy evaluation. Many rules (including MMVA to MCRB) addition-
ally incorporate the interrelation between agents implicitly, that influence
the resulting charging rate of an agent according to the actual behavior of
the others. Thus, competitive behavior is integrated.

An additional information is important considering each rule: namely whether
this rule leads to a higher or lower charging rate. Taking for example ETTD:
an EV that has a relatively high remaining time left at the charging station
should get a lower charging rate at the actual time step. This is intrinsically
clear, since there is much time left to get charged, probably more than for
other agents. Therefore, this rule is getting inverted.

Appendix A.9 provides the formal definition plus implementation of the EV
charging rules for more detailed understanding of their mathematical outlook.

Figure 6.11 shows the solution evaluation within the optimization process
with specific detail to policy-based control.
Once more, the metaheuristic algorithm is abstracted into one box. More-
over, the outlook of the policy pgy (T) as well as the synthesis scheme are not
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content of discussion right now, but will be considered later on.
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Figure 6.11: Solution Evaluation Using Policy-Based EV Charging Control

Realizing Intrinsic Memory with Abstract Rules

For detailed analysis of the provided rules, one has to do a more general
consideration of function approximation in computational intelligence with
respect to dynamic models:

Since the early beginnings of machine learning, the integration of some kind
of memory to intelligent systems represented a challenging task. Manifold
approaches have been identified, however, the developments in the field of ar-
tificial neural networks represent some very general image of what this issue
is about. Here, so called Recurrent Neural Networks (RNNs) have evolved
that implement directed cycles between units to realize some internal mem-
ory or intrinsic state that allows to not only consider inputs from one time
level, but from many different ones (such as inputs or neural network states
from time steps before). Hence, sequences of inputs can be processed by this
class of networks rather than only stationary inputs. This development was
crucial to function approximation tasks in dynamic systems like time-series
modeling or issues of dynamic optimization (like for instance the mentioned
techniques for Adaptive Dynamic Programming). In the meanwhile there
exist various architectures of RNNs, the most popular one is probably the
Elman network [28] which introduces cycles from the hidden layer back to
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the input layer for generating an inner state of the network.

Coming from the recurrence principle, a special peculiarity was the imple-
mentation of feedback loops that propagate the neural network’s output back
to the input layer, like for instance the Jordan network [28]. Thus, the output
layer at time ¢ both depends on the inputs of time ¢ as well as the network’s
output of £ — 1, hence, implementing an additional memory-ability. Espe-
cially for dynamic systems this has been an essential achievement.

In this context of implementing an intrinsic memory to artificial neural
networks, this important idea which is fundamental to function approxima-
tion in dynamic systems needs consideration within the herein evolutionary
policy optimization as well. While the herein discussed schemes for policy
synthesis do not allow for the implementation of loops - hence would be un-
able to consider recurrence as well as feedback principles - these ideas have
to be realized by designing appropriate abstract rules. Therefore, within the
given rules from Table 6.8, recurrence as well as feedback techniques are in-
tegrated:

e Dynamics are implicitly considered by all rules that take information
from past time steps into account, namely RT, PRT, PI, PWS, PBL,
PP, MNREVB, NREVC, NREVCB, MCR, MCRB and ACE. Hence,
information from previous time steps is integrated directly into the rule
computation and does not need for consideration in the final policy
synthesis via, for instance, loops.

e Recurrence/feedback is realized by a subset of the mentioned rules,
namely the state-dependent rules MNREVB, NREVC, NREVCB, MCR,
MCRB and ACE. They consider the charging rates (and thus the out-
puts of the policies’ evaluations) of previous time steps, hence, imple-
ment feedback-enabled memory into policies’ actions without the need
of designing loops.

In this way, recurrence enables the policies to not only derive actions based on
the actual system state J(t) as indicated by Equation 6.20, but to integrate
knowledge of the system’s past states - illustrated in Equation 6.21.

ue =p(J (1)) (6.20)
up =p(J(t), J(t = 1), ..., up—1, U2, ...) (6.21)
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Summing up, with the implementation of abstract rules, important schemes
of memory-integration into policy function approximation are realized, sub-
stantiating the power of the herein developed technology for dynamic opti-
mization issues.

6.5 Experimental Evaluation

Having specified the holistic optimization problem for EV charging control,
the experimental section shall now demonstrate the application to a real-
world power grid scenario.

6.5.1 System Description

For this show case a power grid of lower voltage-level will be considered in
order to show the application to distributed smart control issues in distribu-
tion feeders. As discussed before, especially the application of controllable
small-scale devices at lower levels challenges new technologies in smart elec-
tric grid developments.

The 33-bus radial test feeder represents a well known” real-world application
to primary distribution and is set-up respectively extended as follows: the
distribution network is modeled according to [5], where 1000 domestic cus-
tomers are assumed to be served. The base voltage is 12.66kV, while at each
node a transformer to a secondary feeder respectively to a larger customer
can be assumed. Hence, each node is a load-bus (indicated with arrows), as
shown in the layout in Figure 6.12. 8 photovoltaic power plants (indicated
with PV) as well as 2 wind power plants (indicated with W) are added to the
grid in a distributed manner. The renewable generation capacity is assumed
to be around 10% of the total supply. 300 EVs are modeled to exist within
the system and get charged at different buses according to traffic patterns.
The black bar shows the slack bus, which is necessary for power flow calcu-
lation [116].

In this system, the utility function shall be defined of minimizing total
cost of energy supply, i.e. minimizing generator-costs of the slack bus. While
the total supply considers both the (non-controllable) base load as well as
the (controllable) EV charging load, choosing appropriate charging decisions
aims at minimizing costs for charging.

"This grid model has also been used for several studies on EV charging control opti-
mization, like in [94], [97], [98] and [101].
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Figure 6.12: Layout of the 33-Bus Test Feeder

Constraints Weighting

Since for obtaining the fitness of a solution candidate according to Equa-
tion 6.13 (no matter if using a policy or a real-valued vector as solution
representation) the constraint violation is added to the objective function
value via a weighted penalty term, these weights weay have to be defined.
The choice of the weights is crucial to the evolutionary search, where too
low values would lead to negligence of the constraints, while too high values
increase the ruggedness of the fitness landscape and complicate the evolu-
tionary search. The violation of a constraint is measured as squared dif-
ference from the boundary value. While the objective function is given in
[Euro/MWHh] the following weights are chosen:

e Real-power supply capacity exceedance at slack bus (Equation 3.8):
1MW = (1 Euro)?

e Reactive-power supply capacity exceedance at slack bus (Equation 3.9):

1MV Ar = (1 Euro)?
e Voltage deviation per bus (Equation 3.10): 1% deviation = (2 Euro)?

e Real-power flow overload per branch (Equation 3.11):
IMW = (1 Euro)?

e Charging rate exceedance per EV (Equation 6.10): 1kW = (1 Euro)?

e Minimum charged energy not reached per EV (Equation 6.11):
1EWh = 10 Euro
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Traffic Simulation

Real-world data on driving behavior is used as essential information for
the simulation model that is taken from an official survey by the Austrian
ministry [17]. This survey - among other things - identifies patterns of driving
behavior. Therefore, two most relevant driving patterns have been extracted
from the survey, namely the patterns of full-time and half-time workers. Dur-
ing a weekday, these two patterns comprise 74% of all driven journeys, thus,
provide a very descriptive power for modeling issues. For these patterns, the
mean values and the deviations for specific arrival and departure times as
well as driving distances are taken which finally are used for building the
driving profiles as discussed before.

Within each pattern, three different locations are modeled for parking at
home, at work and at any location in free time (shopping, education, en-
tertainment). For each location, different probabilities for the existence of
a charging infrastructure are modeled (i.e. Phome, Pwork and pyree), describ-
ing a possible future infrastructure from an actual point of view: at home,
each EV user has an own charging station (ppome = 1). At work, there is
a probability of p,.-x = 0.5 that an appropriate infrastructure is available.
For locations where potential users remain in free time, this probability is
assumed to be pgree = 0.25. The resulting charging load at a specific location
is then being correlated to a corresponding bus within the power grid model.
Within each simulation run, synthetic driving profiles are computed from
prototype-profiles of both patterns, being randomized in terms of driving
time and remain time at specific locations. Thus, the probabilistic behavior
of individual traffic can be simulated based on real-world data and incorpo-
rated into the metaheuristic optimization process.

Each of the 300 EVs is assumed to be equipped with a charging controller
with erprax = 10kW (as before). In reality, various configurations may occur,
but using this single specification is sufficient for the underlying simulation
model.

6.5.2 Training and Test Scenarios

Similar to experiments in Chapter 5, for learning and testing of policies,
proper scenarios need to be defined to avoid overfitting of found solutions.
Therefore, the environment that typically shows volatile and uncertain be-
havior needs to be provided with appropriate uncertainty within the sim-
ulation when solution candidates get evaluated. This environment to the
power system is given by the base-load profile (i.e. the system demand that
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is caused by domestic and commercial customers), the electricity-tariff data
(which may vary dynamically according to the stock market), as well as the
wind speed and solar irradiance forecasts that estimate renewables’ supply.

Training Scenarios

When evaluating a solution candidate in an uncertain system, the simu-
lation model is randomized properly for each evaluation. For the learning
procedure, a set of different environmental behavior data needs to be defined
that mimics real-world uncertainty that the policies will have to cope with
during operation. Similar to previous experiments in Chapter 5, these data
are given in the form of profiles that vary along the simulation horizon.

For base-load data, same profiles are used as in Section 5.3, namely HO,
GO0, G6 and LO profiles from the Austrian APG regulation zone that have
already been defined in Figure 5.6. For dynamic electricity prices that vary
along time, official stock-market prices from the European Energy Exchange
are taken. Therefore, 4 different 24h-profiles of hourly ELIX contracts are
expressed, shown in Figure 6.13 being scaled to [0,1].
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Figure 6.13: Electricity Price Profiles from the European Energy Exchange

For probabilistic training, diverse price data from weekend (WE) and week-
days (WD) is chosen. WD1 gives the mean prices from Monday, 19.9.2011
until Friday 23.9.2011. WE1 gives the mean weekend prices from Satur-
day, 24.9.2011 and Sunday, 25.9.2011. Similar holds for WD2 (26.9.2011-
30.9.2011) and WE2 (1.10.2011 and 2.10.2011). At the beginning of each
evaluation, one of these profiles is chosen equally distributed.
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For simulating the probabilistic supply from renewables, solar irradiance
as well as wind speed profiles are taken representing typical forecasts utilized
for power grid operation. These profiles are provided by statistical investiga-
tions, online available from the National Solar Radiation Data Base® by the

National Renewable Energy Laboratory.

This database provides various meteorological data for numerous sites in the
US. For training, profiles are taken for solar irradiance (SI) in Figure 6.14

and wind speed (WS) in Figure 6.15 respectively.
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Figure 6.14: Solar Irradiance Profiles for Photovoltaic Supply Simulation
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Figure 6.15: Wind Speed Profiles for Wind Power Supply Simulation

8National Solar Radiation Database, http://rredc.nrel.gov/solar/old_data/nsrdb/1991-

2005 /tmy3 /by _state_and _city.html
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In order to evaluate a candidate policy on uncertain scenarios during the

training phase, at the beginning of each evaluation these profiles are sampled
equally distributed. Redarding the general processflow when evaluating a
solution candidate as discussed previously in Figure 6.11, the following Figure
6.16 presents this issue.
In this illustration the rest of the processflow is disregarded (indicated by the
dashed line), while the model initialization is given in more detail, where at
the very beginning of each evaluation the simulation model gets initialized
with randomly chosen environment-data enabling the training of the solution
to uncertain conditions.

Set Environment Data Within —
The Distribution Grid Model

+
Forecasting Uncertainty:
———
Randomize Each Single Value \\\5__1__,—’ “\\\
+
Randomly Select: Model Initialization
Load Profile
Electricity Price Profile T

Wind Speed Forecast
Solar Irradiance Forecast

A

Load Test Case Model

Figure 6.16: Policy Evaluation With Uncertain Environment

Test Scenarios

For evaluating evolved policies on independent test scenarios, a determin-
istic simulation is built using environment data (i.e. load, price, and supply
profiles) that is distinct from training. For EVs, from the traffic simulation
for each agent 2 fixed patterns are expressed, i.e. 2 different deterministic
EV scenarios are defined. Figure 6.17 illustrates the assumed behavioral
patterns. Here, over all N = 300 EVs, the mean charging availability (i.e.
the EV is being parked and charging infrastructure is available) is shown for
the two scenarios. This availability approximates the value 1 at night for
both cases, where most EVs are at home (where charging infrastructure is
assumed to be always available). Before as well as immediately after noon
this availability peaks as well, caused by users that have charging spots avail-
able at work or half-time workers that arrive at home after midday.
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Figure 6.17: Relative Probability Over all EVs Being Parked and Charging
Infrastructure is Available.

Especially during the day, the average charging availability between the
two scenarios shows clear differences, which illustrates the volatility that
needs to be treated successfully for making valid charging decisions. Addi-
tionally, this figure only illustrates the average charging availability over all
N EVs, hence, does not illustrate the individual differences within the fleet.
For showing this individuality of EV agents, Figure 6.18 gives the standard
deviation over all N EVs within each time step for both scenarios.
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Figure 6.18: Standard Deviation of Charging Availability Among all 300
EVs.
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While the standard deviation values look quite similar for both scenarios,
they clearly show the individuality of single EVs within the fleets. Especially
before noon, the standard deviation over all EVs’ charging availabilities peaks
nearly to one.

Having defined two distinct EV-behavior scenarios for testing, the environ-
ment data needs to be defined as well.

From the same data sources as used for generating the training data (i.e.
the national solar irradiation data base for renewables’ forecasts, price data
from the EEX and load data from the APCS), but using measurement data
from distinct time intervals, the independent profiles for test-scenarios are
generated. While both load data as well as electricity tariff (price) data are
one source of volatility during real-world operation, especially the uncertain
supply from renewables is of high interest when deriving charging decisions.
As illustrated in Figure 6.19, for both solar irradiance as well as wind speed,
two different profiles are defined, also giving one profile for both electricity
price and base load.
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Figure 6.19: Environment Data for Test Scenario

These profiles (that are independent from the training simulation) shall
be used to extract the test set: while for EV behavior 2 scenarios are defined,
both for irradiance as well as wind speed two profiles are given as well. There-
fore, 23 = 8 test cases can be fixed (price and load profiles keep constant)
which will later be used for testing charging control strategies. On these
scenarios, the optimized policies’ performances are evaluated with respect to
reference-strategies for charging control.
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6.5.3 Simplistic Charging Policies as Reference

In the introductory section on controlled EV charging (see Section 6.2), the
different objectives have been stated such as control for peak-shaving (grid-
oriented), charging with renewable energy (supply-oriented) or charging at
lowest possible costs (price-oriented), that were summarized in Figure 6.1.

While the control with optimized policies according to above defined holis-
tic EV charging optimization problem unifies all these objectives, simplistic
charging policies ps shall be defined for comparison reasons. These simplis-
tic policies are designed to make individual charging decisions to each EV
while considering one of the defined objectives. These simplistic policies as
well provide policy-based distributed control, but rely on simple heuristics
for deriving charging decisions. Additionally, a simplistic policy for random
charging is defined that should mimic the behavior of randomly distribut-
ing charging decisions along time. These policies build a suitable reference-
technology being used for comparisons later and shall be defined as follows
(some policies are given in pseudocode-notation for better understanding):

Uncontrolled Charging: psyc

This heuristic disregards any kind of grid-wide interests and makes the EV
charging with cry,4x immediately after being plugged to a charging infras-
tructure until it reaches a full SOC. Such charging behavior is the reference
scenario if no charging control would be installed.

Randomly Distributed Charging: pgsr

Randomness is natural source for distributing charging decisions equally.
Therefore, in each time step if an EV is available for charging (i.e. it is
being plugged to charging infrastructure and its SOC < 1), for this EV a
dice is thrown that decides whether to charge now or not. If it is allowed
to, it charges with full power crp;ax within this time step, see Algorithm 3.
This heuristic is an obvious approach for distributing charging along time.
A 3-sided dice is assumed for the herein scenario which showed to be most
performant on the test evaluation.

Demand-Oriented Charging: psp
This heuristic scales the allowed charging power of each available EV in-

versely proportional to the actual base load in time step ¢ (see Algorithm 4),
hence, leads to the objective of peak-shaving.
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Algorithm 3 Calculate charging rates Pgy as output of psr
Cr < CrMAX;

for allt=1..7T do
for alln=1...N do
r < random(1, 3);
if r ==1 && (available(i,n)) then
Py, < cr;
else
Ppyi, < 0;
end if
end for
end for

Algorithm 4 Calculate charging rates Pgy as output of psp
Cr <— CIrpAX,
minBL < min(loadProfile); maxBL < max(loadProfile);
for allt=1..T' do
scale < (loadProfilelt] — minBL)/(maxBL — minBL);
for alln=1...N do
if available(t,n) then
Py < cr* (1 — scale);
else
Ppyipn < 0;
end if
end for
end for
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Price-Oriented Charging 2: pgp

Similar as pg p, but the charging power of each EV is scaled according to the
actual electricity tariff rather than using the actual base load. This heuristic
mimics locally cost-optimized charging as different works in literature aim at.

Supply-Oriented Charging: ps g

ps,s scales the charging power of each available EV proportional to the ac-
tual supply from renewables (both wind and photovoltaic) in order to force
charging with renewable energy.

Algorithm 5 Calculate charging rates Pgy as output of ps g
Cr <— CTrpMAX;
minPV < min(irradiance); maxPV < max(irradiance);
minWind <— min(windSpeed); maxWind < maz(windSpeed);
for allt =1...7 do
scale PV « (irradiancelt] — minPV')/(maxz PV — minPV);
scaleWind < (windSpeed[t] — minWind) /(mazWind — minWind);
scale <— mean(scale PV, scaleWind);
for alln =1...N do
if available(t,n) then
Pgyy,, = cr * scale;
else
Ppyip, < 0;
end if
end for
end for

These simple policies (heuristics) are designed to fulfill the charging re-
quirement of each EV (i.e. satisfy the Fj;n-constraint), but indeed are not
able to directly consider global behavior respectively make holistic decisions.

6.5.4 Experimental Results
Validating the Performance of Simplistic Strategies
The simplistic control strategies offer quite obvious approaches for charg-

ing control, which realize some kind of distributed control that could be
implemented with low effort to real-world applications. In order to build a
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baseline, these strategies shall now be applied to the defined test scenarios in
order to provide an estimate on the difficulty of deriving valid charging deci-
sions. In the same way as evaluating a complex charging policy, the simplistic
strategies can be evaluated by computing their respective objective function
values as well as constraint violations (respectively the fitness function value
when summing both according to Equation 6.12) when being applied to test
scenarios. Table 6.9 shows the resulting fitness function values (according
to the fitness function definition in Equation 6.12) of all simplistic strategies
applied to the test set.

Test Case # | psuvc Ds,D Ds,s Ds,p DS,
1 3448.90 2856.60 6151.60 &8232.70 3392.10
2 3497.00 2895.20 8957.90 &372.10 3456.40
3 3519.00 2916.10 5705.30 8494.90 3371.30
4 3470.90 2877.50 T7373.20 8355.10 3404.40
5 3875.30 2737.20 5195.80 7498.00 3593.30
6 3933.70 2768.90 9036.70 7626.40 3908.80
7 3956.40 2790.20 4298.80 7730.50 3696.40
8 3898.00 2758.50 6453.00 7601.40 3808.70

Table 6.9: Fitness Function Values of Simplistic Strategies’ Test Evaluation

Both the demand-oriented pg p and the randomized pg r charging strate-
gies lead to lowest values in means of fitness function. pg p leads to charging
at off-peak periods where the electricity tariff is low and the distribution
equipment is far from being overloaded. The other strategies lead to signif-
icantly higher fitness values that cannot be caused solely by the objective
function (notice that these values are in [$]), but occur because of constraint
violations. Therefore, Table 6.10 gives the values of constraint violations
(also mapped to [3] as defined before).

An important point is that none of the provided simplistic strategies
leads to valid charging behavior, since they all cause significant constraint
violations throughout all test scenarios. Hence, more sophisticated policies
may be needed that are able to combine different information from the EVs’
environment in order to derive charging decisions that both avoid constraint
violations and lead to low-cost charging.
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Test Case # | psvc  Psp Ps.s Ps.p PSR
1 715.21  483.58 3068.50 5294.50  23.69
2 755.39 514.34 5474.20 5425.30 182.70
3 757.09 515.69 2518.10 5524.90 1153.40
4 716.90 484.92 4192.20 5393.90 155.02
5) 1070.60 383.18 2133.00 4577.30 281.93
6 1121.00 407.10 5538.80 4697.10 125.23
7 1123.40 408.72 1167.50 4778.10 461.25
8 1073.00 384.80 3267.50 4657.60  21.87

Table 6.10: Constraint Violations of Simplistic Strategies’ Test Evaluation

Comparing Lookahead Optimization

Since in the test scenarios all behavior of demand, renewable supply

and EV users is given deterministically, lookahead optimization can be ap-
plied for computing the set of optimal charging control variables ugy, =
[Pgvi1...Pepvr | directly for building a reference solution. In this case, the
T x N = 7200 control variables are computed directly using simulation-based
real-valued optimization.
Island genetic algorithms (IGA) implemented in HeuristicLab have shown
to be capable of tackling this high-dimensional problem, the finally applied
configuration is given in Table 6.11. For both mutation as well as crossover,
operators originally stemming from evolution strategies [14] are applied in
order to treat the real-valued solution vector successfully.

Having defined the algorithmic settings, deterministic lookahead solutions
are optimized for all test scenarios. The solution consists of NxT" = 7200 real
values that give the desired charging power for each EV at each single time
step for satisfying both the users’ charging demand as well as the operational
power grid constraints. Figure 6.20 shows the 5 best found solutions’ fitness
values within each test scenario with boxplots.

While for all scenarios this deterministic optimization seems to find quite
robust results with a fitness function value around 2500 - 2600 $, compared to
the aforementioned simplistic strategies, the demand-oriented charging pg p
has lead to similar results (around 2700 - 2800 $). However, these optimized
solutions not only lead to better fitness function values, but especially satisty
all constraints. Thus, finding valid charging decisions is principally possible
for the defined scenarios.
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Parameter Value
Maximum Generations 1000
Population Size Per Island | 80
Number of Islands 5
Mutation Probability [%] 7
Crossover Probability [%] 100

Selector

Tournament Selector
Group Size: 2

Mutator Self Adaptive Normal All Positions
Manipulator

Crossover Discrete Crossover

Elites 1

Emigrants Selection Best Selection

Migration Rate [%] 15

Table 6.11: IGA Setting for Lookahead Optimization
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Figure 6.20: Best Found Deterministic Solutions for Test Scenarios

In order to visualize the resulting optimized charging behavior in Figure
6.21, exemplary for the test scenario # 1 the mean charging power over all
N = 300 EVs is plotted along time for the best found solution wgy .
According to this illustration, optimal EV control tends to charge batteries
in the late evening and at night, which is obvious regarding manifold reasons.
On the one hand, the electricity price decreases in the late evening. Addi-

tionally, base load is low at

night, making charging efficient from a grid’s

power flow point of view. Moreover, at night most EVs remain at home,
where charging infrastructure is assumed to be always available.
However, even if around noon the base load as well as the electricity prices
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Figure 6.21: Mean Charging Power for Lookahead Optimization

are high, there occurs some charging as well. This is mainly because of the
usage of renewable supply which injects with a high probability at this time,
which is assumed to have zero generation costs. Thus, EVs that are avail-
able for charging at this time are scheduled for using the injected power from
renewables. Nevertheless, especially around midday this is a difficult issue
since base load is high and power grid constraints have to be considered thor-
oughly in order to not overload distribution equipment.

It has to be mentioned once more, that these solutions are optimized to
exactly one specific deterministic system’s behavior (i.e. one out of 8 test
scenarios) and thus are unable to consider the volatile and uncertain system
behavior of the real world. Nevertheless, these solutions build a suitable
reference for comparing policy-based optimization on the test set.

Best Found Policies for EV Charging Control

The evolution of policies pgy (7) with genetic programming allows the ar-
bitrary synthesis of complex decisions out of the set of rules 7. In order to
evolve policies based on the training simulation, the following algorithm con-
figuration (given in Table 6.12) is used. After training, they get evaluated
on the test set in order to validate their performance.
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Parameter Value

Maximum  Genera- | 200

tions

Population Size 800

Mutation Probability | 20

%]

Crossover Probabil- | 100

ity [%)]

Selector Tournament Selector
Group Size: 5

Mutator Multi Symbolic Expression Tree Manipulator: Re-

place Branch Manipulation, Change Node Type
Manipulation, Full Tree Shaker, One Point Shaker

Crossover Subtree Swapping Crossover
Elitism No Elitism

Maximum Tree | 10

Depth

Maximum Tree | 60

Length [nodes]

Tree Grammar Arithmetic Operators

Real-Valued Constants
Table 6.12: GP Parameters for Holistic EV Charging
Control Problem

From the set of evolved policies, the best found 10 solutions shall be taken
for further analysis. In order to provide a fair selection, they are evaluated on
the training simulation (which is probabilistic indeed) with a sample size of
100 and averaging their fitness values over all 100 samples. Figure 6.22 shows
boxplots for the best policies’ evaluation on the training simulation (the very
left box) as well as on the test scenarios (boxes 1-8). The boxes give the
distribution of the policies’ fitness values for each scenario, while for the
test evaluations black dots indicate the best found deterministic lookahead
solution.

Throughout all test cases, the policies’ performances are near the deter-
ministically optimized best reference solutions (a more detailed view on this
follows). Additionally, the best policies seem to be robust over all cases, even
if they perform within different environments (i.e. different EV behavior and
different environmental data profiles), which understates their application to
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Figure 6.22: Evaluation of Policies: Training and Test

uncertain and volatile systems. Notice, that each of 10 policies is evaluated
within all test scenarios, whereas the reference solutions are deterministically
optimized to each single scenario.

The first box represents significantly higher fitness values, which is caused by
the fact that the price profile taken for the test scenarios is “cheaper” than
the average price profile that results in the training simulation.

In order to analyze the comparison between the policy-based control and
deterministic lookahead reference solutions in more detail, Figure 6.23 gives
the boxplots for each type of optimization approach over all test scenarios.
While the filled boxes indicate the fitness function values of the best found
deterministic lookahead solutions for each test scenario, the boxes indicating
the policies have the same style as before.

An important outcome is, that for some cases the policies’ boxes overlap
with the reference solutions’ boxes. This fact indicates that the policy-based
approximate optimal control for some situations even outperforms determin-
istically optimized lookahead solutions that are computed individually for
the respective scenario. In average, there is a clear tendency that the poli-
cies are comparable to reference solutions, even if they are general and are
able to cope with different situations (i.e. states of the simulated system).
Table 6.13 shows the median fitness function values of the best policies and
the best selected reference solutions for comparison reasons.

Hence, one can easily deduce that the charging decisions derived from the
approximated policies lead to competitive control, where a relative error in
the range of 4.5 — 6% results over the test scenarios.
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Figure 6.23: Evaluation of Policies: Comparison to Reference Solution

Scenario | 1 2 3 4 5 6 7 8
Policy

Control | 2665.5| 2681.1| 2700.4| 2688.2| 2662.7| 2675.7| 2697.2| 2685.8
Reference

Solutions | 2524.6| 2527.5| 2551.8| 2562.3| 2513.4| 2517.3| 2534.8| 2567.1
gfiiﬁ”e 0.0558| 0.0608| 0.0582| 0.0491| 0.0594| 0.0629| 0.0641| 0.0462

Table 6.13: Policies: Comparison of Median Fitness Function Values

For better illustration, one of these policies is chosen that gets analyzed in
more detail. This charging policy is depicted in Equation 6.22, its real-valued
constants are given in Table 6.14.

PEv =

rep x —(reg —reg % PI—rey « NREVCB —res « ACE « MCR x AW S

A ERT3 % PP x ACE? x (—rc; x ACE + reg +reg * ACE x MCR)
—rcig —rep x PBL

% (rcio ¥ NREVCDB + reis « ERT + ACE* x MCR) 4 rcyy

)
(6.22)
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Constant Value Constant Value
rey 0.0332934964364087 reg 13.98276461
rCy 0.2505188541 recg 0.3959326284
rC3 1.50256421037195 rcig 19.9638199970861
rCy 1.23114366202972 rei 0.914340006671468
rcs 0.3959326284 rcio 1.23114366202972
rCq 36.79503836 rci3 6.776484929
rey 31.68359083 rcig 0.76845871679191

Table 6.14: Real-Valued Constants Assignment for EV Charging Policy

It has been symbolically simplified for obtaining this representation (which

is obvious, since the defined grammar of arithmetic functions is not able to
evolve expressions with 22 directly, but in an indirect manner via many mul-
tiplied branches). Here, the intrinsic feature selection of GP comes into play,
where only 8 abstract rules are used (out of 25 defined in Table 6.8). This
is an important ability, regarding that the defined rules are partly strongly
correlated.
However, this policy considers all different aspects that need to be taken
into consideration for deriving flexible control actions suited to volatile situ-
ations: namely all environment data (base load, price, wind speed and solar
irradiance via PBL, PP, AW S, and PI), the behavior of the EV agent itself
(via ERT - estimated remaining time and AC'E - already charged energy)
as well as the behavior of other agents (via M CR - mean charging rate over
all EVs during last time step, and NREV CB that gives the number of EVs
that have been charging at the same bus). These rules seem to be sufficient
in order to make valid and flexible charging control actions according to the
holistic problem definition. Among the test scenarios, this policy yields a
mean relative error of 0.0474 °.

This policy illustratively demonstrates the ability of GP to identify non-
linear relationships between abstract rules (free from any predefined meta-
model), which is a fundamental enabler of policy-function approximation in
herein applications. Having tested a set of found policies to various test
scenarios, their power in means of valid and near-optimal charging control
has been demonstrated when being compared to deterministically optimized
reference solutions. An important fact is that policies are able to react to
volatile and uncertain conditions when deriving control actions at runtime,

9In means of difference from the median value of the reference solutions, as depicted
before.
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since they have been trained within a probabilistic simulation. Hence, poli-
cies feature extrapolation abilities in order to make valid decisions in system
states that may have not been covered during the training phase.

The special application of abstract rules additionally enables policies to de-
duce unit-specific control actions. Thus, even if a charging policy is the same
for all EV agents, it leads to individual decisions that are tailored to the
respective agent’s environment.

Finally, a simulated smart grid scenario has been provided where holis-
tic charging control is necessary for secure power grid operation (consider
simplistic policies respectively uncontrolled charging which lead to power
flow constraint violations). Here, the evolved policies are able to perform
approximate-optimal control of distributed charging decisions, fulfilling the
holistic EV charging control problem formulation. While being learned within
an uncertain training simulation, policies result in equivalent performances
on deterministic test scenarios (with 4.5-6% error) when being compared to
deterministically optimized charging decisions. Even if an optimized policy
is the same for all 300 EV agents, it leads to individual behavior through its
abstract rules and makes the agents consider system-wide objectives of cost
minimization and constraints satisfaction.

6.5.5 Concluding Remarks

Within this chapter, it has been shown that many future smart grid tech-
nologies yield an extension of the OPF problem formulation. In this context,
the charging control of EV fleets has been formulated as representative is-
sue, that unifies manifold requirements for future load control technologies in
smart electric grids. Among them the most important requirements concern
the abilities of deriving quick and robust control actions under volatile and
uncertain conditions, which consider both the customers’ needs and behavior
while incorporating power grid operation aspects. Additionally, such a tech-
nology needs to be scalable to be applied to numerous distributed devices
which aim at common system-wide goals.

While existing approaches for EV charging control mostly concentrate on
isolated aspects of this technology, various lacks of related works have been
identified. Based on this fundament, a holistic EV charging control prob-
lem was formulated that comprises both the customers’ as well as the power
grid’s aims of charging control, while incorporating fluctuating supply from
renewables. This formulation has been applied to a practical scenario where
the IEEE 33-bus distribution feeder was extended to form a suitable test-bed.
Here, simulation-based evolutionary policy approximation with abstract rules
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has been demonstrated to evolve powerful policies for multi-agent charging
control. While comparing the best found policies to both simpler charging
strategies as well as to deterministically optimized charging decisions tailored
to specific situations, the best found policies showed to be competitive on
a real-world test scenario while have been learned within a distinct training
simulation.

For approximating such a policy, a comprehensive set of rules has been devel-
oped that unifies all important data that is needed for deriving appropriate
charging decisions. While many of the provided rules are correlated, policy
approximation with GP showed to evolve powerful policies that rely on only
a subset of all possible rules using its intrinsic feature selection process during
the genetic search.

150



Part 1V

Conclusion






Chapter 7

Summary & Outlook

Optimization is a central tool in power grid engineering, being an essen-
tial enabler of both actual and future technologies in planning as well as
operation of power grids. This work presented a thorough overview on ex-
isting technologies, while having developed promising approaches that meet
requirements for increasingly stochastic and dynamic optimization problems
in this domain.

7.1 Main Achievements

As stated in the synopsis of this thesis, the scientific challenges it is related
to regard on the one hand the definition of innovative problem formulations,
but on the other hand the development of appropriate methods for treating
them. These aspects shall now be considered in more detail.

7.1.1 Problem Formulation

The general OPF formulation represents an essential framework for opti-
mization in electric power grids since many decades. In recent developments,
extensions to this general problem formulation become necessary, which have
been provided within this work.

By this means, the traditional OPF problem (in case of generation-unit con-
trol) has been extended to a multiperiod formulation in Chapter 5 in order
to provide a formulation for optimal power flow control over time within a
dynamic an uncertain environment. While having developed a suitable prob-
lem definition, respective methods for successfully treating it have been given
as well.
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At the same time where multiperiod considerations get important for power
grid optimization, smart grid technologies emerge that raise new control pos-
sibilities as well as optimization issues. Considering different promising future
technologies for smart electric grids, their requirements regarding power flow
optimization have been analyzed for deriving an extended OPF formulation
which is capable of satisfying them. A load control scenario based on con-
trollable electric vehicle charging processes has been defined in Chapter 6,
where based on open issues from the literature an OPF-based holistic opti-
mization problem was formulated which is representative for multiple future
smart grid technologies.

7.1.2 Methodical Developments

While the problem formulation represents one innovative aspect of this work,
the development of appropriate methods for treating these problems is an es-
sential scientific achievement.

Uncertainty is a main issue along all problems presented herein. Therefore,
metaheuristic simulation optimization was presented which builds a fruitful
technological ground since it enables the integration of a complex system’s
uncertainties into the optimization process for finding solutions of both high
quality as well as high robustness. While the general functionality of simu-
lation optimization has already been presented in the literature for different
applications, its adaptation and extension to power flow related optimization
aspects has been introduced in Chapter 4, where a clear distinction between
static and dynamic optimization got important.

Especially for dynamic optimization under uncertainty, the development of
respective methods is a hot spot in the research literature at this time, where
policy function approximation represents a promising general approach. Sev-
eral requirements have been specified which would need to be satisfied in
order to provide dynamic stochastic optimal power flow control. In con-
sequence, simulation-based evolutionary policy function approximation has
been developed herein as being capable of meeting all these requirements.
Especially when applying genetic programming for function approximation,
the important feature is provided that (even nonlinear) policies for optimal
control can be approximated without a-priori knowledge of their structure,
which is an important advantage when handling complex real-world appli-
cations. Additionally, the idea of providing expert-generated abstract rules
that are processed out of a model’s state variables came into play, which
enables the compression of a system’s state into few information entities and
thus makes policy function approximation suitable also for large-scale sys-
tems.
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Since in real-world problems most often the control of multiple interrelated
but distinct control units needs to be handled, additionally a method for
coevolutionary genetic programming was introduced in Section 4.2.9. It en-
ables the evolution of policies of distinct grammar for multiple devices that
aim at a common objective.

Finally, the developed methods have been applied to both existing bench-
marks as well as innovative problem formulations in order to validate their
capabilities.

7.2 Runtime Assessment

The time needed for deriving (near-) optimal decisions is of important interest
when applying optimization algorithms to real-world problems. Especially
for control applications, this is an important issue since decisions most often
need to be available within a defined time horizon. While having discussed
diverse simulation-based optimization concepts within this work, a broad
view on their runtime assessment can now be provided.

When having introduced the basic principles of simulation optimization in
Section 3.3, the critical issue has already been discussed that metaheuristic
optimization requires the computational intensive evaluation of a huge num-
ber of points in solution space. Especially the application of simulation for
solution evaluation additionally strengthens this aspect. Further, the eval-
uation under uncertainty may necessitate multiple simulation runs for each
solution in order to increase the objective function value’s estimate’s quality.
While the time consumption for performing evolutionary operations (i.e. se-
lection, mutation and crossover) and so the computational cost for solution
manipulation are marginal compared to solution evaluation, this creates the
bottleneck for the concepts herein and shall now be treated in more detail.
The following considerations are based on executing the simulations in Mat-
lab 7.12 (R2011a, 64 bit) under Windows 7, on an Intel Core i7-2620M CPU
at 2.7 GHz, 8 GB RAM.

7.2.1 Static Stochastic Infrastructure Planning

In Section 5.2, static simulation optimization has been proposed for handling
probabilistic planning issues. The special ability of integrating uncertainty
of eventual future system states into the optimization process is an attractive
feature for deriving solutions that robustify the technical/economic validity
of decisions. As already mentioned when describing this application, the
time for evaluating a solution candidate takes around 1 second within the
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respective experiments. With a population containing 120 individuals and
a maximum number of 1000 generations, approximately 12 * 10 seconds re-
spectively 1.39 days are needed for performing an optimization run.

At first glance, this runtime appears to be quite long. But for static planning
problems a decision needs to be computed only once during the planning pro-
cess (notice that plant placements obviously do not change during operation),
hence, the runtime requirement is negligible for such applications. However,
for control problems this is a more important issue.

7.2.2 Dynamic Stochastic Optimal Power Flow
Control

For dynamic optimization problems, policy evolution has been proposed.
Here, the great advantage is that no optimization is necessary during opera-
tion, while the runtime consumption for interpreting a policy and deriving a
(near-) optimal control decision from it is marginal. This idea makes simu-
lation optimization an attractive technology for control problems, where the
computationally intensive task of finding policies (with computational cost
Tgvo) is separated from their application at runtime. This aspect shall be
depicted in Figure 7.1.

Policy Evolution

T
Evo ! Policy Execution
( : I P
Time
Control Interval T
Offline : Online

Figure 7.1: Runtime Assessment of Policy-Based Control

In many cases (especially in those treated herein), the time scale for
making control decisions (in intervals of length T¢) is high compared to the
time consumption when interpreting a policy and deriving a decision from it
(Tp). Having proposed two different applications for policy-based dynamic
optimization herein, respective runtime considerations shall be conducted as
follows.
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OPF-Based Generation Unit Scheduling

The conventional OPF formulation is a well established optimization problem
that characterizes power grid planning and operation since many decades.
By this means, appropriate solvers already exist and build an integrated
part of state-of-the-art analysis tools that represent an important instru-
ment for electric power utilities. While such a solver has been used within
this work (namely interior point solver implemented in MATPOWER) for
creating OPF reference solutions, it shall be applied for runtime assessment
too.

Executing this reference solver for computing an OPF solution takes (de-
pending on the problem’s size) from 0.1 to approximately 2 seconds for herein
treated benchmarks. In real-world power grid operation, such computations
are performed at comparably high time scales (such as once per hour (i.e.
Te = 1h), depending on the application), thus this runtime is marginal.

For evolving OPF control policies in herein experiments according to al-
gorithmic settings given in Tables 5.4, 5.5 and 5.6, the resulting computa-
tional costs are summarized in Table 7.1. Similar to the previous application,
simulation-based optimization is very computationally expensive and takes
up to Teyo = 48.44 hours for the largest benchmark herein.

Computational 14- 30- 57- 118- 300-
Cost Bus Bus Bus Bus Bus
#  Evaluations for | 2% 10* | 2x10* | 8% 10* | 8 x10* 8 x 104
Polynomial Synthesis
# Evaluations for GP- | 8 x 10* | 8 x 10* | 8 x10* | 8 x10* | 8 * 10*
Based Synthesis
Time / Evaluation [s] | 0.13 0.17 0.29 1.04 2.18
Total Time for Policy | 0.72 0.94 6.44 23.11 48.44
Evolution: Polynomial
Synthesis [h]

Total Time for Policy | 2.88 3.78 6.44 23.11 48.44
Evolution: GP-Based
Synthesis [h]

Table 7.1: Computational Cost for OPF Policy Evolution

However, the computation of a control policy is separated from online-
operation. At runtime, only the interpretation of the found policies is of
importance. Since within respective experiments the herein found policies
are analytical functions of quite simple mathematical structure (even only
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use arithmetic operations), the interpretation of a policy only takes less than
a thousandth of a second (7). Hence, similar to the time consumption
of the reference OPF solver, this time is negligible in real-world operation
of power grids where OPF decisions are made at much higher time scales
(Te). Hence, with simulation-based policy evolution it is possible to make
use of the advantages of simulation optimization, but disable its issues on
computational cost by separating the (offline) optimization from the (online)
operation stage.

OPF-Based EV Charging Control

Regarding the essential optimization concept, this application is similar to
OPF-based generation unit scheduling. When considering its runtime assess-
ment, as well two different stages need to be discussed, namely the evolution
of the policies on the one hand, and their application to online operation
on the other hand. Contrary to generation-unit scheduling, no state-of-the-
art solvers exist for suchlike problems that can be used for optimization at
runtime. Therefore, a simulation-based optimization approach has been pro-
posed for creating static (parametric) reference solutions for specific system
states, namely lookahead optimization.

Table 7.2 presents the resulting computational cost for solution computation.

Computational Computing Static | Policy
Cost Reference Solutions | Evolution
Algorithm Type IGA GP

# Evaluations 4% 10° 1.6 * 10°
Time / Evaluation [s] | 0.11 0.58

Total Time for Solu- | 12.22 25.78

tion Evolution [h]

Table 7.2: Computational Cost for EV Control Policy Evolution

When computing static reference solutions with simulation-based looka-
head optimization, the vector wgy is computed directly that gives each EV’s
charging power. By this means the solution evaluation is much faster than
with GP-based policy evolution, where in each evaluation run the policy’s
output has to be derived for each agent separately over all time steps. While
the interpretation of a policy itself is quite fast (less than a thousandth of
a second), deriving N % T" = 7200 charging decisions within a complete sim-
ulation run leads to a significant increase of computation time for solution
evaluation.
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Nevertheless, the optimization of policies is decoupled from their application
in real-time operation. Since a charging decision can be derived from a pol-
icy at runtime in less than a thousandth of a second (i.e. Tp << T¢), this
approach is suitable to real world control applications.

7.2.3 Conclusions on Runtime Assessment

While evolutionary simulation optimization is faced with critical runtime is-
sues due to computationally expensive solution evaluations, the simulation
runtime builds the critical bottleneck. Since time consumption for evolution-
ary operations (selection, mutation, crossover) becomes marginal, analysis
have been performed mainly based on computational costs for simulation.
Especially the concept of policy-based near-optimal control brings the advan-
tage that the simulation optimization process itself can be shifted to some
offline stage, where during operation only the interpretation of the policies
represented by analytical functions is necessary. While in real-world applica-
tions most often the costs for policy interpretation (Tp) are small compared
to necessary control intervals (7 ), this concept builds a promising approach.
For herein experiments, the simulation models and solvers have been imple-
mented in Matlab without special emphasis on runtime minimization. Sure,
using parallelization techniques and more efficient algorithm implementations
would bring the potential of speeding up simulation, reducing the derived val-
ues for Tgryo. Nevertheless, the principal order of Tgyo, T and Tp would
remain the same.

7.3 Outlook

From this essential work herein, potential investigations can be carried on into
multiple directions, both concerning the application as well as the applied
methods themselves. Before discussing potential future work, a borderline
should be drawn that characterizes the spectrum of this thesis.

7.3.1 Spectrum of the Thesis

System Dynamics

Dynamic optimization with policies has the great advantage that it avoids the
necessity of computing a specific solution to each state the dynamic system
exhibits over time. Hence, dynamic adaptation of solutions seems to be not
necessary, which is a major challenge in dynamic evolutionary optimization
[78, 79]. However, this advantage is only true in a restricted area: A policy is
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able to make accurate decisions within situations that are sufficiently similar
to those situations it has been trained to (i.e. similar to the training sim-
ulation). For other situations, its extrapolation-ability is necessary to still
make good decisions. As soon as specific situations are too different from the
training simulation, obviously the policy-based control becomes useless. In
such a case, the simulation model would need to be adapted in order to cor-
respond to such situations, and respective policies would need to be adapted
/ relearned. Figure 7.2 illustrates this issue. Here, the gray-colored region
indicates the predictable volatility of the system, which gets approximated
by the simulation model where finally the policy gets trained to. Real-world
systems are often faced by some kind of drifts that change the system in
way that is not predictable and finally force its model to be adapted and
necessitate the adaptation of control policies too.

Unpredictable
Drift

Predictable Volatility

Simulation Model | Policy

Predictable Volatility

Simulation Model | Policy

Time | Volatility

Figure 7.2: System Dynamics: Drift of Real-World System

Hence, if being learned accurately, policy-based control is valid for sys-
tems where their behavior, dynamics and uncertainty are adequately pre-
dictable. If such a system changes over long time, and the simulation no
more matches the real-world, special techniques will need to be applied for
learning a new policy or adapting the existing one. Numerous approaches
already exist in literature, using memories of already evaluated solutions,
sub-populations or immigration methodologies in order to adapt the evo-
lutionary search to changing positions of the desired optima over time. A
comprehensive overview on such concepts can be found in [118]. Hence, with
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policy function approximation, solution adaptation is avoided on a short-time
scale, where the policy is able to derive decisions for uncertain and dynamic
states. On a long-time scale, solution adaptation is still necessary in or-
der to meet potential drifts of the system (that cause a mismatch between
simulation model and real-world).

Function Approximation

As already mentioned, the used function approximation technique is a crucial
choice for policy-based control. Within this work, two distinct approximation
techniques were used, namely metamodel-based approximation with polyno-
mials as well as metamodel-less approximation with GP. Especially the latter
is highly promising, since with GP one is able to evolve any executable ex-
pression without the need of a-priori assumptions on the policy’s structure.
Since the descriptive power of GP is high and nearly any behavior can be
approximated theoretically, it is a valid choice for investigations herein. How-
ever, many other function approximations could be applied, being more or
less suitable to herein treated problems.

Information Technology - Availability of Data

Since with policy-based approximate optimal dynamic control decisions are
executed in a distributed manner, appropriate information needed for evalu-
ating abstract rules is needed at the point where the policy is applied. Within
this work, it has been assumed that all data that is needed for making con-
trol decisions is always available. When handling the classical OPF problem
(i.e. power grid operation with generation unit scheduling) in Chapter 5,
this issue can be neglected since all data that is needed here for policy-based
control is also available in traditional power grid operation. Hence, all data
is available.

When treating smart grid related OPF control issues such as the proposed
holistic EV charging problem, much more information is needed for dis-
tributed control. Here, the assumption that future smart grid architectures
are able to provide these data is essential. In [61], researchers have already
shown the sufficiency of existing IT infrastructures for the general aim of
distributed demand response in smart grids, also substantiating this assump-
tion.

Time Scale

In the introductory chapter on power grid operation, an important state-
ment characterizes this work: namely that steady-state representation of the
system is sufficient when making decisions on a time scale of minutes and
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more. In literature on future power grid control when optimizing decisions
for e.g. distributed generation units or controllable load devices, most often
such high time scales are considered. In the same way, this work assumes
similar time scales for decision making. Hence, even if dynamic situations
are regarded, the consideration of multi-step problem definitions where each
step is modeled by a steady-state formulation is sufficient. However, lower
time-scales necessitating the application of transient representations could
be promising as well, but are not being treated herein.

Electric Vehicles - Load Modeling

Within Chapter 6, electric vehicle charging control has been stated as generic
problem description for OPF related power flow control in smart grids. Here,
this technology was defined to control time and (positive) magnitude of charg-
ing power, while different attempts are made in literature in order to enable
also to discharge electric vehicles and provide regulation services to the power
grid (V2G concept). This discharging has not been considered due to two
reasons: from the optimization problem formulation point of view, it makes
little difference since the only change is to allow a negative value for the
charging power. Additionally, more accurate battery models would need to
be integrated into the simulation. The second reason is that a potential dis-
charging technology will not be practically relevant in coming developments,
since battery costs are too high [89].

7.3.2 Potential Future Work

Having defined the spectrum as well as the borderlines of performed investi-
gations, potential future research work can be derived.

From the applications’ point of view, various additional developments
could be performed. For example, instead of learning policies for load con-
trol, a set of policies for power system restoration after an outage could be
evolved using a simulation model that describes system faults. Additionally,
the time-scale plays an important role on the application’s side: While in
this thesis decisions with a time range of 15 minutes and more have been
treated, decisions on a lower time scale (i.e. seconds or less than seconds)
could be promising for enabling frequency regulation, for example to learn
control policies for a device that provides spinning reserves and thus partic-
ipates in the primary reserve market. In such a case, transient power flow
modeling would be needed within the simulation.
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Another potential research direction from an applications’ point of view
could address the question on how to implement policy-based control into
modern/future power grid architectures. While in this work the complete
availability of data for decision making has been assumed, the question of
implementability could be of great concern. Also a possible reduction of
needed data (i.e. a reduction of abstract rules) could be of interest for im-
plementation reasons.

Considering methodical research extensions, an important issue concerns
system dynamics as discussed above, so the adaptation of learned policies
over time. So far, policies are learned in order to perform accurately in
a real-world that is described through the simulation model. It has been
assumed that the simulation model sufficiently accurately describes the real-
world. But, what if the real-world system drifts (for example because of
seasonal changes to the power system)? In such a case, the policies would
need to be adapted or even completely relearned. As mentioned above, many
techniques already exist for dynamic evolutionary optimization in order to
adapt/relearn solutions. Here, research questions could address the task of
adapting existing policies from the evolutionary computation point of view,
or the issue on how to recognize a system’s drift respectively the inadequacy
of the simulation model.

Another methodical extension would be the investigation of using other
function approximators as metamodel. Numerous fruitful approximation
techniques exist such as ANNs, decision trees or fuzzy logic, all of them
with specific features that could or could not be advantageous to the herein
problem domain. In case of genetic programming, the application of extended
grammars could be promising. For example, the integration of conditional
operators could enable the evolution of more complex policies that are able to
distinguish between different situations via a higher-level conditional query
(at a higher node in the tree structure) and apply accurate policies to them
that are subjacent to this query.

Summing up, the developed techniques provide a fruitful ground for man-

ifold future investigations in the field of smart electric grid engineering as well
as policy function approximation in general.

163



Stephan Hutterer Summary & Outlook

7.4 Publications

The author published several works in the context of this thesis, that will
now be listed and briefly discussed with respect to their main achievements.
Their sequence fits well to the structure of this thesis.

Conference Proceedings and Journal Papers

To conclude the very beginning of the related research work, [53] has
been published for stating the principal idea of applying evolutionary simu-
lation optimization to power grid operation applications. While explaining
the fundamentals of this technique, the special advantages have been dis-
cussed with respect to power flow optimization in future smart grids.

[49] extended this work by applying simulation optimization for solving
the general OPF for a benchmark instance. By unifying HeuristicLab with
Matlab for power flow simulation in PSAT (Power System Analysis Toolbox),
achievable solution qualities have been discussed. However, this publication
still treated the steady-state OPF, i.e. the computation of a static solution
within one discrete state.

Taking the general OPF as suitable benchmark problem, [46] presented
for the first time the idea of creating a dynamic (multiperiod) problem out
of the steady-state OPF for testing simulation-based policy function approx-
imation on it. This publication built the fundament for Chapter 5 herein
which got extended both in terms of the methodology as well as considering
the implemented problem instances.

[55] extended this work and uses argumentations quite at the same level
as herein when introducing abstract rules in comparison with system vari-
able synthesis. Also, the idea of creating separate training and test scenarios
as well as the technique of coevolving multiple policies in parallel has been
discussed.

A little earlier in [51], the framework of aggregating power grid con-
siderations with traffic simulation has been presented, where discrete-event
simulation was used for describing fleets of electric vehicles as well as their
interrelated behavior. Even if a dynamic control issue has been treated,
still a real-valued solution representation was used according to lookahead
optimization, while directly computing optimal values for Pgy (respectively

UEV)-
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The existing problem description has been extended to a holistic prob-
lem formulation of EV charging control in [52], which was able to integrate
both the traffic simulation together with a power flow simulation of a given
distribution grid. While incorporating uncertainties of the traffic simulation
as well as fluctuating stochastic supply models from renewables, the general
fundament for herein considerations in Chapter 6 was provided. Using a real-
valued solution representation as before, some experiments demonstrated the
validity of this approach to optimal EV charging control.

Taking the developed simulation optimization framework and extending
existing experiments, the author completed a first journal-paper submission
[44] to the International Journal of Energy Optimization and Engineering at
the very end of 2011. After revisioning the submission, the paper is sched-
uled for publication in Volume 2, Issue 3, 2013. In addition to the previous
papers, this work presented an adaptive sampling scheme based on offspring
selection genetic algorithms (OSGA) that automatically adapts the number
of simulation samples when estimating the fitness of a solution.

Since the very beginning of his work the author identified the strong po-
tential of simulation optimization for the engineering society. Followingly, he
decided to publish a journal article that gives profound discussions of sim-
ulation optimization with HeuristicLab, highlighting the benefits that this
technology is able to provide to engineers that work in the optimization field.
This article shall now be appearing in the IEEE Transactions on Industrial
Informatics (5-year impact: 3.14) [54].

The author recognized the potential of dynamic optimization in the con-
text of charging control. After formulating policy-based approaches, [45]
first presented the idea of formulating abstract rules for synthesizing flexible
charging policies out of them. The author additionally provided more de-
tailed discussions on the synthesis with and without metamodels, which lead
to major insights forcing the application of genetic programming for policy
approximation.

On top of that, [50] presented comparisons to lookahead optimization
and reachable solution qualities with both deterministic as well as policy-

based control optimization.

In order to put the evolved technology of simulation-based evolution-
ary policy function approximation more in the context of near-future smart

165



Stephan Hutterer Summary & Outlook

grid implementations, [47] stated it as suitable technology to be imple-
mented to e-mobility aggregators and discussed both its advantages as well
as implementation-related abilities.

Summing up, the author strongly intended to bring his work and ideas
to the research society. Besides the journal articles, he is proud of hav-
ing presented them at highly established scientific conferences such as the
Genetic and FEvolutionary Computation Conference (GECCO), the EvoStar,
the IEFE Conference on Probabilistic Methods Applied to Power Systems
(PMAPS) or the IEEE Symposium Series on Computational Intelligence
(SSCI).

Talks

Several talks have been used for discussing the actual developments in
the context of this thesis: in May 2011, an invited talk named Metaheuristic
Open Source Power System Optimization and Analysis using HeuristicLab at
KTH in Stockholm was done discussing both the simulation-based optimiza-
tion of charging decisions as well as the general application of metaheuristic
techniques to the power engineering domain.

In recent years, an Austrian research group from TU Vienna established the
annual national conference on smart grids ComForEn', where the author
took the chance to discuss his work in front of the national scientific com-
munity annually since 2010.

At the EvoStar-conference in April 2013 within the EvoTransfer-workshop,
the author debated the general potential of applying soft computing tech-
niques like metaheuristics to manifold issues in smart grid engineering, such
as probabilistic infrastructure planning, demand forecasting or demand-side
dynamic control optimization.

LComForEn - Kommunikation fiir Energiesysteme
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Appendix

A.1 Abstract Rules for OPF: Matlab Code

Some explanation: casez is a structure containing the MATPOWER model
data, see the MATPOWER manual [120]. casex.bus returns a matrix with
the bus data, casex.branch returns the branch data, and casex.gen delivers
generator data. An extra matrix is used for the cost coefficients of generating
units, namely casex.gencost.

% busnNr gives the identifier of the actual bus

% LLF - local load factor of supply unit
% casex.bus(busNr,3): the load buses’ active power values
% casex.gen(casex.gen(:,1)==busNr,9): maximum generation capacity

1l1f=casex.bus(busNr,3)/casex.gen(casex.gen(:,1)==busNr,9);

% NLF - neighboring load lactor

% sum of active load at connected buses and their neighbors divided
% by the maximum active power output at those buses

% neighborLoad returns the active power load values of neighbored

% buses, neighborPower addresses their generation capacity

nlf=sum(neighborLoad) /sum(neighborPower) ;

% NRLF - neighbouring reactive load factor

% sum of reactive load at directly connected buses and their

% neighbors divided by maximum reactive power output at those buses
nrlf=sum(neighborReactiveload)/sum(neighborReactivePower) ;
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% GLF - global load factor
% sum of total active power load within grid divided by sum of
% maximum active power generation

glf=sum(casex.bus(:,3))/sum(casex.gen(:,9));

% GRLF - global reactive load factor
% sum of total reactive load within grid divided by sum of maximum
% reactive power output

grlf=sum(casex.bus(:,4))/sun(casex.gen(:,4));

% MARF - maximum rating factor

% maximum MVAR rating of connected branches divided by maximum MVAR
% rating of all branches

% neighborBranches: the MVAR ratings of the neighboring branches;

% casex.branch(:,6): the MVAR ratings of all branches;

marf=max (neighborBranches)/max(casex.branch(:,6));

% MERF - mean rating factor
% mean MVAR rating of connected branches divided by maximum MVAR
% rating of all branches

merf=mean (neighborBranches) /max(casex.branch(:,6));

% LCCF - linear cost coefficient

% linear cost coefficient of generator divided by maximum linear
% cost coefficients of all generators

% index is the identifier of the generation unit
lccf=1-casex.gencost(index,6)/max(casex.gencost(:,6));

% PCCF - polynomial cost coefficient

% polynomial cost coefficient of generator divided by maximum
% polynomial cost coefficients of all generators
pccf=1-casex.gencost (index,5) /max(casex.gencost(:,5));

A.2 1TEEE Test Case Constraints Data

MATPOWER Case Format: Version 2

All values are give in per unit (p.u.) notation, with base-MVA = 100, in
ascending order with the branch Nr. The code can be inserted into MAT-
POWER as is for setting the branch flow constraint values (branch rating).
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IEEE 14-Bus Branch Rating

casexx.branch(:,6)=[120 65 36 65 50 65 45 55 32 45 18 32 32 32 32 32 32 12
12 12];

IEEE 30-Bus Branch Rating

casexx.branch(:,6)=[

130 130 65 130 130 65 90 70 130 32 65 32 65 65 65 65 32 32 32 16 16 16 16
32 32 32 32 32 32 16 16 16 16 16 16 65 16 16 16 32 32

1;

IEEE 57-Bus Branch Rating

casexx.branch(:,6)=[

170 120 120 40 40 40 60 250 40 40 40 40 40 60 250 120 120 60 40 40 40 120
40 40 120 60 60 120 40 40 40 40 40 40 40 40 40 40 40 40 120 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 60 120 120 40 40 40 40 60 60 40 40 40
40 40 60 40 40 40 40 40 40 40 40

1

IEEE 118-Bus Branch Rating

casexx.branch(:,6)=[
175 175 500 175 175 175 500 500 500 175 175 175 175 175 175 175 175 175 175
175 500 175 175 175 175 175 175 175 175 175 500 500 500 175 175 500 175 50Q
175 175 140 175 175 175 175 175 175 175 175 500 500 175 175 175 175 175 17§
175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 17§
175 175 175 175 175 175 175 175 175 175 175 175 175 500 175 175 500 500 500
500 500 500 500 175 175 500 175 500 175 175 500 500 175 175 175 175 175 175
175 500 175 175 175 175 175 175 500 500 175 500 500 200 200 175 175 175 50Q
500 175 175 500 500 500 175 500 500 175 175 175 175 175 175 175 175 175 175
200 175 175 175 175 175 175 175 175 175 500 175 175 175 175 175 175 175 175
175 175 175 175 175 175 175 500 175 175 175 500 175 175 175

1;

A.3 OPF Benchmark Solutions for IEEE 14-
Bus and 30-Bus Cases

The following table gives the control variables (@) of the best found solutions
for the IEEE 14-Bus and 30-Bus test cases. The subscripted numbers indicate
the bus numbers of the respective controlled units. While units for variables
Pg, Vi and Q¢ are modeled directly at buses, transformers (73,,) are modeled
to be between two buses in MATPOWER. While the units for Pg, Vg and
Qc are MW, p.u., and MVAR respectively, T},, represents a unit-less ratio.
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14-Bus Case 30-Bus Case
Variable | Value | Variable | Value

Ver 1.1 Vor 1.1
Poy | 2835 | Py | 43.98
Vs 1.1 Vo 1.1
Poy | 59.88 | Pgs | 19.37
Vs 1.08 Vs 1.1
Pag 10 Pos | 19.59
Ve 1.1 Vs 1.1
Pes 10 Py 10
Vs 1.1 Ve 1.1
Qco 19 Peys 12

Ttap477 098 VG 13 104
Tiapse | 093 | Qoo | 2.98

Trapgo | 1.06
T;fapﬁ,l(] L1

tapg 12 1.1
jjtap28727 1.1

Table A.1: Best Found Solutions for 14-Bus And 30-Bus Cases

A.4 Results to IEEE 14-Bus SVS

Solutions Pg,, for n = 2...5 (Pg,; = non-controllable slack bus). In order to
increase the readability, the constants are extracted and shown in subsequent
tables.
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Pg, =
rcy x Ppy % (reg — reg  Ppy, — req x P, — res % Py + 1reg % ¢l +rep % Pp,)
rcg * Ppy +1rcg x Pp,, — % + rcyy x P, + 1repg % Pg‘:m + regs * el
12
rcis * Pp,
bs

reig x (reir + ;;1182 —1ci9 * Pp, — 7 * Pp,y — 121 % Py + 102 % 1)

(rco3 x Pp,, — TC24)
max
big Al
7‘027*(7’028*]336—7"629*01-‘1-7’030*]332) ( : )
Pgnaz
5

TCogp *
+

TCog * Pp, — (

Pa, = resi * B +resy x Py + ress x Pp, — resy x Py

ress * (resg x P, — resy % Pp,)

+ rcag * Pp,
rCgs * Pp, + 139 — rego * BT+ reqr x ey
T'Cy3 * (7“644 % PB4 — T'Cy5 * C3 — T'Cyp * Pg:;am + rCy7 * PB3)

TC48 *Pb’g‘” p
—P32 — T'Cy9 * Bo

—TC50*PlZLax+TC51*PBg

— [(resg * (ress x Ppy, — 1esy * P 4 155 % ¢3 — 156 * P,

— 157 x Py —resg x PR 4 1resg x Ppy))] /By — rego (A.2)
PG5 = TCg3 * nglgax + T'Cgq * P35 — T'Cgs (A4)

Some observations shall be stated when regarding these equations in more
detail:

Pg, & Pg, seem to deliver quite low values (<< 1), which shows that
the power production of those plants is too expensive to be used. However,
a value > 0 is necessary since plants - even if nearly no power is produced -
provide the reference voltage and are still important to the power flow con-
trol. Within Pg, & Pg,, even if various variables throughout the grid are
influencing the policies, especially load-variables of directly connected nodes
are used with high frequency (buses 1 — 6), which seems to be reasonable.
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Generally, load values occur most frequently, which is clear since they give
the most crucial information on needed real-power production.

‘ Constant ‘ Value ‘ Constant ‘ Value ‘
P,
rey 0.009174748632 reie 0.008994590782620
re) 1.49283300 reiy 6.69564385
res 1.78953483388612 reps 34.23717341
reg .624093771901573 regg 1.248187544
res 1.27154724912624 rca 1.78953483388612
rce 264211771833534 rea 1.27154724912624
res 2.5832983635531 o 0.264211771833534
res 1.27154724912624 reos 0.192005552542291
rcg 5.505926961 o 10.0365276640446
rey 127.0386212 reos 0.00010716
ren 1.296078252 rCo6 2.36263171335547
rer 5.325613134 reor 0.5294977006
reis 264211771833534 reos 1.27154724912624
reny 1281947642 rCag 0.264211771833534
regs 0.005191038225 reso 0.624093771901573
P,
res 0.001856568614 rcss 0.84055468176719
res 0.005946704804 rear 5.127725118
ress 0.004250986442 reas 0.8327927662
resg 0.002232502556 reag 0.767252976260522
ress 0.002182532036 rcso 0.002642510637
rcse 1.94773152065585 res 0.001674554200
resy 1.02144134490299 ress 0.002133680015
ress 5.843194563 ress 6.800371227
rCsg 4.50401344 resy 1.02289566351344
redo 2.045791328 ress 1.27770086526315
res 1.27770086526315 rese 0.767252976260522
re 0.01119142434 resy 0.821366567046215
regs 0.002182532036 ress 0.84055468176719
reay 3.895463042 rcsg 5.127725118
regs 1.27770086526315 rceo 0.296274606521816
P,
rcgy | 0.000055316726 | reg; | 0.00072239522234
Continued on next page
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‘ Constant ‘ Value ‘ Constant ‘ Value ‘
Pe.,
rCe3 1.671046042 % 108 TCes 4.09932847184168 % 10~
rCe4 7.367354603 % 108

A.5 Results to Polynomial ARS

Table A.2: Real-Valued Constants Assignment 14-Bus

SVS

Table A.5 lists the best found solution to each case, i.e. weights w of the
abstract rules within polynomial synthesis for each case. For the linear solu-
tion (30-bus case), one weight is necessary per rule, while for the quadratic
synthesis two weights are associated to each rule (consider Equations 4.3
and 4.4). For each policy, one constant is being optimized too, entitled by
c1...c4. The decomposition of the solution vector to the single policies has

been explained in Section 4.2.7 respectively Figure 4.3.

Variable 14-Bus | 30-Bus 57-Bus 118-Bus

quadratic | linear | quadratic | quadratic
wl.1 1 1 1 0,4347
wl.2 1 1 0
w2.1 1] 0,7859 0,9326 0
w2.2 0 1 0
w3.1 1 1 1 0,4714
w3.2 1 0,9883 0
w4.1 0| 0,4303 0,5431 0,6771
w4.2 0 0,7185 0,2149
wbhH.1 0,564 | 0,5329 0 0
wH.2 0,3851 0 0,278
wb6.1 0,648 | 0,3474 0,6977 0,0557
w6.2 0 1 0
w7.1 0 1 0,0619 0,8411
w7.2 0,6646 0,8545 1
w8.1 0,8657 | 10,5312 0,2941 1
w8.2 0,4557 0,7338 0
w9.1 1] 0,5624 1 0,189

Continued on next page
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Variable 14-Bus | 30-Bus 57-Bus 118-Bus

quadratic | linear | quadratic | quadratic
w9.2 0,6659 1 0
w10.1 0,5453 | 0,6094 0 0,1863
w10.2 1 0,4361 0,2982
wll.1 1 0,728 1 1
wll.2 0,4071 0,5507 0,9654
wil2.1 1| 0,8679 0,5722 0,0048
w12.2 0,3432 0 0
wl3.1 0,7817 0 0,8435 1
w13.2 0,2475 0,418 1
wl4.1 0,5243 | 0,9492 0,7358 0,5991
wl4.2 0,8827 0,1793 0
wlb.1 1| 0,6566 0 1
w1b.2 0 0,1269 1
wl6.1 1 0 1 0,369
w16.2 0,0609 0,9806 0,975
wl7.1 0,5694 | 0,3444 0,0576 0,4947
wl7.2 0 1 0,8072
wl8.1 0 0 0,0758 0,1034
w18.2 1 0,9689 0,9732
w19.1 0] 0,1743 0 0
w19.2 0,7827 0,0043 0,0104
w20.1 0,4012 0,814 0,1714 0,1023
w20.2 0,7461 0,1343 0,1551
w21.1 0,9254 | 0,3958 0,8927 0,9034
w21.2 0,6832 0,1016 0,0012
cl 1 0 0,1532 0,1043
c2 0,1142 | 10,7976 0,3803 0,22
c3 0] 0,1996 0,1711 0,1478
c4 0,1648 0,147 0,0007 0,1918

Table A.3: Best Found Solutions with Polynomial Syn-

thesis of Abstract Rules
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A.6 Results to GP Synthesis with ARS

14-Bus Test Case

Po(F) =rcy # U f x (reg x pef +regx Uf —rey)x*
repxnlfs

(res « ULf +reg x pef — ol

—rcg) (A.5)

rcio * merf

__rcir*nlfs

glf xmrfxnlfsqx*( W+rcm*glf
+2xnlfsq—rcig*nlfs (A.6)

Qc(T) =reg xmrf +

re1g x nlfsqx (reys x nlfsq — regg * glfq)

Va(r) = (reiz xnlfsq —reig * glfq) ray (A7)
T(T) = rcog x nlfsq (A.8)
Constant | Value Constant | Value

rey 0.5023134612 ren 12.69856671

TCy 1.9310445684 TC12 0.36013402

rcs 1.650124450238 rci3 4.337768712

rey 0.9613345034545 rC1a 36.16479623

rcs 1.569803923546 rCis 1.760117633

rcg 1.930135952 rC16 0.32989912

rey 0.7782317101 rciy 189.39932432001
rcg 0.25994357 rcig 33.65009731235
rcy 1.278829124 rC1g 0.92003212

rC1o 0.08737413221 rCo 0.6501342678

Table A.4: Real-Valued Constants Assignment 14-Bus ARS
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30-Bus Test Case

Po(T) = (rey * (reg ks merf +res x glf —regxlef))x
(rc5 x glf * (reg x glf —rer xlef)
pef?

+regxglf xmrf)+rcg  (A9)

. —reig*nlfsq
Qo(r) = mer f x gl f
— e * glf xmrf xnlfsq (A.10)

+rey knlfs+reig x glf —reizx merf

Va(T) = reis * nlfs — regg * nl f sqx
rcig * glf
—rcig * glfq+ regg xnlfsq

(reyr *nlfsq + )+ re; (A.11)

rcog * nlfsq

T(7) 77 (A.12)

Constant | Value Constant | Value
rey 0.022584391622329 rci2 0.19331921668476
rco 0.300369793090626 rcis 0.127834427886384
rCs 1.1568988081503 o 0.6431956875
rey 0.482939198125127 rC1s5 0.0291709528742042
rCs 3.209932224 rC1g 0.0432870615113212
rCg 1.24139869653752 reir 1.67230183977234
rcy 0.482939198125127 rcis 0.814501831722179
reg 8.87081977769297 rCig 0.757900514291291
rCy 0.28166616774456 rCo 1.46851844985904
rcio 0.07700896430 rCo1 0.955877454221944
rein 0.238363555569058 7'Coo 6.724411552

Table A.5: Real-Valued Constants Assignment 30-Bus ARS
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57-Bus Test Case

l
Pg(T) = —rey s pef —reg xlef + reg xlef
glf
—regxlef x (—res x glf +reg) +req (A.13)
rcg * gl
Qc(F) = _resxglfq (A.14)

~ nlfssmerf

(reo + (rew * glf — rev xnlfs)) « (gratas)

Va(T) = il +rcy (ALD)
T(F) =reis x glfq (A.16)

Constant | Value Constant | Value

rey 0.54593114482147 recg 0.0002605700484

TCy 1.12370271944248 rC1g 1.01521391610751

rcs 0.3086082691 ren 0.858157571660497

rey 0.274738839917123 rC12 2.835516782

rcs 15.1013679394346 rc13 9.06989821567111

rcg 8.61861396367215 rCi4 0.90344395654115

rey 1.17393665385405 rcis 2.7650945133127

reg 0.8703370953

Table A.6: Real-Valued Constants Assignment 57-Bus ARS
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118-Bus Test Case
_ rco
P, = — lef — — A17
¢(7) revxlef (—reg s pef —reqg xlef +res x glf) res )
Qc(T) =rer x glfq (A.18)
—reg * nlfsq* (reg x nlfsq + "ordlia
Vol = s Ul ERERD L (g
(repy * glfq —reig xnlfsq+ W —rcyy)
_ —rcig * glf
7)) = ————— A .20
) glfgxnlfs ( )
Constant | Value Constant | Value
rey 0.155548842697486 rCg 1.26833120819581
TCo 0.1145891097 rcio 0.7491700156
rcs 1.41024219036674 rern 0.382813938306131
rey 0.759401256221478 rC12 17.6598906339669
rCs 0.609241551352816 rC13 0.5360855740
rCg 0.0120148594281784 rC14 3.0095511328716
rCy 1.01466994729926 rcis 0.945918940336494
res 0.303452661919591 rCig 0.2416044647

Table A.7: Real-Valued Constants Assignment 118-Bus ARS
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300-Bus Test Case

B —rey x glf?
left s (—regx glf — res*pef

mrf

Pe(T) +rey (A.21)

Qc(T) = —(res « (—reg xnlfsq — reg « merf —reg «mrf * glfq —reg * glf))
x glf x (—rcio * glf +req *nlfsq) (A.22)

Va(T) = (rejg * ((raiz xnlfsq — reyg x glf) = (reps x nlfs — rejg x nl fsq) + repr))

k (—reig * nlfs + regg * glf)? + reg (A.23)
_ —TCa
T(T) 7 (A.24)
Constant | Value Constant | Value
re 0.06120832765 rCio 0.0177062258262658
rey 0.770697086326539 rci3 2.31463007650868
rcs 5.845319934 rC14 1.21332053072351
rey 0.0644296181630367 rcis 0.270119269747214
rcs 0.109923212165849 rCig 2.13833923606081
rcg 1.077264126 rciy 0.835234255602339
rey 0.231704707004565 rcig 0.252995468453396
rcg 0.1701531960 TCig 2.18512229723492
recy 2.88931259346142 rCog 0.916811401302349
rcio 0.447585038452153 rCo1 0.2002247196
rc11 2.941347444

Table A.8: Real-Valued Constants Assignment 300-Bus ARS

A.7 Matlab Implementation of Linear EV
Charging Optimization

The definition of the optimization problem in Matlab is performed by formu-
lating both the objective function as well as the constraints with matrices.
The linprog-function solves a minimization of f7 %« such that A*u < b and
Ib < u < ub (equality constraints are not needed for the defined problem).
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Referring to Equations 6.4-6.6, the constraints for cryax, pymax, and
Eyrn are expressed by building their coefficient-matrices such that Axu < b

holds.

The lower and upper bounds for the control variables are defined as (b = 0
and ub = 1, which ensures that none of the EVs is allowed of charging with a
power value of more than py4x. Additionally, Equations 6.4 and 6.5 ensure
the individual as well as the joint power restriction for each single EV and
the total fleet respectively. The objective function from Equation 6.7 respec-
tively its coefficients for all time steps are stored within a vector f. Finally
the optimization problem is solved with:

[u,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],1b,ub,[],options);

The resulting charging power Pgy,,, of EV n at time step T is obtained
by multiplying the control variable w;,, with the respective power capacity

PMAX:-

A.8 Small-Scale Demonstration Grid for EV
Charging

This demonstration grid has been set up for illustrative reasons and does not
stem from literature nor is taken from real-world. The grid data in MAT-
POWER data-format are given as follows. For more information on the data
structures, see MATPOWER manual.

%% MATPOWER Case Format : Version 2
mpc.version = ’27;

% Base MVA = 10 MVA

mpc.baseMVA = 10;

% Base kV = 12.66 kV.
mpc.baseKV=12.660;

%% Bus data

mpc.bus = [

%bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin

A === === === === === ===
1 3 0 0 0o 0 1 1 0 12.66 1 1.05 0.95;
2 1 0.0 0.00 0O 0 1 1 0 12.66 1 1.05 0.95;
3 1 0.09 0.04 0 O 1 1 O 12.66 1 1.05 0.95;
4 1 0.12 0.03 0 0 1 1 0 12.66 1 1.05 0.95;
5 2 0.1 0.08 0 0o 1 1 0 12.66 1 1.05 0.95;
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A

1;

%% Generator data
mpc.gen = [

% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin

% === === === === === ===

1 0 0 10 -10 1 10 1 10 0;
5 0 0 10 -10 1 10 1 4 0;
% J— P—
1;
%% Branch data
mpc.branch = [

% fbus tbus r X b rateA rateB rateC ratio angle status
Y ==== ==== === === ===
1 2 0.0353 0.0300 0 10 10 10 0 0 1;
2 3 0.0421 0.0257 0 10 10 10 0 0 1;
2 4 0.0409 0.0278 0 10 10 10 0 0 1;
4 5 0.0427 0.0301 0 10 10 10 0 0 1;
b
1;

The input data to the model as well as the power flow computation are given
in Matlab-code for better understanding. The code for all three simple ex-

periments is presented below:

Experiment 1

%sampleCase.m contains the model data as above
casexx=eval(’sampleCase’);

%set Domestic Load

%column 3 of the bus-structure contains the load values
casexx.bus(3,3)=0.090;

casexx.bus(4,3)=0.091;

casexx.bus(5,3)=0.06;

%set PEV Load
casexx.bus(3,3)=casexx.bus(3,3)+0.1;
casexx.bus(5,3)=casexx.bus(5,3)+0.05;

%set Generation

%the gen-structure contains the real-power injection in column 2
casexx.gen(2,2)=0.005;

%obtain results

%runpf performs power flor calculation with Newton-Raphson solver;
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%results.branch(:,14) gives the resulting active power flows

results=runpf (casexx) ;
results.branch(:,14)

Experiment 2

%set Domestic Load

casexx.bus(3,3)=0.065;
casexx.bus(5,3)=0.093;
casexx.bus(4,3)=0.091;

Y%set PEV Load
casexx.bus(3,3)=casexx.bus(3,3)+0.02;
casexx.bus(5,3)=casexx.bus(5,3)+0.13;

Y%set Generation
casexx.gen(2,2)=0.015;

%get PF results
results=runpf (casexx) ;
results.branch(:,14)

Experiment 3

%set Domestic Load

casexx.bus(3,3)=0.065;
casexx.bus(5,3)=0.093;
casexx.bus(4,3)=0.091;

Y%set PEV Load
casexx.bus(3,3)=casexx.bus(3,3)+0.02;
casexx.bus(5,3)=casexx.bus(5,3)+0.13;

Y%set Generation
casexx.gen(2,2)=0.025;

%get PF results
results=runpf (casexx) ;
results.branch(:,14)
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A.9 Abstract Rules for EV Charging: Mat-
lab Code

Some explanation: caser is a structure containing the MATPOWER model
data, see the MATPOWER manual [120]. casez.bus returns a matrix with
the bus data, casex.branch returns the bus branch data. schedules is a N xT-
dimensional matrix containing the estimated driving patterns of all EVs.
buses is a N x T-dimensional matrix containing the locations of EVs, where
buses(n,t) gives the bus number of EV n at time step t.

tempSchedules provides all previous charging decisions during the simulation
and is a N x T-dimensional matrix containing the charging rates of EVs

%total remain Time so far of EV ’n’ at time step ’t’
%schedules(n,i)=1 if EV ’n’ is being parket at time ’t’; O otherwise
remainTime=sum(schedules(n,1:t));

RT=1-(remainTime/t) ;

%estimated remaining remain Time until the end
estRemTime=sum(schedules(n,t:T));
ERT=1-(estRemTime/T) ;

%estimated time to departure from actual place
estDep=0;
if (schedules(n,t)>0)
j=t;
while(schedules(n,j)>0)
if (7>=T)
break;
end
estDep=estDep+1;
J=j+1;
end
end
ETTD=1-(estDep/T) ;

% actual time from arrival at this place until now
estArrival=0;
if (schedules(n,t)>0)
j=t;
while(schedules(n,j)>0)
estArrival=estArrival+il;
i=i-1
if (j<=0)
break;
end
end
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end
TFA=1-(estArrival/t);

% generation & distribution metrics (past, future, actual)

% schedulelrradiance is a 1-dim vector of length ’T’ containing the
% predicted solar irradiance, normalized to [0,1]

% scheduleBaseLoad is a 1-dim vector of length ’T’ containing the

% predicted base load in the grid, normalized to [0,1]

% scheduleWindSpeed is a 1-dim vector of length ’T’ containing the
% predicted wind speed, normalized to [0,1]

% schedulePrices is a 1-dim vector of length ’T’ containing the

% predicted stock market prices, normalized to [0,1]

%actual irradiation
AI=schedulelrradiance(t);

% actual base load
ABL=scheduleBaselLoad(t);

%actual stock market electricity price
AP=schedulePrices(t);

%actual wind speed
AWS=scheduleWindSpeed (t) ;

% horizon gives the estimated time interval until departure
horizon=i+estDep-1;

% past irrediation
PI=mean(scheduleIrradiance((t-estArrival+1):t));

% estimated mean irradiation during remain time
EI=mean(schedulelrradiance(t: (horizon)));

% past base load
PBL=mean (scheduleBaselLoad ((t-estArrival+1):t));

% estimated mean base load during remain time
EBL=mean (scheduleBaselLoad (t:horizon)) ;

% past stock market electricity price
PP=mean(schedulePrices((t-estArrival+1):t));

% estimated mean price during remain time
EP=mean (schedulePrices(t: (horizon)));

% past wind speed
PWS=mean (scheduleWindSpeed ((t-estArrival+l):t));
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% estimated mean wind speed during remain time
EWS=mean (scheduleWindSpeed (t:horizon)) ;

% distance to peak load; tpeak gives the time step if peak load
DTP=abs ((tpeak-t) /tpeak) ;

% BNR contains the location of EV ’n’ at time step ’t’ in form of the bus
% number; is necessary for location-related rules
BNR=buses(n,t);

% mean branch rating (maximum allowed power flow) of directly connected
% branches

branches=[find(casexx.branch(:,1)==BNR) ;find(casexx.branch(:,2)==BNR)];
MMVA (BNR) =mean (maxbranchMVA (branches) ) /max (maxbranchMVA) ;

% nr. of vehicles actually remaining at same bus; with exemplarily 33 buseg
NREVB=1-size(find(buses(:,j)==BNR),1)/(N/33);

% nr. of vehicles actually charging at last time step all buses
NREVC=1-(size(find (tempSchedules(:,t-1)),1)/N);

% nr. of vehicles actually charging at last time step at same bus
NREVCB=1-size(find (sameBus.*tempSchedules(:,t-1)),1)/N;

% mean charging rate at last time step all buses with maximum charging
% rate of 10kW
MCR=1-sum(tempSchedules(:,t-1))/(N*10);

% mean charging rate at last time step at same bus
MCRB=1-sum(sameBus. *tempSchedules(:,t-1))/NREVB*10;

% mean nr. of cars remaing during remaing time at same bus; with

% exemplarily 33 buses

MNREVB=1-(size(find(buses(:, (t-estArrival+1) :t)==BNR),1)/estArrival)
/(N/33);

%already charged energy related to battery-capacity
%stepSize is the length of a discrete time step in hours
ACE=sum(tempSchedules(n,1:t))*stepSize/batteryCapacity;

A.10 EV Traffic Model

The finally applied EV-traffic simulation is designed to have low execution
time while still describing the relevant behavior sufficiently. Therefore, for
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each EV a driving pattern is simulated through randomizing “prototype”-
patterns from statistical investigations. Figure A.1 illustrates this issue,
where an exemplary driving pattern is shown and exemplary Gauss-curves
indicate the randomization process.

Duration
Free Time
Work
Home
On The Way
0:00 a.m. k 12:00 p.m.
Departure-Time Way-Length

Figure A.1: Exemplary Driving Pattern

When randomizing a pattern, each element (i.e. departure times, way-
lengths as well as durations) is drawn from a normal distribution with given
i and o value. In this way, individual behavior is simulated even if EVs
behave according to known patterns.

As already discussed, two distinct prototype-profiles are used herein,
namely full-time and half-time employees. The respective parameters for
simulating them are given in Table A.9 in ascending order according to their
temporal occurrence along a day.

Element Acronym | p [h] | o [h]
Departure Time Home Thome 6.5 1
Way-Length WL 0.66 | 0.25

Duration Work Halftime Tworkpy 4.5 0.5
Duration Home Afterwork | Thome 4y 4.5 0.5

Duration Work Fulltime Tworkpy 9 0.5
Way-Length Evening WLE 2 0.5
Duration Free Time Ttree 2 0.5

Table A.9: Parameters for Driving Pattern Randomization

Most of these assumptions base on an Austrian survey on traffic data [17].
According to these parameters, the final driving pattern for each EV is sam-
pled. The pattern for full-time employees results from sampling the elements
in the sequence [Thome, WL, Tworkpr, W LE], while for part-time employees
this sequence is [Thome; WL, Tworkprs WL, Thomeaw s WL, Tree, WL|. At the
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end of each sequence, a specific remain time at home results implicitly after
the last journey.

As already given at the experiments description, at each location where
an EV remains a specific probability is assumed that models the availability
of a charging infrastructure. They are given as follows: ppome = 1 for parking
at home, pyorr = 0.5 for parking at work as well as pgr.. = 0.25 for locations
in free time. Hence, for instance an exemplary part-time employee that visits
some free-time location in the afternoon has a chance of 25% that a charging
infrastructure is available there.
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