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Abstract

Escape analysis is used in compilers to identify and optimize the allocation of
objects that are accessible only within the allocating method or thread. This
thesis presents a new intra- and interprocedural analysis for a dynamic compiler,
which has to cope with dynamic class loading and deoptimization.

The analysis was implemented for Sun Microsystems’ Java HotSpot client com-
piler. It operates on an intermediate representation in SSA form and introduces
equi-escape sets for the efficient propagation of escape information between re-
lated objects. Analysis results are used for scalar replacement of fields, stack
allocation of objects and synchronization removal. The interprocedural analysis
supports the compiler in inlining decisions and allows actual parameters to be al-
located in the stack frame of the caller. A lightweight bytecode analysis produces
interprocedural escape information for methods that have not been compiled yet.

Dynamic class loading possibly invalidates the generated machine code. In this
case, the execution of a method is continued in the interpreter. This is called
deoptimization. Since the interpreter does not know about scalar replacement,
stack allocation or synchronization removal, the deoptimization framework was
extended to reallocate and relock objects on demand.

Kurzfassung

Escape-Analyse identifiziert und optimiert die Allokation von Objekten, auf die
nur eine Methode oder ein Thread zugreifen kann. Diese Dissertation préasentiert
eine neue intra- und interprozedurale Analyse fiir einen Just-in-Time-Compiler,
der dynamisches Laden von Klassen und Deoptimierung unterstiitzt.

Die Analyse wurde fiir den Java HotSpot Client Compiler von Sun Microsystems
implementiert. Sie arbeitet auf einer Zwischensprache in SSA-Form und verwaltet
voneinander abhangige Objekte effizient in Mengen. Die Ergebnisse werden ver-
wendet, um Felder durch skalare Variablen zu ersetzen, Objekte am Stack anzule-
gen und Synchronisation zu entfernen. Die interprozedurale Analyse unterstiitzt
den Compiler bei Inline-Entscheidungen und identifiziert Methodenparameter,
die am Stack angelegt werden konnen. Eine schnelle Bytecode-Analyse liefert
Informationen fiir Methoden, die noch nicht compiliert wurden.

Dynamisches Laden von Klassen kann bestehenden Maschinencode invalidieren.
In diesem Fall wird die Ausfiithrung der Methode im Interpreter fortgesetzt. Dies
nennt man Deoptimierung. Da der Interpreter die Optimierungen des Compilers
nicht kennt, wurde das Framework zur Deoptimierung so erweitert, dass es Ob-
jekte nachtraglich am Heap anlegt und sperrt.
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1 Introduction

Portability and security earned the Java programming language great popularity,
even though Java programs ran slowly in the beginning. In view of the compe-
tition between different runtime environments, a lot of work and research effort
has been spent on the improvement of performance. Today, Java offers modern
language features combined with an adequate execution speed.

A major performance improvement was achieved by just-in-time compilation.
The subject of this PhD thesis is the implementation of an optimization called
escape analysis for the client just-in-time compiler of the Java HotSpot VM.
This chapter describes the context of the project, the architecture of the virtual
machine, and the challenges of this work.

1.1 Java

The Java programming language originated from a research project to develop
software for network devices and embedded systems. Confronted with the defi-
ciencies of C++, James Gosling developed the programming language Oak at the
beginning of the nineties. After several years of experience with the language, it
was targeted to the Internet and renamed to Java [40].

With the vision of writing an application once and deploying it to different plat-
forms without recompilation, Java was designed as a portable and safe object-
oriented programming language. Although its syntax is similar to C++, complex
and unsafe features such as multiple inheritance or pointer arithmetic were omit-
ted.

Java is a strongly typed language, which means that every variable and every
expression has a type that is known at compile time. Arithmetic operations,
type casts, array and object accesses are checked for validity before they are
executed. If the program attempts to perform an invalid operation, an exception
is thrown. The Java compiler ensures that exceptions are handled properly.
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From the beginning on, Java incorporated support for exception handling, reflec-
tion of run-time type information, multi-threading and remote method invoca-
tion. Recently, the language was extended by constructs for parameterized types,
known as generics [15].

To write and run Java programs, a Java Development Kit (JDK) must be in-
stalled. Sun Microsystems distributes a JDK free of charge. It provides a virtual
machine, a set of development tools and a library of classes for input and output,
graphical user interfaces, network programming and internationalization [85].

1.2 Java HotSpot VM

Java achieves portability by translating source code into platform-independent
bytecodes. To run Java programs on a particular platform, a Java virtual machine
must exist for that platform. It executes bytecodes after checking that they do
not compromise the security or reliability of the underlying machine.

The Java HotSpot VM [84] is Sun’s implementation of a Java virtual machine [62].
It is available for a variety of platforms and operating systems, such as Sun
Solaris, Microsoft Windows and Linux, running on SPARC, the Intel [A-32 or
Intel TA-64 architecture. The VM delivers high performance by using just-in-time
compilation and state-of-the-art garbage collection.

The Java 2 SDK contains two flavors of the VM: the client and the server VM.
They share the same garbage collector, interpreter, thread and lock subsystems,
but use different just-in-time compilers. The server VM achieves maximum peak
operating speed for long-running server applications, while the client VM is tuned
to start up fast and require a small memory footprint.

1.2.1 Memory Management

In traditional languages such as C++, it is the responsibility of the programmer
to release memory when an object is no longer needed. This approach is error-
prone as it can lead to dangling pointers if an object is released too soon, and to
memory leaks if the programmer forgets to free an object.

The Java VM specification requires the runtime environment to provide built-in
automatic memory management. Objects are deallocated by a garbage collector,
which is invoked once in a while to examine the heap and release the memory of
objects if they are not referenced any more [54].
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The Java HotSpot VM implements a generational garbage collector. New objects
are allocated in the young generation. It is collected by a stop-and-copy algo-
rithm, which copies live objects between two alternating regions. The cost of a
collection is proportional to the amount of surviving data rather than to the size
of the generation.

To avoid repeated copying of long-lived objects within the young generation, ob-
jects are moved to the old generation when they have survived a certain number
of collection cycles. The old generation is collected by a mark-and-compact al-
gorithm. Starting from the set of root pointers, it marks all reachable objects,
assigns consecutive memory slots to them, adjusts pointers and finally moves the
objects to their new locations.

Alternatively, the user can switch to the incremental train algorithm. In this
case, the old generation is split into small fixed-sized blocks, so-called cars. A
set of cars forms a train. The algorithm processes only a single car at a time. It
moves live objects out of the car and tries to group related objects in the same
train. Afterwards, the collected car is free. When a garbage structure is entirely
contained within a train, it is reclaimed [41].

The Java HotSpot VM also supports concurrent and parallel garbage collection.
The parallel scavenge algorithm still interrupts the user program but distrib-
utes garbage collection to parallel threads, whereas the concurrent mark-and-
sweep [76] collector can run concurrently with the user program. Both algorithms
better exploit multi-processor systems and minimize GC pauses.

1.2.2 Interpretation and Hot Spot Detection

Execution of a Java program starts immediately after the main class has been
loaded. All methods are initially executed by the interpreter which implements
a naive stack machine. It steps through the bytecodes of a method and executes
a code template for each bytecode.

Interpretation is slow because almost no optimizations are applied. Performance
can be improved by translating bytecodes into optimized machine code imme-
diately before or even while the application is running. This is called just-in-
time (JIT) compilation. Since compilation time adds to the overall run time,
and typical programs spend the majority of their time executing only a small
part of their code, the Java HotSpot VM compiles only the most frequently exe-
cuted methods into machine code. They are referred to as hot spots.

The interpreter counts how often each method is called. If an invocation counter
exceeds a certain threshold, the corresponding method is scheduled for compi-
lation. Once a method has been compiled, its machine code is executed upon
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every future invocation. Invocation counters save the VM from wasting resources
on the compilation of rarely called methods. Besides, as most classes used in
a method are loaded during interpretation, information about them is already
available during JIT compilation. The compiler is able to inline more methods
and generate better machine code.

If a method contains a long-running loop, it may be compiled regardless of its
invocation frequency. The VM counts the number of taken backward branches.
When a threshold is reached, it suspends interpretation and compiles the method.
A new stack frame for compiled code is set up and initialized to match the
interpreter’s one. Then the execution of the method continues in machine code.
Switching from interpreted to compiled code in the middle of a method is called
on-stack-replacement (OSR) [35].

When a problem occurs during the compilation of a method, the compiler bails
out. The virtual machine gives up compilation and keeps on interpreting the
method. It is even possible to revert to interpretation when the machine code
already executes. This is referred to as deoptimization and facilitates debugging
and aggressive compiler optimizations [49].

1.2.3 Server Compiler

Originally, the Java HotSpot VM was delivered with only one highly optimizing
but relatively slow compiler. Today, this compiler is called server compiler as
it provides peak performance for long-running server applications at the cost of
compilation speed.

The server compiler [71] proceeds through different phases when compiling a
method. At first, it parses the bytecodes and translates them into an intermediate
representation in form of a static single assignment (SSA) graph [23]. Each node
represents an operation and points to the nodes that produce the values of the
operands. A value flows directly from its definition to its uses. Control flow is
represented via a different set of instructions. This allows optimizations to change
the order of nodes without worrying about control flow.

During and after parsing, the front end performs various machine-independent op-
timizations, such as constant propagation, global value numbering, loop unrolling
and dead code elimination. A method is inlined if it can be bound statically as
well as if class hierarchy analysis or profiling during interpretation determine that
there is only one suitable implementation. Virtual calls that cannot be inlined
dispatch to a method entry with an inline cache [48].
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The machine-independent instructions are translated to machine instructions
with lowest execution costs using a bottom-up rewrite system (BURS) [73]. This
is done before instructions are placed into basic blocks, so no block boundaries
constrain instruction selection. To increase the portability of the compiler, the
characteristics of the target hardware are specified in a separate machine descrip-
tion file.

Register allocation is based on a graph coloring algorithm [17]. It computes live
ranges, builds an interference graph and colors it. Intervals that fail to get a
color are split. This process is repeated until a complete coloring is found. The
subsequent peephole optimization [4] tries to improve instruction sequences with
regard to the target platform. Apart from machine code, the back end produces
auxiliary information for garbage collection and deoptimization.

1.2.4 Client Compiler

The server compiler produces efficient machine code, but the optimizations re-
quire time. Low compilation speed is acceptable for long-running server applica-
tions, because compilation impairs performance only during the warm-up phase
and can usually be done in the background if multiple processors are available.
For interactive client programs with graphical user interfaces, however, response
time is more important than peak performance.

The client compiler (often referred to as C1) is designed to achieve a trade-off
between the performance of the generated machine code and compilation speed.
It implements only few high-impact optimizations and a simple but fast register
allocation. Although the original version got along with a single intermediate
representation, a second one was added later to facilitate machine-oriented opti-
mizations.

In the context of this PhD thesis, we developed and implemented a new escape
analysis algorithm for the client compiler. While the server compiler operates
on a sea of instruction nodes, the client compiler builds an explicit control flow
graph. This makes it more appropriate for escape analysis.

The version of the client compiler that was extended by escape analysis differs
from the one shipped with the current JDK 5.0. It generates an intermediate
representation in SSA form, performs value numbering across basic block bound-
aries, and uses an optimized linear scan register allocation algorithm instead of
a local register allocation. The structure of the compiler and the layout of its
intermediate representations are described in Chapter 2.
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1.3 Optimizations in Just-in-Time Compilers

Early Java virtual machines fully relied on interpretation. They had to fetch,
decode and execute bytecode by bytecode and thus suffered from poor perfor-
mance. Execution of machine code provides higher performance, but traditional
static compilation would compromise Java’s portability and security. Therefore,
modern virtual machines compile Java programs dynamically at run time [25].

Dynamic compilation is a relatively old idea [8]. In 1960, McCarthy suggested
to compile LISP programs fast enough, so that it is not necessary to save the
generated code for future use [64]. The Smalltalk programming environment by
PARC was one of the first to benefit from dynamic translation [31]. In the context
of Java virtual machines, dynamic compilers are usually referred to as just-in-
time (JIT) compilers, because they originally compiled a method just before its
first invocation.

Time spent on compiling a method is time that could have been spent on in-
terpreting the method’s bytecodes. Compilation speed is crucial, because the
execution of machine code needs to compensate compilation time. Static compil-
ers can afford to perform sophisticated optimizations, but just-in-time compilers
must produce fast machine code efficiently [1, 58].

On the other hand, a just-in-time compiler can tune a program exactly for the
platform that executes the program. Based on profiling information, it can decide
about optimizations [7] or compile only parts of a method [92]. It is even able
to perform aggressive optimizations under optimistic assumptions and later undo
the optimizations if the assumptions turn out to be wrong.

Typical optimizations in just-in-time compilers include constant folding, common
subexpression elimination, null check elimination, loop unrolling, method inlining
and polymorphic inline caches [53]. They have shown to measurably improve
code quality at reasonable costs. Apart from them, some optimizations such as
register allocation or escape analysis may be adapted to the needs and limitations
of just-in-time compilers.

1.4 Problem Statement

In order to keep the Java HotSpot client compiler fast and simple, new opti-
mizations are carefully evaluated before they get integrated into the compiler. In
the course of time, more and more optimizations were added that improve code
quality without impairing compilation speed substantially.
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A few years ago, the client compiler group at Sun Microsystems thought about
new advanced optimizations. The resulting proposal included escape analysis,
which had already been implemented in several other, mostly static compilers
and promised a significant speedup of allocation-intensive programs.

In Java, it is not possible to influence where objects are allocated and when they
are deallocated. Escape analysis identifies objects that can be allocated on the
stack instead of the heap or whose allocation can be eliminated at all. It helps to
reduce the costs of object allocation and to remove unnecessary synchronization.

The aim of this project is to extend the client compiler by escape analysis for
evaluation purposes. The implementation should meet the needs of a dynamic
compiler, which poses the following challenges:

e As all optimizations occur at run time, they must run efficiently and rather
be conservative if a small gain would imply a time-consuming analysis.

e When the compiler faces not yet loaded classes or uncompiled methods,
it must either make pessimistic assumptions or infer estimations from the
bytecodes.

e Dynamic class loading may invalidate existing machine code and require
previous optimizations to be undone.

e The allocation of objects on the stack instead of the heap makes it necessary
to adapt the runtime environment, especially the garbage collector and its
card marking scheme (see Section 5.1.4).

1.5 Project History

The original version of the Java HotSpot client compiler was developed by Robert
Griesemer and Srdjan Mitrovic as a clean and fast alternative to the server com-
piler. It used a single intermediate representation and performed only few high-
impact optimizations. The back end implemented a simple but efficient register
allocator extended by a heuristic that assigned unused registers to local variables
within loops [42].

The research collaboration of Sun Microsystems and the Institute for System
Software at the Johannes Kepler University Linz was initiated by Hanspeter
Mossenbock, who spent a sabbatical at Sun Microsystems between June and
August 2000. He modified an experimental variant of the client compiler to
produce an intermediate representation in SSA form and implemented a graph
coloring register allocator [66].

Graph coloring produces nearly optimal register allocation but is usually too
slow for a just-in-time compiler. For this reason, Michael Pfeiffer provided the
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compiler with a linear scan register allocator, which assigns registers to values in
a single linear scan over lifetime intervals [67]. The algorithm saved one scratch
register for situations when a machine instruction requires an operand to be in a
register but all registers are in use.

In the context of the author’s master’s thesis, the original compiler was ported
from C++ to Java [56]. This work was laid out as an experiment to get an
idea of how such an implementation would benefit from the advanced features of
Java, how it could interface the VM, and how it would perform compared to the
compiler written in C++. The Java port was integrated into the VM so that it
started in interpreted mode and then continuously compiled itself.

Simultaneously, the SSA-based compiler was extended by a low-level interme-
diate representation (LIR) in addition to the high-level intermediate represen-
tation (HIR). Christian Wimmer improved the linear scan algorithm to get rid
of the scratch register, to support holes in lifetime intervals and to optimize in-
terval splitting. Besides, he extended the compiler to generate SSE and SSE2
instructions for floating-point operations [95, 97].

The linear scan workspace was the basis for the implementation of escape analysis
described in this thesis. The algorithm benefits from the SSA form and the
improvements in the back end. An intermediate report on the work was published
in the proceedings of the VEE conference 2005 [57].

1.6 Structure of the Thesis

The rest of this thesis is organized as follows: Chapter 2 presents the compilation
process without escape analysis, the architecture of the client compiler and the
layout of its intermediate representations. Chapter 3 introduces our intra- and
interprocedural approach to escape analysis and explains the computation of
escape states under consideration of control flow.

The next two chapters describe the optimizations based on the results of escape
analysis. Chapter 4 shows that allocations of non-escaping objects can be elim-
inated when their fields are replaced by scalar variables. Chapter 5 presents
optimizations for thread-local objects, such as stack allocation and synchroniza-
tion removal.

Chapter 6 deals with the run-time support required for a safe execution of opti-
mized methods. It describes how problems caused by dynamic class loading are
solved via deoptimization, how eliminated objects are recreated and unlocked ob-
jects are relocked using debugging information, and how stack objects are treated
by the garbage collector.
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Chapter 7 evaluates our escape analysis and the optimizations on several bench-
marks and discusses the results. Chapter 8 gives an overview of related projects
and compares them to our approach. Finally, Chapter 9 recapitulates the essen-
tial parts of our algorithms, summarizes the contributions of this work and gives
an outlook on future work.



2 The HotSpot Client Compiler

When the invocation counter of a method has reached a certain threshold (see
Section 1.2.2), the bytecodes of the method are compiled to machine code. The
client compiler is a simple and fast compiler dedicated to client programs, applets
and graphical user interfaces. Its objective is to achieve high compilation speed
at a potential cost of peak performance [42].

In the context of this project, the client compiler was extended by escape analysis
and related optimizations. This chapter deals with the overall architecture of the
compiler. It describes the compilation phases and the produced intermediate
representations. Moreover, we introduce terms and abbreviations that are used
in the subsequent chapters.

2.1 Java Bytecodes

Java allows developers to write an application once and deploy it to different
platforms without redeveloping or recompiling a single line of code. For this
purpose, the Java source code is compiled to platform-independent bytecodes.
This frees the JVM from parsing and analyzing plain-text source code [62].

Bytecodes are executed using an operand stack. They pop operands from the
stack, operate on them and push the result back onto the stack. Consider the fol-
lowing Java method which computes the integral dual logarithm, i.e. the position
of the most-significant bit that is set:

static int log2(int n) {
int p = 0;
while (n > 1) {
n=mn>>1;
p=p+1;
}
return p;

¥
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It is translated into the bytecodes below. The number in front of each bytecode
specifies the start position of the bytecode within the method and is often referred
to as the bytecode index (BCI). The comments on the right side recapitulate the
original Java source code statements.

0: iconst_0 // p=20

1: istore_1

2: iload_O // while (n > 1)
3: iconst_1

4: if_icmple 18

7: iload_0 // n=mn>1
8: iconst_1

9: ishr

10: istore_0

11: iload_1 //'p=p+1
12: iconst_1

13: iadd

14: istore_1

15: goto 2

18: iload_1 // return p
19: ireturn

Each instruction consists of one byte specifying the operation to be performed,
followed by zero or more operands. Bytecodes that load or store a local variable
refer to the variable via its index in the method’s stack frame. A loop is converted
into a conditional jump and a backward branch. The instruction set of a JVM
consists of about 200 instructions, which can be used to

transfer values between local variables and the operand stack,
perform arithmetic and logical operations,

convert between types,

create and modify objects and arrays,

directly manipulate the operand stack,

jump to another position within the same method,

call a method or return from a method,

throw or catch an exception, or

synchronize multiple threads.

Bytecodes usually encode type information about the operations they perform.
Many of them have no operands and consist only of an operation code. Since
the bytecodes are stored in a compact binary format, the method above actually
occupies only 20 bytes.
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2.2 Overall Compiler Architecture

The client compiler consists of a front end and a back end, each of which operates
on its own intermediate representation (see Figure 2.1). Of course, it would be
possible to generate machine code directly from the bytecodes as well, but some
of the information needed by the back end cannot be determined in a single pass
over the bytecodes. Instead of iterating over the bytecodes multiple times, an
intermediate representation is built. This makes the compiler not only simpler,
but also faster and more reliable.

front end back end

HIR generation LIR generation code generation
e e )

1 1 1
1 1 1
i i i
i optimization i register allocation i

Figure 2.1: Overall architecture of the client compiler

The front end is responsible for parsing the bytecodes and constructing the high-
level intermediate representation (HIR), which is based on the static single as-
signment form [26]. A control flow graph is built and some high-level optimiza-
tions such as constant folding, common subexpression elimination and inlining
are performed.

The back end converts the optimized HIR into the low-level intermediate represen-
tation (LIR). Even though the LIR is almost independent of the target machine
and basic blocks are still evident, structure and terms follow closely those of a
real processor. Register allocation is performed on the LIR, because all operands
requiring a register in machine code are explicitly visible.

After register allocation, machine code can be generated from the LIR in a rather
simple and straightforward way. The machine code is finally installed into the
data structures of the VM, so that it gets executed whenever the method is called
in the future. Additionally, the compiler produces meta data that is used by the
VM for garbage collection and deoptimization (see Chapter 6).

2.3 Front End

In order to build the HIR, the front end iterates over the bytecodes twice. At
first, the block list builder determines the starts of all basic blocks by examining
the destinations of jumps and the successors of conditional jump instructions.
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New empty blocks are created and mapped to the bytecode indices of the block
start instructions. During the second iteration, the graph builder fills the basic
blocks with HIR instructions via an abstract interpretation of the bytecodes.

2.3.1 Control Flow Graph

The control flow graph (CFG) describes the instructions and branches in a
method [4]. Each node corresponds to a basic block, i.e. the longest possible
sequence of instructions without jumps or jump targets in the middle. The nodes
are connected via directed edges representing the control flow in the graph.

A basic block of the HIR consists of a single-linked list of HIR instructions starting
with a BlockBegin instruction (see Figure 2.2). The last instruction is always a
BlockEnd instruction, which points to a possibly empty list of successor blocks.
Various concrete subclasses of BlockEnd are available for branches, unconditional
jumps and returns. They differ in their number of successors as well as in the
generated machine code.

d \ 4
en_| BlockBegin |<—

¢ next
|

L] BlockEnd .
successors begm
¥ 3

Figure 2.2: Structure of a basic block

The BlockBegin and BlockEnd instruction store a reference to each other in
the begin and the end field, respectively. This enables the compiler to traverse
all basic blocks of the control flow graph without having to inspect every single
instruction in between.

2.3.2 Static Single Assignment Form

The front end operates on an intermediate representation (see next section) that
is in static single assignment (SSA) form. This means that for every variable there
is just a single point in the program where a value is assigned to it. The standard
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way to express a program in SSA form is to subscript the original variables, so
that each assignment instruction creates a new variable name. Figure 2.3 shows
the control flow graph for the log2 method in SSA form.

BO

n0 = parameter n
p0=0

Bl y y

n1=® [n0, n2]
p1=® [p0, p2]
if n1 > 0 then B2 else B3

B2 /N

n2=n1>>1 | return p1
p2=p1+1

]

Figure 2.3: Method in SSA form

At points where control flow joins, so-called phi functions are inserted to merge
different incarnations of the same variable. The number of operands of a phi
function is equal to the number of incoming control flow edges. Each operand
represents one version of the variable, and the phi function itself produces another
version. In the above CFG, the values pO and p2 flow into the loop header
via two control flow edges and are joined into a new value pl. Although the
variable pl gets different values depending on the control flow, it has a single
point of definition.

In SSA form, two uses of a variable with the same name are guaranteed to refer
to the same value. This simplifies data flow dependent optimizations, such as
constant propagation, global value numbering and loop-invariant code motion.

2.3.3 High-Level Intermediate Representation

After the control flow graph has been built, the basic blocks are filled with instruc-
tions of the platform-independent high-level intermediate representation (HIR).
The compiler maintains a state object to simulate the run-time operand stack.
An instruction that loads or computes a value represents both the operation and
its result, so that operands appear as pointers to prior instructions. Every in-
struction is identified by its type and a unique sequence number. For instance, i1l
refers to the integer value produced by instruction 1, £2 to the floating-point value
produced by instruction 2, and a3 to an object (i.e. a reference value) produced
by instruction 3.
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Instructions for loading or storing local variables are eliminated during the ab-
stract interpretation of the bytecodes. For this purpose, the state object contains
a locals array, which keeps track of the values most recently assigned to a local
variable [66]. If an instruction creates a value for the local variable with the
number n, a pointer to this instruction is stored in the locals array at position n.
If an instruction uses a local variable as an operand, it is provided with the cor-
responding value from the locals array, i.e. a pointer to the instruction where the
value was created.

In this thesis, the basic blocks of the HIR are printed in the following form: The
first line specifies the number of the block, the bytecode indices of the first and
the last instruction in the block, and a list of successor blocks. If the block intro-
duces new phi functions, they are printed with their operands below. Then the
HIR instructions of the basic block follow. Every line corresponds to one instruc-
tion and specifies the original bytecode index, the use count, the identification
number and a description. Instructions that must be executed in the order of the
bytecodes are marked as pinned, indicated by a point in the first column. An
instruction refers to other instructions via their identification numbers.

The first two basic blocks of the 1og2 method are shown below. Basic block B4
is introduced for technical reasons and has no equivalent in the bytecodes. Basic
block BO loads the constant 0 as the initial value of the local variable p and then
jumps to the loop header block B1.

B4 [0, 0] -> BO
bci__use__tid instr

. 0 0 18 std entry BO

BO [0, 1] -> B1

__bci__use__tid____instr__ _ _ _ _ _ _ _ o
0 1 ib 0
1 0 6 goto Bl

Basic block B1 has two predecessors. Therefore, phi functions must be created
for local variables as required by the SSA form. The phi function i7 for the
variable n merges the value i4 (the initial value of the parameter n) with the
value 112 (the value of n computed by the shift operation in the loop body). The
operands of the phi function i8 for the variable p are i5 from above and i14,
which is computed in the loop body.

B1 [2, 4] -> B3 B2
Locals:

0 i7 [i4 i12]

1 i8 [i5 i14]



16 2 The HotSpot Client Compiler

__bci__use__tid____instr______ __ _ __ _ __ _ o _____
3 1 i9 1
.4 0 10 if i7 <= i9 then B3 else B2

As long as the loop condition (i7 <= i9) is true, the loop body B2 is executed.
It computes the new values 112 and 114 for the local variables p and n before it
jumps back to the loop header. If the condition is false, basic block B3 is executed
in order to load and return the current value i8 of the variable p.

B2 [7, 15] -> B1
bci__use__tid instr

8 2 i1l 1

.9 1 112 i7 >> il1

13 1 i14 i8 + il1

15 0 15 goto Bl (safepoint)
B3 [18, 19]

_bci__use__tid instr

19 0 il6 ireturn i8

2.3.4 Optimizations

Both during and after generation of the HIR, several optimizations are performed.
They benefit from the simple structure of the HIR and the SSA form. The
optimizations are not really crucial for the quality of the generated code, but
they are done because they are cheap and show some effect.

Every HIR instruction is put into its simplest form, referred to as the canonical
form. This transformation covers constant folding and simplification of branches.
If an arithmetic or logical operation has only constant operands, no machine code
for the calculation must be emitted because the result can be computed already
at compile time. If the condition of a branch is always true or always false, the
branch is replaced by an unconditional jump.

A simple form of value numbering is used to eliminate common subexpressions
within a basic block. Every generated HIR instruction is inserted into a hash
table. Before an instruction is appended to the HIR, the hash table is searched
for an existing instruction that computes the same value. If such an instruction
is found, it is used instead of the new one. This way, the back end generates
machine code for the instruction only once and keeps the result in a register or
in memory.
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If the compiler parses a method call, it tries to inline the method, i.e. replace
the method call by a copy of the method body. This eliminates the overhead of
method dispatching. To avoid excessive inlining, the size of the callee is restrained
to a certain threshold. Additionally, the compiler must be able to unambiguously
determine the actual target method. This is possible if the callee is declared static
or final, or if class hierarchy analysis reveals that currently only one suitable
method exists. If a class is loaded later that provides another suitable method,
the machine code is invalidated and must be regenerated (see Chapter 6).

The Java language specification requires that an exception is thrown if the value
null is dereferenced. For this reason, null checks must be inserted into the machine
code whenever an object is accessed, unless the compiler can prove that the object
is non-null. A null check can be eliminated if the object is the receiver of the
current method invocation or if a null check has already been performed on the
same object before.

Finally, the compiler searches the control flow graph for conditional expressions.
They appear as branches that load one of two values depending on a condition
and do not contain any other instructions. This pattern is replaced by a special
HIR instruction, for which the back end generates more efficient machine code
than for the original branch.

2.4 Back End

The back end translates the optimized HIR into the low-level intermediate repre-
sentation (LIR) and performs register allocation and code generation. Although
machine code could be generated directly from the HIR as it was done in earlier
versions of the client compiler, the LIR facilitates various low-level optimizations
and a more sophisticated register allocation.

2.4.1 Low-Level Intermediate Representation

The LIR is conceptually similar to machine code, but still mostly platform-
independent. The contents of a basic block are stored in an array list, which
allows a fast iteration over all operations. In contrast to HIR instructions, LIR
operations use explicit operands instead of references to prior instructions.

The method entry block B4 loads the parameter values. For each operand, its
location and its type are specified. [stack:0]|I] refers to the integer parameter n
in stack slot 0. It is loaded into the virtual register R40. After LIR generation,
virtual registers are mapped to physical ones by register allocation.
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B4 [0, 0] -> BO
_id__operation___________ __ _ _ __ _ o _____
0 1label [label:0x2b40b3c]
2 std_entry
4 move [stack:0|I] [R40|I]
6 branch [AL] [BO]

LIR and machine code do not contain phi functions any more. Every phi function
has been replaced by a virtual register. The operands of the phi function are
assigned to this register at the end of the corresponding predecessor blocks. In
the example below, the phi function for p in B1 is represented by R43. Its first
operand 0 is assigned to R43 at the end of BO, and its second operand R45 is
assigned to R43 at the end of B2. Similarly, the phi function for n is represented
by register R42.

BO [0, 1] -> B1

_id__operation___________ ______ _ _ _ o _____
8 label [label:0x2b2238c]

10 move [R40|I] [R42]I]

12 move [int:0|I] [R43|I]

14 branch [AL] [B1]

B1 [2, 4] -> B3 B2
_id__operation___________ __ _ __ _ _ _ _ o _____
16 1label [label:0x2b22464]

18 cmp [R42|I] [int:1|I]

20 branch [LE] [B3]

22 branch [AL] [B2]

Arithmetic and logical LIR operations typically specify two source and one tar-
get operand. Even though the LIR allows the use of three different operands,
the Intel IA-32 architecture requires that the left source operand equals the tar-
get operand [51]. Therefore, each binary computation is preceded by a move
operation that copies the left source operand into the target register first. The
operations can then be directly translated into machine code.

B2 [7, 15] -> Bl
_id__operation_________________ _ __ ____ _ ____________
24 label [label:0x2b400e4]

26 move [R42|I] [R44|I]

28 shift_right [R44|I] [int:1|I] [R44|I]

30 move [R43|I] [R45]|1]

32 add [R45|I] [int:1|I] [R45]|I]

34 safepoint [bci:15]
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36 move [R45|I] [R43]|1I]
38 move [R44|I] [R42|I]
40 branch [AL] [B1]

Certain HIR instructions, such as backward branches and return instructions,
represent a safepoint, at which the program may be stopped for garbage collec-
tion. These safepoints are explicitly visible in the LIR. Basic block B2 ends with
a backward branch, so a safepoint operation is emitted right in front of the move
instructions that resolve the phi functions.

The last basic block loads the current value of p from the register R43 and returns
it to the caller. Since the method result must always be stored in the EAX register
by convention, both the move and the return operation use this physical register
instead of a virtual one.

B3 [18, 19]
_id__operation________________________ _ _ _____________
42 label [label:0x2b401bc]

44 move [R43|I] [eax|I]

46 return [eax|I]

2.4.2 Register Allocation

Register allocation determines which variable or temporary value will be stored
in which register. This is an important optimization because registers are usually
a limited resource. Today’s standard register allocation algorithm is based on
graph coloring, which leads to good code quality [68] but is too slow for the just-
in-time compilation of interactive programs. Even heuristic implementations have
a quadratic run-time complexity.

For this reason, the Java HotSpot client compiler uses a linear scan register
allocator [74, 95, 97], which is faster than graph coloring and yields results of
only slightly inferior quality. It operates on the LIR of a method and maps
virtual registers to physical ones. The result is a modified LIR which provides
the basis for code generation.

The linear scan algorithm arranges all instructions of a method in a linear order,
before it computes lifetime intervals for virtual registers. A lifetime interval spans
from the definition of a value to its last use. A data flow analysis is performed
to generate lifetime information for loops and branches. Figure 2.4 illustrates
the intervals for the 1og2 method. Each line corresponds to one virtual register.
White rectangles represent live ranges and grey bars indicate where values are
used.
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Figure 2.4: Lifetime intervals after register allocation

As shown in the figure, intervals need not be continuous. They may contain
so-called lifetime holes [87]. For example, the virtual register R42 is read by
operation 26 and written by operation 38. Between the two operations, R42 does
not contain a useful value because it is not read again before it is overwritten.
The lifetime hole avoids wasting a physical register for this section.

The register allocator scans over all intervals in the order of their starting points
and immediately assigns physical registers to them. If two values are live at the
same time, they must not end up in the same register. Two intervals that do not
intersect can get the same physical register assigned.

When more intervals are live than physical registers are available, a value must
be swapped out to memory. This is called spilling. As a simple heuristic, the
value that is not used for the longest time is spilled. Later it may be loaded into
a register again. To avoid loads and stores in each loop iteration, the algorithm
prefers to spill values used after a loop instead of those used in the loop.

If a value changes its location due to spilling, the corresponding interval needs to
be split. The negative impact of spilling can be reduced by splitting at a position
that leads to a minimal number of spill loads and stores executed at run time.
Optimized interval splitting considers use positions, kinds of uses and positions
where operands must reside in a register [97].

2.4.3 Code Generation

Machine code is generated immediately after register allocation. The compiler
traverses the LIR, operation by operation, and emits appropriate machine in-
structions into a code buffer. The contents of the code buffer are later copied
into a native method object.
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The back end packages methods for the generation of machine instructions and
code sequences in a macro assembler, which is available for different platforms.
This section shows the code generated for the 1og2 method when it is compiled
for the Intel IA-32 platform [51].

The very first machine instruction checks for a possible stack overflow in the
near future. If the test fails, there is still enough space on the stack to throw an
exception. The subsequent three instructions set up a stack frame for the current
method invocation.

009F8B91 mov dword ptr [esp-3000h], eax
OO9F8B98 push ebp

O009F8B99 mov ebp, esp

O09F8B9B sub esp, 10h

Afterwards, the parameter n is loaded into the EAX register and the constant 0 is
assigned to the local variable p in the ESI register. No instruction is emitted to
jump to the beginning of the loop, because the loop header immediately follows
the current block. Since the loop header is the target of a backward branch, it is
aligned at a word boundary for performance reasons by inserting nop instructions.

O009F8B9E mov eax, dword ptr [ebp+8]
OO9F8BA1 mov esi, O

OO09F8BA6 nop

OO9F8BA7 nop

The following six machine instructions test the loop condition and compute new
register values. The assembler selects an inc instruction to perform the addition
of 1. Safepoint operations are implemented as an access to the absolute address
380100h. If garbage collection is required, the JVM marks the corresponding
memory location as unreadable and thus causes all threads to trap and stop at
the next safepoint [2].

OO9F8BA8 cmp eax, 1

OO9F8BAB jle OO9F8BBF

O09F8BB1 sar eax, 1

009F8BB3 inc esi

O009F8BB4 test dword ptr [380100h], eax
OO9F8BBA  jmp 009F8BA8

The final piece of code copies the method result from the EST into the EAX register,
removes the stack frame and returns to the caller. The return instruction is again
preceded by a safepoint.
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OO0O9F8BBF mov eax, esi

O009F8BC1 mov esp, ebp

O09F8BC3 pop ebp

009F8BC4 test dword ptr [380100h], eax

OO9F8BCA ret

2.4.4 Focus on the Common Case

Complex operations can often be split into a common and an uncommon case.
For example, the allocation of a new object usually succeeds. Rarely, allocation
fails because the VM runs out of memory. In this case, the garbage collector
needs to be invoked.

A central design guideline in the client compiler is the focus on the common
case [42]. Since the common case is more frequent than the uncommon one,
it should be the fast path for performance reasons, even at the cost of a more
complicated slow path.

Neither the HIR nor the LIR contain instructions or control flow for slow paths.
This keeps the intermediate representations small and allows a faster processing.
Operations with an uncommon case can still be identified during code generation.
Then, the compiler emits a branch to the slow path, which calls a run-time routine
in most cases.

In order to improve the instruction cache usage for the common case, the slow
path should be outside the method’s regular code. While machine code for the
common case is immediately appended to the code buffer, code stubs for slow
paths are collected in a list first. At the end of the method, the list is traversed
and code stubs are emitted.

2.4.5 Debugging Information

During the execution of machine code, it is possible that the Java HotSpot VM
runs out of memory or needs to continue the execution of a method in the inter-
preter. For this reason, the VM requires additional information about a compiled
method, so-called debugging information:

e QOop maps specify registers and memory cells that may contain an ob-
ject pointer at a particular program point (oop stands for ordinary object
pointer). During garbage collection, these locations are treated as root
pointers and get updated if the referenced object is moved.
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e The list of dependent methods contains methods that are inlined based
on class hierarchy analysis. If a class is loaded later that invalidates the
inlining, the VM deoptimizes the method and continues its execution in the
interpreter.

e Scope entries describe which local variables are stored in which registers
or memory locations. This facilitates the creation of a stack frame for the
interpreter in the case of deoptimization.

Deoptimization and garbage collection can run only after all threads were stopped
at the nearest safepoint. Therefore, debugging information is generated for all
safepoints of a method, i.e. backward branches, method calls, return instructions
and operations that may throw an exception.



3 Escape Analysis

If an object that was created in a method is assigned to a global variable or to the
field of a heap object (commonly referred to as non-local variables below), passed
as a parameter to a method or returned from a method, its lifetime exceeds the
scope in which it was created. Such an object is said to escape its scope. Knowing
which objects escape their scope allows the compiler to perform more aggressive
optimizations.

This chapter deals with the identification of objects that do not escape. After
a short motivation for such an analysis, we examine when and how objects may
escape. Then the concepts of an intraprocedural and interprocedural analysis are
explained. Equi-escape sets are introduced for the efficient propagation of escape
states among related objects. The final section illustrates our escape analysis
algorithm by means of an example. The actual optimizations, such as scalar
replacement, stack allocation and synchronization removal, are subject of the
subsequent chapters.

The analysis described here was implemented in a research version of the Java
HotSpot client compiler. It operates on the SSA-based high-level intermediate
representation (HIR) and is as flow-sensitive as the SSA form itself. All outputs
and findings stem from this implementation.

3.1 Motivation

The use of a garbage collector instead of explicit object deallocation avoids mem-
ory leaks and dangling pointers, but usually leads to a considerable drop in per-
formance at run time. A non-concurrent garbage collector has to stop all threads
at safepoints before it is allowed to clean up memory. In the context of genera-
tional garbage collection, every assignment of a reference to a field is associated
with a write barrier for card marking (see Section 4.2).
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Garbage collection has to deal also with objects whose last use could be deter-
mined statically from the source code. Consider the following method which
computes the area of a circle with the specified radius:

public double circularArea(int r) {
Circle ¢ = new Circle(r);
return c.area();

3

Every time the method is called, an object for the circle is allocated on the heap,
but used only for the computation of the area and then never accessed again. The
object escapes the method because it is passed as the receiver to the constructor
and to the area method. After inlining, the compiler faces the following code:

public double circularArea(int r) {
Circle ¢ = new Circle();
c.r = r;
return c.r * c.r * Math.PI;

3

Now the object is not passed to a method and not stored in a static field. In other
words, it can provably be accessed only from within this particular method and
thus does not escape the method. By eliminating the allocation and replacing
every field access by the value most recently assigned to the field, the method
can be simplified to:

public double circularArea(int r) {
return r * r *x Math.PI;

3

Even if an object cannot be eliminated completely as in the example above, it
can be allocated on the stack if it is accessed only by the creating method and
its callees and never stored in a non-local variable. Memory for such objects is
released implicitly when the stack frame is removed at the end of the method. As
fewer objects are allocated on the heap, the garbage collector runs less frequently
and requires less time in total.

If multiple threads access a shared object, they need to be synchronized with a
locking mechanism. As long as one thread owns the object’s lock, other threads
must wait for the lock to be released. The management of the lock and the queue
of waiting threads involves some overhead. If it can be guaranteed that the object
is accessible only by a single thread, synchronization on the object is dispensable
and may be removed.
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Escape analysis is by no means intended to encourage or compensate bad pro-
gramming style. In the synthetic example above, the programmer already ought
to have recognized the opportunity to save an allocation, but the structure of
real-world programs is normally much more complicated. The programmer is not
always able to

e examine the complete source code of a program,

e inline methods without introducing redundant or inconsistent code,
e eliminate objects needed for scalability or reusability purposes, or to
e ease synchronization in classes ready for multi-threaded systems.

The JVM has in fact a wider potential for aggressive optimizations than the
programmer. [t can act on optimistic assumptions and recompile a method if the
assumptions finally turn out to be wrong. However, sophisticated analyses are
necessary even to reveal what seems obvious to a human observer.

3.2 Definition of Terms

Escape analysis requires an appropriate infrastructure within the compiler, which
includes an extension of the HIR and the introduction of new types and data
structures. This section deals with the different escape states of objects, how
equi-escape sets are used for the propagation of escape states among related
objects, and how an object depends on other objects that reference it.

3.2.1 Escape States

To optimize the allocation and synchronization of objects, the compiler has to
know whether an object allocated in a method can be accessed from outside
the method. This knowledge is derived from the intermediate representation via
escape analysis. If an object can be accessed by other methods or threads, it
is said to escape the current method or the current thread, respectively. In the
context of our work, possible escape states are:

e NoEscape: The object does not escape at all, i.e. it is accessible only from
within the current method. The compiler is allowed to replace its fields by
scalar variables and in turn to eliminate the allocation. Objects with this
escape state are called method-local.

e MethodEscape: The object escapes the creating method, but does not es-
cape the creating thread, e.g. because it is passed to a callee which does not
let the parameter escape. It is possible to allocate the object on the stack
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and eliminate any synchronization on it. Objects with this escape state are
called thread-local.

e GlobalEscape: The object escapes globally, typically because it is assigned
to a non-local variable and can thus be referenced by other threads. No
optimizations are possible and the object must be allocated on the heap.

In the HIR, an object is represented by its allocation instruction. The escape
state is initialized with NoEscape and updated along with the construction of the
HIR. It can only increase towards GlobalEscape but never decrease over time.
The escape state of an allocation site can be regarded as the maximum possible
escape state of objects created at this site. Besides, we say that a variable p
escapes if the object referenced by p escapes.

Type casts, which take an object as input and represent an object themselves,
share the escape state of their argument. The escape state of a phi function
results from the maximum escape state of its operands, and each operand in
turn adopts the escape state of the phi function. For convenience purposes, all
instructions that do not represent an object value are treated as escaping globally.

3.2.2 Equi-Escape Sets

The escape states of a phi function’s operands depend on each other. Assume
four allocation instructions a0 to a3 and the three phi functions

dy = [a0, al],
®; = [al, a2], and
(DQ = [(Dl, a3]

Figure 3.1 shows the corresponding data flow. If some of the objects escaped,
it would not make sense to treat the others as non-escaping and thus to replace
their fields by scalar variables, because all operands represent the same variable.
Instead of determining and propagating the maximum escape state, each phi
function and its operands are inserted into an equi-escape set (EES). All elements
in the set share the same escape state, namely the maximum of the elements’
original states.

EES are implemented as instruction trees based on the union-find algorithm [81].
For this purpose, instructions define a parent field to point to another instruction
in the same set. Each connected component corresponds to a different set. A spe-
cial role is assigned to the root of the instruction tree. It acts as a representative
for the set and specifies the escape state of the set’s elements.



28 3  Escape Analysis

a \(D/a \q)/a a
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Figure 3.1: Phi functions and their operands

Whenever an object is inserted into a set, its parent field is adjusted to point to
the root of the corresponding instruction tree. If the object is already part of
another set, its representative is linked to the root instead. Additionally, if the
inserted element has a higher escape state than the root, the escape state of the
root has to be adjusted because in the future only this escape state is decisive
for all elements.

Figure 3.2 visualizes the individual steps on the basis of the above example.
Initially, the objects are not connected among each other. The EES of the first
phi function and its operands forms a three-node tree. Assume that the phi
function is the root of the tree. This choice is arbitrary; any operand could be
the root just as well. The second phi function has an operand al that is already
contained in another set, so al’s representative @, is linked to ®;. After the
third phi function has been processed, all objects and phi functions turn out to
be elements of one large set.

Figure 3.2: Stepwise creation of equi-escape sets

To detect whether two objects belong to the same set, their representatives are
compared for equality. Starting from one of the objects, the instruction tree
is walked up until its root is reached. This algorithm has a poor worst-case
performance because the tree can be degenerated. The average time required
to determine the representative is proportional to the average path length from
every node to the root.
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Based on this insight, we make another pass through the tree after the root has
been found and set the parent field of each node encountered along the way to
point to the root. This is called path compression [81]. The instruction tree gets
flattened over time and future operations on the set execute faster. Figure 3.3
shows the result of path compression when applied to node aO.

Figure 3.3: Instruction tree after path compression

3.2.3 Referential Dependency

Consider an object A referencing two objects B and C. If A is assigned to a
non-local variable, not only itself becomes accessible by other threads but also
B and C. Whenever the escape state of A changes, it must be propagated to the
escape states of B and C, but not the other way round.

The dependencies are unidirectional and therefore cannot be modeled with an
EES. It is not enough to propagate A’s escape state to the value of a field when
it is assigned, because A may escape afterwards. Rather, A must keep a list of
all objects possibly referenced by it during its lifetime. Every time an object is
assigned to a field of A, it is added to this list. When the escape state of A changes,
the list is traversed and the new escape state is propagated to the elements of
the list.

Analogous to a field assignment, every object assigned to an array element is
inserted into the array’s list of referenced objects. There is, however, a subtle
difference. The escape state of an object loaded from a field does not affect objects
stored in other fields. For arrays, however, it is often not possible to prove the
equality of two index calculations at compile time and thus to determine which
element is loaded. If the object that represents the result of such an array load
escapes, all objects referenced by the array must conservatively be treated as
escaping. For example, in the method below we are not able to determine at
compile time whether the rectangle or the circle will be returned, so we have to
treat both figures as globally escaping.
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public Figure getRandomFigure() {
Figure[] f = new Figure[2];
f[0] = new Rectangle();
f[1] = new Circle();
int i = random.nextInt(2);
return f[i];

3

When objects are inserted into an EES, their lists of referenced objects are merged
and stored with the representative. As soon as a set element escapes, the escape
states of all objects in the list are changed together with the escape state of the
representative. In other words, if one object escapes for some reason, not only
the other objects in the same EES escape simultaneously, but also any object
that is referenced by at least one of the set’s elements.

In Figure 3.4, solid arrows point to parent objects in an EES and dashed arrows
to lists of dependent objects. If r escapes, the escape states of its representative q
and the dependent objects q.f and r.f are adjusted. Since r.f is contained in
an EES itself, the new escape state is propagated to p and p.f as well.

Figure 3.4: Objects and their fields in equi-escape sets

It is also possible that objects reference each other cyclically as in the example
below. In this case, the state update terminates when all objects have been
processed. This is guaranteed by two precautions: At first, the escape state of
an object is changed if and only if the new escape state is higher than the old
one. Secondly, we change the escape state of an object before we traverse its list
of referenced objects.

T p = new TQ);
p.-f = new TQ);
p.f.f = p;

We know that before and after escape state propagation every field has an equal or
higher escape state than the containing object. So when we reach an object whose
escape state needs not be changed, we do not iterate over its list of referenced
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objects either. Even if the dependency graph contains cycles, at some point in
time all escape states have been adjusted and the state update terminates.

3.3 Intraprocedural Analysis

Escape analysis can almost completely be performed during the construction of
the HIR. Initially, all objects start as non-escaping. When the compiler parses
an instruction that might cause an object to escape, it adjusts the escape state of
the instruction p representing the object. The method p.ensure_escape(state)
sets p.state to max(p.state, state) and propagates the new escape state to
the representative of the EES and to all referenced objects. The following para-
graphs describe how certain instructions affect the escape state of objects:

p = new TQO) [ p.ensure_escape(GlobalEscape) ]
If the class T defines a finalizer, p must be allocated on the heap so that the
finalizer can be called before the garbage collector reclaims the object’s memory.
If T has not been loaded yet, information about its fields is not available and
the compiler must conservatively assume that T objects reside on the heap. The
escape state of p is then set to GlobalEscape. In the majority of cases, however,
the escape state remains NoEscape.

a = new T[n] [ a.ensure_escape(GlobalEscape) ]
The escape state of a newly allocated array a is NoEscape only if the specified
length n is a constant. Arrays of variable length are never replaced by scalars,
because the compiler cannot guarantee that the array is accessed only with valid
indices and that no exception occurs at run time. They cannot be allocated on
the stack either, because the maximum size of the stack frame must be known at
compile time. These arrays are marked as GlobalEscape.

T.sf =p p.ensure_escape (GlobalEscape)
Every object p stored into a static field is marked as GlobalEscape because from
this point on other methods and threads may access it. In other words, we cannot
state anything about the lifetime of p or the scope where it will be referenced.

q.f = p p.ensure_escape(q.get_escape())
As soon as the object p is assigned to an instance field, it inherits the escape state
of q provided that it is higher than its own. If other methods or threads are able
to obtain a reference to g, they can also access p. Additionally, p is inserted into
the list of dependents of q so that its state gets updated in case q escapes later
on. Further actions are required in the context of scalar replacement to store
the field value for future load instructions, but these are described in the next
chapter.
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alil = p p.ensure_escape(a.get_escape())
The storage of an object p into an array a has the same effects as a field assign-
ment. p inherits the escape state of a and is added to the array’s list of referenced
objects.

q = alil a.ensure_escape (MethodEscape)
An array a that is accessed with a non-constant index is marked as MethodEscape,
because the compiler does not know which element is loaded and thus cannot
replace the array elements by scalars any longer. Therefore, the array elements
are added to the dependency list of the object that represents the result of the
array load. If the object escapes globally later on, all array elements are marked
as GlobalEscape.

p == {p,q}.ensure_escape (MethodEscape)
If two objects p and q are compared, they must both exist at least on the stack,
so their escape state is raised to MethodEscape. This is also true for an object
compared with null. Sometimes the compiler could determine whether the con-
dition will be always true or always false, but this is rarely possible because of
phi functions.

(T) p p.ensure_escape (MethodEscape)
Even if p does not escape, the object and the type cast cannot be eliminated.
The reason is that the cast might fail and then an exception has to be thrown.
Therefore, p is marked as MethodEscape. Only if the compiler can prove statically
that the object is always of the requested type, the cast is eliminated and the
escape state remains untouched.

p.foo(q) {p,q}.ensure_escape(GlobalEscape)
A purely intraprocedural analysis is not able to predict what happens to the
parameters of a method invocation. In the worst case, the callee assigns some of
them to non-local variables. So we mark all actual parameters as GlobalEscape.
The receiver p of the call is treated in just the same way as any other parameter.
This rather conservative approach is refined in an interprocedural analysis, where
the escape states of formal parameters are computed at a method’s compilation
and reinspected at its call sites.

return p p.ensure_escape (GlobalEscape)
Values returned from the current method must not be allocated on the stack
because they can still be accessed by the caller when the frame of the callee
has already been released. For this reason, the return value p is marked as
GlobalEscape. Interprocedural analysis opens up an optimization if a formal
parameter is returned which does not escape otherwise. In this case the actual
parameter may be allocated on the caller’s stack, provided that certain constraints
are fulfilled (see Section 3.4.1).
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throw p p.ensure_escape (GlobalEscape)
Exception objects are always treated as escaping globally. It is nearly impossible
to determine statically which exception handler will get invoked in every case.
Besides, exceptions are normally used to model exceptional cases which occur
infrequently. Therefore, it does not pay off to optimize them.

3.4 Interprocedural Analysis

The gain of an intraprocedural analysis is fairly limited because objects are nor-
mally not used as pure data structures within a single method. Instead, they act
as parameters or receivers of at least one method call, namely the object’s con-
structor. Inlining thus plays a major role in the improvement of escape analysis,
but inordinate inlining rapidly fills the code buffer and slows down the compiler.
Besides, some methods simply must not be inlined.

Therefore, interprocedural techniques are vital to tap the full potential of escape
analysis. They determine which objects escape neither from the method that
allocates them nor from any of its callees. The results help the compiler to
decide which parameters may be allocated on the stack and which methods are
worth to be inlined.

3.4.1 Escape of Parameters

The compilation of a method produces escape information not only for local
variables, but also for the method’s formal parameters. In an interprocedural
analysis, the compiler does not discard this information but stores it with the
method descriptor in a compact form so that the escape state of actual parameters
can be adjusted when the method is called later on.

Apart from that, interprocedural analysis supports the compiler in making better
inlining decisions. Basically not every method that can be bound statically is also
inlined because the increase in compilation time may outweigh the gain in run
time. Some of the restrictions, such as the maximum code size of methods to be
inlined, are based on heuristics and may be weakened if we knew that inlining
would prevent some objects passed as parameters from escaping.

In the course of HIR construction, formal parameters are treated the same way
as objects allocated within the method. They start as non-escaping values and
may be inserted into EES or stored into fields of other objects. After completion
of the HIR and before scalar replacement, their escape state is encoded by two
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integer values which act as bit vectors and store which parameters do not escape
or can be allocated on the stack, respectively. Objects assigned to fields of formal
parameters are treated as escaping globally.

In the example below, the first parameter a0 escapes globally because it is as-
signed to the static field sf, while al is compared against null and thus marked
as stack-allocatable. The last parameter a2 is not used at all and remains non-
escaping. The escape states are encoded by two bit vectors 001 and 011 denoting
the set of method-local and thread-local parameters, respectively.

static boolean foo(Object a0, Object al, Object a2) {
sf = a0;
return (al != null);

3

At each call site, the compiler tries to retrieve the escape information from the
callee’s method descriptor in order to decide whether to inline the method or
not and to adjust the escape state of the actual parameters. Of course, it is a
prerequisite that the method to be invoked can be determined at compile time
and no dynamic method binding is necessary.

Apart from static and final callees, this is possible if class hierarchy analysis de-
termines that currently only one suitable method exists. If a class is loaded later
that provides another method with the same signature, maybe the wrong imple-
mentation was inlined. In this case, the generated machine code is invalidated
and the method gets recompiled (see Chapter 6).

If the code size of the callee exceeds the maximum inline size within a certain
limit, the escape information is used to decide if inlining is desirable nevertheless.
It turned out to be a good heuristic to inline methods up to twice as large as
the normal threshold if there is at least one parameter that does neither escape
the caller nor the callee. The omission of inlining would enforce an allocation of
the parameter on the stack or on the heap. If the object happens to escape in
the caller after the method invocation, the premature inlining did not facilitate
scalar replacement but still saved the dispatching costs.

For inlining decisions it is only relevant if formal parameters are method-local and
not if they are thread-local. The latter information is used if a method cannot be
inlined. Although a method call instruction has to be generated, not all actual
parameters must necessarily be treated as escaping globally. If a formal parameter
remains thread-local in the callee, the actual parameter can be allocated on the
caller’s stack frame. This is achieved by marking an actual parameter as stack-
allocatable if the corresponding formal parameter does not escape globally in the
callee.
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Normally, each object returned from a method is marked as escaping globally. If,
however, the receiver or a parameter is returned and does not escape otherwise
as in the following example, the actual parameter can still be allocated on the
caller’s stack. The method is then provided with a pointer to the object on the
stack, and exactly this pointer is returned by the callee again.

Object foo() {
return this;

¥

Nevertheless precaution is necessary because an implicit dependency between the
actual parameter and the return value gets introduced. The Invoke instruction,
which represents not only the method call but also its result in the HIR, is possibly
just an alias of any parameter that the callee returns. If it is assigned to a non-
local variable, the parameter must no longer be allocated on the stack either. For
this reason, the method descriptor also records which formal parameters might be
returned, and at each call site the corresponding actual parameters are inserted
into an EES with the Invoke instruction.

Finally, interprocedural escape analysis records the maximum escape state of all
objects that might be used as return values. If a caller synchronizes on the actual
return value and the compiler knows from interprocedural escape information that
none of the objects returned from the callee escapes globally, it can safely remove
the synchronization.

3.4.2 Analysis of Bytecodes

The Java HotSpot VM does not immediately compile every method as soon as
it is called, because compilation time adds to run time. Instead, it interprets a
method at first and counts how often it is invoked. When the invocation counter
reaches a certain threshold, the method is scheduled for compilation. This way,
only the most frequently called methods get compiled. Consider the following
Java method:

static Object foo(Object p, Object q) {

if (p==q {
return p;

3

sf = q;

return null;

¥
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Information about the escape states of p and q is generated only during the com-
pilation of foo. If the compiler parses a call to foo before it was executed often
enough to be compiled, this information is not available. It is neither possible nor
reasonable to initiate the compilation of foo in this situation, but without inter-
procedural escape information the actual parameters must be treated as escaping
globally.

Therefore, the compiler performs a fuzzy analysis on the bytecodes of foo to get
provisional escape information for the parameters. It considers each basic block
separately and records which parameters escape. This is more conservative but
faster to compute, because no phi functions are required and control flow can be
ignored. A parameter is considered as escaping as soon as it is

stored in a local variable (because local variables are not tracked),
assigned to a field, regardless of whether it is a static field or not,
stored into an array,

returned from the method, or

thrown as an exception.

Escape information is gained via an abstract interpretation of the bytecodes, basic
block by basic block. The bytecodes for the method foo are shown below. The
operand stack is modeled as a stack of integers (see Figure 3.5). Every time an
object parameter is loaded, its index is pushed onto the stack. When a bytecode
is processed that operates on an object, an index is popped from the stack and the
escape state of the corresponding parameter is adjusted. The analysis is aborted
as soon as all parameters are seen to escape.

aload_0
aload_1
if_acmpne 7
aload_O
areturn
aload_1
: putstatic #2
aconst_null
areturn

= 00 N O O1 N+~ O

=
N

When the analyzer parses the if_acmpne bytecode, it determines that both pa-
rameters must be allocated on the stack, i.e. that inlining the method will not
benefit scalar replacement. It also finds out that p is returned from the method
and that q must be allocated on the heap because it is assigned to a static field.
When the bytecode aconst_null is reached, -1 is pushed onto the stack. It acts
as a placeholder for constants, primitive values or objects allocated within the
method. Operations on such values can safely be ignored.
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aload_0 aload_1 1 if_acmpne 7 p and q must be

—_—>» (| —» |0 | —> allocated on the stack
aload_0 areturn is retumned

—>» | 0| —» P
aload_1 putstatic #2 q must be allocated on

—_—> | —> the heap

aconst_null areturn
—_—> | | —

Figure 3.5: Parameters on the stack during bytecode analysis

Usually, the operand stack is empty after each Java statement. If, however, an
object parameter is still on the stack at the end of a basic block, it is marked as
escaping globally. Since the analysis does not take control flow into account, it
does not know which basic block is executed next and thus what happens to the
parameter on the stack.

Local variables that are assigned a new value are marked as dirty. If a dirty
variable is loaded and returned, the compiler conservatively assumes that a glob-
ally escaping object is returned and records that synchronization on the method
result must not be eliminated in the caller.

When the bytecode analyzer parses a method call, it uses interprocedural escape
information to adjust the escape states of parameters of the currently analyzed
method that are forwarded to the callee. If no escape information is available yet,
the analyzer recursively applies itself to the callee. As for inlining, a prerequisite
is that the callee can be bound statically and that its size does not exceed a certain
threshold. Otherwise, the forwarded parameters are regarded as escaping.

The findings of the bytecode analysis are stored in the method descriptor and used
to adjust the escape state of actual parameters. When the method is compiled
later, the provisional escape information is replaced by a more precise one. Since
the compiler is less conservative than the bytecode analyzer, the escape state of
a parameter can only change from global escaping to stack-allocatable and not
the other way round.

3.5 Example

This section summarizes the complete process of escape analysis for a larger
example. The method below computes the factorial of the specified parameter,
but boxes the result and the loop counter into Int objects:
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static Int factorial(Int x) {

Int p = new Int(1);

Int i = new Int(1);

while (i.val <= x.val) {
p = new Int(p.val * i.val);
i = new Int(i.val + 1);

+

return p;

}

The first block BO of the method allocates two Int objects for the initial values of
the result and the loop counter. Since the method was interpreted several times
before compilation, the class Int is already loaded. Besides, we assume that the
class does not have a finalizer. The constructor calls, which set the val fields,
are inlined. At the end of the block, the two allocation sites a5 and a15 are still
marked as non-escaping.

BO [0, 17] -> B1

__bci__use__tid____instr____ _ __ __ _ _ _ o ____
. 0 2 ab new instance Int
4 1 i6 1
. 6 0 i13 ab._8 := i6
. 9 2 alb new instance Int
. 6 0 i23 alb._8 := i6
17 0 25 goto Bl

The subsequent block B1 represents the loop header that checks the loop condi-
tion. It is the target of a backward branch and thus has two predecessors. Phi
functions are created for the result and the counter object. There is no phi func-
tion for the first local variable which stores the parameter a4 because it is not
modified within the loop. The block compares the fields i.val and x.val and
then jumps either to B3 or B2.

B1 [18, 26] -> B3 B2

Locals:
0 a4 // x
1 a26 [a5 a33] /] p
2 a27 [al5 a45] // i
__bci__use__tid____instr

19 1 130 a27._8
. 23 1 i31 ad._8
. 26 0 32 if i30 > i31 then B3 else B2

The loop body B2 performs the actual multiplication and increments the loop
counter. Within each iteration, two new integer objects are allocated that encap-



3.5 Example 39

sulate the updated values and make up the second operands of the phi functions
created above. Again, both constructor calls are inlined. Neither a33 nor a45
escape so far.

B2 [29, 60] -> Bl

__bci__use__tid____instr_______ __ __ ___ __ __ __ __ _________
. 29 2 a33 new instance Int
. 34 1 i34 a26._8
. 38 1 i35 a27._8
.41 1 i36 i34 * i35
. 6 0 i43 a33..8 := 136
. 46 2 a4b new instance Int
. 51 1 i46 a27._8
54 1 i47 1
. b5 1 i48 i46 + 147
. 6 0 i5b a45._8 := 1i48
. 60 O 57 goto Bl

Finally, a26 is returned as the factorial number of the parameter a4. When
the return instruction gets parsed, the phi function a26 is marked as escaping
globally. Since it is not part of any EES yet, no other values are affected.

B3 [63, 64]
__bci__use__tid____instr

. 64 0 ab8 areturn a26

At the end of HIR construction, we insert the phi functions into an EES with
their operands. In this example two independent instruction trees arise as shown
in Figure 3.6. Each root records the maximum escape state of the set’s elements.
Although the escape states of a5 and a33 remain untouched, both values are
treated as escaping globally because they point to a26. The phi function a27 in
contrast represents a set of non-escaping values.

Figure 3.6: Equi-escape sets for the factorial method

Summing up, escape analysis identifies the objects for the loop counter (a15, a27,
a45) as non-escaping. They are candidates for scalar replacement, whereas the
objects for the intermediate results (a5, a26, a33) possibly escape and must be
allocated on the heap.
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Throughout the whole process of building the HIR, the formal parameter a4
remained non-escaping. On the one hand, this means that if the compiler decides
to inline the method despite its size of 65 bytes, it might save the allocation of
the actual parameter. On the other hand, even if the method is not inlined, the
actual parameter can probably be allocated on the stack frame of the caller. This
information is stored with the descriptor of the method factorial and will be
examined by the graph builder when it reaches one of the method’s invocations.

Note that the HIR still contains instructions to allocate the non-escaping objects
as well as to store and load their fields, although the integer values could be
used directly instead. The instructions are removed from the HIR by scalar
replacement, which is the topic of the next chapter.
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Escape analysis is no optimization on its own, but only provides information
about the scope in which objects are accessed. The compiler can then use the
results to identify method-local objects, eliminate their allocation and replace
their fields with scalar variables. This is called scalar replacement of fields.

The objective of this optimization is to save the costs of object allocation and
to relieve the garbage collector. The use of a scalar variable instead of a field
eliminates one memory access because the object reference needs not be loaded.
If the back end manages to keep the field in a register, no memory access is
necessary at all. Moreover, a constant field value can often be directly encoded
in machine instructions.

This chapter describes actions and data structures required for scalar replace-
ment. It deals with potential problems and how they were solved in our im-
plementation. Besides, we try to give an idea of the gain that can be achieved
by the elimination of objects. The actual performance improvement for various
applications and benchmarks is presented in Chapter 7.

4.1 Overview

Since scalar replacement depends on the findings of escape analysis, which are
available fairly late, it is split into two phases. The first phase does not change
the instructions of the HIR and can be performed in parallel with escape analysis
and the construction of the intermediate representation. The graph builder

e maintains a data structure to remember the values most recently assigned
to fields,
creates special phi functions for fields at join points in the control flow, and
annotates each instruction that loads a field with the field’s current value
if available.
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Even if the graph builder is able to determine the current value of a field when it
is loaded, this does not mean that the field can be replaced by a scalar because
the object may still escape below. For this reason, the actual substitution of load
instructions by the fields’ values is delayed to the second phase, when the HIR is
complete and we know for sure which objects escape and which do not.

Scalar replacement is mostly implemented in the front end of the just-in-time
compiler. The translation of the HIR to the LIR and the generation of machine
code remains nearly untouched, except that the back end includes field values
in the traversal of all variables, resolves phi functions for fields, and ignores
eliminated object allocations.

4.2 Object-Related Costs

To get an impression of the costs associated with objects in the JVM, we examine
first which machine instructions are generated for their allocation. The single line
of Java source code

T p = new TQ);

represents both the reservation of memory on the heap and the invocation of the
appropriate constructor. Accordingly, the just-in-time compiler generates the
following two HIR instructions:

__bci__use__tid____instr__ _ _ _ _ _ _ _ o o
. 0 2 al new instance T
.4 0 2 al.invokespecial()

Constructors initialize the instance fields of newly created objects. They can be
bound statically and are usually small or even empty. The compiler is often able
to inline them together with the constructors of the superclasses. Therefore, they
are not examined more closely here.

On an Intel processor [51], the new instance instruction is translated to the
machine code shown in Listing 4.1. To facilitate a fast memory allocation, the
VM maintains pointers to the top and the end of a free area on the heap. In this
example they are stored at the addresses 909160h and 909130h, respectively. The
top pointer is copied to the EAX register and then incremented by the object size
via the lea instruction. If the result in ECX is less than the original pointer in
EAX due to a range overflow or greater than the end of the free area, the JVM ran
out of memory and allocation is delegated to a run-time routine which invokes
the garbage collector.
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00001000 mov eax, dword ptr [909160h]
00001006 1lea ecx, [eax+20h]

00001009 cmp ecx, eax

0000100B jb 0000105F

00001011 cmp ecx, dword ptr [909130h]
00001017 ja 0000105F

0000101D cmpxchg dword ptr [909160h], ecx
00001024 jne 00001000

0000105F // call of run-time routine

Listing 4.1: Assembler code for memory allocation

The ECX register now specifies the new top pointer, while EAX still stores a copy of
the old one. The cmpxchg instruction uses EAX as an implicit operand. Before it
writes the ECX register back to memory, it compares EAX with the value at address
909160h to ensure that no other thread has modified the top pointer meanwhile.
If the check fails, ECX is not written to memory and allocation has to start over.

In a multi-processor environment, the cmpxchg instruction must be executed
atomically and is thus preceded by a lock prefix. Therefore, the latest version
of the JVM creates new objects in a thread-local allocation buffer (TLAB) so
that multiple threads do not interfere. This removes the atomic operation, but
introduces the cost of accessing a data structure for the current thread.

Now the EAX register points to the newly created object. The object header
consists of four bytes and is initialized with the constant 1 denoting an unlocked
object (see Listing 4.2). The next four bytes are copied from the EDX register
and store a pointer to the class T. Memory for instance fields is cleared out in a
loop because the Java language specification requires fields to be initialized with
default values [40] and the garbage collector presumes that unassigned references
are null. The ECX register is set to 0 via an xor instruction, and EDI acts as the
loop counter. Each iteration copies the ECX register to two consecutive memory
words. If the object size is no multiple of double words, an extra move for the
remaining word is generated.

Scalar replacement does not only eliminate the allocation, but also any field
access for non-escaping objects. Every load or store of a field normally requires
one or two move instructions, depending on whether the address of the object is
already in a register or not. The store of a field that holds a pointer is even more
expensive because it is associated with a write barrier.
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0000102A mov dword ptr [eax], 1

00001030 mov dword ptr [eax+4], edx
00001033 xor ecx, ecx

00001035 mov edi, 3

0000103A mov dword ptr [eax+edi*8+4], ecx
0000103E mov dword ptr [eax+edi*8], ecx
00001041 dec edi

00001042 jne 0000103A

Listing 4.2: Assembler code for object initialization

Write barriers are necessary because pointers from old objects to young objects
must be entered in a remembered set, so that the young generation can be col-
lected without scanning the old one. The Java HotSpot VM uses a technique
called card marking [50]. The heap is partitioned into cards of 512 bytes. There
is a byte array with one byte for every card. When a pointer is assigned to a heap
location, the associated write barrier marks the modified card in the byte array.
When the garbage collector runs the next time, it inspects all marked cards for
cross-generation pointers and enters them into the remembered set. Listing 4.3
shows how the write barrier is implemented [47].

00001048 mov dword ptr [eax+8], esi
0000104B shr eax, 9
0000104E mov byte ptr [eax+35E380h], O

Listing 4.3: Assembler code for a field store with write barrier

Under the assumption that EAX still contains the object address, only one move
instruction is necessary to store the value from the EST register to the field with
the offset 8. The card index is calculated via a right-shift of the object address.
Then the corresponding byte in the vector at address 35E380h is set to 0 denoting
that the card has been modified. Scalar replacement eliminates the field access
together with the write barrier and potentially reduces the number of cards to
be scanned for pointers.

As a third point, the garbage collector itself benefits from the removal of allocation
sites because it has less objects to process and may run less frequently. Candidates
for scalar replacement are usually short-lived objects, and although more long-
lived objects accumulate if the intervals between collections are longer, some of
them probably die again before the garbage collector is invoked. Therefore, less
objects get copied to the old space, which reduces the cost of the old generation’s
collection.
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Some of the performance gains mentioned here also apply to objects allocated
on the stack, e.g. the object address needs not be loaded because fields can be
accessed relative to the stack base pointer EBP. Besides the garbage collector does
not have to deal with objects on the stack because their memory is automatically
released at the end of the method.

4.3 Analysis of Basic Blocks

In contrast to the bytecodes of a method, the SSA-based HIR does not contain any
instructions for loading or storing a local variable. They are eliminated during
the abstract interpretation of the bytecodes. For this purpose, the compiler
remembers the value most recently assigned to a variable in the locals array of
the state object. If a bytecode operates on a local variable, a HIR instruction
is generated that directly uses the value from the locals array. Bytecodes refer
to local variables via indices and the number of variables for a certain method is
stored in the class file.

Field values are handled in a similar way. One difference is that we do not know
in advance which or how many fields are accessed within a method. Therefore,
the state object is extended by a field map which allocates slots for field variables
on demand. Every field map entry stores an object, a field offset and the assigned
value. When a field is loaded, the field map is used to obtain the field’s current
value.

The example below shows Java code, bytecodes and HIR instructions with the
locals array and the field map. Initially the field map is empty. At first, a new
object is allocated and stored in a local variable. Then the constant 3 is assigned
to the field f of the newly allocated object. Hence the field map is extended by
an entry that maps object a0 and field £ to the HIR instruction i1 representing
the constant 3. Analogously, the constant value 0 is assigned to the field g so
that the field map grows by another entry for a0.g.

Java code: Bytecodes: HIR: Locals array: Field map:
Tp=newT(); 0: newT a0: new T P
7: astore_0 ----
pf=3; 8: aload_0 0f
9: iconst_3 i1 3 av.
10: putfield f T
p.g=0; 13: aload_0
14 iconst_0 3: 0 a0f a0g
15: putfield g i 0.g=i3 e

Figure 4.1: HIR and state object for a sequence of bytecodes
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At the end of HIR construction, when we know which objects escape and which
do not, we substitute the fields of non-escaping objects by the values stored in the
field map. Provided that a0 does not escape in the above example, the object
allocation and the field initializations can be eliminated. Scalar replacement
substitutes any use of a0.f by i1 and any use of a0.g by i3.

Array allocations are eliminated analogously. The index of an array element is
used instead of the field offset to access the field map. A prerequisite is that the
array is accessed with constant indices only. Besides, the array must have a size
that is known at compile time. Since the bounds check is eliminated together
with an array access, the compiler must guarantee that all indices are valid and
no exception will occur at run time. A non-escaping array that has a fixed size
but is accessed with variable indices can be allocated on the stack.

According to the Java language specification and in contrast to local variables,
instance fields may be used without a prior explicit assignment. Their default
value is the type-specific interpretation of a sequence of zero valued bytes. The
memory occupied by an object is cleared when it is allocated, but if the allocation
of a non-escaping field is eliminated, all used field values must be explicitly visible
in the HIR.

Therefore, constants for the default values are appended to the HIR and stored in
the field map at an object’s allocation site. In case that the object later turns out
to escape, no machine code is generated for the constants because they are never
used. The generation of default values can be disabled via a VM flag, which keeps
the field map small but decreases the number of objects that can be replaced by
scalars.

4.4 Analysis of Control Flow

Different values may be assigned to the same field in different control flow paths.
For this reason, there is no global field map, but one per state object. The
beginning and the end of each basic block as well as certain HIR instructions
preserve a snapshot of the current state object.

At control flow branches, field values are propagated to the state objects of all
successors. At join points, different field values must be merged via phi functions.
This section deals with scalar replacement across block boundaries, the creation
of phi functions and method inlining.
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4.4.1 Phi Functions for Fields

The static single assignment form requires that uses of a value are not reached
by more than one definition, even if different values are assigned to a variable in
alternative control flow paths. Therefore, phi functions are introduced to merge
multiple incarnations of the same variable at points where control flow joins. The
back end resolves the phi functions with move instructions, so that the join block
can load the actual value from a common location, regardless of the previous
control flow.

The HotSpot client compiler creates phi functions for local variables at the be-
ginning of each block with more than one predecessor. If some of them turn
out to be dispensable because all of their operands are equal, they are simplified
later. Local variables are accessed via their index. Therefore, the operands of
a variable’s phi function are located at the same index in the state objects of
the predecessor blocks. A phi function only specifies the variable’s index and the
block it was created for. The operands can then be looked up in the locals arrays
at the end of the block’s predecessors (see example below).

Normally, fields are stored in memory at their assignment and reloaded before
their use. They can be accessed in a uniform way across block boundaries, so phi
functions are only needed for the object reference but not for the fields themselves.
Scalar replacement substitutes some fields with scalar variables. These variables
require phi functions, because alternative control flow paths may store the values
in different registers. Consider the following piece of Java code:

BO: p = new T(Q);
p.f = 0;
if (x> 0) {
Bl:  q=p;
q.f = 3;
} else {
B2: q = new TQ);
q.f = 5;
}
B3:

The compiler builds a control flow graph as shown in Figure 4.2. If there is only
one edge to a block, as it is the case for B1 and B2, the local variables and the
field map are copied from the end of the predecessor. For blocks like B3, where
control flow joins, phi functions are created. a12 is a phi function for the local
variable q. Its operands al and a8 can be found at index 1 in the locals array of
the blocks B1 and B2.
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Bytecodes:

new T

astore_1
aload_1
iconst_0
. pultfield f
. iload_0
. ifle 27

. aload_1
astore_2
aload_2
. iconst_3
. putfield
. goto 40

©newT

. astore_2
. aload_2
. iconst_5
: puffield f

BO

X p q
al: newT 0 [at [ ] atf
i2: 0 :
3 atf=iz e
4: ifi0 > 0 then B1 else B2
Y A/qu\A B2 . ) ]
5 3 Lo et [at] a 2 pewT L0 Tat[a8] 5 g
i6: atf=i5 fo---mmmmmmmmee 10; 88f=19 |---nn-mmmmmmmm- (2 [ 9 |
7: goto B3 11: goto B3
B3 X p q alf al2f
al2: @ [al, a8] o [at Jat2 {13 ] ir4]
i3 @ [5,i2]
i14: @ [5,19]

Figure 4.2: Phi functions for local variables and fields

Instruction i14 is a phi function for the field q.f. In contrast to local variables,
we cannot guarantee that a field is mapped to the same index throughout the
method. Since the operands of the phi function for q are al and a8, the value of
q.f is al.f at the end of B1 and a8.f at the end of B2. Looking up these values
in the corresponding field maps yields i5 and 19 as the operands of i14.

4.4.2 Alias Effects

An extension of the code fragment from the previous section raises a problem.
The assignment of a value to the field q.f in the block B3 perhaps modifies also
p.f. We cannot determine statically whether p.f and q.f denote the same or
different memory cells. They may be aliases or not.

BO: p = new TQ);
p.f = 0;
if (x > 0) {

B1:
q

.

q = P;

3;

} else {

B2: q

q.

+
B3: q.f

f

new TQ);

// unclear, which cell

is

read
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In block B3 of Figure 4.2, p corresponds to al and q to a12. If the control flow
came via B1, p and q are aliases and so are p.f and q.f. However, the field map
regards al.f and al2.f as distinct variables. If the value 7 is assigned to q.f,
the compiler would store this value in the field map under the name a12.f.

The assignment to q.f should also affect p.f if the control flow came via B1 but
not if it came via B2. So when p.f is read later, the compiler does not know
which cell to access. Naively it would look up al.f in the field map and would
find the phi function i13 there. The operands of 113 are i5 and i2, i.e. the
values 3 and 0, but the correct value of p.f is 7 or 0, respectively.

Alias effects occur only in the context of phi functions; the equality of two local
variables is no problem because their values have the same name. An object has
an alias if it is both the operand of a phi function and stored in a local variable,
or if it is the operand of two different phi functions as in the following example:

BO: p = new T();

q = p;
if (x> 0) {
Bl: p = new TO;
q = new TQO;
}
B2: q.f = 7;
=p.f; // unclear, which cell is read

At the beginning of B2, two phi functions are created for p and q. If x is greater
than 0, p and q refer to different objects. Otherwise, p and q are aliases and so
are p.f and q.f. As in the previous example, the compiler may read a wrong
value from the field map when p.f is accessed afterwards.

This problem is solved in the following way: If an object is stored as the operand
of different phi functions or as a phi operand and a local variable, the compiler
marks it as method-escaping. Although such an object does not escape by means
of a method call, it will be allocated on the stack or on the heap instead of being
replaced by possibly wrong values from the field map.

4.4.3 Method Inlining

Scalar replacement and synchronization removal (see next chapter) largely benefit
from method inlining. Even on short-lived objects, the constructor and usually
some accessor methods are invoked. The objects escape unless the methods are
inlined. Inlining embeds the body of a callee into the caller so that escape analysis
is able to track what happens to the receiver and any object parameters.
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If the callee cannot be inlined, the actual parameters must be allocated on the
stack or on the heap even if the callee does not let them escape. The reason is
that the method might also be called from a site that was forced to allocate the
actual parameter on the heap. To allow a uniform object access, the callee must
be provided with a pointer to the object that could not be given if the allocation
were eliminated.

The primary objective of inlining is the elimination of the overhead associated
with method dispatching. As far as scalar replacement is concerned, method
inlining does not always pay off. If all parameters escape either in the caller or in
the callee, inlining does not affect the number of objects that can be replaced by
scalar variables. In its decision whether to inline a method or not, the compiler
is supported by the information of the interprocedural analysis as described in
Section 3.4.1.

At the start and end of each basic block and at certain instructions, copies of the
state object with the current values of the local variables, the field map and the
operand stack are saved. They are used for the resolution of phi functions and
for the generation of debugging information. For the time of inlining, the graph
builder operates on a separate state object with as many local slots as required
by the callee. Every copy of the state object preserves a pointer to the caller
state (see Figure 4.3).

locals locals locals
HEN HERN HEN
stack stack stack
callr
yf y.f y.f
A A A A
foo(y) i caller state i caller state return z; i caller state

<3
I+]
QO
@

i
i
i

wn
=
QO
Q
=
<
—n
n
w
%)
—
Q
Q
=
w
=
QO
Q
=

e o] — ] > D]
yf y.f yf
before inlining during inlining after inlining

Figure 4.3: Caller and callee states during inlining

The modification of the callee’s local variables or parameters does not affect the
caller, but a field assignment may be visible. In Figure 4.3, the compiler takes the
parameter y from the stack and stores it in the callee’s locals array. The operand
stack and the field map are simply copied from the caller state. Assignments
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to local variables and fields during inlining only change the callee state. After
inlining, the compiler restores the local variables from before the method call,
but keeps the possibly modified fields. At any point in the HIR, only the field
values of the innermost state object are correct.

4.4.4 Selective Creation of Phi Functions

The original HotSpot client compiler did not perform a sophisticated analysis to
determine where phi functions are necessary (compare [11] and [26]). Instead,
it created phi functions for all variables as soon as a block had more than one
predecessor and later simplified those whose operands turned out to be equal.

A basic block is filled with HIR instructions only after all forward branches to
that block were processed. If no backward branch leads into a block, the phi
functions can be simplified immediately before the block is parsed, because all
predecessors respectively all operands are already available. The simplification
of phi functions in loop header blocks, which are targeted by a backward branch,
must be delayed until the complete HIR was built.

This approach makes the handling of control flow join points easy, but usually
leads to a considerably high number of phi functions. Although it does not affect
the quality of the machine code, because all redundant phi functions are finally
simplified, it causes two problems for escape analysis:

e If the receiver of a method call in a loop is hidden by a phi function, the
compiler must conservatively assume that the phi function has operands
of different dynamic types. It fails to determine which method gets called
and thus can neither inline the method nor retrieve interprocedural escape
information for it. Therefore, the receiver and all parameters are treated
as escaping globally, even if the phi function is simplified at the end.

e If an inlined method contains a loop, phi functions are created there for all
formal parameters. A value that is assigned to the field £ of a parameter p
in the inlined method is associated with the phi function ®;. When the
compiler continues parsing the caller, it restores the locals array before
inlining which still contains the original parameter p. The caller accesses the
field via p. £, but the value of the field is stored in the field map under ;. f.
Even if the parameter itself was not modified in the callee, changes of its
fields get lost and it must be allocated on the stack or on the heap.

Both problems are solved by a more selective creation of phi functions. If a block
is reached by forward branches only, we may delay the creation of a phi function
for a variable v until we find out that two predecessors contribute different values
for v.
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At the beginning of a loop, phi functions must be created for all variables that are
modified within the loop. However, the graph builder must decide on the creation
of phi functions before it parses the loop. Therefore, the block list builder records
for each basic block which local variables are modified within the block when it
iterates over the bytecodes. Then the control flow graph is traversed to find out
which blocks belong to a loop. Finally, all local variables modified within such a
block are marked to require phi functions. The loop detection is explained here
by means of the following example, which iterates over the elements of two lists
in two nested loops:

BO: iterl = listl.iterator();
Bil: while (iterl.hasNext()) {
B2: objl = iterl.next();

iter2 = list2.iterator();
B3: while (iter2.hasNext()) {
B4: obj2 = iter2.next();

// do something with objl and obj2
}
}

This piece of code consists of five basic blocks. Each block is associated with an
initially empty bitset, where bit ¢ denotes that the block belongs to loop ¢. The
blocks are traversed in a depth-first manner and each block encountered along
the way is marked as active and wvisited.

At the branch in block B3, we follow the first edge and reach B1 (see Figure 4.4a).
This block is already active and thus identified as a loop header (denoted by a
double framed rectangle). Since it is the first loop header found, the first bit is
set in the bitset of block B1.

Then we return to block B3, visit the second successor B4, and from there reach
the active block B3 again. It represents the second loop header, so the second bit
is set (see Figure 4.4b). Since it is the only successor of B4, the bitset of B3 is
copied into the block B4 (see Figure 4.4c). When we return from B4, we clear its
active flag but remember that it has been visited to avoid processing it twice.

The basic block B3 has more than one successor. We combine the bitsets of all
successors and subtract B3’s own bitset. The result is a set in which only the
first bit is set. It overwrites the old bitset of B3 and gets copied into the block B2
when we wind up (see Figure 4.4d).

Block B1 has two successors as well. Under the assumption that the two loops
are not embedded in a third one, an empty bitset is returned from the second
successor. We again combine the two bitsets, subtract the one of B1 and obtain
an empty bitset. It is stored in block B1 and returned to BO (see Figure 4.4e).
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Figure 4.4: Loop detection for selective creation of phi functions

Now the complete control flow graph has been traversed. A block belongs to a
loop if it is marked as a loop header or has a non-empty bitset. At the beginning
of a loop, the compiler does not only create phi functions for variables modified
within this particular loop, but for all variables modified within any loop of the
method. This is more conservative but easier to implement. It is still possible
that redundant phi functions are created, but they are simplified before code
generation as usual.

In the example above, no phi function is created for the variable iter1 at the
beginning of B1 any longer, because it is modified only in block BO which is not
part of a loop. After inlining of the methods hasNext and next, the iterator
can be eliminated and replaced by scalars. On the other hand, a phi function is
created for iter2, because it is modified in block B2 which belongs to a loop.

4.5 Adaptation of the Back End

During HIR construction, we keep track of field values under the assumption that
the objects do not escape. Instructions are neither removed from the HIR nor
replaced as long as the escape states are still subject to change. The actual scalar
replacement is delayed until after creation of EES and alias detection.
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Then the basic blocks and their instructions are traversed one more time. Phi
functions that represent non-escaping objects are marked as unused to prevent
the back end from generating move instructions for them. Field store and null
check instructions are removed from the HIR if they operate on a non-escaping
object. Instructions that load a field from such an object are substituted by the
recorded value of that field.

The major part of escape analysis and scalar replacement is performed in the
front end. The back end was modified only to ignore residual instructions that
represent or operate on non-escaping objects as well as to take field variables into
account. Adjustments were necessary where

lifetime intervals are built,

moves for phi functions are created,

machine code for the computation of values is emitted, and where
debugging information is generated.

Under certain circumstances, the VM is forced to stop the execution of a compiled
method at a safepoint and fall back to interpretation. Since the interpreter does
not know about scalar replacement, eliminated objects have to be recreated on-
the-fly. For this purpose, the back end must generate information about the
current field values for all safepoints within a method. This process is described
in Chapter 6.

4.6 Verification Code

As we see from the alias problem, precautions are sometimes necessary to prevent
the compiler from substituting a field access with the wrong value. To check the
correctness of scalar replacement and prevent errors in future modifications, a LIR
instruction for run-time assertions was implemented. If verification is enabled via
a special VM flag, the compiler keeps track of field values but refrains from scalar
replacement. Whenever a field is loaded from memory, the result is compared
against the value that the field could be substituted with. The following two Java
instructions

p.-f =3;
return p.f;

are translated into the subsequent LIR. The first instruction assigns the value 3
to the field with the offset 8 in the object referenced by the ESI register. The
second instruction reloads the field into the EAX register. The result is compared
against the constant 3, which would be returned instead of the loaded field value
if scalar replacement were used.
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14 move [int:3|I] [Base:[esi|L] Disp: 8]]

16 move [Base:[esi|L] Disp: 8|] [eax|I]

18 assert [EQ] [eax|I] [int:3|I] "scalar replacement error"
24 return [eax|I]

The machine code that gets generated for the run-time assertion is shown below.
If the EAX register equals 3, the postulated condition is fulfilled and error handling
is omitted. Otherwise the address of the message to be displayed, the current
program counter and the values of all registers are pushed onto the stack via
pushad. For lack of an appropriate machine instruction, the program counter is
pushed as the return address of a call to the next line. The actual output of the
error message and the register values is delegated to a run-time routine. Finally,
the hlt instruction stops the execution of the program.

00001000 cmp eax, 3
00001003 je 0000101A
00001009 push 8276080h
0000100E call 00001013
00001013 pushad

00001014 call 08010360
00001019 hlt

0000101A

4.7 Example

In continuation of the example from the previous chapter, scalar replacement is
applied to a method that computes the factorial and allocates objects for the
loop counter and the intermediate results:

static Int factorial(Int x) {
Int p = new Int(1);
Int i = new Int(1);
while (i.val <= x.val) {
p = new Int(p.val * i.val);
i = new Int(i.val + 1);

return p;

}

We already know from escape analysis that the loop counter object does not
escape, so both its allocation and the initialization of its field are eliminated in
the block BO.
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BO [0, 17] -> B1

__bci__use__tid____instr___________ __ _ _ _ __ _ _ _ _ _________
. 0 2 ab new instance Int
4 2 i6 1
. 6 0 i13 ab._8 := i6
. 9 2 als new instance Int (eliminated)
. 6 0 i23 als5._8 := i6 (eliminated)
17 0 25 goto Bl

At this point, ab._8 and al15._8 are mapped to i6, i.e. the constant 1. Since the
block B1 is the target of a backward branch, phi functions are created for local
variables as well as for fields. The compiler also creates a phi function for p.val,
because escape analysis does not know that p escapes before it parses the return
instruction. The field a26._8 is mapped to 128 and a27._8 is mapped to i29.

B1 [18, 26] -> B3 B2

Locals:

0 a4 /] x

1 a26 [ab a33] /] p

2 a27 [al5 a4b] // i
Fields:

0 a26._8 = i28 [i6 i36] // p.val

1 a27..8 = i29 [i6 i48] // i.val
__bci__use__tid____instr_____ _ __ _ _ _ o ____

19 1 i30 a27._8 (eliminated)
. 23 1 i31 ad._8

. 26 0 32 if i29 > i31 then B3 else B2

The loop body B2 updates the loop counter and originally created a non-escaping
object for the new value. Scalar replacement eliminates the allocation site a45
and prevents a27._8 from being loaded. The increased counter is computed as
i29 + 147 instead of 146 + 1i47.

B2 [29, 60] -> B1

__bci__use__tid____instr____ _ _ _ __ _ _ _ o ____

. 29 2 a33 new instance Int

. 34 1 i34 a26._8

.38 1 i35 a27._8 (eliminated)

. 41 2 i36 i34 *x i29

. 6 0 i43 a33._8 := 136

. 46 2 a45 new instance Int (eliminated)

. b1 1 i46 al27._8 (eliminated)
54 1 i47 1

. bb 2 i48 i29 + i47
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. 6 0 ibb ad4b._8 := i48 (eliminated)
. 60 O 57 goto Bl

The final block B3 neither allocates an object nor accesses the field of a non-
escaping object. Therefore, scalar replacement does not change it.

B3 [63, 64]
bci__use__tid instr

. 64 0 ab8 areturn a26

From a static point of view, scalar replacement eliminates two of four allocation
sites. If the method is called to compute the factorial of n, n + 1 objects are
allocated less than in the original version. As an additional optimization, the
parameter object may be allocated on the caller stack. This is described in the
next chapter.
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Some objects escape the current method but not the current thread, typically
because they are passed to a method that cannot be inlined. Although the
fields of such objects must not be replaced by scalar variables, several other
optimizations are possible:

e An object that is accessed only by one method and its callees can be allo-
cated on the stack, which is cheaper than allocating it on the heap.

e Fields of a stack object can usually be accessed relative to the base of the
current stack frame, so that the address of the object needs not be loaded.

e Synchronization on thread-local objects can be removed because they will
never be accessed by another thread.

e The garbage collector does not have to free stack objects. They are deallo-
cated at the end of the method when the stack frame is popped.

The first part of this chapter shows how objects are allocated on the stack, what
costs are saved and where attention is demanded. The second part deals with
object locking and synchronization removal.

5.1 Stack Allocation

In C#, the designer of a type decides where objects are allocated. Instances of
classes are allocated on the heap, whereas instances of structures are allocated on
the stack. The C++ language is even more flexible. Objects of one type can both
be allocated on the stack and on the heap. The declaration of a local variable
reserves memory on the stack, and the new keyword on the heap.

Java supports only one way of object creation. The new keyword must be used
in order to allocate objects on the heap. There is no possibility for the program-
mer to influence this process. The just-in-time compiler, however, may generate
machine code for an individual allocation site to create objects on the method
stack if escape analysis guarantees that it is safe to do so.
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5.1.1 Stack Layout

The method stack is a contiguous area in memory for the local data of currently
executing methods. Every thread is given its own method stack. When a method
is called, a new frame is pushed onto the method stack, and when the method
returns to the caller, the stack frame is removed again. Every stack frame corre-
sponds to one method invocation, i.e. recursive calls produce multiple frames.

Every processor provides some basic machine instructions for the creation, man-
agement and removal of stack frames, but the actual frame layout and its parti-
tion is left to the runtime environment. The Java HotSpot VM uses two different
frame layouts for interpreted and compiled methods, which can co-exist on the
same stack.

The stack frame for an interpreted method provides space for local variables and
the operand stack, whereas a compiled method stores these values in registers
and spill slots. Since interpreted methods do not allocate any objects on the
stack, this chapter deals only with frames of compiled methods (see Figure 5.1).

method parameters - caller frame

return address
dynamic link

EBP

Y

monitors

stack objects

~ current frame
spill slots

reserved parameter area

ESP

Y

Figure 5.1: Stack frame of a compiled method

The base pointer EBP points to the start of the current stack frame, and the stack
pointer ESP to its end. Upon a method call, the EBP register is pushed onto the
stack and serves as a dynamic link to the caller’s frame. It is reloaded when the
method returns. Each stack frame is split into four areas:

e The monitor area is used for synchronization. Its size depends on the
maximum number of objects that are simultaneously locked by the current
method. Each entry occupies two words for the address and the header of
a locked object.
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Stack objects are allocated immediately below the monitors. Since the
total frame size must be known at compile time, variable-sized arrays do
not qualify for stack allocation. Besides, if a non-escaping object is created
within a loop, it is allocated on the stack only if the same stack slot can be
reused in every iteration.

If an operation requires more registers than are currently free, register allo-
cation selects values that are temporarily swapped out to memory. This is
called spilling. The values are stored in the spill slots of the current frame.
Future operations can either use them directly from memory or reload them
into a register.

The area at the end of the frame is reserved for passing parameters to
callees. It is large enough for any callee of the current method. The pa-
rameters are not pushed onto the stack, so the value of the ESP register
remains unchanged. This makes it easier for the garbage collector to deal
with parameters that are object references.

The method stack grows towards the beginning of memory. This means that
stack slots at the top of a frame have higher addresses than those beneath. Slots
of the current frame are usually addressed relative to EBP with a negative offset
or relative to ESP with a positive offset. A frame map supports the compiler in
the generation of machine code that refers to data on the stack. It stores the size
of each area and converts between a stack slot index and an address.

5.1.2 Allocation of Stack Objects

For the allocation of a stack object, it is only necessary to initialize its fields. No
memory needs to be reserved. The objects are allocated within the current frame
which is automatically set up at the beginning of the method.

EBP —
g EBP - Ch
f - 10h
class pointer - 14h
header - 18h

Figure 5.2: Layout of a sample stack object

During compilation, each stack allocation site is assigned a unique location in the
frame. All objects allocated by the site are stored at this location. The location
of a stack object is referred to as its name and specified as the offset from the
base pointer. The name of the sample stack object in Figure 5.2 is -18h.



5.1 Stack Allocation 61

The machine code generated for the allocation site initializes the body of the
object. It stores the value 1 into the header word, which marks the object as
unlocked. A pointer to the class of the object is copied from the EDX register into
the second word. The remaining words are cleared out so that the fields get their
default values as described in the Java language specification:

00001000 mov dword ptr [ebp-18h], 1
00001007 mov dword ptr [ebp-14h], edx
0000100A xor eax, eax

0000100C mov dword ptr [ebp-10h], eax
0000100F mov dword ptr [ebp-Ch], eax

Within a loop, an object can only be allocated on the stack if the same space
can be reused in every iteration. In other words, two objects created by the
same site in different iterations must never be accessible at the same time. In
the following example, no objects are allocated on the stack, because the object
from the previous iteration can still be accessed via the variable q after the next
one was allocated:

p = new TQO;
while (...) {
q =P
p = new TQO;

3

The frame map accumulates the size of all stack objects. After register allocation,
the sizes of the monitor area, stack objects, spill slots and parameter area are
added up. The result is the total frame size that must be reserved on the stack
upon method invocation.

5.1.3 Field Access

Apart from a cheaper allocation and deallocation, stack objects also facilitate a
more efficient field access. The location of stack objects within the current stack
frame is already known at compile time. Since the fields can be accessed relative
to the EBP register, the address of the object needs not be loaded at run time.

When we allocate a stack object p as described in the previous section and the
stack frame looks as in Figure 5.2, then the Java statement p.f += 7 is translated
into the following machine code:
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00001000 mov edi, dword ptr [ebp-10h]
00001003 add edi, 7
00001006 mov dword ptr [ebp-10h], edi

Elements of stack-allocated arrays are accessed in a similar way. The address
includes an index register and a scale factor in addition to the base register and
the offset. Assume that arr is an integer array of length 3 and that the index i
is stored in the ESI register. The assignment of 7 to arr[i] yields the following
machine code:

00001000 cmp esi, 3
00001003 jae 00001034
00001009 mov dword ptr [ebpt+esi*4-14h], 7

00001034 // throw ArrayIndexOutOfBoundsException

Although arrays on the stack always have a fixed size, their length is stored in
the header for the case that the array is passed to a callee. However, a range
check within the allocating method can skip loading the array length and directly
compare the index with a constant. The unsigned comparison also detects a
negative index, which looks like a large unsigned positive number [51]. If the check
fails, the machine code jumps to a stub that throws an exception. Sometimes
the index is a constant as well. In this case, the range check is eliminated if
the index is within bounds, or replaced by an unconditional jump to the stub
otherwise. The move instruction performs the actual assignment. The index
register is multiplied with 4, because each array element takes up 4 bytes.

As long as fields are addressed relative to the base pointer, no pointer to the
stack object exists. Since heap objects referenced by the stack object must be
considered during garbage collection, the stack object is registered in the oop
map (see Section 6.1.4). This causes the garbage collector to treat pointers in
the stack object as root pointers and to keep the referenced heap objects alive.

When a stack object flows into a phi function, its address must be loaded. This
is done via a lea (load effective address) instruction. For

if (x> 0) {

p = new T(...);
} else {

p = new T(...);
}
p.f=7;

the compiler generates the following code:
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00001000 cmp esi, O

00001003 jle 00001028

00001009 // allocate stack object at ebp-10h
00001020 1lea edi, [ebp-10h]
00001023 jmp 00001042

00001028 // allocate stack object at ebp-20h
0000103F 1lea edi, [ebp-20h]
00001042 mov dword ptr [edi+8h], 7

At compile time, each stack allocation is assigned a unique position within the
stack frame. Depending on the value of x in the EST register, an object is allocated
at one of the two positions. At the end of each alternative block, the address of
the stack object is loaded into the EDI register to resolve the phi function. The
field £ can then be accessed with a positive offset relative to this address. If the
else-branch is executed for example, the stack frame looks as in Figure 5.3.

EBP —»
uninitialized
EBP - 10h —»»
9
f EDI + 8h
class pointer
header
EDI = EBP - 20h —»

Figure 5.3: Access of stack object via a pointer

In such a situation, we are not able to precisely describe the object in the oop map,
because we do not know at compile time which memory area actually contains
the object. We cannot register all stack objects of the frame, because some of
them may not be initialized and thus provide illegal root pointers. Instead, we
rely on the garbage collector to trace the pointer for the phi function and to
traverse the fields of the referenced stack object.

5.1.4 Write Barriers

Generational garbage collection is based on the observation that most objects die
young and that objects which have been alive for a while are typically part of
a global data structure and will be used for an even longer period of time [41].
Therefore, the memory is divided into distinct areas, called gemerations. New
objects are allocated in the young generation. If an object has survived sev-
eral collection cycles, it is moved into an older generation that is collected less
frequently.
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In order to identify the set of live objects for one particular generation, not only
root pointers must be considered, but also pointers from objects contained in
other generations. The garbage collector needs not worry about pointers from
young to old objects, because all young generations are scanned before an old one
is collected. It must, however, be possible to collect a young generation without
inspecting every object in the older ones. Therefore, pointers from old to young
objects are stored in the remembered set of the young generation.

When a pointer is installed into an object, it would be too expensive to immedi-
ately update the remembered set. Instead, the heap area that holds the object
is marked as dirty. Such an area is commonly referred to as a card. Before the
next collection, the garbage collector scans all dirty cards and updates the re-
membered set. The data structure that specifies which cards are dirty is called
card marking array (see Figure 5.4).

index

Lefalefoefefeft]

IEIEIEN

1
T N 1
base offset start Size end

Figure 5.4: Card marking array

Every assignment to an object field is associated with a write barrier as shown
in Listing 5.1. Assume that the EAX register points to the object that holds the
field. Each card has a size of 2° = 512 bytes, so that the index of the card
containing the object can be computed via a right shift of the object address by
9 bits. Afterwards, the corresponding entry in the card marking array is set to 0.

00001000 shr eax, 9
00001003 mov byte ptr [eax+35E380h], O

Listing 5.1: Assembler code for a traditional write barrier

It is more efficient to set the dirty byte from 1 to 0 instead of the other way round,
because SPARC processors [91] provide a special register for the constant 0. Since
the heap is not located at the beginning of memory and the first possible index
is greater than 0, the card marking array is accessed relative to the base address
35E380h and not relative to its actual start address.

No write barriers are emitted for fields of stack objects allocated within the
current method. On the one hand, they are not necessary, because pointers in
stack objects are root pointers and must be inspected at every collection cycle
anyway. On the other hand, they are not allowed, because the card marking
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array only covers the heap and any write barrier for a stack object would modify
a byte outside the array or cause an access violation.

If a formal parameter does not escape a method or its callees, the method may
be called both with a stack-allocated and a heap-allocated actual parameter. For
such a formal parameter, a modified write barrier is emitted, which performs a
bounds check before the card marking array is accessed (see Listing 5.2).

00001000 shr eax, 9

00001003 sub eax, 41A00h

00001009 cmp eax, 50000h

0000100F jae 0000101C

00001015 mov byte ptr [eax+39FD80h], O
0000101C

Listing 5.2: Assembler code for a stack-aware write barrier

The write barrier computes the card index via a right shift and subtracts the
offset (= start address — base address) of the card marking array (see Figure 5.4).
The unsigned check of the result against the array size fails when the result is a
negative number and when it is greater than the size. Both cases are detected
by the jae (jump above equal) instruction. Since the offset has already been
subtracted from the index, the array is accessed relative to the start address
instead of the base address.

Although the heap may grow on demand, the size of the card marking array
can directly be emitted into the machine code. At startup, the VM reserves
address space for the maximum size of the heap and relies on facilities available
in the various operating systems to avoid committing too many resources (such as
physical memory or swap space) for reserved pages until they are actually used for
the first time. Reserved but not yet committed pages still take up some amount
of space in the page table, but the cost is fairly small. The card marking array
uses the same strategy. The VM reserves memory large enough to correspond to
the maximum size of the heap, but only commits regions of the array as necessary.
For this reason, the base, start and end address, and the size of the array are
constant.

The stack-aware write barrier takes five instead of two machine instructions, but it
is required for non-escaping formal parameters only. No write barriers are emitted
for stack objects within the allocating method, and traditional write barriers are
emitted for the remaining objects on the heap. Since bytecode analysis (see
Section 3.4.2) produces interprocedural escape information before a method is
compiled, a stack object may be passed to an interpreted method as well. Thus,
the interpreter must also execute the stack-aware write barrier.
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5.2 Synchronization Removal

In a multi-threaded program, threads usually operate on common data to some
degree. Sharing data without precaution can cause serious problems: If multiple
threads modify a shared value simultaneously, they may unintentionally overwrite
the changes of each other (lost update). Moreover, a thread may read values in an
inconsistent state if another thread currently modifies them (inconsistent read).

The Java language provides convenient constructs for the synchronization of
threads. They allow programmers to designate critical code regions, which act
on a shared object and may be executed only by one thread at a time. The first
thread that enters the region locks the shared object. If a second thread is about
to enter the same region, it must wait until the first thread has unlocked the
object again.

The synchronization constructs are pervasively used in the Java system libraries.
Many data structures are synchronized to ensure correct results for the rare case
that they are shared among multiple threads. Much research has been done to
reduce the cost of synchronization in JVM implementations [9, 59], but complete
elimination of useless synchronization is still a desirable goal.

We start with a short outline of the locking mechanism in the Java HotSpot VM.
Then we show how escape analysis is used to remove unnecessary synchronization
on thread-local objects. The final section describes how synchronized methods
are inlined to expose additional optimization opportunities.

5.2.1 Object Locking

For every Java object, memory is allocated to store the current values of the
object’s fields. This memory is preceded by one word for the header and a pointer
to the class of the object. The header word stores certain flags and is used to
distinguish locked and unlocked objects [3].

Figure 5.5 shows how objects are internally represented by the Java HotSpot VM.
As long as an object is unlocked, the last two bits of the header word have the
value 01. The remaining bits store the identity hash code as well as the age of
the object with respect to generational garbage collection.

When a thread synchronizes on an unlocked object, a pointer to the object and
its header word are saved in the monitor area of the thread’s current stack frame.
The combination of the displaced header and the object pointer is called a basic
object lock. A pointer to the basic object lock is stored in the object header.
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stack frame stack frame
.| displaced header displaced header
header 01 00| «< 10]
lass pol lass poi lass point
class pointer class pointer object monitor class pointer
a) unlocked object b) basic object lock c) inflated lock

Figure 5.5: Representation of locked and unlocked objects

Since stack slots are always aligned at word boundaries, the last two bits of the
header word are now 00. Note that the arrow in Figure 5.5b points to the bottom
of the displaced header, because addresses increase towards the top of the frame.

If a thread tries to synchronize on a locked object, it checks if the object header
points into its own stack. In this case, we speak of recursive locking. The thread
already owns the object’s lock and can safely execute the synchronized block.
Nevertheless, a basic object lock is created whose displaced header is set to zero.

The first time another thread tries to obtain a lock on an already locked object,
an object monitor is allocated for the management of waiting threads. The object
header is modified to point to the monitor and the last two bits are set to 10 as
shown in Figure 5.5c. Any further thread that synchronizes on the same object
is added to the list of waiting threads. While setting up a basic object lock is
directly embedded into the machine code by the JIT compiler, synchronization
of multiple threads is delegated to a run-time routine.

The basic object lock on the stack supports the JVM in unlocking an object. If
the displaced header is zero, the object was locked recursively by one thread and
must not yet be unlocked. An object whose header points to the current basic
object lock is unlocked by restoring the header word from the displaced header.
In any other case, i.e. if the object was locked by different threads, a run-time
routine is called to do the unlocking and resume a waiting thread.

5.2.2 Synchronization on Thread-Local Objects

As long as only one thread synchronizes on an object, the VM gets away with
basic object locks. Although they are significantly cheaper than object monitors,
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they still involve some overhead. The JIT compiler can improve the performance
of the generated machine code by completely removing synchronization on objects
for which escape analysis guarantees at compile time that they are never accessed
outside the allocating thread.

The following method allocates a new object and initializes its field £ with the
value of the parameter x. It increments the field in a synchronized block, which
may result from inlining a synchronized method as described in Section 5.2.3:

static int foo(int x) {
T obj = new T(x);
synchronized (obj) {
obj.f = obj.f + 1;
}
return obj.f;

}

Without escape analysis, the compiler generates the HIR shown below. The
enter monitor instruction locks the object a4 and exit monitor unlocks it
again. If the object were shared among different threads, the synchronization
would prevent that one thread computes the increment while another one reads
the old value and finally overwrites the incremented value with its own result.

__bci__use__tid____instr____ _ _ _ __ _ _ _ o ____
. 0 9 ad new instance T
. 6 0 i10 a4d._8 := i3 // inlined constructor
12 0 12 enter monitor(a4d)
15 1 i13 a4._8
18 1 il4 1
19 1 i1b i13 + i14
. 20 0 i16 ad._8 := ii1b
.24 0 17 exit monitor(a4)
. 34 1 i22 a4._8
.37 0 i23 ireturn i22

Escape analysis yields that a4 does not escape the allocating thread. Since the
object will never be locked by more than one thread, synchronization can be
removed. In this example, the complete allocation of the object is eliminated and
its fields are replaced by scalars. The resulting HIR looks as follows:

__bci__use__tid____instr__ _ _ _ _ _ _ _ .
18 1 i1l4 1
19 1 i15 i3 + i14

. 37 0 i23 ireturn ii15
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Without synchronization removal, the allocation could not be eliminated because
locking requires the object to exist. If the object were passed to a method that
cannot be inlined, scalar replacement would not be possible, but synchronization
could still be removed in the allocating method as long as the callee does not let
the parameter escape globally.

Before Java 5.0, the Java memory model restricted synchronization removal. Each
thread had a working memory, in which it kept copies of the values of variables
from the main memory that was shared between all threads. According to the
old Java memory model [40], locking and unlocking actions caused a thread to
flush its working memory and empty all variables, which guaranteed that the
shared values were reloaded from main memory afterwards. Synchronization on
a thread-local object had the effect of a memory barrier [77]. Therefore, the
old Java memory model did not allow useless synchronization to be completely
removed, but the new one for Java 5.0 does [63].

5.2.3 Inlining of Synchronized Methods

The synchronized statement provides mutual exclusion for a single block within
a method. As a convenience, a method can be declared as synchronized as well.
Such a method behaves as if its body were contained in a synchronized state-
ment. Nevertheless, there are certain differences:

e A synchronized block must specify the object to be locked. Thus it can
synchronize on arbitrary objects. A synchronized method always locks the
receiver of the method call.

e Synchronization of a block is explicitly represented in the bytecodes by
a pair of a monitorenter and a monitorexit instruction, whereas the
synchronization of a method is only visible in its signature.

Escape analysis must not remove synchronization from a method, because the
method may also be called on an escaping receiver. The only chance for the
JIT compiler to avoid synchronization is to inline the method. The inlining of
synchronized methods is explained below, considering StringBuffer.append as
an example.

In Java, strings are concatenated with a string buffer. The class StringBuffer is
synchronized for the rare case that an instance is shared among multiple threads.
JDK 5.0 adds the class StringBuilder for use by a single thread. It supports
the same operations but is faster as it performs no synchronization. Both classes
are derived from AbstractStringBuilder, which provides unsynchronized ver-
sions of the common methods. StringBuffer overrides the methods and adds
synchronization according to this pattern:
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class StringBuffer extends AbstractStringBuilder {
public synchronized StringBuffer append(String str) {
super .append(str) ;
return this;
}
}

The class StringBuffer is retained mainly for compatibility reasons. Its methods
are small and can normally be inlined by the JIT compiler. Consider this piece
of Java code:

StringBuffer buf = new StringBuffer();
buf . append("some text");

Although append is a virtual method, it can be bound statically in this example
because the compiler knows from the preceding allocation site that the type of
the receiver is StringBuffer. When the compiler inlines the method, it inserts
an enter monitor and an exit monitor instruction into the HIR to preserve
synchronization. The negative BCI indicates that the two instructions have no
equivalents in the bytecodes:

BO [0, 15]
__bci__use__tid____instr_______________________________
. 0 8 al new instance StringBuffer
// inlined constructor of StringBuffer

9 2 ald <string "some text">
. -1 0 18 enter monitor(al)

.2 0 al9 al.invokespecial (al4)
AbstractStringBuilder.append
. -1 0 20 exit monitor(al)

A locked object must reliably be unlocked again, even when an exception is
thrown within the synchronized code. For synchronized methods, this is guar-
anteed by the JVM. For synchronized blocks, the javac compiler generates an
exception handler that unlocks the object and afterwards rethrows the exception.
If a synchronized method is inlined, such an exception handler does not exist and
must be generated on-the-fly by the JIT compiler:

B1 [-1, -1]
__bci__use__tid____instr________ ___ _ __ _ o ____
. -1 1 a22 incoming exception

. -1 0 23 exit monitor(al)

. -1 0 24 throw a22
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The method AbstractStringBuilder.append is too large to be inlined, but
interprocedural escape information states that the receiver does not escape. If a1l
does not escape otherwise, synchronization and the exception handler can finally
be removed. The result looks as if the programmer had used the unsynchronized
StringBuilder of the JDK 5.0:

BO [0, 15]
__bci__use__tid____dinstr_______________________________
. 0 8 al new instance StringBuffer
// inlined constructor of StringBuffer

9 2 ald <string "some text">

.2 0 al19 al.invokespecial(al7)
AbstractStringBuilder.append
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The Java HotSpot VM interprets a method several times before the method is
compiled. This way, machine code is generated only for the most frequently
called methods. In certain situations, the Java HotSpot VM is forced to stop
executing a method’s machine code and transfer control back to the interpreter.
Any optimizations performed by the compiler must be undone. This is called
deoptimization [49)].

Deoptimization and garbage collection require the compiler to supply debugging
information, which describes the current program state as seen by the bytecodes,
respectively the interpreter. It specifies where the machine code stores the values
of local variables, which variables contain pointers into the heap, and which
objects are locked.

In the context of escape analysis, the debugging information must also consider
optimized objects. Eliminated objects must be reallocated during deoptimization,
and objects for which synchronization was removed must be relocked. During
garbage collection, pointers in stack objects must be treated as root pointers.

Scalar replacement, stack allocation and synchronization removal thus do not only
affect the compiler, but also require an adaptation of the debugging information,
the garbage collector and the deoptimization framework. This chapter deals with
the modifications that were applied to the Java HotSpot VM in order to allow a
safe execution of optimized methods.

6.1 Debugging Information

The aim of debugging is to provide the programmer with a snapshot of the current
program state at the source code level. Various optimizations in the compiler,
however, complicate the mapping between the machine code and the original
source code. Inlining, for example, combines multiple methods into one piece
of machine code and makes it difficult to identify the currently executed source
method. Besides, the values of local variables may be stored in registers.
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For this reason, the compiler provides additional information about the optimized
code. Although this data is historically called debugging information, it is also
used for the identification of live objects during garbage collection and for de-
optimization. Debugging information is not available for every single machine
instruction, but only for some discrete points in the program at which method
execution can safely be suspended. These points are called safepoints.

The compiler generates debugging information during register allocation, because
before register allocation, the locations of local variables are not known yet, and
afterwards they are no longer available. When the machine code is installed into
the VM, the generated information is serialized and stored with the code in a
compressed form.

6.1.1 Scope Entries

The interpreter stores values on the operand stack or in local variables, but when
the machine code of a method is executed, the values are spread across registers
and spill slots. To allow source-level debugging, the JVM must know the exact
locations of all values.

In the debugging information, each value is represented by a scope entry, i.e. an
instance of one of the classes shown in Figure 6.1. A LocationEntry describes
which register or spill slot contains the value. If the value is known at compile
time, a ConstantIntEntry or ConstantOopEntry directly stores the value. An
object eliminated by scalar replacement is represented by an ObjectEntry. No
entries are created for dead values.

| ScopeEntry |
LocationEntry ObjectEntry ConstantintEntry ConstantOopEntry
Location location Klass klass int value oop value
ScopeEntry[] fields

Figure 6.1: Class hierarchy for scope entries

The compiler generates two separate lists of scope entries: one for the operand
stack and one for the local variables. Each scope entry describes one value, and
its position within the list denotes which stack slot or local variable it refers to.
Figure 6.2 presents a piece of source code, the generated machine code, and the
scope entries for a particular safepoint.
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Source code: Machine code: Scope entries:
static int foo(int n) { I/ parameter n at ebp+8
intx=3;
inty=n+x; mov esi, [ebp+8]
add esi, 3 n X y z
intz=y *bar(); I/ safepoint for method call local variables: | [ebp+8] | 3 | esi | - |
y
operand stack: esi

Figure 6.2: Example for scope entries

The lists of scope entries for the operand stack and the local variables are packed
into a scope descriptor, which represents a single method invocation. Within
an inlined method, the callee’s values and the caller’s values are described by
different scope descriptors. The scope descriptors of inlined methods are linked in
a stack-like manner, i.e. each descriptor stores a pointer to that of the surrounding
method.

The complete debugging information provides a stack of scope descriptors for each
safepoint in the machine code. When deoptimization is required, the descriptor
stack for the current program counter is retrieved. Since the interpreter does
not perform method inlining, each scope descriptor is used to reconstruct one
interpreter frame. The slots of the new frame are initialized according to the
scope entries.

6.1.2 Object Entries

If a non-escaping object is replaced by scalar variables, its allocation is eliminated
and its fields are directly stored in registers or spill slots. During deoptimization,
the object must be reallocated for the interpreter and initialized with the current
field values.

As we saw, the compiler creates scope entries for all local variables. If such
a variable referenced an object that was eliminated by scalar replacement, the
scope entry for this variable is an object entry describing the contents of the
object instead of a reference to the object.

The object entry must specify the type of the eliminated object, because otherwise
the deoptimization framework would not know which class to instantiate. The
consequence is that an object represented by a phi function can only be eliminated
if all operands have the same dynamic type.
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In order to describe the values respectively locations of the object’s fields, the
object entry again holds a list of scope entries. The position of a scope entry
within this list corresponds to the position of the described field within the object.
An example is given in Figure 6.3.

Source code: Machine code: Scope entries:
static int foo(int n) { // parameter n at ebp+8
Tp=newT(); // allocation eliminated
pf=5;
pg=nt3; mov esi, [ebp+8]
add esi, 3 n P
bar(); I/ safepoint for method call local variables: [ebp+8]

9

[ 5 | esi |

Figure 6.3: Example for an object entry

Scalar replacement is not only applied to non-escaping objects, but also to non-
escaping fixed-sized arrays that are exclusively accessed with constant indices (see
Section 4.3). The object entry for an eliminated array is created analogous to
that for an eliminated object. Its list of scope entries describes the locations of
the array elements.

Serialization of debugging information and deoptimization require that the same
non-escaping object in different local variables is represented by the same object
entry. For this reason, each object entry is stored in a cache after creation. If
the compiler is about to describe a local variable that contains a non-escaping
object, the cache is searched for an object entry that represents the same object
and can be reused.

6.1.3 Monitor Entries

The interpreter locks objects in a different way than the machine code, so the
deoptimization framework must know which objects are currently locked. For this
reason, the debugging information provides a list of monitor entries. A monitor
entry encapsulates a scope entry that describes the location of a pointer for the
locked object and the location of the displaced header.

Since objects are unlocked in reverse locking order, the compiler maintains a
stack of locked objects when it translates the bytecodes into the HIR. An object
is pushed onto the stack when it is locked and popped from the stack again when
it is unlocked. During the generation of debugging information, a snapshot of
the current monitor stack is converted to a list of monitor entries.
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When an object is locked, a pointer to the object is saved on the method stack (see
Section 5.2.1). Thus, the stack frame contains pointers to all currently locked
objects. This simplifies the creation of a monitor entry, because the appropriate
stack slot can be described, even if a pointer to the locked object is no longer
present in the local variables.

If synchronization on a thread-local object was eliminated, it must be relocked
during deoptimization, because the interpreter will later try to unlock it again.
The method stack, however, does not contain the object’s address in this case.
Register allocation has to ensure that a pointer to the object is preserved in a
register or in memory until the point where the object would have been unlocked.
Otherwise, the object could not be described in the debugging information.

The corresponding monitor entry specifies the location of the pointer to the
thread-local object. In addition, a flag is set to let the deoptimization frame-
work know that the object must be relocked. In case of a method-local object
whose allocation has been eliminated, the monitor entry encapsulates an object
entry instead of a location entry.

6.1.4 Oop Map

Run-time methods of the Java HotSpot VM refer to objects in the Java heap
via handles. A handle is a data structure that encapsulates a pointer to a Java
object and resides in a special memory area where the garbage collector visits the
object and updates the pointer if the object is moved. Machine code generated
for a Java method, however, refers to objects via direct pointers for efficiency
reasons. To contrast direct pointers with handles, they are called ordinary object
pointers (oop).

In order to mark live objects, the garbage collector needs to know where the ma-
chine code stores pointers to heap objects. Therefore, the debugging information
includes an oop map for each safepoint. It specifies all registers and stack slots
that contain a root pointer.

As long as fields of a stack object can be accessed relative to the base of the
stack frame, the address of the object is not loaded. Therefore, pointers in the
stack object are root pointers and must be considered in the oop map. However,
the oop map contains only one entry for the complete stack object instead of
one per field that holds a pointer. This enables the garbage collector to mark
the object after visiting it, so that the pointer fields are processed only once (see
Section 6.3.2).
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6.1.5 Serialization

After compilation, the generated machine code and meta information must be
registered in the virtual machine. For this purpose, the compiler creates an
nmethod (native method) data structure consisting of

a header that specifies entry points into the machine code and various flags,
relocation information for addresses of classes and methods in the machine
code that must be updated if the referenced objects are moved in memory,
machine code for the method,
debugging information and method dependencies,
an exception handler table, whose elements map a range of the machine
code and an exception type to the entry of an exception handler, and

e an implicit exception table that specifies where execution continues when
a machine instruction dereferences null or divides by zero.

Debugging information is split into three parts. The first part encodes all oop
maps for the method in a compressed form. Each oop map is represented by
a list of integers specifying the locations that contain pointers. Lower numbers
correspond to CPU registers and higher ones to stack slots.

The second part stores scope entries and monitor entries for each safepoint. Due
to inlining, it may be necessary to describe values of different methods. Each
inlined method represents a separate scope. Figure 6.4 shows the data layout for
one safepoint.
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Figure 6.4: Internal representation of debugging information
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The object pool stores object entries for eliminated allocations. Even if there
are multiple scopes due to inlining, the object pool is written only once at the
beginning. Each entry specifies a unique identification number, the type of the
object and a list of scope entries for its fields. Since eliminated objects may
reference each other, the transitive closure must be serialized.

Debugging information for a single scope consists of scope entries for local vari-
ables, scope entries for the operand stack, and monitor entries. If an entry refers
to an eliminated object, the identification number of the appropriate object entry
in the object pool is emitted.

Scopes are serialized sequentially from the outermost to the innermost inlined
method. Each scope points to its description of local variables, the operand stack
and locked objects, as well as to the next outer scope. It stores a reference to
the corresponding method and the BCI of the current instruction in this method.
Except for the innermost scope, all bytecode indices refer to call sites of inlined
methods.

The third part of the debugging information is an array of safepoint descriptors
with one element per safepoint. Each descriptor specifies the offset of the safe-
point in the machine code and points to the object pool and to the innermost
scope. Upon deoptimization, the VM looks up the safepoint descriptor whose
offset matches the current program counter.

6.2 Deoptimization

As discussed at the beginning of this chapter, debugging information is accessed
in various places throughout the virtual machine. This section deals with its use
for deoptimization. We provide an example to motivate deoptimization, describe
the basic framework and explain how it was extended for escape analysis.

6.2.1 Motivation

Although inlining is an important optimization and promotes scalar replacement
of fields (see Section 4.4.3), it has traditionally been very difficult to perform for
dynamic object-oriented languages like Java. It is not sufficient to examine call
sites and inline the methods they invoke, because Java programs can dynamically
load new code into a running program [84].

A method can only be inlined if the compiler identifies the called method statically
despite polymorphism and dynamic method binding. Apart from static and final
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callees, this is possible if class hierarchy analysis [27] finds out that only one
suitable method exists. If, however, a class is loaded later that provides another
suitable method, maybe the wrong implementation was inlined.

If the compiler inlines virtual calls only when the receiver is preexisting, i.e.
allocated before execution of the caller begins, class loading will not invalidate
running code [28]. For general inlining, however, the Java HotSpot VM must
be able to dynamically deoptimize a previously optimized method, even while
executing machine code for it.

Assume that class B was not loaded yet when machine code for the method calc
in our example below is generated. The compiler optimistically assumes that
there is only one implementation of the method foo and inlines A.foo into calc.
If the method create loads class B and returns an instance of it, the inlining
decision turns out to be wrong and the machine code for calc is invalidated.

class A {
void foo(Point p) { ... }
}

class B extends A {
void foo(Point p) { ... }
}

static int calc(int x, int y) {
Point p = new Point(x, y);
A q = create();
q.foo(p);
return p.x * p.y;

}

Even if the method foo cannot be inlined, for example because of its size, it is
statically bound to save the dispatching overhead. When the class B is loaded in
the create method, the machine code of calc is invalidated because it jumps to
the wrong foo method.

6.2.2 Method Dependencies

When a subclass of A is loaded which overrides foo, the VM must deoptimize
the method calc. In other words, a dependency is introduced between calc and
A.foo. It is recorded during the compilation of calc and stored both in the
nmethod for calc and the class descriptor for A.
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Assume that A.foo is not inlined, but statically bound based on class hierarchy
analysis. The compiler uses interprocedural escape information to find out that
the parameter p does not escape and can be allocated on the stack frame of calc.
When class B is loaded, calc must be deoptimized not only because A.foo was
statically bound, but also because the Point object may escape in B.foo.

However, it is not sufficient to record a dependency between calc and foo. As-
sume that the parameter p does not escape A.foo just because the compiler
inlines the virtual method bar in foo. When another class is loaded that over-
rides bar, the method foo is deoptimized due to its dependency on bar. The
machine code for calc must be invalidated as well, because p may escape in the
newly loaded bar method.

If calc depended only on foo, it would not be deoptimized because method
dependencies are not processed transitively. In other words, the compiler must
record a dependency between two methods m and m’ if

e m inlines m’ or calls it with static binding, as well as if
e a direct or indirect callee of m inlines m’ or calls it with static binding, and
m passes at least one stack-allocated object to this callee.

Every native method stores a list of its dependencies. So when the compiler parses
the method call of foo in calc and uses interprocedural escape information of
foo to allocate some parameters on the stack, it not only records a dependency
between calc and foo, but also inherits all dependencies between foo and its
callees.

6.2.3 Basic Deoptimization Process

Deoptimization may be necessary when a new class is added to the class hierar-
chy. The VM examines the descriptors of the new class and its superclasses and
marks dependent methods for deoptimization. It also iterates over the interfaces
implemented by the new class and looks for methods depending on the fact that
an interface had only one implementor.

Then the VM traverses the stacks of all threads. A frame that belongs to a
marked method is not immediately deoptimized. Instead, the machine instruction
at the program counter for this frame is patched to invoke a run-time stub. The
actual deoptimization takes place when the frame is reactivated after all callees
have returned. This is called lazy deoptimization. The nmethod is marked as
non-entrant, so that the VM interprets new invocations instead of executing the
patched machine code.
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Upon deoptimization, all live registers are saved in a register map. Then the
deoptimization framework creates an array of virtual stack frames, one for the
method to be deoptimized and one for each inlined callee. A virtual frame does
not exist on the stack, but stores the local variables, operand stack and monitors
of a particular method. Debugging information is used to fill the virtual frame
with the correct values from the register map and the memory.

In the next phase of deoptimization, the method stack is adjusted as shown in
Figure 6.5. The frames of the run-time stub and the method to be deoptimized
are removed and the virtual frames are unpacked onto the stack. Finally, a frame
for the continuation of the run-time stub is pushed back onto the stack.

caller frame caller frame

interpreter frame for

frame of j deoptimized method
method to be deoptimized interpreter frame for
inlined method
frame of run-time stub frame of run-time stub

Figure 6.5: Adjustment of the stack during deoptimization

During unpacking of a virtual frame, the BCI is retrieved from the corresponding
scope descriptor in the debugging information. It identifies the bytecode in the
method that has to be executed next. The address of the interpreter code that
handles the bytecode is pushed onto the stack as the return address. When the
run-time stub returns, execution automatically continues in the interpreter.

6.2.4 Reallocation and Relocking

Due to escape analysis, deoptimization has to deal with objects eliminated by
scalar replacement and objects for which synchronization was removed. The
appropriate extension of the debugging information was discussed in Section 6.1.
Based on this information, objects are reallocated and relocked before the virtual
frames are created.

The reallocation code iterates over all object entries in the object pool. For each
object entry, a new instance is allocated on the heap according to the specified
type. A handle is created and stored in the object entry. If garbage collection
is needed in the middle of reallocation, pointers in handles are treated as root
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pointers. Newly allocated objects are kept alive and pointers are updated if the
objects move due to garbage collection.

Then the fields are initialized. A reallocated object may be referenced by multiple
fields of other reallocated objects. Deserialization of debugging information takes
care that fields referring to the same eliminated object are mapped to identical
object entries. The pointer is retrieved from the handle in the object entry and
stored in the heap objects.

Finally, all objects for which synchronization was eliminated are relocked. The
representations of locked objects differ between interpreted and compiled code.
We lock the objects as though the compiled code performed the locking and rely
on the existing deoptimization code to convert the locks into the interpreter’s rep-
resentation. Debugging information also considers the level of synchronization,
which allows the deoptimization framework to restore recursive locking.

When the virtual frames are filled with values, pointers are copied from object
entries into local variables and the operand stack. Afterwards, the handles for
reallocated objects that were stored in the object entries are released. Henceforth
the garbage collector must not run until deoptimization has finished, because it
does not examine the virtual frames and would free the newly allocated objects
again.

6.2.5 Deoptimization of Stack Objects

Escape analysis uses interprocedural escape information to decide if actual para-
meters can be allocated in the stack frame of the caller. If the callee is not a static
or final method but was identified as the only possible callee via class hierarchy
analysis, a method dependency between the caller and the callee is recorded. The
stack objects must be moved to the heap if

e the allocating method is deoptimized, because the interpreter frame created
by deoptimization cannot contain stack objects, or if

e a new version of a direct or indirect callee is dynamically loaded, because
the new version may let the objects escape.

A caller m that relies on interprocedural escape information of a callee m’ inherits
all dependencies of m/. Therefore, m is marked for deoptimization even if dynamic
class loading overrides a callee of m’. Eliminated objects are reallocated when
the frame of m is deoptimized after all callees have returned, but this is too late
for stack objects.



6.3 Garbage Collection 83

Assume that a stack-allocated parameter escapes in the newly loaded callee via
an assignment to a static field. Before the allocating frame is deoptimized, the
garbage collector may run. It does not expect a static field to reference a stack
object, so the object must immediately be moved to the heap. Besides, it would
be difficult to retroactively adjust the static field to point to the heap object
later.

Stack objects are moved to the heap as soon as all methods have been marked
for deoptimization. When a heap object is allocated, a forwarding pointer to it is
installed into the corresponding stack object. Objects for which synchronization
was eliminated are relocked. Afterwards, the VM iterates over all stack frames
and replaces pointers to deoptimized objects with their forwarding pointers (see
Figure 6.6). This also affects interpreter frames because bytecode analysis allows
stack objects to be passed to methods that have not been compiled yet.

frame of caller .
stack object - -
forwarding pointer

! ! ! ! heap object

frame to be deoptimized { -+ ;

A\ 4
A

stack object

Y

heap object

forwarding pointer J

frame of callee { —_

Figure 6.6: Deoptimization of stack objects

When the run-time stub deoptimizes a frame, all its stack objects have already
been deoptimized and specify a forwarding pointer. Debugging information is
used to fill the virtual frame with values. If a scope entry refers to a stack object,
the object’s forwarding pointer is stored in the virtual frame. The unpacked
frame contains only heap pointers.

6.3 (Garbage Collection

Although stack objects are implicitly deallocated when the stack frame is removed
at the end of a method, the garbage collector cannot ignore them. Their fields
may reference heap objects that need to be visited and marked as alive. However,
stack objects must not move in memory, whereas heap objects may move due to
heap compaction.
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The Java HotSpot VM implements different garbage collection strategies that
can be selected on the command line. By default, a generational, non-parallel
garbage collector is used [54]. The heap is split into a young, an old, and a
permanent generation.

The young generation consists of three spaces: eden, from-space and to-space.
New objects are allocated in the eden. If it fills up, the young generation is
collected by a stop-and-copy algorithm. The garbage collector first iterates over
all root pointers and evacuates referenced objects of the eden and the from-space
into the to-space. Then it scans the objects in the to-space and copies referenced,
but not yet visited objects. Finally, the roles of the from-space and the to-space
are swapped.

After a certain number of collection cycles, long-lived objects are moved to the old
generation. The permanent generation stores internal data structures of the VM.
These two generations are collected by a mark-and-compact algorithm, which
requires four phases:

1. Live objects are marked by recursively traversing all reachable objects start-
ing from the set of root pointers.

2. For each marked object, the garbage collector computes a new address. It
walks linearly through the space and annotates live objects with a forward-
ing pointer to their new location.

3. All references are updated to point to the new addresses specified by the
forwarding pointers.

4. The final phase walks the space linearly, moves objects to their new loca-
tions and clears the mark bits.

The garbage collector implements an operation to be performed for all objects as
a so-called oop closure following the Visitor design pattern [36]. Starting with
the root pointers, an oop closure is recursively applied to all reachable oops. Oop
closures are used for the stop-and-copy collection, as well as in phases 1 and 3 of
the mark-and-compact algorithm.

6.3.1 Wrapper Closure

Due to escape analysis, root pointers may reference stack objects. Stack objects
need to be traversed but must not be copied to a new memory location. Therefore,
the iteration of root pointers was modified to use a wrapper which abstracts from
stack objects and presents their object fields as root pointers to the underlying
closure (see Listing 6.1).
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void do_oop(oop obj) {

if (is_in_heap(obj)) {
wrapped_closure.do_oop(obj);

} else if ('obj.has_been_scanned()) {
obj.set_has_been_scanned() ;
obj.iterate_oop_fields(this);

}

}

Listing 6.1: Wrapper closure that deals with stack objects

The heap is a continuous area in memory, so the is_in_heap test can be imple-
mented as a comparison of the object address against the start and the end of the
heap. If the test succeeds, the wrapped closure is invoked on the oop. Otherwise,
the wrapper is applied to the oop fields of the stack object, which may again
point to stack objects.

A stack object can directly or indirectly reference itself, so the garbage collector
must remember which stack objects have already been scanned. We could set
the mark bit to identify scanned objects, but this would require an extra pass to
reset them.

Instead, we use two bits in the header word of stack objects to encode three
values. The bits are initialized with 0, which means that the object was not yet
scanned. At the beginning of every iteration over the root pointers, we toggle a
global value between 1 and 2. The has_been_scanned test compares the header
field with the global value for equality, and set_has_been_scanned copies the
global value into the header of the stack object.

6.3.2 Root Pointers for Stack Objects

The garbage collector also influences how stack objects are represented in the
debugging information. When a variable refers to a stack object directly and not
through a phi function, the fields can be accessed relative to the base of the stack
frame (see Section 5.1.3). It is not necessary that a pointer to the object exists.

In order to prevent heap objects referenced by stack objects from being deallo-
cated, we could register the reference fields of stack objects as root pointers in
the oop map. However, this would cause problems when the location of such a
field is not statically known. Consider the following example:
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p = new TQO; // object 1
if (... o

q=7p;
} else {

q = new T(); // object 2
}

Since the variable q may point to one of two different stack locations, a phi
function is created. When the condition of the if-branch is true, the address of
object 1 is loaded into a register to resolve the phi function. The garbage collector
regards this register as a root pointer and consequently visits all reference fields
of object 1.

The variable p unambiguously refers to object 1 all the time. If its fields were
registered in the oop map, the garbage collector would visit them a second time
without checking whether the object was already marked as visited. This is not
allowed. The mark-and-compact algorithm updates all pointers before the objects
are actually moved to their new locations. Thus, after the first visit, a field does
not point to an object any more. When the stop-and-copy algorithm visits a field
twice, it duplicates the referenced object in the to-space.

Therefore, we create a special entry in the oop map to describe the stack object
as a whole instead of its individual fields. When the garbage collector reads the
oop map and encounters such an entry, it creates a temporary root pointer and
marks the stack object as scanned before it visits the reference fields. Even if
there is another root pointer to the same object, the fields will not be processed
a second time.
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This chapter evaluates our optimizations using a variety of benchmarks and ap-
plications. It considers quality and performance of the generated machine code
as well as the impact of escape analysis on the compilation speed. Besides, we
try to explain why a speedup is achieved and how certain design decisions affect
the gain of escape analysis.

All tests were executed with Sun Microsystems’ Java HotSpot client VM of the
JDK 5.0 with our research compiler. Consequently, also the run-time libraries of
the JDK 5.0 were used. The test machine was powered by an Intel Pentium 4
processor 540 with 3.2 GHz and 1 GB of main memory. The operating system
was Microsoft Windows XP Professional (SP2).

7.1 CompileTheWorld

CompileTheWorld (CTW) is a compiler stress test directly integrated into the
Java HotSpot VM. It can be activated via a VM flag and sequentially compiles
all classes from the run-time libraries. No machine code is executed. The test
is used to verify that the compiler does not crash and to measure compilation
speed.

In the JDK 5.0, the workload for the compiler consists of 106,904 methods in
13,646 classes. Without escape analysis, 9.53 MB of bytecodes are compiled in
66.3 seconds, which results in an average compilation speed of 150,701 bytes/s.
The generated machine code has a size of 52.55 MB.

Escape analysis identifies 1,331 of 114,584 object allocation sites as method-
local. Table 7.1 shows which types of objects are eliminated most frequently.
It reveals that instances of wrapper classes and some AW'T classes can often be
replaced by scalar variables. Vector$1 is the anonymous class of enumeration
objects returned by Vector.elements. Since the generated machine code is never
executed, no information is available on how many object allocations are saved
at run time.
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class sites
java.awt.Dimension 147
java.lang.StringBuilder 146
java.util.Vector$1 121
java.util AbstractList$ltr 107
com.sun.org.apache.bcel.internal.generic.PUSH 94
java.awt.Rectangle 7
java.awt.Point 67
java.lang.Integer 61
java.lang.Long 50
java.lang.StringBuffer 49
java.lang.Double 46
java.util. HashSet 31
sun.security.jca. GetInstance$Instance 29
java.lang.Boolean 24
java.lang.Float 23
other classes <20
total number of eliminated allocation sites 1,331

Table 7.1: Number of eliminated allocation sites per class

11,249 sites allocate objects on the stack. 9,058 of them create a StringBuilder
object and 707 a StringBuffer object. Moreover, 4,339 synchronization sites
can be removed, and 3,718 of them synchronize an instance of StringBuffer.

The numbers mentioned so far do not include array allocation sites. 120 of
56,825 array allocation sites are eliminated and 430 allocate an array on the
stack. In both cases, the arrays must have a constant length, which is 4.56 on
average. Table 7.2 summarizes the results of escape analysis.

sites
object allocations eliminated 1,331 ( 1.16%)
object allocations on the stack 11,249 ( 9.82%)
object allocations on the heap 102,004 (89.02%)
array allocations eliminated 120 ( 0.21%)
array allocations on the stack 430 ( 0.76%)
array allocations on the heap 56,275 (99.03%)
synchronizations removed 4,339 (18.13%)
synchronizations retained 16,755 (70.03%)
synchronized methods 2,832 (11.84%)

Table 7.2: Static escape analysis results for CTW

In addition to 420,383 inlined methods, the compiler inlines another 19,947 meth-
ods whose size exceeds the maximum inline size. It does so, because it expects
to increase the number of method-local allocation sites. 14,906 of the 440,330
inlined methods were synchronized.

The more aggressive inlining increases the workload from 9.53 MB to 10.78 MB
of bytecodes. They are compiled to 56.48 MB of machine code in 86.3 seconds.
In comparison to CTW without escape analysis, the compilation speed drops by
13.06% to 131,025 bytes/s.
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Normally, callees of a method are likely to be compiled before the method because
they are executed more frequently. This is not true for CTW. Methods are
compiled in an arbitrary order, so precise interprocedural information for callees
is often not available yet. The following benchmarks execute programs under
realistic conditions and thus provide more meaningful statistics.

7.2 SPECjvm98

In assessing the performance of Java runtime environments, the SPECjvm98
benchmark suite [82] has become quite popular. It does not only provide infor-
mation on the speed and quality of the just-in-time compiler, but rather measures
the overall performance of a JVM including input and output, class loading and
garbage collection. It is commonly used to compare virtual machines in differ-
ent versions or by different vendors, as well as to evaluate the impact of new
optimizations.

SPECjvm98 consists of seven benchmark programs with real-life relevance, which
cover a broad range of scenarios and vary in their characteristics and system
requirements. Each of the seven programs is executed several times and measured
for the slowest and the fastest run:

e The slowest run is typically the first run of a program, because classes
must be loaded and methods are either still interpreted or are just getting
compiled. All in all, the slowest run is an indication of the startup speed of
a virtual machine.

e The fastest run is usually the last run of a program, when most methods
have already been compiled and the speed of the program does not signif-
icantly improve anymore. Most of the run time is spent in machine code.
The fastest run thus indicates the quality of the machine code generated by
the JIT compiler.

Execution of a program is repeated until no major change in run time is encoun-
tered. For the slowest and the fastest run, a score is computed as a ratio of
the measured time and a reference time. The higher the score, the better is the
performance of the JVM under examination.

SPEC defines very strict rules for how to run the benchmark in order to obtain
official scores. The rules were marginally violated by the configuration used in
this chapter, e.g. because the benchmark was not run from a web server but as a
stand-alone application. Although the absolute numbers must not be compared
with other SPECjvm98 metrics, the relative numbers of this chapter provide a
meaningful evaluation of escape analysis and related optimizations.
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The following sections consider some programs individually and examine how
they benefit from our optimizations. The closing section summarizes the results
and presents the overall performance of SPECjvm98 with and without escape
analysis.

7.2.1 mtrt

The mtrt benchmark is the only multi-threaded program in the SPECjvm98 suite.
It implements a ray tracing algorithm for two threads that render a 3D scene de-
picting a dinosaur on a 2D canvas by tracing light rays. Each thread is responsible
for a certain area of the canvas.

The ray tracing algorithm performs a lot of floating-point computations and al-
locates short-lived objects for intermediate points and vectors. Therefore, the
benchmark significantly benefits from good inlining decisions and scalar replace-
ment of fields. The method OctNode.Intersect, for example, has roughly the
following structure:

OctNode Intersect(Ray ray, Point intersect, ...) {
Vector delta = new Vector(0.0f, 0.0f, 0.0f);
int[] facehits = {-1, -1, -1};

// set coordinates of vector delta
// and update elements of facehits

intersect.Add(delta);

¥

It allocates a three-dimensional vector delta and sets the coordinates via the
accessor methods SetX, SetY and SetZ. Finally, the vector is added to the point
intersect that is passed as a parameter. The constructor, the accessor methods
and the method Add are inlined, so that the delta object does not escape the
method above. Its allocation is eliminated and its fields are replaced by local
floating-point variables. The allocation of facehits can be eliminated as well,
because the array has a fixed length of 3 and is accessed with constant indices
only.

OctNode.Intersect is called 1,020,854 times in a single run of the benchmark,
but the first 1,500 invocations are executed in the interpreter. Scalar replace-
ment eliminates 1,019,354 objects and the same number of arrays, which saves
a total of 46.66 MB on the heap. The two methods PolyTypeObj.Intersect
and TriangleObj.Check also contain an eliminable vector allocation each, which
saves 2,736,890 objects or 62.64 MB from being allocated on the heap.
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Scene.ReadPoly offers another opportunity for scalar replacement. It contains
the following lines of Java code:

String temp = infile.readLine();
. = Float.valueOf (temp) .floatValue();

The method Float.valueOf parses the specified string and converts it into a
floating-point number. It returns a Float object that is used only to retrieve
the actual value. After inlining value0f and floatValue, the allocation of the
Float object is eliminated. The method is called only 6 times but contains
a long-running loop. It is OSR compiled during the first invocation and fully
compiled at the next one. Scalar replacement eliminates a total of 12,740 object
allocations.

Scene.Shade creates an instance of IntersectPt and invokes FindNearestIsect
on it. FindNearestIsect does not let the object escape, but it has a size of
330 bytes and is thus too large to be inlined. The object cannot be replaced by
scalars, but it remains stack-allocatable. Scene.Shade is called 62,417 times, of
which 1,500 invocations are interpreted, so 60,917 objects are allocated on the
stack.

Table 7.3 shows the complete statistical data for an individual run of the mtrt
benchmark. Static numbers refer to sites in the machine code, whereas dynamic
numbers indicate how often these sites are executed.

static numbers dynamic numbers
object allocations eliminated 13 ( 6.47%) 3,784,525 (72.09%)
object allocations on the stack 8 ( 3.98%) 150,942 ( 2.87%)
object allocations on the heap 180 (89.55%) 1,314,370 (25.04%)
array allocations eliminated 1 (10.00%) 1,019,354 (77.62%)
array allocations on the stack 2 (20.00%) 2,417 ( 0.18%)
array allocations on the heap 7 (70.00%) 291,569 (22.20%)

Table 7.3: Statistics for one run of the mtrt benchmark

In order to prevent objects from escaping, the compiler decides to inline 53 meth-
ods whose size exceeds the usual threshold. 13 allocation sites of Vector, Point
and Float objects and 1 array allocation can be eliminated. This saves 4.8 million
allocations or 110 MB of memory at run time. 150,942 objects and 2,417 arrays
with a total size of 3.97 MB are allocated on the stack.

When the benchmark is compiled without escape analysis, the fastest run requires
1.094 seconds. With escape analysis and scalar replacement enabled, this time is
reduced by 32.1% to 0.828 seconds. When the server compiler is used, the fastest
run takes 1.062 seconds.
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7.2.2 db

The db benchmark performs multiple operations on a memory-resident database.
Each record consists of a name, an address and a phone number. The benchmark
reads a set of records from a file into memory and then adds, deletes, searches
and sorts addresses. The results are printed on the console.

A database record is represented by an instance of the class Entry, which stores
a list of strings. The method Entry.equals checks if the receiver and the entry
parameter are equal. For this purpose, it performs a pairwise comparison of the
corresponding string items:

Enumeration el = items.elements();
Enumeration e2 = entry.items.elements();
while (el.hasMoreElements()) {

0l = el.nextElement();

02 = e2.nextElement();

// compare ol and o2

}

An analysis of the bytecodes (see Section 4.4.4) reveals that the local variables
el and e2 are not modified within the loop. Therefore, no phi functions hiding
the exact type of the objects are created at the loop header. All methods invoked
on el and e2 can be bound statically.

The method nextElement is called frequently and thus gets compiled before
Entry.equals. Its interprocedural escape information states that the receiver
does not escape. Therefore, nextElement is inlined although its size of 63 bytes
exceeds the usual threshold.

Both elements and hasMoreElements are small enough to be inlined by de-
fault. The enumeration objects do not escape the method and can be replaced
by scalars. Since Entry.equals is called 1,451,782 times, escape analysis elimi-
nates the allocation of nearly 3 million objects with a total size of 44.29 MB.

7.2.3 jack

Jack is a Java parser generator based on the Purdue Compiler Construction Tool
Set (PCCTS). It takes a set of combined grammatical and lexing rules in form
of a text file and produces a Java class that parses an input file according to the
grammar. The product name Jack was later changed to JavaCC [65].



7.2 SPECjvm98 93

The workload for the jack benchmark consists of a file that contains instructions
for the generation of Jack. This file is repeatedly fed to Jack, so that the parser
generates itself 16 times and produces an output of 1.56 MB.

Similar to the example discussed in the previous chapter, escape analysis elim-
inates 15 sites that create an enumeration object, e.g. for the iteration of BNF
productions. This saves a total of 6,399 object allocations.

Apart from that, the benchmark mostly benefits from stack allocation of string
buffers. Based on the input grammar, Jack creates a parser by assembling small
snippets of Java code. 82 sites allocate a string buffer, 49 of them on the stack.
The compiler inlines the append method and removes synchronization. This
produces 340,894 stack objects at run time and eliminates 1,031,843 locks.

Table 7.4 provides the statistical data for the jack benchmark. The compiler
inlines 395 synchronized and 110 large methods. 102,384 bytes of objects are
replaced by scalars, and 5.22 MB are allocated on the stack. No arrays are
optimized.

static numbers dynamic numbers
object allocations eliminated 15 ( 3.1%) 6,399 ( 0.20%)
object allocations on the stack 54 (11.18%) 342,023 (10.92%)
object allocations on the heap 414 (85.71%) 2,784,568 (88.88%)
synchronizations removed 185 (42.92%) 1,031,843 ( 6.66%)
synchronizations retained 233 (54.06%) 6,976,473 (45.02%)
synchronized methods 13 ( 3.02%) 7,486,681 (48.32%)

Table 7.4: Statistics for one run of the jack benchmark

A detailed inspection of the benchmark demonstrates how the implementation
of the Java system classes influences the impact of escape analysis. The method
RunTimeNfaState.Move looks up a character c in the hash table charMoves:

... = (RunTimeNfaState) charMoves.get(String.valueOf(c));

The get method expects the key to be an object, so the character is converted
into a string via String.valueOf. This method is implemented as shown below.
It creates a new string from a character array with ¢ as the only element. Both
the value0f method and the String constructor can be inlined, so that the string
object and the fixed-sized array do not escape so far.

public static String valueOf (char c) {
char datal[] = {c};
return new String(0, 1, data);

¥
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Hashtable.get compares the newly created string with the keys of all entries e
in the hash table. Since the compiler does not know the dynamic type of e.key,
it fails to bind the equals method statically and consequently treats the key
parameter as escaping globally.

if ((e.hash == hash) && e.key.equals(key)) {
return e.value;

¥

In contrast to e.key, the dynamic type of key is known to be String. When
we rewrite the second part of the above condition to key.equals(e.key) and
adjust the maximum inline size, the compiler inlines String.equals. Although
key cannot be replaced by scalars because it is compared with e.key for identity,
it can be allocated on the stack.

The small modification of Hashtable.get would increase the numbers of stack-
allocated objects and arrays in the jack benchmark by 1.34 million each. However,
it might break existing classes with an asymmetric implementation of the equals
method.

7.2.4 Overall Performance

The SPECjvm98 suite provides several optimization opportunities for escape
analysis. As the benchmark programs have different characteristics, they either
benefit more from scalar replacement of fields, stack allocation or synchronization
removal.

Table 7.5 summarizes the results of escape analysis for the complete SPECjvm98
suite. Note that in contrast to the time measurements below, these numbers
were counted by executing the benchmarks only once and not until stability in
run time is reached.

static numbers dynamic numbers
object allocations eliminated 45 ( 2.77%) 6,744,517 (32.87%)
object allocations on the stack 146 ( 8.98%) 855,193 ( 4.17%)
object allocations on the heap 1435 (88.25%) 12,917,314 (62.96%)
array allocations eliminated 3 (0.72%) 1,019,487 (11.13%)
array allocations on the stack 3 (1 0.72%) 628,031 ( 6.85%)
array allocations on the heap 413 (98.56%) 7,515,276 (82.02%)
synchronizations removed 432 (46.75%) 2,002,726 ( 2.16%)
synchronizations retained 454 (49.14%) 18,989,868 (20.49%)
synchronized methods 38 ( 4.11%) 71,674,222 (77.35%)

Table 7.5: Statistics for the complete SPECjvm98 suite
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Scalar replacement eliminates the allocation of 6.7 million objects with a total
size of 155 MB. 855,193 objects or 25.22 MB are allocated on the stack. The
compiler inlines 373 methods whose size exceeds the usual threshold. 844 of the
8,447 inlined methods were synchronized.

Table 7.6 presents the elapsed times for the benchmarks when they are compiled
by the client compiler with escape analysis disabled or enabled, or by the server
compiler, which does not use escape analysis. The ratio represents the speedup
achieved by escape analysis.

without EA with EA ratio server compiler

slowest fastest| slowest fastest | slowest fastest| slowest fastest
mirt 1.391 1.094 1.187 0.828 1172 1.321 2.000 1.062
jess 1.922 1.656 1.938 1.656 0.992 1.000 2421 1.485
compress 6.000 5.922 6.000 5.922 1.000 1.000 5.641 5.516
db 11.922 11.766 11.813 11.672 1.009 1.008 11.422 10.906
mpegaudio 2.984 2.703 2.984 2.703 1.000 1.000 3.656 2.250
jack 3.266 2.969 3.219 2.875 1.015 1.033 7.625 2.828
javac 5.657 4.500 5.562 4.360 1.017 1.032 12.641 3.969
Mean 3.756 3.332 3.655 3.169 1.028 1.051 5.250 3.039

Table 7.6: Elapsed times for SPECjvm98 benchmarks (in seconds)

The bar chart in Figure 7.1 illustrates the scores that were computed for the
elapsed times above. Light bars refer to slowest runs and dark bars to fastest
runs. Higher means better.

600 — M client compiler without EA
550 + M client compiler with EA
500 + W server compiler
450 +
400 + I [T
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300 +
250 +
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mirt jess compress db mpegaudio  jack javac Mean

Figure 7.1: Comparison of SPECjvm98 scores

The mtrt benchmark shows the highest performance gain. It uses a lot of short-
lived data structures, such as points and vectors, whose allocation can be elim-
inated by scalar replacement. We do not only achieve a speedup of 32.1% com-
pared to the client compiler without escape analysis, but even outperform the
server compiler both in the slowest and the fastest run.
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The jack benchmark primarily benefits from stack allocation of string buffers and
synchronization removal. Although more than 1 million object locks are removed
per run, the speedup of 3.3% is smaller than the one achieved for mtrt, because
the string buffers cannot be eliminated by scalar replacement.

Escape analysis also improves the performance of javac. The server compiler
still achieves a higher score for the fastest run, but also a lower score for the
slowest run. Escape analysis reduces the gap between client compiler and server
compiler, at a higher compilation speed.

For compress and mpegaudio, fast memory allocation is not as crucial as for the
other benchmarks. They create an insignificant number of objects and arrays
and thus do not provide any optimization opportunities for scalar replacement
or stack allocation. As far as the db benchmark is concerned, all three compilers
yield similar scores.

Although the compilation speed for SPECjvm98 decreases from 214,714 bytes/s
by 11.9% to 189,160 bytes/s when escape analysis is enabled, the optimizations
yield an average speedup of 2.8% for the slowest runs and 5.1% for the fastest
runs. This shows that the additional optimizations outweigh the increase in com-
pilation time. For comparison, the speed of the server compiler for SPECjvm98
is 22,332 bytes/s.

7.3 SciMark 2.0

SciMark 2.0 [75] was developed by Roldan Pozo and Bruce Miller at the National
Institute of Standards and Technology (NIST). The goal was to better understand
the JVM and JIT behavior of various Java platforms. Similar to the Java Linpack
benchmark, it measures the performance of numerical computations occurring in
scientific and engineering applications.

SciMark is a composite benchmark. It consists of five kernels that deal with fast
Fourier transform, Jacobi successive over-relaxation, Monte Carlo integration,
sparse matrix multiplication and LU matrix factorization. Each kernel reports
an individual score in approximate Mflops (millions of floating-point operations
per second).

The five kernels primarily evaluate the performance of floating-point computa-
tions and allocate none or few objects. Only the Monte Carlo integration provides
an opportunity for escape analysis and scalar replacement of fields. It estimates
the value of m by approximating the area of a circle. The core method of this
benchmark is MonteCarlo.integrate:
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static double integrate(int Num_samples) {
Random R = new Random(SEED) ;
int under_curve = 0;
for (int count = 0; count < Num_samples; count++) {
double x = R.nextDouble();
double y = R.nextDouble();
if x*xx+y*xy<=1){
under_curve++;
+
+
return ((double) under_curve / Num_samples) * 4.0;

3

It contains a loop which selects arbitrary points in the unit square and counts
how many of them are within a radius of 1 or less. Each iteration generates two
random numbers for the coordinates. The call tree looks as follows:

double MonteCarlo.integrate (66 bytes)
Random.<init> (76 bytes)
void Random.initialize (125 bytes)
synchronized double Random.nextDouble (124 bytes)
synchronized double Random.nextDouble (124 bytes)

By default, the maximum inline size is 35 bytes. The constructor of Random
has a size of 76 bytes and is thus too large to be inlined. An analysis of its
bytecodes, which recursively examines Random.initialize, produces interpro-
cedural escape information. No bytecode analysis is required for the method
Random.nextDouble because it is compiled before MonteCarlo.integrate. The
compiler reveals that the Random object does not escape and can be allocated on
the stack.

MonteCarlo.integrate calls the constructor of Random, which in turn calls the
method initialize. Since the maximum inline size is cut by 10% with every
level, the original threshold must be at least 125 / 0.9 ~ 139 bytes to force all
methods to be inlined. Then the allocation of the Random object is eliminated
and synchronization is removed from nextDouble.

In the method initialize, an array with the constant length 17 is created and
assigned to a field of the Random object. The array cannot be eliminated because
it is not accessed with constant indices only, but it can be allocated on the stack.
Due to the elimination of the Random object, the array is used directly instead of
being loaded from a field. The compiler can generate array bounds checks which
compare the index with the constant 17 instead of retrieving the array length
from the array header.
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The benchmark repeatedly calls MonteCarlo.integrate and doubles the para-
meter Num_samples every time, until at least 2 seconds are spent in one invoca-
tion. Provided that the maximum inline size is chosen large enough, the method
is called 26 times if escape analysis is disabled, and 27 times if it is enabled. The
first 11 invocations are interpreted, then the method is compiled due to the large
amount of taken backward branches. Scalar replacement eliminates the allocation
of 16 objects with a total size of 320 bytes. Besides, 268,431,360 object locks are
saved, because the body of nextDouble is executed that often in machine code.

Only the final method invocation decides on the overall score, which is computed
from the number of iterations and the elapsed time. Without escape analysis,
33,554,432 iterations are executed in 2.00 seconds, which results in a score of
67.11 Mflops. With escape analysis, a score of 88.10 Mflops is reported after
twice as many iterations have been executed in 3.05 seconds.
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Lifetime analysis of dynamically allocated objects has traditionally been used
for compile-time storage management. Over the years, a lot of algorithms with
different characteristics and goals evolved. Although escape analysis focused
on functional languages in the beginning, it revived with the spread of Java
programs. We give an overview of various approaches to escape analysis, similar
optimizations and other related work.

8.1 Overview

This section starts with a short outline of the historical background and the
first algorithms associated with escape analysis, before it puts escape analysis in
relation with pointer analysis. Finally, it deals with the most popular implemen-
tations of escape analysis for Java programs.

8.1.1 History of Escape Analysis

Cristina Ruggieri and Thomas P. Murtagh developed an interprocedural analysis
that aimed at determining the lifetime of all objects created by a certain expres-
sion [79]. Influenced by the concept of a generational heap, they partition the
heap into sub-heaps, each of which stores the objects whose lifetime is guaranteed
to be contained in the lifetime of a particular procedure. When the procedure
terminates, the space occupied by the objects in the corresponding sub-heap can
immediately be reclaimed.

Young Gil Park and Benjamin Goldberg introduced the term escape analysis for
determining which parts of a list do not escape a function call in a higher-order
functional program [72]. The results are used for stack allocation and in-place
reuse, an optimization that reuses heap space of dead objects without invoking
the garbage collector. If none of these two optimizations is applicable, objects
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are grouped into a contiguous block of memory that can be reclaimed at once.
This allows the deallocation of larger memory segments and reduces run-time
overhead by avoiding the traversal of individual objects.

Mads Tofte and Jean-Pierre Talpin proposed a store which consists of a stack of
regions [86]. Their optimization determines the lexically scoped lifetime for all
run-time values in a functional language, including function closures, and puts
them into regions. Region inference and effect inference are used to reveal where
regions can be allocated and deallocated. The analysis can both distinguish the
lifetimes of different invocations of the same function and handle recursive data

types.

Alain Deutsch examined and improved the complexity of escape analysis [30]. For
first-order programs, which do not store functions in data structures, pass them
as parameters or return them as values, he proposed an almost linear analysis
which computes the same information as the analysis by Park and Goldberg.
A prototype was implemented for ML and integrated in the CSL compiler. He
also showed formally that escape analysis for second-order programs, which allow
first-order functions as parameters, has an exponential time complexity.

8.1.2 Pointer Analysis

Escape analysis and pointer analysis are closely related and overlapping fields of
research. Pointer analysis makes assumptions about the possible run-time values
of a pointer. It determines to which locations a variable may point (points-to
analysis) or whether two pointers refer to the same location (alias analysis).
This information is used both for optimizations and for debugging.

In the past years, several analysis algorithms and compiler optimizations that
rely on points-to information were published. Additionally, points-to analysis
was formalized in the frameworks of iterative data flow analysis, set constraints,
graph reachability, and logic programming [18]. The algorithms differ in the
way they use control flow information, consider the calling context, distinguish
elements of an aggregate, or require a view of the whole program.

Efficient algorithms for pointer analysis give approximate results and probably
report too large points-to sets. Constraints on the precision depend on the ap-
plication of the analysis [45]. Optimizations usually establish an upper bound on
precision, because more precision involves additional cost that does not necessar-
ily pay off. If the analysis is used for error detection and program understanding,
there is a lower bound on precision below which pointer information is useless.
Bjarne Steensgaard developed a widespread algorithm with an almost linear time
complexity [83]. Lars O. Andersen’s analysis [6] is less efficient but more precise.
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Although a great deal of research effort is spent on the analysis of C programs [39],
pointer analysis is equally important for the Java language. All references are
heap-directed, so alias information can help avoid reaccessing the same memory
location. Unfortunately, some Java features, such as dynamic class loading, re-
flection, and native methods, make pointer analyses difficult to develop. Martin
Hirzel et al. examined Andersen’s analysis and showed how it can be enhanced
to analyze the full Java programming language [46].

8.1.3 Escape Analysis for Java

Jong-Deok Choi et al. from the IBM T. J. Watson Research Center created a
framework for escape analysis that can be applied to Java programs both in
a flow-sensitive and a flow-insensitive manner [22]. The analysis is based on
a program abstraction called connection graph, which captures the relationship
between objects and object references (see Section 8.2.1). It allows summarizing
the effects of a method on the escape states of its parameters. The summary
information obtained for a callee is independent of the calling context and can
be used to update the connection graph of each caller. A reachability analysis
on the connection graph reveals if an object is method-local or thread-local. The
analysis was implemented in a static Java compiler to allocate objects on the
stack and remove unnecessary synchronization operations.

Bruno Blanchet extended the Java-to-C compiler turboJ by an escape analysis
written in Java [12]. He also gives a correctness proof. The analysis transforms
Java code into SSA form, builds equations and solves them with an iterative
fixpoint solver. Escaping parts of data structures are represented via integers (see
Section 8.2.3). The results are used for stack allocation and synchronization
removal. Regarding dynamic class loading, the implementation either assumes
that all suitable classes found on the class path may be loaded or it relies on
information provided by the user.

Jeff Bogda and Urs Holzle developed a flow-insensitive whole-program analysis
to remove unnecessary synchronization in Java [13]. An object is regarded as
thread-local if it is reachable only from local variables and fields of other thread-
local objects. Objects reachable via more than one level of field access are not
optimized, which allows the analysis to ignore recursive data structures. At a call
site, the statements within the callee are examined if they have not been analyzed
yet. In case of a recursive call, the entire process iterates until no change occurs.
Each optimizable allocation site is finally transformed to create instances of a
new class, which extends the original class and overrides synchronized methods
with unsynchronized copies.
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The optimization by Erik Ruf from Microsoft Research even eliminates synchro-
nization on objects that are reachable from static fields, but accessed only from a
single thread [78]. It relies on an equivalence-based representation similar to our
equi-escape sets, in which potentially aliased values are forced to share common
representative nodes. This eliminates the need for fixpoint operations during the
analysis. The optimization is applied to statically compiled programs and was
implemented in the Marmot native compilation system for Java which does not
support dynamic class loading.

David Gay and Bjarne Steensgaard implemented another escape analysis algo-
rithm for Marmot [38]. The analysis computes two properties for each local
variable. The first one specifies if the variable holds a reference that escapes
due to an assignment or a throw statement, and the second one if the reference
escapes by being returned from the method. Each statement of a program may
impose constraints on these properties that must be solved. References are not
tracked through fields, so any reference assigned to a field is assumed to possibly
escape from the method in which the assignment occurs. Non-escaping objects
are eliminated or allocated on the stack. However, no attempt is made to allocate
arrays on the stack.

Jeff Bogda and Ambuj Singh adapted Ruf’s escape analysis to operate incremen-
tally and on-the-fly [14]. The analysis is able to work with an incomplete call
graph and to modify previous results as the call graph expands. The authors
evaluated three strategies of when to initiate the analysis, and whether to make
optimistic or pessimistic assumptions for optimization. The first approach per-
forms an interprocedural analysis as soon as the program starts to run, whereas
the second one delays the analysis until the run-time system has seen a portion of
the program’s execution. The third approach reuses analysis results from previ-
ous executions in order to avoid the repeated analysis of a method binding. The
measurements suggest to reuse analysis results and to delay the initial analysis
until the end of the first execution.

Jonathan Aldrich et al. compared static whole-program analyses that detect and
remove the following kinds of locks [5]: thread-local locks (accessible by a single
thread), enclosed locks (protected by the lock of another object), and reentrant
locks (protected by the lock of the same object). The analyses compute the set of
unnecessary synchronization operations using the Vortex research compiler, and
then optimize Java class files directly via a binary rewriter.

John Whaley and Martin Rinard developed a combined pointer and escape analy-
sis algorithm for Java programs [93]. It operates on points-to escape graphs that
characterize how local variables and fields in objects refer to other objects. The
graphs distinguish between objects and references created within an analyzed
region and those created in the rest of the program. Therefore, they enable a
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flexible analysis of arbitrary regions of complete or incomplete programs, obtain-
ing complete information for objects that do not escape the analyzed regions.
The results are used for stack allocation and synchronization removal.

Frédéric Vivien and Martin Rinard observed that almost all of the objects are
allocated at a small number of allocation sites [89]. For this reason, they present
an algorithm which incrementally analyzes only those parts of a program that may
deliver useful results. Their algorithm performs an incremental analysis of the
neighborhood of the program surrounding selected allocation sites. It first skips
the analysis of all potentially invoked methods, but maintains enough information
to incorporate the results of analyzing the methods when they turn out to be
useful. The modified MIT Flex compiler generates methods that allocate objects
in the current stack frame or in the frame of a direct or indirect caller.

Together with Alexandru Salcianu, Martin Rinard extended the points-to escape
graphs to parallel interaction graphs, which maintain precise points-to, escape,
and action ordering information for objects accessed by multiple threads [80].
Based on the results, the MIT Flex compiler is able to statically verify that multi-
threaded programs use region-based allocation correctly. Region-based allocation
allows a program to allocate all objects created by a computation in a specific
region and deallocate them when the computation finishes.

Matthew Q. Beers, Christian H. Stork and Michael Franz were concerned about
the costs of escape analysis during just-in-time compilation [10]. In contrast to our
approach, they suggest to perform the analysis ahead of time and ship its results
as code annotations. The analysis is less precise than traditional escape analyses,
but its results can efficiently be verified by the run-time system to ensure that
the annotations have not been altered. In an environment that supports dynamic
class loading, parameters of methods that cannot be bound statically are assumed
to escape. The annotations are added to standard Java class files, but the authors
refrained from modifying a VM to actually allocate objects on the stack, because
they do not guarantee that all objects fit in a fixed-sized frame.

Diego Garbervetsky and his colleagues proposed an instrumentation of Java pro-
grams for scoped memory management [37]. The idea is to allocate objects in
regions, which are created at the beginning of a method and freed when the
method returns. A pointer and escape analysis is used to associate memory re-
gions with methods in such a way that no dangling references occur. The program
instrumentation does not specify a unique region where an object is allocated, but
rather a set of regions corresponding to methods on the call stack. This allows to
control at run time where the object is actually allocated without changing the
source-level instrumentation.

Most existing approaches to escape analysis are implemented in static compilers
or disregard dynamic class loading. The primary goals are stack allocation of
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objects and synchronization removal, whereas scalar replacement of fields is done
rarely. To the best of our knowledge, our approach is the first that performs all
three optimizations in a dynamic compiler and allows to reallocate and relock
objects when dynamic class loading invalidates the optimized machine code.

8.2 Program Abstraction

Escape analysis is rarely performed directly on Java source code or on the byte-
codes. Instead, a program abstraction is built which is capable of associating
properties with references and objects. The analysis is then applied to this ab-
straction.

The program abstraction we chose for our analysis is influenced by the SSA form
and the layout of the HIR. An object is represented by the HIR instruction which
allocates the object. The set of referenced objects is stored as a list of instructions,
and dependencies between objects are modeled via equi-escape sets. This chapter
deals with program abstractions used in other implementations.

8.2.1 Connection Graph

Jong-Deok Choi et al. suggest a simple program abstraction called connection
graph, a directed graph which captures the relationship between object references
and objects [22]. The nodes represent either an object or a reference variable.
They are connected by different kinds of edges:

e A points-to edge connects a reference node p with an object node to indicate
that the variable p may point to the object.

e A field edge connects an object node with a reference node f if f represents
a field of the object.

e A deferred edge is an edge between two reference nodes q and p. It denotes
that the variable q may reference any object that is pointed to by p.

The connection graph is built via an abstract interpretation of the bytecodes.
Storing an object reference into a variable introduces a new points-to edge. If
a reference variable is assigned to another one, the two corresponding reference
nodes are connected with a deferred edge.

Figure 8.1 shows an example for a simple connection graph. Object nodes are
drawn as boxes and reference nodes as circles. A solid edge from a circle to a box
is a points-to edge, and a dashed arrow between two circles is a deferred edge.
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S1: Tp=newT(); S2:Tq=p;
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Figure 8.1: Example for a simple connection graph

Reference nodes for a field are created lazily when a variable x is assigned to a
field p.£f. For each object node pointed to by p, a field reference node is created
and connected to the reference node x by a deferred edge (see Figure 8.2). If p
does not point to any object node, a phantom node is added which represents an
object created outside the current method.

S3:x=..; S4:pf=x;

o oS O OSE
o8 RS

Figure 8.2: Creation of a field node in the connection graph

The connection graphs for alternative control flow paths are modified indepen-
dently from each other. Deferred edges improve the efficiency of the analysis by
delaying and thus reducing the number of graph updates. At control flow join
points, the incoming connection graphs are merged. The result of the merge is
the union of nodes and edges of the original graphs.

Escape analysis is reduced to a reachability problem over the connection graph.
Each node in the graph has an escape state associated with it. Static field nodes,
for example, are initialized as escaping globally. An allocation site can create
objects on the stack if the corresponding object node is not reachable from an
escaping node. When the graph is modified or merged with another graph, the
escape states are adjusted. Loops are handled by iterating over the data flow
solution until it converges.

8.2.2 Points-To Escape Graph

The analysis by John Whaley and Martin Rinard is based on a program abstrac-
tion called points-to escape graph [93]. Similar to a connection graph, it models
how local variables and fields in objects refer to other objects. It also stores
information about which objects allocated in one region of the program escape
and can be accessed by another region. A points-to escape graph consists of
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inside edges for references created inside the currently analyzed region,
outside edges for references created outside the current region,
inside nodes for objects allocated inside the current region and accessed
only via references created inside that region, and

e outside nodes for objects allocated outside the current region or accessed
via references created outside the region.

There is one inside node for each allocation site within the current region. It
represents all objects created at this site. The set of outside nodes includes
nodes for objects that are referenced by a formal parameter, stored in a static
field, loaded from a field or returned from the method. The node for an array
has a single field that represents all of the array’s elements, so no distinction is
made between different elements of the same array.

Figure 8.3 shows the points-to escape graph at the end of the insert method.
Solid circles and arrows represent inside nodes and inside edges, whereas dashed
circles and arrows represent outside nodes and outside edges.

Elem insert(Object obj) {
Elem m = this;
while (m !=null) {
if (...) return this;
m = m.next;

return new Elem(obj, this);

}

Elem(Object obj, Elem next) {
this.val = obj;
this.next = next;

}
Figure 8.3: Example for a points-to escape graph

The variable this points to the receiver node, while obj points to the parameter
node. Both nodes are outside nodes. The next edge from the receiver node
points to a node that represents all objects referenced by the m.next field. As
the references are traversed in a loop, there is also an edge from this node to
itself. The only inside node represents the Elem object allocated within the
insert method. It has an edge from the next field to the receiver node and
from the val field to the parameter node. These are inside edges because the
references are created during the execution of insert.

The algorithm uses a data flow analysis to generate a points-to escape graph
at each point in a method. It constructs an initial points-to graph and then
propagates it through the statements of the method. Most statements kill a set
of inside edges before they add new inside and outside edges to the graph (see
Figure 8.4 for an example).
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Figure 8.4: Effect of statements on the escape graph

An object is said to escape directly if it is passed as a parameter into the current
method, written into a static field, passed as a parameter to a callee that has not
been analyzed yet, or if it is a thread object. If an object is reachable from a
directly escaping object via a sequence of references, it escapes. Otherwise it is
said to be captured and can be allocated on the stack.

8.2.3 Escape Context

It would be too coarse to consider data structures as a whole, because sometimes
only a part of a data structure escapes. For example, if obj.elem escapes, this
does not mean that obj escapes. Bruno Blanchet uses integers in his analysis to
represent the escaping part of an object. This integer is said to be the escape
context of the object [12].

Traditionally, the escaping part of an object is expressed via a set of access paths
from the object to the fields or elements that escape. The replacement of such
a set by an integer leads to a more efficient analysis, because integers can be
manipulated faster than graphs. Let the height of a type be the smallest integer
such that

the height is 0 for primitive types and greater than 0 for reference types,
the height of a type is greater or equal the height of its subtypes,

greater or equal the height of each element type, and

strictly greater than the height of each element type if the type definition
is acyclic (i.e. no object may contain an object of the same type).

The escape context of an object is computed as the height of its escaping part.
If an object escapes, all contained elements are seen to escape as well, because
the context of the object is greater or equal the height of each element type. If
the escape context for an object is smaller than the height of its type, the object
is known to not escape and can be allocated on the stack.

Figure 8.5 shows an example for the height of types. Assume that 1ist denotes a
NodeList and that 1ist.elem.info escapes. The escape context for 1ist equals
the height of the type Entry, which is 2. It is greater than the height of Object,
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Figure 8.5: Example for the height of types

but smaller than the height of NodeList. All instances of Entry and Object in
the list are regarded as escaping, but the 1ist object itself can be allocated on
the stack.

This representation is in general not able to distinguish different fields of the
same object. However, the information for the top of data structures is precisely
represented. Since the top of a data structure is the part that can most often
be allocated on the stack, the representation is well adapted for this field of
application. Inside complex data structures, precision is lost, but also stack
allocation is less probable.

The computation of escape information relies on a bidirectional propagation. A
backward analysis first marks the method result as escaping and then propagates
the escape state to what is read to build the result. However, it cannot take into
account that a value escapes because it is stored into an object. At the point of
the assignment, it is not known for example whether the object is a parameter
or not. Therefore, a forward analysis is performed to deal with values that are
stored in static fields, in parameters or in the result of the method.

8.2.4 Alias Set

The analysis by Erik Ruf [78] takes three phases. At first, it identifies thread
allocation sites and determines which methods may be executed by the threads.
The second phase computes which threads synchronize on a value. Finally, the
results are used to remove or simplify synchronization operations.

Erik Ruf models aliasing in a flow-insensitive manner by grouping potentially
aliased expressions into equivalence classes. He stores synchronization behavior
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as attributes of these classes. The optimization represents run-time values as
alias sets. Non-reference values are associated with the special set L. The alias
set for a reference value is a tuple that consists of

e a field map which maps fully qualified instance field names to alias sets for
the corresponding field values,

e a property synchronized to remember if the value may be the target of a
synchronization operation,
a set syncThreads of threads that may synchronize on the value, and
a property global that specifies if the value escapes, i.e. is reachable from a
reference constant or a static field.

In order to create and update alias sets, statements that modify reference vari-
ables or values are considered. If a reference variable is assigned to another one,
the corresponding alias sets are merged. The attributes of the resulting alias set
are the union of the input attributes. Joining two field maps causes alias sets for
field names present in both maps to be merged.

The assignment of field x.f to a variable y is treated in a similar way. The alias
set for f is retrieved from the field map for x and merged with the alias set for y.
If a variable represents the result of a phi function, its alias set is merged with
the alias set for each operand of the phi function.

A synchronization operation sets the synchronized property of the alias set for the
object to be locked. If the alias set is global, the allocation sites of all threads that
probably call the current method are added to the syncThreads property. Merging
a non-global, synchronized alias set with a global one causes the syncThreads
attribute of the result to be augmented with the set of threads associated with
the current method.

Synchronization on an object is eliminated if the syncThreads set of the corre-
sponding alias set is empty or contains a single thread that is executed at most
once. So even if an object escapes, synchronization on it is removed unless it may
be locked by more than one thread.

8.3 Interprocedural Analysis

Interprocedural analysis is only reasonable if it avoids reanalyzing a method at
each of its call sites. On the one hand, this means that the analysis of a method
must produce escape information that is independent of the method’s calling
context. On the other hand, it does not make sense to retain information about
a method unless it concerns parameters or return values.
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The following sections deal with different approaches to interprocedural escape
analysis. Each of them refers to one of the program abstractions discussed in the
previous chapter.

8.3.1 Phantom Nodes

The connection graph (see Section 8.2.1) was especially designed to support inter-
procedural escape analysis. It summarizes the effects of a method independent of
the calling context, so that the same summary information can be used to update
the connection graphs of different callers.

At the entry of a method, the connection graph is extended by a node for each
formal parameter of reference type. The receiver of an instance method appears
as the first parameter. From each of these nodes, a deferred edge points to a
separate phantom node which represents the actual parameter created outside
of the current method. The phantom nodes serve as anchors for the summary
information that is generated when the analysis of the method has finished. If a
new object is assigned to a formal parameter, the deferred edge to the phantom
node is deleted. Future operations on the formal parameter do not affect the
escape state of the actual one. This is the reason why summary information is
built from phantom nodes instead of nodes for formal parameters.

The return of a reference to the caller is modeled as an assignment to a special
phantom variable similar to a formal parameter. Multiple return statements are
handled by merging the corresponding values. Any object thrown as an exception
is conservatively treated as escaping globally.

A reachability analysis on the connection graph finally yields the subgraph of
globally escaping nodes, which can be collapsed into a single bottom node, and the
subgraph of nodes that escape via a parameter. The union of the two subgraphs is
called non-local subgraph and represents the summary information of the analyzed
method. It does not consider non-escaping nodes. These are used to decide
whether an object created by the current method is stack-allocatable or not.

At a method invocation site, each actual parameter is matched to the corre-
sponding phantom node of the callee. After the method invocation, the callee’s
summary information is mapped back to the caller’s connection graph. This in-
cludes the adjustment of escape states and the creation of new nodes and edges.
If the callee is a virtual method, the caller’s connection graph is updated with the
summary information from each possible target at that site, effectively merging
the corresponding graphs.
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The analysis represents the relationship between callers and callees in a program
call graph. In order to handle cycles due to recursion, the algorithm iterates over
the nodes in strongly connected components of the call graph until the data flow
solution converges. If no convergence is reached within a maximum number of
iterations, all nodes for actual parameters and return values of methods involved
are marked as escaping globally.

An object that escapes via a parameter or return value is not stack-allocatable,
but it may be thread-local depending on what the caller does with it. To identify
such thread-local objects, information needs to be propagated from the caller to
its callees in a separate top-down pass over the program call graph. Afterwards,
an object in a method is marked as escaping its thread of creation if it escapes
the thread in any caller of that method. If this step is omitted, all objects that
escape the method will have to be conservatively regarded as escaping the thread.

Since Java allows a native method to perform arbitrary operations on a Java
object accessible through the Java Native Interface (JNI), any object passed to
a native method is considered as escaping the current thread. More generally,
objects passed to methods whose body cannot be analyzed are marked as escaping
globally. This also includes methods of dynamically loaded classes because they
probably make an object reachable for other threads.

8.3.2 Incremental Escape Analysis

John Whaley and Martin Rinard developed a partial program analysis for stack
allocation and synchronization removal. It does not only analyze a method inde-
pendently of its callers, but is also capable of analyzing a method independently
of methods that it may invoke. At each method invocation site, the analysis has
the option of skipping or analyzing the site. If it skips the site, it marks all of
the parameters as escaping.

Frédéric Vivien and Martin Rinard extended the base algorithm to an incremental
analysis [89]. In addition to points-to information, the analysis records how
objects escape the currently analyzed region of the program. If the analysis
of a method is skipped, escape information can be supplemented later when it
becomes desirable. The goal is to analyze just enough of the program to capture
objects of interest.

When the algorithm analyzes a method, it records call sites and actual para-
meters at each site, but ignores the invoked methods. At the end, a particular
allocation site is chosen in an attempt to capture objects allocated at this site.
The algorithm repeatedly selects a skipped call site through which the objects es-
cape and analyzes the methods potentially invoked at this site. In order to avoid
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reanalyzing the same method, cached data is reused if available. The resulting
points-to escape graphs are integrated into the graph for the current method. As
soon as the chosen allocation site is captured, the algorithm moves on to the next
site until a configurable amount of time has expired.

The incremental analysis is guided by a policy to find and analyze allocation sites
that can be captured quickly and promise a large optimization payoff. At each
step, the policy can invest analysis resources in one of several allocations sites. Its
decision is based on empirical data, the current analysis result and the number of
objects allocated at each site in a previous profiling run. As the analysis proceeds
and more information about the allocation sites is available, the quality of the
decisions improves.

If an object escapes the allocating method but is recaptured within a direct or
indirect caller, the object may be allocated in the stack frame of the method
that captures it. The compiler can either inline the allocating method into the
caller or generate a specialized version of the method, which takes a pointer
to preallocated space in the caller frame and initializes the object at the given
location instead of allocating it on the heap. Of course, this requires that the
allocation site is executed at most once per call path that leads from the capturing
to the allocating method.

8.3.3 Context Transformers

Bruno Blanchet uses integer contexts (see Section 8.2.3) to determine if objects
can be allocated on the stack. During the analysis of a method m, the reference
scope is m. The parameters and the result of the method must be regarded as
escaping, because they can be accessed outside the current scope.

Interprocedural analysis decides if an object can be allocated on the stack in a
method m’ that calls m. Now the reference scope is m’. The parameters and the
result of m do not necessarily escape from the caller m’, depending on what m/’
does with the objects.

So the method m needs to be analyzed in several calling contexts. To avoid
reanalyzing the method, the analysis is modeled as a function of the calling
context, which is represented by the escape contexts of the parameters and the
result of m. The escape analysis is said to be context-sensitive.

Object names are context transformers, i.e. functions from contexts to contexts.
They take the escape contexts of the parameters and of the method result and
yield the escape context associated with a concrete object. The receiver is treated
as any other parameter of the method.
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8.4 Results

Jong-Deok Choi et al. evaluated their escape analysis on a set of 10 benchmarks.
In the toba and wingdis benchmark, more than 70% of the objects are allocated
on the stack, and a high percentage of synchronization operations is removed.
This reduces execution time by about 15%. The jgl benchmark even yields a
speedup of 23%. All other programs show execution time reductions between
2% and 7%. The measurements refer only to objects created in the user code,
because the optimization of predefined classes would require a recompilation of
the library code. The flow-sensitive and flow-insensitive variants do not differ
significantly [22].

Bruno Blanchet implemented his analysis in a Java-to-C compiler. Experiments
with seven benchmarks showed that 13% to 95% of the data are allocated on the
stack and more than 20% of the synchronization is removed in most programs.
The run time decreases by 43% for dhry thanks to stack allocation, 40% for
JLex thanks to synchronization removal, and about 10% for javac, turboJ and
javacc. The speedup comes more from the decrease of the garbage collection and
allocation times than from improvements on data locality. The average overhead
generated by the optimizations is 29% of the compilation time without stack
allocation [12].

Erik Ruf tested his algorithm on five single-threaded and five multi-threaded
programs. When the single-threaded programs are optimized, no synchronization
operations are executed at run time. The speedup varies from 7% to 26%, only
j1lex100 achieves a speedup of 159%. In javac, some operations are only partially
removed to preserve notification semantics. Multi-threaded benchmarks do not
become faster as a result of synchronization removal, except for multimarmot,
which improves by 10%. Between 2.75% and 6.75% of the compilation time is
spent on the analysis [78].

Jonathan Aldrich et al. compared the gains of removing thread-local, reentrant
and enclosed locks. The thread-local analysis eliminates 64% to 99% of the
synchronization operations in the single-threaded, and 0% to 89% in the multi-
threaded benchmarks. The reentrant lock analysis tends to eliminate operations
that are also removed by the thread-local analysis and thus has a small impact
on most benchmarks. An exception is the proxy benchmark, which benefits from
the removal of reentrant locks that are not thread-local. Similarly, 12% of the
dynamic synchronization operations in jlogo are eliminated by enclosed lock
analysis but not recognized by other algorithms. The overall speedups range

from 0% to 53% [5].

Frédéric Vivien and Martin Rinard present statistics for the incremental pointer
and escape analysis. It captures virtually the same number of objects as the
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whole-program analysis, but requires less time to do so. The two scientific pro-
grams Barnes and Water interact poorly with the conservative garbage collector,
so stack allocation provides a speedup of 32% and 40%. Execution time for
JLex is reduced by 9%, whereas the SPEC benchmarks hardly benefit from the
optimizations [89)].

8.5 Write Barrier Removal

Advanced garbage collection strategies usually expect the user program (often
referred to as mutator) to interact with the collector. The compiler generates
special machine instructions to inform the garbage collector that a pointer field
is read or written. These machine instructions are called read barriers or write
barriers, respectively.

Under certain conditions, e.g. if a field points into a certain area of the heap or
was null before its modification, no barrier is required. These conditions depend
on the implementation of garbage collection. If the compiler can prove statically
that they always hold for a certain point in the machine code, it can eliminate
the barrier. The resulting machine code is smaller and executes faster.

The optimizations described in this chapter neither perform scalar replacement
nor stack allocation, but they incorporate a form of pointer or escape analysis to
make assumptions about the current values of fields. While we eliminate write
barriers as a side effect of stack allocation, the optimizations described in this
chapter explicitly aim at barrier removal. The sections below give an overview of
the different kinds of barriers and describe how they can be removed.

8.5.1 Kinds of Barriers

Generational garbage collection concentrates its efforts on the part of the heap
where memory is most likely to be reclaimed. Young generations, which mainly
contain temporary short-lived objects, are collected more frequently than older
generations. If the garbage collector moves an object into an older generation, it
keeps track of all pointers to younger objects in a remembered set. By treating
them as root pointers, a young generation can be collected without having to
traverse older ones.

When a pointer into a young generation is stored in an object after the object
was moved into an older generation, the mutator must take care that the pointer
is added to the remembered set. Therefore, pointer writes are protected with a
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write barrier (see Section 4.2). The barrier marks the modified heap area (card)
as dirty and thus causes the garbage collector to examine it and update the
remembered set. If the compiler can guarantee that a field always points to the
same or an older generation, the write barrier may be omitted.

More sophisticated barriers are used in the context of an incremental garbage
collector, which runs in parallel to the mutator to avoid the pauses caused by
traditional stop-and-collect strategies. Incremental garbage collection has a dif-
ferent goal than generational collection. It demands guarantees for the worst-case
performance, whereas generational collection attempts to improve the average
pause time without considering the worst case [54].

Incremental garbage collection is usually described by means of a tricolor abstrac-
tion [32]. All objects start as unvisited, represented by the color white. When
the garbage collector traces a pointer to a white object, the referenced object
is marked as grey to indicate that it needs to be visited. When all immediate
descendents of an object were processed, the object is colored black and will not
be visited again. Thus objects become darker during the marking phase. The
current marking cycle terminates as soon as no more grey objects exist. All
reachable objects are black at this point. Any object left white is garbage and
can be reclaimed.

The parallel execution of the mutator and the collector introduces a consistency
problem: The mutator may unlink a white object from the object graph and
write a pointer to it into a black object. In this case, the white object would
never be visited and thus reclaimed at the end of the collection cycle although it
is referenced. To avoid this problem, it is sufficient to ensure one of the following
conditions:

e The mutator never sees a white object.
e A pointer to a white object is never written into a black object.
e The original reference to a white object is not destroyed.

The first condition involves a read barrier. As soon as the mutator attempts to
access a white object, the object is marked as grey and visited by the collector.
Since the mutator cannot read pointers to white objects, it cannot write them
into black objects.

The second and the third condition can be ensured via write barriers, which
are cheaper than read barriers because heap writes are less common than heap
reads. Methods using write barriers are classified as either incremental-update
or snapshot-at-the-beginning (SATB), depending on whether they prevent the
creation of a pointer to a white object or the loss of the original reference [94].
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Incremental-update methods record changes made by the mutator to the shape
of the object graph. When the mutator attempts to install a pointer to a white
object into a black object, one of the two objects is shaded grey. No action
is required when a pointer to a white object is destroyed. Any white object
that becomes garbage during the marking phase is reclaimed by the sweep phase
within the same cycle.

SATB algorithms mark all objects reachable in a logical snapshot taken at the
beginning of each collection cycle. Whenever a pointer is overwritten, the original
reference is shaded grey. This prevents the object from being reclaimed for the
case that a pointer to it is installed into a black object. As a result, objects
that become garbage must wait until the next cycle to be reclaimed. The barrier
can be eliminated if the compiler guarantees for a certain write that the original
reference is null.

8.5.2 Removal of Generational Write Barriers

In the context of generational garbage collection, write barriers are used to keep
track of pointers from old into young generations. This overhead has tradition-
ally been accepted as part of the cost of a generational collector. Karen Zee and
Martin Rinard implemented a flow-sensitive pointer analysis to identify field as-
signments that always create a reference from a young object to an older one [98].
Write barriers associated with such assignments can safely be removed by the
compiler.

The intraprocedural analysis computes for each program position the set of vari-
ables that point to the most recently allocated (method-youngest) object. State-
ments that use one of the variables to write a field of this object do not require
a write barrier. At the method entry and after each method invocation site, the
analysis conservatively assumes that no variable points to the method-youngest
object.

Two extensions augment the analysis with interprocedural information. The first
extension records the types of objects that are allocated by callees invoked since
the method-youngest object was created. If an object obj, whose type is not
contained in the set, is stored in a field of the method-youngest object, the write
barrier can be removed because obj was not created in one of the callees and is
thus older than the method-youngest object. The second extension examines all
call sites to find out if the callee is invoked only on method-youngest objects. In
this case, the algorithm can assume at the callee’s method entry that the this
variable refers to the most recently allocated object.
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To increase the effectiveness of the write barrier removal, the object allocation
order is changed to match the direction of references between the objects. If an
object is allocated in a constructor, the allocation is moved out of the constructor
so that it occurs before the object under construction is allocated. Besides, single-
linked lists and similar data structures are built bottom-up instead of top-down.

The reservation of a bit in the object header enables an optimistic write barrier
removal. The bit is set when an object is created and cleared after completion of
all statements that write a field of the object and for which the write barrier was
removed. If the collector promotes an object into an older generation while the
bit is set, it adds the object to a remembered set which is scanned for references
into younger generations at the beginning of each collection. This way, write
barriers can be removed even if objects are promoted out of order or allocated
directly in an old generation.

8.5.3 Removal of SATB Write Barriers

The advantage of SATB over incremental-update marking is that new objects are
allocated black and thus need not be examined by the current marking phase.
However, the interaction between mutator and collector involves higher costs.
While card-marking write barriers for incremental-update get away with two
instructions per pointer write, SATB write barriers are more expensive. They
need to read the pre-write value of a pointer, check that it is non-null and then
add it to a buffer that is processed by the garbage collector [29].

If a field is null before it is assigned a new reference, no write barrier is needed
because no object is unlinked from the object graph. V. Krishna Nandivada and
David Detlefs from Sun Microsystems Laboratories developed two analyses to
identify such assignments in a just-in-time compiler [69]. The first one does so
for fields of objects, and the second one for elements of object reference arrays.
In the majority of cases, the field or array element is null because it was cleared
during object allocation and not modified since then. The first assignment is an
initializing write, which does not require a write barrier.

If an object is not thread-local, the compiler cannot guarantee that one of its fields
is null, because the object may be modified asynchronously by multiple threads.
An escape analysis tracks the thread-locality of each reference. It computes two
abstract object references for each allocation site id: R;q/4 represents a reference
to the object most recently allocated at id, and R;q/p summarizes all references to
objects previously allocated at id. At each allocation site, attributes previously
associated with R;;/4 are merged into R4/ p, before R;q/4 is associated with the
newly allocated object.
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The use of two reference values per allocation site enables a precise analysis. It
computes the possible reference values that might flow into fields of objects before
those fields are modified. If an instruction updates a field of a single abstract
reference value that is unique, i.e. denotes a single run-time value, the old field
value is replaced by the new one. Otherwise, the new value is merged into the
previous contents via set union.

After a basic block was processed, the final program state of the block is merged
into the initial state of each of the block’s successors. A reference value may
escape by being assigned to a static field, passed as a parameter to a method, or
by being stored into the field of an object that is possibly non-thread-local. The
analysis tracks the escape state of objects for each point in the program. Even if
an object escapes, a write barrier can be eliminated as long as the write occurs
before the object escapes.

8.6 Debugging and Deoptimization

The Java HotSpot client compiler performs optimizations based on assumptions
about the class hierarchy. Therefore, dynamic class loading may invalidate the
machine code of a compiled method later. If the method is currently being exe-
cuted, it must be deoptimized before its execution can continue in the interpreter.

For this purpose, the state of the compiled method must be mapped to a state that
the same method had produced if it had been executed in interpreted mode. Such
a mapping is commonly used for debugging optimized machine code at the source
code level, which has been a topic of interest for more than two decades [16]. This
chapter describes related work for debugging optimized code and for deoptimiza-
tion, because the basic concepts are similar.

8.6.1 Debugging Information

Zellweger defines two levels of debugger behavior in her thesis [99]: A debugger is
said to provide truthful behavior if it detects that the executing program differs
from the source program and admits that the exact answer to a debugging query
cannot be given. It is said to provide expected behavior if it hides the effects of
optimizations from the user. Debugging with expected behavior reduces debug-
ging time and programmer confusion, but relies on information collected by the
compiler.
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Hennessy was one of the first to deal with symbolic debugging of optimized
code [43]. He suggests that the compiler produces a set of labeled data flow
graphs that represent code dependencies in both the optimized code and the
original unoptimized code. The graphs are used by the debugger to identify vari-
ables whose values do not match those in the unoptimized code and to recover
their real values. Wall et al. later point out errors in Hennessy’s approach and
give corrected algorithms [90].

Coutant et al. concentrate on optimizations that make symbolic source-level de-
bugging most difficult [24], namely register promotion and assignment, loop vari-
able elimination, and instruction scheduling. Similar to the debugging infor-
mation of the Java HotSpot VM, they track a variable’s values from memory
through registers by describing the locations of the variable for certain ranges in
the generated code.

Chambers et al. propose a layout for compiled SELF methods [21], akin to our
nmethod data structure. In addition to the machine code, each method specifies
the positions of references in the machine code that must be updated by the
scavenger, a list of methods that the compiled code depends on, descriptions of
inlined method scopes used to display source-level call stacks, and a mapping
between bytecodes and program counter values.

8.6.2 Deoptimization

As we have seen, debugging of optimized code requires the compiler to commu-
nicate information to the debugger, but not all optimizations can be expressed
this way. The compiler may limit optimizations to those supported by the debug-
ger, but this is often close to debugging an unoptimized version of the program.
Therefore, Zurawski restricts debugging to discrete inspection points [100], be-
tween which the compiler can perform extensive optimizations without affecting
debuggability. The concept is similar to our safepoints.

Holzle et al. present a conversion of optimized code into unoptimized code and
call it dynamic deoptimization [49]. Dynamic deoptimization enables the system
to debug individual methods at the source code level while executing others at
full speed, as well as to change a running program and immediately observe the
effects of the change. The authors also introduce lazy deoptimization, which defers
deoptimization until control returns to the method to be deoptimized.

Chambers and Ungar describe how their SELF compiler propagates type binding
information through the control flow graph in order to replace dynamically bound
messages with statically bound procedure calls [20]. Dean et al. gain information
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about the possible classes of a receiver via a static class hierarchy analysis [27].
A dependency framework [19] is used to identify those parts of a program that
must be recompiled when the class hierarchy or the set of methods change.

The Java HotSpot VM combines several of the above concepts [33]. The JIT com-
piler inlines or statically binds virtual methods based on class hierarchy analysis
and records method dependencies. It generates debugging information and stores
it with the machine code. A compiled and currently executing method is lazily
deoptimized if the user sets a breakpoint in the method or if dynamic class loading
invalidates the method’s machine code.

Deoptimization can also be used to support partial redundancy elimination, which
eliminates redundancies by moving instructions out of a loop or into another basic
block [55]. The removal of instructions that may throw an exception is usually
restricted because their order must be preserved. Odaira and Hiraki overcome
this restriction by deoptimizing the code when an exception actually occurs at a
reordered instruction [70].

Ishizaki et al. use code patching instead of completely deoptimizing or recompil-
ing a method [52]. The compiler analyzes the current class hierarchy to inline
or directly jump to a virtual method, but also generates backup code which per-
forms the original dynamic call. When the assumption about the class hierarchy
becomes invalid, the machine code is patched to henceforth execute the backup
code. This approach involves less run-time overhead than deoptimization, but
it is also less flexible and e.g. not suitable for undoing optimizations like scalar
replacement or stack allocation.



9 Summary

The previous chapters described our algorithm for escape analysis. They dealt
with the computation of escape states and their use for various optimizations,
with run-time support, benchmark results and related work. The following sec-
tions list the main contributions of our work, summarize the core parts of the
algorithm, and give an outlook on planned enhancements.

9.1 Contributions

Today’s applications are large and target a variety of platforms, so portability
and robustness gain in importance. This needs not come at cost of speed and
efficiency. A lot of research effort has been spent on just-in-time compilation and
optimizations such as escape analysis. This work contributes the following:

e [t presents a new intraprocedural and interprocedural approach to escape
analysis for Java.

e It describes an algorithm especially tailored to the needs of a dynamic
compiler which lacks a view of the complete program.

e It introduces equi-escape sets for the representation of dependencies be-
tween objects and the efficient propagation of escape states.

e It estimates the escape states for parameters of methods that have not been
compiled yet.

e It performs scalar replacement of fields, stack allocation of objects and
fixed-sized arrays, as well as synchronization removal.

e It uses interprocedural escape information to support the compiler in inlin-
ing decisions and to allocate actual parameters on the stack.

e [t implements and evaluates the analysis and related optimizations in the
just-in-time compiler of a production system.

e It adapts garbage collection and write barriers for card marking to deal
with stack objects.

e It extends the deoptimization framework to reallocate and relock objects
when execution needs to be continued in the interpreter.
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This project is a result of the collaboration between Sun Microsystems and the
Institute for System Software at the Johannes Kepler University Linz. Therefore,
design decisions were influenced by the architecture of Sun’s Java HotSpot VM
and its client compiler.

9.2 The Big Picture

This chapter recapitulates the core parts of our escape analysis. It gives a coarse
overview and describes the individual steps sorted by their occurrence during
the compilation process. We consider the compilation of the following method,
which allocates and prints a person with a name and a date of birth specified in
milliseconds since January 1, 1970:

static void printPerson(String name, long date) {
Person p = new Person(name, date);
p.printQ;

}

The constructor for Person stores the parameters in instance fields after encap-
sulating the birthday in a Date object. By convention, the current time is used
as the birthday if the specified date parameter is 0:

public Person(String name, long date) {
this.name = name;
if (date == 0) {
this.bday = new Date();
} else {
this.bday = new Date(date);
+
}

The print method of the Person class is synchronized. It displays the person’s
name on the standard output and delegates printing the birthday to a date for-
matter, which is retrieved via the static method getDateFormatter:

public synchronized void print() {
System.out.println(name) ;
DateFormatter f = getDateFormatter();
f.format (bday) ;

}
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9.2.1 Intraprocedural Analysis

We start our observations at the time when the VM initiates the compilation of
printPerson. The client compiler parses the method and translates the byte-
codes into the HIR. The constructor of Person and the print method are inlined.
Figure 9.1 shows the resulting control flow graph together with the locals array
and the field map.

BO name date p a2

a2: new Person a0 [ 1]
3 a2name=a0 00 fmmmmmmmmmmmm—m—o a0
4: if 11 ==0 then B1 else B2

a5: new Date a2 a2 a10: new Date a2 a2
Il Date) consiructor name bday Jl Dateflong) constructor name bday
8: a2.bday =a5 - a0 | a5 | 12: a2.bday = a10 L1720 [at0 ]
9: goto B3 13: goto B3

a2 a2
B3 name date p .name .bday

a14: o [a5, a10] a0 | 11 | a2 }{ a0 [a14]

15: enter monitor(a2)
al16: a2.name (= a0)

17: invoke System.out.printin(a16)
a18: invokestatic getDateFormatter()
al19: a2.bday (= a14)

20: invokespecial a18.format(a19)

21: exit monitor(a2)

22: return

Figure 9.1: HIR of the sample method

At the beginning of the method, the locals array only contains the values a0 and
11, representing the formal parameters name and date. The first HIR instruction
allocates memory for the Person object. Assume that the class Person is loaded
and does not define a finalizer. Therefore, the object starts as non-escaping.
When the inlined constructor assigns the string parameter a0 to the field a2.name,
our algorithm records the value in a new slot of the field map.

Depending on the comparison of the second parameter with 0, either block B1 or
block B2 is executed. Both branches create a new Date object and assign it to the
bday field. Assume that the constructors are inlined, so that the objects remain
non-escaping. A reference to a5 respectively al10 is stored in the field map.

At the subsequent join point, a phi function a14 for the field bday is created. Its
operands are ab and al0. The field map is adjusted to map a2.bday to the phi
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function at the beginning of basic block B3. No phi function is created for the
field name, because it contains a0 regardless of control flow.

If the phi function or one of its operands turn out as escaping in the course of
parsing, none of the objects can be eliminated any longer. Therefore, the phi
function and both operands are inserted into an equi-escape set (see Figure 9.2).
The phi function is selected as the root of the instruction tree and thus acts as
the representative. In the future, its escape state is used for all elements.

Figure 9.2: Equi-escape set of date objects

After execution of the constructor, the newly created Person object is assigned
to the local variable p. The compiler does not generate an HIR instruction for
the assignment, but stores a reference to a2 in the locals array.

9.2.2 Inlining of Synchronized Methods

Although print is a virtual method, it can be inlined. The compiler knows that
the type of the receiver is Person, because the method is invoked on an object
allocated within the current method.

During inlining, synchronization at method-level is converted into a synchronized
block. The enter monitor instruction locks the object a2 before the inlined code
is executed, and exit monitor unlocks it at the end.

Within the method, the fields name and bday are loaded. We look up their
current values in the field map and associate them with the load instructions. No
replacement is performed at this point because a2 may still escape below.

9.2.3 Interprocedural Analysis

Assume that the method format is too large to be inlined, but interprocedural
escape information tells the compiler that the parameter a19 does not escape
from format. The date object cannot be eliminated, but it may be allocated in
the stack frame of the printPerson method.
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The current value of a19 is al4. Escape analysis adjusts the escape state of al4
accordingly. Since a5 and al0 are elements of the same equi-escape set, their
escape state implicitly changes to stack-allocatable as well.

Class hierarchy analysis determines that currently no subclass of DateFormatter
is loaded. Although format cannot be inlined, it is bound statically to eliminate
the dispatching overhead. This is indicated via the invokespecial instruction.

9.2.4 Optimizations

Our algorithm for escape analysis is performed in parallel to the construction of
the intermediate representation. This saves the compiler from an extra pass over
the control flow graph. At the end, when we know which objects escape and which
do not, we iterate over the instructions for the purpose of scalar replacement and
synchronization removal.

The allocation of the non-escaping Person object and assignments to its fields are
eliminated. When a field is loaded and used as an operand in another instruction,
the operand is substituted with the current value of the field that is stored in the
load instruction.

Instructions that lock or unlock a non-escaping or stack-allocatable object are
eliminated because the object will never be accessed by more than one thread.
The optimized intermediate representation for our sample method is shown in
Figure 9.3. The back end generates smaller and faster executing machine code.

BO
| 4 ifl1==0thenB1 else B2 |

a5: new Date (stack-allocatable) a10: new Date (stack-allocatable)
/I Date() constructor /I Date(long) constructor
9: goto B3 13: goto B3
X‘/
al4: @[a5, a10]

17: invoke System.out.printin(a0)
a18: invokestatic getDateFormatter()
20: invokespecial a18.format(a14)

22: return

Figure 9.3: Optimized intermediate representation
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9.2.5 Debugging Information

The static binding of the format method improves performance, but can cause
problems at run time. If getDateFormatter dynamically loads a subclass of
DateFormatter and returns an instance of it, the generated machine code calls
the wrong method.

In this case, the machine code is invalidated before the format method is called.
Execution of printPerson is suspended and continued in the interpreter. Since
the interpreter does not know about scalar replacement, stack allocation and
synchronization removal, the optimizations must be undone. This is called deop-
timization.

The compiler uses the locals array and the field map to consider optimized ob-
jects in the debugging information. It describes type and field values of elimi-
nated objects and records eliminated locks. The deoptimization framework uses
the debugging information to reallocate eliminated objects and relock objects if
synchronization on them was removed.

9.3 Future Work

We have implemented a reliable, sometimes conservative algorithm for escape
analysis. Future work will focus on more aggressive optimizations. Based on the
results and experience gained from our implementation, Sun Microsystems plans
to add escape analysis also to the Java HotSpot server compiler. Besides, we are
going to investigate and implement new optimizations for the client compiler.

9.3.1 More Aggressive Optimizations

According to the Java language specification, fields of an object are always initial-
ized with default values. This is an expensive part of object allocation. We think
about eliminating the initialization of fields that are explicitly assigned a value
by the constructor. To prevent other threads from seeing uninitialized fields, the
object must not escape before all fields have been assigned.

Elimination of write barriers for the snapshot-at-the-beginning style of concur-
rent garbage collection requires an escape analysis. The compiler must prove
that a field was null before it is assigned a pointer, which implies that no other
thread has modified the field concurrently. Such an analysis has already been
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implemented in a version of the client compiler without an SSA-based interme-
diate representation [69]. We are going to investigate how our algorithm can be
modified to produce similar results.

Finally, we are concerned about synchronized methods that are too large to be in-
lined. Without inlining, synchronization cannot be removed because the methods
may be invoked on shared objects. However, it is possible to generate unsynchro-
nized versions of hot methods and invoke them if the compiler guarantees that
the receiver does not escape at a certain call site. Methods have to be selected
carefully to avoid wasting memory with rarely called duplicates.

9.3.2 Escape Analysis in the Server Compiler

Sun Microsystems and Sun Microsystems Laboratories work on an escape analysis
for the Java HotSpot server compiler (see Section 1.2.3). They are going to
implement both a flow-sensitive and a flow-insensitive analysis. Although the
short-term goal is only synchronization removal, current thoughts also consider
scalar replacement and stack allocation.

The implementation of a flow-sensitive escape analysis is complicated by the fact
that the server compiler represents a Java method as a sea of instruction nodes.
There is no explicit control flow graph, but only a data-dependency graph with
control flow constraints. SSA form is used even for modifications of the memory.
The field assignment

T p;

p.-f = x;
is modeled by nodes representing the state of the memory slice of all fields f in
objects of type T. The above assignment updates the current state of the field

slice. It converts the input state of T.f to a new state in which T.f [p] is x. The
output value flows to downstream uses, as usual in a data-dependency graph.

This approach works fine for analysis attributes that are modeled as values of
these nodes, but some attributes are global attributes of the analysis state. The
set of escaped nodes, for example, is a property of the whole program state at an
execution point rather than of some node.

For this reason, the details of the analysis will differ from our implementation
in the client compiler. However, the server compiler will probably adopt our
approach to stack allocation, the enhancements of the debugging information and
the deoptimization framework, the conservative bytecode analysis of uncompiled
methods, and our treatment of write barriers for card marking.
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9.3.3 Automatic Object Inlining

In C++, an object may not only point to, but actually contain other objects.
The programmer can choose between the two alternatives at the point of field
declaration. In Java, fields always store references to other objects, not the
objects themselves.

Automatic object inlining is an optimization that shares some ideas and goals
with escape analysis. The compiler identifies sets of objects that can efficiently
be fused into larger objects. New classes are created and used to allocate com-
pound objects. This reduces the number of object allocations and pointer deref-
erences [61].

Figure 9.4 illustrates how Point objects can be inlined into a Rectangle object.
It contrasts two possible memory layouts: When objects are inlined with their
headers, their structure and pointers to them are preserved. Alternatively, only
the fields of objects may be inlined. This saves memory space, but requires a
modified field access also in interpreted code.

Rectangle Rectangle Rectangle
header header header
upperLeft upperLeft  — upperLeft_x
lowerRight lowerRight — upperLeft_y

lowerRight_x
) head )
Point < eacer lowerRight_y
header upperlLeft_x
upperlLeft_y W
X
y header
Point lowerRight_x
< lowerRight_y
header
X
y

a) unoptimized objects b) inlining with headers c) inlining without headers

Figure 9.4: Example for object inlining

Several algorithms for automatic object inlining were implemented in static com-
pilers [34, 60]. In the context of our collaboration with Sun Microsystems, we will
investigate object inlining for a dynamic compiler. We are going to implement a
prototype for the Java HotSpot client compiler and adjust the garbage collector
and the deoptimization framework accordingly [96].
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9.4 Conclusions

Since its introduction, the Java programming language has attracted the atten-
tion of a broad audience of programmers, software engineers and web masters.
It provides built-in support for exception handling, multi-threading and synchro-
nization, and is often viewed as the modern alternative to C++.

Java has been considered as execution-inefficient for a long time, despite the
fact that inefficiency is a property of language implementations and not of the
language itself. A great deal of the last years’ research effort on Java tried to
reduce the gap of speed between Java applications and C programs [88].

Execution speed improved significantly with the development of just-in-time
compilers and advanced garbage collectors. Although garbage collection has
not reached the efficiency of explicit memory management yet [44], modern ap-
proaches cause only minimal GC pauses.

The escape analysis described in this thesis both leads to faster machine code
and reduces the burden of the garbage collector. As more and more compiler
optimizations increase performance, software developers and users will decide
for Java applications not only because of their safety and portability, but also
because of their execution speed.
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