TNF

Faculty of Engineering
and Natural Sciences

Partial Escape Analysis and
Scalar Replacement for Java

DISSERTATION

submitted in partial fulfilment of the requirements
for the academic degree

Doktor der technischen Wissenschaften

in the Doctoral Program in Engineering Sciences

Submitted by
Dipl.-Ing. Lukas Stadler

At the
Institute for System Software

Accepted on the recommendation of
Univ.-Prof. Dipl.-Ing. Dr. Dr.h.c. Hanspeter Mossenbdck
Univ.-Prof. Dipl.-Ing. Dr. Walter Binder

Linz, May 2014

Oracle, Java, HotSpot, and all Java-based trademarks are trademarks or registered
trademarks of Oracle in the United States and other countries. All other product names
mentioned herein are trademarks or registered trademarks of their respective owners.

Abstract

Escape Analysis allows a compiler to determine whether an object is accessible outside
the allocating method or thread. This information is used to perform optimizations such
as Scalar Replacement, Stack Allocation and Lock Elision, allowing modern dynamic
compilers to remove some of the abstractions introduced by advanced programming
models.

The all-or-nothing approach taken by most Escape Analysis algorithms prevents all
these optimizations as soon as there is one branch where the object escapes, no matter
how unlikely this branch is at runtime.

This thesis presents a new, practical algorithm that performs control flow sensitive
Partial Escape Analysis in a dynamic Java compiler. It allows Escape Analysis and
Scalar Replacement to be applied on individual branches. We implemented the algo-
rithm on top of an open-source Java just-in-time compiler, and it performs well on a
diverse set of benchmarks.

In this thesis, we evaluate the effect of Partial Escape Analysis on the DaCapo,
ScalaDaCapo and SPECjbb2005 benchmarks, in terms of run-time, number and size of
allocations and number of locking operations. It performs particularly well in situations
with additional levels of abstraction, such as code generated by the Scala compiler. It
reduces the amount of allocated memory by up to 58.5%, and improves performance
by up to 33%.

Kurzfassung

Escape Analysis ermoglicht es Compilern festzustellen, ob auf ein Objekt von aufler-
halb der allokierenden Methode oder des allokierenden Threads zugegriffen werden
kann. Basierend darauf kénnen Optimierungen wie Scalar Replacement, Stack Alloca-
tion und Lock Elision durchgefiihrt werden, die es modernen Compilern erlauben, die
Abstraktionen moderner Programmiertechniken zu entfernen.

Der Alles-oder-Nichts - Ansatz der meisten Escape Analysis Algorithmen verhindert
alle diese Optimierungen, sobald das Objekt auch nur in einem Pfad entkommt, egal
wie unwahrscheinlich dieser Pfad zur Laufzeit ist.

Diese Arbeit stellt einen neuen, praktikablen Algorithmus vor, der kontrollflusssensi-
tive Partial Escape Analysis in dynamischen Java Compilern durchfiihrt. Dieser erlaubt
es, Escape Analysis und Scalar Replacement auf einzelne Pfade anzuwenden. Die Imple-
mentierung dieses Algorithmus ist Teil eines Open-Source Java Just-in-Time Compilers,
wobei dieses System eine Vielzahl unterschiedlicher Benchmarks effizient ausfiihrt.

Diese Arbeit evaluiert den Effekt von Partial Escape Analysis basierend auf den
DaCapo, ScalaDaCapo und SPECjbb2005 Benchmarks in Hinblick auf Laufzeit, Anzahl
und Groéfle der Allokationen und Anzahl der Lock-Operationen. Partial Escape Analysis
arbeitet besonders gut in Situationen mit zusdtzlichen Abstraktionsebenen, wie sie z.B.
der Scala Compiler erzeugt. Die Grofie des allokierten Speichers wird um bis zu 58,5%
verringert, die Laufzeit um bis zu 33% verbessert.

Contents 11T

Contents

1 Motivation 1
1.1 Problem Statement L 1
1.1.1 Existing Solutions 2

1.1.2 Remaining Challenges 2

1.1.3 Novel Solution 3

1.1.4 Example. 5

1.1.5 Applicability 5

1.2 Scientific Contributions o 6
1.3 Project Context 7
1.4 Structure of this Thesis 8

2 Introduction 11
2.1 Java ..o 11
2.1.1 Java Objects 12

2.1.2 Java Virtual Machines 15

2.1.3 Java Memory Subsystem 16

2.2 Java HotSpot™ Virtual Machine 18
2.2.1 Deoptimization o o 19

2.2.2 Thread-local Allocation Buffers 19

3 Graal 21
3.1 Compiler Characteristics 22
3.1.1 Compilation Process 23

3.2 GraalIR e 24
3.2.1 Declarative Node Types 24

3.2.2 Hierarchy of Node Types 26

3.2.3 Frame States 29

3.2.4 Object Creation and Modification 32

3.2.5 Accessing Object Properties 33

3.2.6 Additional Operations on Objects 34

4 Escape Analysis 37
4.1 Exampleo 38

4.2 Optimizations e 39

Contents

4.3 Classification of Algorithms 41
4.3.1 Object Scope 41
4.3.2 Control Flow Sensitivity 42
4.3.3 Code Representation 42
4.3.4 Intraprocedural vs. Interprocedural Escape Analysis 43

Partial Escape Analysis 45

5.1 Example oL 45

5.2 Partial Escape Anlaysis in Graal 47
5.2.1 Blocks, Scheduling and Reverse Postorder Iteration 48
5.2.2 Allocation State 53
5.2.3 Effects of Nodes on the Allocation State 54
5.2.4 Control Flow Splits and Merges 63
5.2.5 Loops e 66
5.2.6 Handling of Effects L. 68
5.2.7 Handling Frame States 69

Extensible Escape Analysis 75

6.1 Extensibility: Node Types 75
6.1.1 Virtualizable Interface L. 75
6.1.2 VirtualizerTool 76

6.2 Examples e 79
6.2.1 LoadField Node 79
6.2.2 Newlnstance Node 80
6.2.3 ObjectGetClass Node 81
6.2.4 ObjectClone Node 81

Case Studies 83

7.1 Graal PhiNode 83

7.2 DaCapo Sunflow 84

7.3 ArrayList Initialization 86

7.4 Escaping and Non-Escaping Allocations 86

Evaluation 89

8.1 Sources of Performance Increases 89

8.2 Performance Impact L 90

8.3 CompariSon 93

8.4 Compilation Performance 93

Related Work 95

9.1 Escape Analysis. 95
9.1.1 Java e e 96

9.1.2 Other Languages 97

Contents A%

9.2 Partial Escape Analysis 98
9.2.1 LuaJIT 98

9.2.2 Escape Analysisin PyPy 99

10 Summary 101
10.1 Future Work e 101
10.2 Conclusions L e 103
List of Figures 105
List of Tables 107
List of Listings 109

Bibliography 111

Contents VII

Acknowledgments

Many people have contributed directly or indirectly to the work presented in this thesis.

First and foremost, I thank my advisor Prof. Hanspeter M&ssenbock for his valuable
feedback, for his encouragement and for bringing me into the “SSW family”. I also thank
my second advisor, Prof. Walter Binder from the Universita della Svizzera Italiana in

Lugano, for the time and effort spent examining my thesis.

I thank all the current and previous members of our project, especially Thomas
Wiirthinger, Gilles Duboscq and Doug Simon, for letting me take part in this adventure
called Graal. Seeing it grow from a small prototype to the great and diverse project
it is today made me realize that even decisions that seem small at the time of taking

them can have a big impact - never accept compromises that you don’t believe in.

Various projects, especially Truffle, use the algorithms and the implementation pre-
sented in this thesis. I thank all my colleagues in the VM Research Group of Oracle
Labs and at the Institute for System Software for the discussions and the feedback that
helped weeding out problems and bugs.

This work was performed in collaboration with Oracle Labs. The continuous support
provided by Oracle, and formerly Sun Microsystems, is what allowed us to bridge the
gap between academia and industry. I thank all the people inside Oracle that made this
happen, especially Mario Wolczko, Eric Sedlar and Laura Hill. T also thank my Alma
Mater Kepleriana for providing the framework for successful and mutually beneficial

cooperations.

I thank my parents and my whole family for supporting and encouraging me through-
out my studies. Most of the time I spent on writing up this thesis I stole from my sig-
nificant other. Thank you, Lilli, for your patience and for your love and understanding

during my late-night and all-weekend writing sessions.

1.1

Chapter 1

Motivation

Problem Statement

Application servers such as WebLogic, desktop applications such as NetBeans and
Eclipse, libraries such as Hibernate and tools such as Maven have all reached sizes
that are counted in millions of lines of code. Large applications such as these can only
be developed and maintained by introducing interfaces and APIs, by generalizing and
abstracting, by using object-oriented design and by applying design patterns such as

iterators, factories, adapters and proxies.

All these techniques are intended to make it easier to do the right thing, and harder
to do the wrong thing. However, they often introduce abstractions that manifest them-
selves in additional object allocations. For example, while more low-level systems will
return a null value in case no result is available, more sophisticated systems might
allocate and return a wrapper object that can be queried for the availability of a re-
sult’. Another example are data structures such as Point which encapsulate multiple
primitive values in a heap object. The application could just keep track of the x, y
and z coordinates instead of creating a Point object, but the overhead is in most cases

accepted in return for the additional encapsulation and maintainability.

All these additional objects are allocated many times during the run time of an
application. They put stress on the garbage collection subsystem which would not be
strictly necessary. Modern generational garbage collectors are very efficient, especially
for garbage that dies young. However, the time spent on allocating and reclaiming
objects is still a limiting factor for many applications. Depending on the configuration,

current systems can sustain allocation rates in the order of 5-10 GB per second.

1Scala’s Option is an example of such a wrapper: it can either be None or Some.

1.1.1

1.1.2

2 Motivation

Even applications that do not exhaust the garbage collection system are still impacted
by the cost of unnecessary allocations. Encapsulating information in heap objects also
has the additional disadvantage that it hides information from the compiler: it is much
harder for the compiler to reason about a value that is coming from a field than about a
value that is accessed more directly, e.g., as a local variable. Furthermore, the contents
of the heap object could potentially be modified and observed by other threads at any

point in time.

Compilers that aim for competitive peak performance therefore need to remove as

many of these abstractions as possible.

Existing Solutions

Escape Analysis (see Chapter 4) is the canonical answer to this problem. It checks
whether an allocated object escapes, i.e., can be used outside, the allocating method or
thread. This happens, for example, if it is assigned to a global variable or a heap object,
or if it is passed as a parameter to some other method. Compilers use Escape Analysis
to determine the dynamic scope and the lifetime of allocated objects. The result of this
analysis allows the compiler to perform numerous optimizations on operations such as

object allocations, synchronization primitives and field accesses.

For example, Escape Analysis allows the compiler to perform Stack Allocation, i.e.,
replace the allocation of an object on the heap with an allocation on the stack. The
compiler can also replace the allocation of an object with local variables for all its fields,
a process called Scalar Replacement. If Escape Analysis can prove that an object will

never leave the current thread, lock operations can be omitted (Lock Elision).

Remaining Challenges

Escape Analysis is an all-or-nothing analysis - either an object escapes, or it does not.
Even if an allocated object escapes only in a single unlikely branch, the allocation will
not be optimized. This is amplified by the viral nature of the “escaping” property: all

objects referenced by the barely-escaping object will also be considered to escape.

Another problem that stems from the huge amount of objects allocated in modern
software is that many allocations of small objects will be scattered throughout the
application code. The allocations might not even be visible to the programmer due
to language features such as auto-boxing or for-each loops, both of which incur object
allocations. It would be much more efficient to allocate several objects in one batch,
but combining allocations is a hard problem in dynamic systems such as a modern Java
Virtual Machine.

1.1.3

1.1 Problem Statement 3

Also, the contents of an object will be initialized to the default values (0, null, false)
during allocation. Afterwards, the constructor usually initializes most of the fields to
some other value. In most cases, however, only the final value is visible from outside

the current scope, so that initializing fields to default values is unnecessary.

Novel Solution

This thesis suggest a flow-sensitive analysis and optimization algorithm which it calls
Partial Escape Analysis. It aggressively performs optimizations such as Scalar Replace-
ment and Lock Elision on all object allocations, and makes sure that objects exist in

the unoptimized state in branches where they escape.

Both the analysis and the optimizations are performed during a reverse post order
traversal of the compiler graph. The analysis might need to, but in practice rarely does,
backtrack during loop processing. Additionally, our Partial Escape Analysis works on
the compiler’s intermediate representation, so that it can be applied (possibly multiple

times) at any point during compilation.

Partial Escape Analysis performs the following optimizations in our system:

It removes allocations of objects that are known to be non-escaping.

e If possible, it pushes allocations into infrequent branches, so that they will be

executed less often at run time.

e All writes to an object up to the point where it escapes, and thus has to be
allocated, are coalesced, so that the object can be initialized with the correct

values during allocation.

e Partial Escape Analysis causes object allocations to concentrate on the escape

points, so that usually multiple objects can be allocated at once.

e It defers writes to objects, even if the object will subsequently escape.

e Additionally, our implementation of Partial Escape Analysis performs read and
write elimination during its iteration. This is not intrinsic to the Partial Es-
cape Analysis algorithm, but read and write elimination fit well into the general

structure of Partial Escape Analysis.

4 Motivation

public class ArrayMap {

private static final int CAPACITY = 100;

private final Object[] keys = new Object [CAPACITY];
private final Object[] values = new Object [CAPACITY];
private int size = 0;

public int indexOf(Object key) {

for (int i = 0; i < size; i++) {
if (key.equals(keys[i])) {
return i;
}
}
return -—1;

}

public void put(Object key, Object value) {
int index = indexOf(key);

if (index = -1) {
keys[size] = key;
values[size++] = value;
1 else {
values[index] = value;
}

}

public static void foo(ArrayMap map, int a, int b, Object value) {
map. put(new Key(a, b), value);

Listing 1.1: Example for motivating Partial Escape Analysis.

public static void foo(ArrayMap map, int a, int b, Object value) {
Key key = new Key(a, b);

int index = —1;
for (int i = 0; i < size; i++) {
if ((keys[i] instanceof Key && key.a = ((Key) keys[i]).a &&
key.b = ((Key) keys[i]).b)) {
index = i;
break;
}
}
if (index = -1) {
keys[size] = key;
values[size++] = value;
} else {
values[index] = value;
}

Listing 1.2: Example from Listing 1.1 after inlining.

1.1 Problem Statement 5

1.1.4 Example

Listing 1.1 shows a simplified array-based map implementation in Java?. When com-
piling the code for the foo method, the calls to putlfAbsent, put, indexOf and equals will
normally all be inlined. After inlining, the method might look like in Listing 1.2.

For traditional Escape Analysis, the newly allocated Key object clearly escapes, so
no Stack Allocation or Scalar Replacement will be performed. Partial Escape Analysis
recognizes that the object only escapes in the branch where the new entry is appended
to the keys array. All accesses to the key object will be replaced with local variables, and
the object will be created and initialized in the correct state right before the keys[size]

= key; statement. The final result is shown in Listing 1.3.

public static void foo(ArrayMap map, int a, int b, Object value) {
int key_a = a;
int key_b = b;

int index = —1;
for (int i = 0; i < size; i++) {
if ((keys[i] instanceof Key && key_a = ((Key) keys[i]).a &&
key_b — ((Key) keys[i]).b)) {
index = i;
break ;
}
}
if (index = -1) {
Key key = new Key(key_a, key_b);
keys[size] = key;
values[size++] = value;
} else {
values[index] = value;
}

Listing 1.3: Example from Listing 1.2 after Partial Escape Analysis.

1.1.5 Applicability

The system presented in this thesis is implemented in the Graal compiler [17, 18, 41,
56, 57, 58|, which is part of the OpenJDK project. It correctly and efficiently executes
a wide range of benchmarks such as the DaCapo and Scala DaCapo benchmark suite,
the SPECjvm2008 suite and the SPECjbb2005 and SPECjbb2013 benchmarks.

2Note that this example does not handle null keys.

1.2

6 Motivation

Additionally, Graal’s Partial Escape Analysis is used extensively as an integral part
of the Truffle framework [76, 77]. It is also tested in this context, and benchmarks in

languages such as JavaScript and Ruby are executed on a regular basis.
While this thesis describes the system in the context of dynamic Java compilers, the

underlying algorithms are applicable to any compiler that deals with object allocations

and accesses.

Scientific Contributions

This thesis contributes the following novel aspects, parts of which are published in [58]:

e A control-flow-sensitive Partial Escape Analysis algorithm that checks the escapa-

bility of objects for individual branches.

e An interface which allows compiler extensions to interact with Partial Escape

Analysis.

e The integration of Partial Escape Analysis into a Java compiler based on SSA

form and speculative optimizations as well as on a deoptimization mechanism.

e An evaluation of this algorithm on a set of current benchmarks, in terms of run-
time, number and size of allocations and number of monitor operations, showing

that the algorithm performs well on a variety of benchmarks.
Additionally, the author of this thesis (co-)designed and published numerous compo-
nents of the Graal compiler. These aspects, some of which are not presented in detail

in this thesis, include, but are not limited to, the following;:

e The declarative intermediate representation, along with its implementation [17].

The specific structure of the intermediate representation used in Graal, which is

well suited for speculative optimizations [18].

e The caching of intermediate results within the compiler [56].

Novel techniques for prioritizing compilation tasks in a compiler [56].

e The overall design of the compiler, along with the optimizations it includes [57].

1.3

1.3 Project Context 7

Project Context

The work presented in this thesis was performed in the context of an ongoing collabora-
tion between the Institute for System Software at the Johannes Kepler University Linz
and Oracle Labs (formerly Sun Microsystems). This successful cooperation facilitated

research on numerous aspects of Java Virtual Machines:

e Mossenbock [39] added a new SSA form intermediate representation to the

HotSpot client compiler.
e Mossenbock and Pfeiffer [38] developed a linear scan register allocation algorithm.

e Wimmer and Mossenbock [64] expanded upon the previous work on linear scan

register allocation and implemented it in the HotSpot client compiler.

e Kotzmann et al. [32, 34] added an Escape Analysis algorithm based on equi-escape

sets to the HotSpot client compiler.

e Wimmer and Moéssenbock explored automatic co-location of objects based on read

barriers [65, 68], followed by automatic object and array inlining [66, 67].

e Wiirthinger et al. [70; 72] added an algorithm for array bounds check elimination
to the HotSpot client compiler.

e Wiirthinger et al. [71] also worked on visualization of program dependence graphs.

e Wiirthinger et al. [78] implemented dynamic code evolution for the HotSpot VM

which allows arbitrary changes to running applications.

e Wiirthinger et al. [73; 74; 75] extended the work on dynamic code evolution
into the areas of aspect-oriented programming, graphical user interfaces and safe

updates.

e Hiubl et al. [24] worked on an improved representation of strings within the
HotSpot VM.

e Schwaighofer [50] modified the HotSpot VM to allow for tail call optimizations.

e The author of this thesis worked on extending the HotSpot VM with continua-

tions [54] and coroutines [55].

e Schatzl et al. [49] worked on various aspects of efficient garbage collection systems,

including metadata management.

1.4

8 Motivation

e Haubl et al. [23, 25, 26, 27] worked on numerous aspects of trace compilation,

including heuristics and applications.

Most recent work in the context of the collaboration stems from the Graal project.
This project started as an attempt to introduce a compiler written in Java into the
HotSpot VM. After its inception in 2011, it quickly sparked interest both within the
Oracle collaboration and with researchers from other universities. Numerous projects
emerged from Graal, most notably the Truffle framework and the associated language
implementations. Research and development on the Graal compiler and the Truffle

framework is performed under the umbrella of the Graal OpenJDK project [41].

e The author of this thesis developed efficient methods for queuing of compilation

tasks and caching of intermediate results within compilers [56].
e Wiirthinger et al. [77] worked on self-optimizing AST interpreters.

e Wiirthinger et al. [76] extended the work on AST interpreters by adding a mech-

anism to generate compiled code from the interpreter definition.

e The author of this thesis performed experimental studies on dynamic compiler

optimizations [57].
e Grimmer et al. [22] introduced an efficient interface for native function calls.

e Duboscq et al. [17; 18] developed the design and implementation of Graal’s inter-

mediate representation.

Graal contains backends for GPGPU processing based on the PTX and HSAIL tech-
nologies. OpenCL backends are being developed by the Compiler and Architecture
Design Group at the University of Edinburgh. A group of researchers at the University
of Lugano, Switzerland, is working on extending Graal to allow for in-depth profiling

of compiled code characteristics.

Structure of this Thesis

This thesis incorporates and extends upon the work published in [58] and [56]. The

introduction contains sections taken from [53].

Chapter 2 sets the stage for the rest of this thesis: it introduces the Java language
and the Java Virtual Machine. Certain aspects important to the topics of this thesis,
such as the object system and the memory model, are explored in more detail. This

chapter also provides an introduction to the Java HotSpot™ Virtual Machine.

1.4 Structure of this Thesis 9

Based on this introduction, Chapter 3 presents the Graal compiler. It starts with
an overview of Graal’s characteristics in comparison to other compilers, and explains
the different phases of the compilation process. The main part of Chapter 3 describes
Graal IR, the intermediate representation used throughout the compiler. This includes

frame states, which store the meta data used for debugging and deoptimization.

Chapter 4 introduces the concept of Escape Analysis and motivates it, with the help
of several examples, in the context of Java. It provides an overview of the optimizations
facilitated by Escape Analysis and classifies algorithms for Escape Analysis based on a

number of criteria.

Chapter 5, which is the main part of this thesis, introduces our novel Partial Escape
Analysis. Starting with an example, the algorithm and its implementation in Graal are

explained in detail.

The interface used to extend Partial Escape Analysis for new node types is intro-
duced in Chapter 6. Examples for non-trivial node types demonstrate the usage of this

interface.

Several interesting case studies are presented in Chapter 7. This includes code snip-
pets from Graal itself, excerpts from benchmarks, and synthetic examples that show

certain characteristics of Partial Escape Analysis.

After a discussion of the effects of Partial Escape Analysis, Chapter 8 presents an
evaluation of Partial Escape Analysis on a number of benchmarks. Apart from per-
formance measurements, this includes criteria such as number of bytes allocated per
benchmark iteration. Chapter 8 closes with an evaluation of the impact our optimiza-

tion has on compile time.

Chapter 9 puts the topics presented in this thesis in context with related work. This

includes two unpublished works similar to Partial Escape Analysis.

Chapter 10 then concludes this thesis with future work and conclusions.

2.1

11

Chapter 2

Introduction

This chapter introduces Java and the associated Java Virtual Machine ex-
ecution model’. It starts with a description of the Java language and the
implementation-independent Java Virtual Machine, and progresses towards
the important parts of the actual system used in the implementation of the

algorithms introduced in this thesis.

Java

Java[l] is a general-purpose object-oriented programming language developed by Sun
Microsystems?. After its introduction in 1995 it quickly became one of the most suc-
cessful and most widely-used programming languages, consistently ranking at the top
of programming language rankings such as the TIOBE programming language index

[59]. Listing 2.1 shows a simple “Hello World!” program implemented in Java.

public class HelloWorld {
public static void main(String[] args) {
System.out.printin("HelloyzWorld!");
}

¥
Listing 2.1: “Hello World!” in Java.

While it was originally designed to run on interactive TV appliances, Java’s success
is tightly coupled to the success of the World Wide Web3. The ability to transfer

'The introduction to Java contains parts which are taken from [53].

2now a subsidiary of Oracle Corporation

3 Java-enabled TV sets were, at the time, unviable due to the cost of hardware capable of running Java.
Recently introduced Blue-ray TV appliances, however, use Java for their interactive components.

2.1.1

12 Introduction

code over a network and to execute it in a controlled environment, without letting
it compromise the surrounding system (also known as sandboxing), played a crucial
role in the adoption of Java applets as interactive elements in HTML pages. New
technologies such as powerful JavaScript virtual machines diminished the importance
of Java applets, but the large number of Java installations facilitated by the applet

technology jump-started the success of Java in many other areas.

Java gained widespread adoption in business applications because of a number of
security-related features. Java pointers (called references) do not support pointer arith-
metics, which is a major source of errors in lower-level languages. Java also does not
allow explicit object deallocation, it instead provides a garbage collector that auto-
matically frees unreachable objects. This avoids a large portion of common memory
leaks and security problems. The memory model is sound enough to allow for exact
garbage collection, which allows heap objects to be moved. This is a requirement for
many high-performance garbage collection algorithms. Java is also largely platform
independent, although in practice a programmer still needs to be careful to achieve full

platform independence.

For programmers, Java is easier to learn and to maintain than many other languages.
Java’s object model is simple and easy to understand, but powerful enough for most use
cases. For example, multiple inheritance is limited to interfaces, which is much simpler
than multiple inheritance for classes. The Java programming language is accompanied
by a large runtime library, which includes support for many advanced tasks such as
XML-parsing, graphical user interfaces, etc. Java also has a concise, C++ - like syntax

which provides familiarity for C and C++ programmers.

Java Objects

Java is an object-oriented language, albeit not “pure” since it employs two disjunct
type hierarchies for primitive and object types. Nevertheless, code and data always
live within a class or within an instance of a class. Static members (fields, methods
and initializers) are associated directly with a class, while instance members (fields,

methods and constructors) are associated with a specific instance of a class.

Ignoring the effect of access modifiers such as private, static members are accessible
without the need for a specific context. Instance members, on the other hand, can only

be accessed when the appropriate context, i.e., the class instance, is available.

Java also supports arrays of primitive and object types. While there is syntax for
creating multi-dimensional arrays, all arrays with more than one dimension are imple-

mented as arrays of arrays. Arrays are accessed using a zero-based index of int type,

2.1.1.1

2.1 Java 13

and their size is fixed when they are created. An attempt to access an element outside

the bounds of an array will raise an ArraylndexOutOfBoundsException.

All arrays and class instances need to be allocated explicitly and they are stored in
the heap as separate objects. Java does not provide syntax for stack allocation or for

declaring complex value types?.

For the rest of this thesis, class instances are referred to as instances, and array
instances will be referred to as arrays. The term object denotes either an instance or

an array.

Every object has an object identity, so that simple equality comparisons between
objects do not compare the contents of the objects, but only the object identities.
Additionally, every object contains a monitor that can be locked and unlocked in order

to serialize access to the object from multiple threads.

Object Creation and Modification

This section provides an overview over the different ways in which objects can be created
and modified. While there are alternative ways to perform these actions, e.g., by using
sun.misc.Unsafe or Java reflection, this list only contains the basic language primitives.
Subsequent chapters will reference this list when describing how operations on objects

are represented and processed.

Instance Allocation: Instance i = new Instance();
The type of newly created instances is specified explicitly. Creating instances
of types that are only available at runtime is possible using mechanisms such as
reflection. New instances will be allocated from the garbage collected heap, and

an allocation might raise an OutOfMemoryError.

Array Allocation: int[] a = new int[size];
Allocating arrays is similar to creating instances, but the allocation needs to also

specify the size of the newly created array.

Field Store: i. field = value;
Sets the value of the field named “field”, or throws a NullPointerException if i is

null.

Array Store: a[index] = value;
Sets the value of the array element at index index. Throws a NullPointerException

if a is null and an ArraylndexOutOfBoundsException if index is out of bounds.

4Current plans for JDK9 contain extensive changes to the JVM to allow for value types.

2.1.1.2

2.1.1.3

14 Introduction

Acquiring and Releasing Lock: synchronized (o) { ... }
The monitor of object o will be locked before the synchronized block is entered,

and unlocked after the block is left. Throws a NullPointerException if o is null.

Accessing Object Properties

There is also a multitude of operations for accessing the contents and properties of

objects. This includes getting the contents, getting a property and checking for a
property.

Field Load: var = i. field ;
Retrieves the value of the field named “field”, or throws a NullPointerException if

i is null.

Array Load: var = afindex];
Retrieves the value of the array element at index index. Throws a NullPoint-
erException if a is null and an ArraylndexOutOfBoundsException if index is out of

bounds.

Array Length: var = a.length;
Retrieves the length of the array, or throws a NullPointerException if a is null.

Type Check: o instanceof Type
Evaluates to true if o is non-null and an object of the given (array or instance)

type, and false otherwise.

Type Cast: (Type) o
Throws a ClassCastException if o is non-null and not an object of the given (array

or instance) type.

Equality Comparison: ol == 02
Checks whether the two objects refer to the same object instance, i.e., if they are

associated with the same object identity.

Additional Operations on Objects

Inside a method, objects can be assigned to local variables. Objects can be passed out

of, i.e., escape, the current method in a number of ways:

Static Field Store: Type. field = o;

Stores the reference o into the static field named “field” of class “Type”.

2.1.2

2.1 Java 15

Method Call: Type.foo(o); or i.foo(o);
Calls the method “foo”, passing the reference o as a parameter. The former call
is static, while the latter passes along the instance i as the receiver. Throws a

NullPointerException if i is null.

Return Value: return o;

Returns the reference o from the current method.

Thrown Exception: throw o;
Returns the reference o from the current method by raising it as an exception.

Throws a NullPointerException if o is null.

Additionally, an object can escape by storing it into a field or array element of a globally

accessible object.

Java Virtual Machines

The Java Compiler (javac) compiles Java source code, contained in .java-files, into

platform- and CPU-independent bytecode stored in one or more .class-files.

Java Compiler Java Virtual Machine

Sourcecode T Bytlecode java
.java .class
Java Archiver Java Archive
jar .jar

Figure 2.1: Overview of the artifacts generated by the Java system.

A Java Virtual Machine (JVM) then loads, verifies, and executes these bytecodes.
It needs to adhere strictly to the semantics defined by the Java virtual machine speci-
fication [35]. It is important to note that all executable bytecodes are contained within
methods, and in turn all methods are contained within classes. Although there can be
more than one class within a single .java-file there is always exactly one class per .class-
file. Multiple .class-files can be packaged into a compressed Java Archive (a so-called
Jar-file), along with other resources needed by the application. Figure 2.1 provides an

overview of these artifacts and the tools that generate them.

After the classes are loaded and verified for soundness the bytecodes are executed.

They can be interpreted or compiled during execution (i.e., just in time); most JVMs

2.1.3

16 Introduction

employ a sophisticated combination of both. The JVM is a stack machine that uses an
expression stack instead of registers, but in practice all JVMs compile bytecode into

register-based, platform-specific code.

I |

Bytecode Java Archive
.class .Jjar

Class Loading

; l VM Data > Garbage ;
i Verifier / Structures Collection i
i Linker Garbage i
: l . Compiled Collected :
E Compiler ———» Code <> Heap i
i Bytecodes E
i \ Interpreter / i
i\‘ Java Virtual Machine

...

Figure 2.2: Java Virtual Machine overview.

Figure 2.2 provides a simplified overview of the most important subsystems of a Java
Virtual Machine in the context of this thesis. It is important to note that compiled
code, interpreted code and the garbage collector interact with the garbage collected

heap.

Java Memory Subsystem

Java VMs are required to provide a garbage collected heap, into which all allocated
objects will be placed. There is no deallocation primitive, because objects which are
not referenced from a root (local and static variables) will be collected automatically.
The fact that an object was reclaimed by garbage collection is not normally visible
to running applications, although it can be observed through finalizers and reference

queues.

The contents of a newly allocated object will be initialized with default values (0,
false or null), so that an application can never inspect the uninitialized memory of a
newly allocated object. There is also no way to convert the reference to an allocated
object into a numeric type or to convert a numeric value into a reference. It is thus

impossible in Java to perform pointer arithmetics.

2.1 Java 17

All field accesses are statically verified, so that accessed fields are guaranteed to exist
in the referenced object. For array accesses it is checked that the index is within the
bounds of the bounds of the array at runtime, so that array accesses cannot be used to

observe arbitrary memory locations.

Due to these properties, Java is able to provide a sound security encapsulation for
applications with limited privileges. Also, many common programming mistakes lead
to more meaningful error messages or are prevented altogether. In the context of
this thesis, however, the implications these properties have on compilation are more
important: The compiler can safely assume that accesses to disjunct fields, accesses to
instances or arrays with disjunct object identity, accesses to arrays of disjunct type and

accesses to array elements with disjunct indexes can never influence each other.

For example, writing to field “a” can never influence a read from field “b”, which
means that the compiler can reorder these field accesses. While this might seem trivial,
properties such as this are not easy to prove within languages that support pointer
arithmetics, such as C++.

2.1.3.1 Java Memory Model

For single-threaded applications, the above conditions for reordering are sufficient to
determine the valid tranformations a compiler can perform. Such an application can
always expect to observe a behavior that appears to be a sequential execution of all

instructions.

For multi-threaded applications, however, there is no efficient implementation strat-
egy for a sequentially interleaved execution model, especially on modern multi-core
architectures. The Java Memory Model (JMM) [29, 36, 61] provides an execution
model for multi-threaded applications, by defining a compromise between efficient VM

implementations and useful application behavior.

Initial state: a=0,b =10

Thread A ‘ Thread B Compiler Thread A ‘ Thread B
i— b, i a Transformations — b, b— 1.
a=1; b=1, a=1, j=a;

Observed final state: i =1,j =1

Figure 2.3: Example showing the effect of code reordering on multi-threaded code.

The JMM allows most of the transformations that would be valid for single-threaded

applications. This can have surprising results, as shown in Figure 2.3. The code on the

2.2

18 Introduction

left is the original code. Given the initial state a = 0 and b = 0, the result can either
bei=1andj=0ori=0andj=1, depending on the actual instruction interleaving.
However, the compiler is free to transform the code into the version shown on the
right-hand side. By executing Thread A in-between the two statements of Thread B,

the originally impossible final state i = 1 and j = 1 can be reached.

While a more restrictive model might seem more useful, such a model would be hard
to implement efficiently. Even if the compiler performs no transformations like in the
example above, the limited cache coherency of multi-core CPUs and multi-processor
systems can still have the effect of non-trivial code reordering, which can only be
prevented by explicit and expensive memory barriers. The JMM does not force Java
VMs to execute multi-threaded code in a way that behaves like a sequential interleaving

of instructions.

The JMM does, however, specify a certain ordering of the observability of effects
around synchronization primitives and volatile fields, which is usually implemented by
inserting memory barriers. It is important to note that this is limited to effects that can
be observed; if another thread cannot observe the effect for other reasons, e.g., because
no reference to the object whose field is changed exists outside the current thread, no

memory barrier is required.

Java HotSpot™ Virtual Machine

The Java HotSpot™ VM was introduced along with Java 1.3. It can either interpret
Java bytecodes or use one of its two just-in-time (JIT) compilers, called client com-
piler [34] and server compiler [43], to compile bytecodes into optimized machine code.
The name “hotspot” refers to the fact that it detects frequently executed methods,

called hot spots, which are then targeted for compilation and further optimization.

HotSpot contains two different interpreters, the C++ interpreter and the template
interpreter. While the C++ interpreter is intended to ease porting to new architectures
by using as little architecture-dependent code as possible, the template interpreter is a
highly-optimized interpreter assembled at startup from hand-written assembly snippets.
The internal state of these interpreters corresponds closely to the state described by
the Java virtual machine specification. The template interpreter can be executed in
a mode in which it collects information about the behavior of the currently executing
method. This method profile will include properties such as the probability of branching

instructions and type profiles for calls.

Apart from an experimental llvim-based compiler (“Shark”), there are two main com-

pilers in HotSpot, the client compiler and the server compiler. The client compiler uses

2.2.1

2.2.2

2.2 Java HotSpot™ Virtual Machine 19

a simple control flow graph, which is turned into compiled code using hand-crafted
assembly snippets, in order to quickly generate compiled code with acceptable per-
formance. The server compiler is based on a program dependence graph and uses a
bottom-up tree rewriting component, derived from a description written in a domain
specific language, to create highly optimized compiled code. It performs more sophis-

ticated optimizations, so that compilation takes significantly longer.

HotSpot also contains a sophisticated memory management system that performs
precise garbage collection. It requires the exact size and layout of an object and all
object pointers within it to be known to the runtime system. Every object is preceded
by a two-word header that contains a pointer to the class of the object and additional

information, such as locking and garbage collection bits.

Deoptimization

Under some circumstances, the code compiled by the client and server compilers will be
based on certain assumptions, e.g., the current hierarchy of loaded classes. When one
of these assumptions is violated, the code will be invalidated and subsequently removed

from the collection of compiled methods (which is referred to as code cache).

For a currently running execution of the method in question, however, this is not
enough, because it is not safe to continue executing it. The execution needs to be
transferred back to the interpreter, which does not take any assumptions and therefore
can correctly handle all cases. This tranfer from compiled code back to the interpreter

is called deoptimization and was pioneered in the SELF system by Holzle et al. [28].

For each point in compiled code at which such a deoptimization can happen, the
compiler stores information that allows the runtime system to reconstruct an interpreter
stack frame from the native stack frame of an execution of the compiled code. For Java,
this consists of the current bytecode index (bci), the current method, the number and
values of the local variables and stack expressions, and the locks currently held by this

frame.

Thread-local Allocation Buffers

In a system that supports multithreading, such as the HotSpot VM, allocating memory
from a heap shared between all threads is a complex operation, since it usually requires
some form of synchronization between threads. Memory allocation is a very frequent
operation in most Java applications, therefore the HotSpot VM provides a thread-local
allocation buffer (TLAB) for each thread.

20 Introduction

Chunks of memory are allocated from the shared heap whenever the TLAB is full.
The TLAB for each thread is sized dynamically based on the thread’s previous behavior.
Threads that frequently allocate large amounts of memory will acquire memory from

the shared heap in larger pieces.

Within the TLAB, allocations are managed by thread-local “top” and “end” pointers.
The former represents the end of the last object in the TLAB, while the latter points
to the end of the TLAB. Whenever an object is allocated, its size is added to “top”. If
the new “top” is beyond “end”, the TLAB does not have enough free space for the new

object and needs to be emptied into the shared heap.

21

Chapter 3

Graal

This chapter provides an overview of the Graal compiler, starting with a
characterisation of the compiler’s most prominent features. It also explains
the overall compilation process and gives a detailed introduction into Graal’s
intermediate representation, Graal IR. The Graal IR is explained in detail,
because it motivates many of the choices taken in the algorithms presented
in later chapters. After a section on the frame state concept, it concludes
with a detailed list of how operations on objects are represented in Graal
1R.

Graal
Compiler Java
Graal API Client Compiler Server Compiler cr
Interpreter GC Class Loading
JNI

HotSpot VM

Figure 3.1: Overview of HotSpot and Graal components.

Graal [17, 18, 56, 57, 58] is a just-in-time compiler for Java which is written in
Java and developed as part of the Graal OpenJDK project [41]. The Graal VM is a
modification of the HotSpot VM which replaces the client and server compilers with
the Graal compiler. It reuses all components of HotSpot that are not directly involved
in compilation: interpreter, garbage collection, class loading, JNI, the class library, and

many others, as shown in Figure 3.1.

Graal tries to leverage the approachability and malleability of Java code for compiler

development. This has already manifested in numerous extensions to Graal: Graal has

3.1

22 Graal

been ported to other VMs (Maxine [69] and Substrate VM), it received new CPU back-
ends (SPARC and ARMvS8), and there are multiple projects supplying GPU backends
for Graal, e.g., Sumatra [42].

Compiler Characteristics

Graal differs heavily from its distant ancestry, the C1X compiler [60] and the HotSpot

client compiler [34], with the most notable changes being:

Intermediate Representation Graal introduces a new intermediate representation
called Graal IR [17]. For a detailed description see Section 3.2.

Late Inlining Many dynamic Java compilers perform inlining during the bytecode pars-
ing step. This is not desirable, because all inlining decisions have to be taken very
early, so they cannot benefit from the additional information later compiler phases
and optimizations gather about the code. Some optimizations, such as constant
folding and global value numbering, need to be performed during bytecode parsing
to make reasonable inlining decisions possible at all, which unnecessarily compli-

cates the parsing step.

Additionally, parsing the bytecode of a method using early inlining usually incor-
porates information such as the current inlining context or the remaining inlining
budget. Thus, the result of of bytecode parsing cannot be cached in a useful way.
There is significant potential for reuse of cached parsing results in typical Java

applications [56].

Graal performs late inlining, i.e., it parses all methods independently of one an-
other, and combines them only later in the compilation process, so that it can
cache the result of bytecode parsing and can employ a more sophisticated inlining

strategy.

Fine-grained Optimization Phases The Graal IR includes data structures that allow
for efficient iteration of all instances of a specific node type in the graph. This,
combined with the def-use information in the graph, means that optimization
phases can look at, and operate on, specific nodes, without having to perform

whole-graph iterations.

Aggressively Optimistic Graal relies heavily on the information collected by the pro-
filing interpreter. Parts of methods that were never executed in the profiling
interpreter are not even parsed, and neither are references to uninitialized classes
and methods. Graal only creates exception-handling code in places where, ac-

cording to profiling information, exceptions happened previously.

3.1 Compiler Characteristics 23

Assumptions Graal uses a mechanism called static and dynamic assumptions to ensure
that it will still generate correct code in the presence of aggressively optimistic
optimizations. Static assumptions are assumptions about the state of the loaded
application, e.g., that there is only one implementation of a specific interface. If
one of these static assumptions is invalidated, e.g., by further class loading, the
compiled code will be invalidated and active executions of it will be deoptimized
(see Section 2.2.1).

Dynamic assumptions are assumptions that cannot be statically proven, but are
hinted at by profiling information. These assumptions still need to be checked
at run time, e.g., a condition that was always false during profiling, and thus
leads to a never executed branch, still needs to be checked (guarded) at runtime.
If one of these guards fails, the compiled code will invalidate itself, again using

deoptimization.

Snippets As an improvement over C1X’s templating mechanism, XIR [60], Graal in-
troduces the concept of Java snippets for simplifying (“lowering”) complex op-
erations in the IR. Java methods, written to adhere to certain rules, describe
how operations such as monitorenter and new can be decomposed into lower-level

operations.

3.1.1 Compilation Process

Source Graal IR LIR Native Code
Graph- LIR Gen Assembler AMD64
builder

High Tier Mid Tier Low Tier LIR Gen Assembler ARMv8
Truffle
LIR Gen Assembler etc.
Front End Optimizations Back End

Figure 3.2: Graal compilation process.

Like most compilers, Graal is split into a source-specific part, a part that performs
most optimizations, and a target-specific part. Figure 3.2 contains a schematic overview

of Graal’s compilation process:

e The Front End is responsible for turning the Source representation, e.g., bytecode,
into Graal IR. The Graphbuilder parses bytecode and incorporates profiling feed-
back gathered by the interpreter. Another front end available within the Graal

3.2

3.2.1

24 Graal

project is the Truffle framework [76, 77], which can be used to develop runtime

environments for a wide variety of languages.

e The generic, platform-independent optimization phases are split into three tiers:
The most high-level optimizations, such as inlining, loop optimizations and escape
analysis, occur within the High Tier. The Mid Tier deals with memory, safepoint
and guard optimizations. Finally, the Low Tier prepares the graph such that it

can be converted into the low-level representation.

Graal IR is designed to allow these tiers to be deconstructed into small, inde-
pendent compiler phases that focus on a single task. A lowering phase at the
end of each tier deconstructs a certain set of operations into more low-level op-
erations. Constant folding, global value numbering, control-flow-sensitive value
propagation and certain other optimizations happen throughout all optimization

stages.

e The Back End translates the high-level Graal IR into a low-level IR, LIR, which
is already target-specific. After register allocation and peephole optimizations,

the actual native code for the LIR instructions is emitted.

Graal IR

Graal translates Java bytecode into a high-level intermediate representation called
Graal IR [17], on which it performs all optimizations. This SSA-based intermediate
representation models both control flow and data dependencies between nodes. Graal
IR [17] is therefore a hybrid structure based on a combination of two directed and
acyclic! graphs: a control flow graph and a data dependency graph. Each node in
the graph produces zero or one value, and the structure of each node type is defined
by a specially annotated Java class. Nodes can be connected by input dependencies
(“inputs”) and control flow anti-dependencies (“successors”), and the graph structure
keeps def-use information for these edges, i.e., looking up the usages and predecessors

of a node is an efficient operation.

Declarative Node Types

Node types used within Graal IR are described in a declarative syntax and with conven-

tions about the structure of their implementation classes. Listing 3.1 shows an example

'Phi nodes and proxy nodes being the only exception.

3.2 Graal IR 25

©Nodelnfo(shortName = "+")

public class IntegerAddNode extends FloatingNode {
@lnput private ValueNode x;
@lnput private ValueNode y;

public IntegerAddNode(ValueNode x, ValueNode y) {
this.x = x;

this.y = vy;

}

public ValueNode getX () {
return x;

}

public void setX(ValueNode x) {
updateUsages(this.x, x);
this.x = x;

}
//

Listing 3.1: Example declaration of a node class.

of a simple node class representing the addition of two values. The properties of a node

type are derived from a number of attributes of its class:

e In order for it to be recognized as describing a node type, the class directly or

indirectly derives from Node.

e The optional @Nodelnfo annotation provides a label for the node type. If this
annotation is missing, the label is derived from the class name by removing the
“Node” suffix (if present).

e Inputs and successors are marked as such with @Input and @Successor annotations.
They can reference a Node directly, or use a NodelnputList or NodeSuccessorList

if an input or successor list is needed.

e Unless a list is used, setters for inputs or successors need to call updateUsages or

updatePredecessors to keep the graph’s use-def edges in sync.

Deriving from the Node class provides node classes with efficient iterators for inputs,
successors, usages and predecessors. These are used, in turn, to implement fast re-
placement of nodes at their usages and predecessors. It is important to note that,
while inputs and successors are ordered, usages and predecessors are unordered collec-

tions.

3.2.2

26 Graal

Node classes can also be augmented with numerous additional capabilities by imple-

menting predefined interfaces. The most important ones are:

ValueNumberable
By implementing this marker interface, a node type is automatically subject to
global value numbering, i.e., two nodes with the same inputs, the same primitive
field values and equal object fields will automatically be combined into a single

node.

IterableNodeType
Marking a node class with this interface tells the system that iterating over all
nodes of this type in a graph should be an efficient operation. This is implemented

by keeping nodes of the same type in a linked list [17].

Canonicalizable
This interface lets node classes implement local optimizations that replace the

current node, e.g., constant folding and local strength reduction.

Simplifiable
In constrast to canonicalization, the simplification interface allows for non-local

changes, e.g., removing a branch of an if statement that has a constant condition.

Hierarchy of Node Types

Figure 3.3 contains an overview of Graal’s node type hierarchy. Nodes can be either
floating, or fixed within the control flow graph. The special VirtualState nodes are
the only exception to this rule. Fixed nodes have predecessors and/or successors, so
that they form a control flow graph, which is the “skeleton” of the graph. Floating
nodes, on the other hand, are only connected to the graph by inputs and usages,
and will automatically be deleted if they are not used (transitively) by a fixed node.
Additionally, floating nodes will automatically be global value numbered upon insertion,

because FloatingNode implements ValueNumberable.

The GraphBuilder turns the stack-based bytecode into static single assignment (SSA)
form [14], which means that phi nodes are used to merge values at control flow merges.
All values are also proxied by Proxy nodes at loop exits, so that the graph is in loop
closed form [19]. This means that values flowing from the loop body to the successors
of the loop are explicit in the graph, which greatly simplifies loop optimizations like
peeling and unrolling. The loop closed form is maintained throughout high tier, but

removed later on to allow for additional optimizations.

3.2 Graal IR

27

FloatingNode

AN

Node
VAN
| ‘ VirtualState
ValueNode ﬁl
‘A — FrameState
| \
FixedNode
VAN
IntegerAddNode ControlSplitNode —t— ControlSinkNode
AN VAN
bjectEqualsNod
ObjectEqualsNode IfNode — — ReturnNode
PhiN
jhlede SwitchNode — — DeoptimizeNode
ProxyNod
roxyNode — L UnwindNode
InstanceOfNode FixedWithNextNode ~——— EndNode
VAN
— StoreFieldNode

— MonitorEnterNode

— InvokeNode

Figure 3.3: Hierarchy of Graal Node Classes

28

Graal

| Start | |Paramb| |Parama|
<
v
o
| BeLin | | Begin | in:n:dil\?r:r;l(int a, int b, int Sum) {
+ v if (a>b){
| End | | End | } r:;ge:{b,
7y % 4 _
I min = a;
Merge } . '
v.. } return min + sum;
|~ Phi | | Param sum |
+
v
Return

Figure 3.4: Small example along with the Graal IR that will be generated for it.

Figure 3.4 shows the Graal IR generated for a small example method. Some specific

properties of Graal IR are visible in this example:

Successor edges between nodes create the control flow of the graph. In the exam-

ple, these edges are represented by red downwards-pointing arrows.

Input edges between nodes create the data flow of the graph. These edges are
represented by upwards-pointing arrows. Solid blue arrows are real data flow,

while dashed grey arrows are structural dependencies.

Each graph starts with a special Start node.

The targets of a control flow split are always Begin nodes, and the predecessors

of a merge are always End nodes.

The Merge node uses inputs to reference its predecessor End nodes. The prede-
cessors of a node are an unordered collection in Graal IR. Therefore, connecting
the End nodes to the Merge node via normal control flow would mean that it is

not clear which End node a specific input of a Phi function refers to. By using

3.2.3

3.2 Graal IR 29

inputs, the Merge node maintains the order of its predecessors, and the ¢th input

of the Phi function can be associated with the ¢th End node.

e The “greater than” comparison was immediately replaced with a “less than” com-
parison with switched inputs. Graal IR only supports “less than” and “equals”
comparisons, because it tries to be as canonical as possible. All other comparisons
can be transformed into one of these two options by switching input operands

and/or switching the If node’s successors.

The graph in Figure 3.4 contains a control flow structure which consists of all nodes
connected by successor edges (red arrows). These so-called fixed nodes will be executed
in a specific, predefined order. Floating nodes, such as the addition and the comparison,
are only connected to other floating and fixed nodes via data flow edges (blue arrows),
and they need to be placed at a specific point in the control flow during the final stages
of compilation. There are usually many positions where an operation could be placed,
and it is up to the so-called Scheduler to determine a good one according to a chosen

strategy (e.g., earliest possible, latest possible, latest possible but out of loops).

Frame States

Graal is an aggressively optimistic compiler, which means that, for many operations,
it generates code which can only correctly handle the common case or the cases that
were encountered during profiling. For example, it never expects a field access to throw
a NullPointerException, unless the profiling information indicates otherwise. Graal will
make sure that the target of the field access is tested for a null value in some way, but

it will not create any code to raise and handle the exception.

Such an assumption, which still need to be checked when a method is executed, is
considered to be a dynamic assumption. Graal can also take static assumptions on the
current state of the Java VM, e.g., that only one implementation of a specific interface

is currently loaded.

When one of these assumptions is invalidated, e.g., by loading a new class or by
entering an unexpected branch, the execution needs to be transferred from compiled
code back to the interpreter (which does not make any assumptions and can execute
all code). This switch back to the interpreter is called deoptimization [28] (see Sec-
tion 2.2.1) and requires a translation from the machine state (native stack frames)

back to the Java VM state (interpreter stack frames).

30 Graal

Within Graal IR, it is possible to obtain a valid mapping to Java VM state for
all positions that can cause a deoptimization to occur. This mapping is expressed as
FrameState nodes and consists of the current position (bytecode index and method),

the local variables, the contents of the expression stack and the locked objects.

After inlining, one position can map to multiple Java VM stack frames. A frame
state thus contains a reference to an outer frame state, which is the caller’s state. This
reference is used to create chains of FrameState nodes that describe the state of all

inlined methods at the current position.

The Graal IR keeps the frame states not at the points where the actual deoptimiza-
tions take place, but at so-called state splits. State splits are operations such as field
stores and method calls which have side-effects and cannot be safely re-executed. Op-
erations such as an integer addition do not have a side effect and re-executing them
will lead to the same result. A memory allocation does have a side effect on the VM,
but it is not visible to the application, therefore it is also not considered to be a state

split.

State splits are associated with a frame state that describes the state after the state
split. A machine code instruction that causes or can cause a deoptimization will be
associated with the after state of the last side-effecting instruction. All instructions
that were executed in-between do not have side effects and can therefore be safely

re-executed in the interpreter.

An example that includes inlined frame states is shown in Figure 3.5. The method
test was compiled, and within it the call to inc was inlined. The compiler graph shown
in the example therefore contains code from both the test and the inc method. It is

important to note that the LoadStatic nodes are fixed nodes?.

The StoreField and StateStatic nodes in this example are state splits and, therefore,
need frame states. These frame states refer to the bytecode indexes 8 and 15 in the
method inc, which are the instructions after putstatic and putfield. The inputs of the
frame states point to the values of the local variables and the stack expressions at the

frame state’s position.

The frame state for test has one local variable, which contains the parameter a
(represented by the Param a node). In addition to the parameter a, the frame states

for inc contain the constant 5 as the current value of the parameter add.

2They will be transformed into floating nodes during later stages of compilation. This lowering
mechanism is of no consequence to Escape Analysis, and is therefore not covered in this thesis.

3.2 Graal IR 31

class A {
int value;

Start } static int staticValue;

static void inc(A a, int add) {

LoadStatic A.staticValue += add;

a.value = A.staticValue;

}
D test3 static void test(A a) {
""""""" ' inc(a, 5);
}

static void inc(A, int);
0: getstatic A.staticValue

\4

5 3: iload_1
! / 4: iadd
LoadStatic AR 5: putstatic A.staticValue
""""""""""" : 8: aload_0
\ . 9: getstatic A.staticValue
StoreField | 12: putfield A.value
15: return
‘L static void test(A);
Return 0: aload_0

1: bipush 5
3: invokestatic inc(A, int)
6: return

Figure 3.5: Example for frame states of inlined methods, along with the Java source
and the bytecode of the methods.

Both inc frame states refer to an outer frame state within test at bytecode index 3,
which is the location of the invokestatic instruction. In case one of the frame states
of the stores is used for deoptimization, the reference to the outer frame state is used
to reconstruct all frames at the store, i.e., the frames for both the test and the inc

methods, in order to undo the inlining performed during compilation.

Such a deoptimization will occur, e.g., if null is passed as parameter a to the test
method. The second field store instruction, which is the store to value, will fail, because
it would have to store to a null instance. As this is an infrequent case, the Graal IR does
not contain code to raise the NullPointerException. Deoptimization will occur, which

creates interpreter frames for the test:3 and inc:8 frames.

It is important to note that the inc:15 frame state is not used in this case, because it
is only valid after the store was executed. The interpreter will re-execute the bytecodes
of inc starting at index 8. It will thus re-execute the aload_0 and getstatic instructions

and raise the correct exception when it tries to execute putfield.

32 Graal

3.2.4 Object Creation and Modification

The following graph snippets show how object creation and modification is represented
within the Graal IR:

Instance Allocation:

v
v\

Newlnstance nodes are used to create new instance objects. It will allocate the
object in the heap, set the object header and initialize all fields to their default
values (0, false or null). The class of the object to be allocated needs to be known

at compile time.

The blue data dependence arrow indicates usage of the created instance by later

instructions.

Array Allocation:

length

v

v\

New arrays are allocated by NewArray nodes. The length of the array is a runtime
input to the node, while the element class needs to be known at compile time.

All entries in the array will be initialized to their default values.

Field Store:

instance value FrameState :

of ST

StoreField xyz

StoreField nodes set the value of a field in the given instance object. The field store
has a side effect, so it cannot be re-executed after a deoptimization. Therefore,

it is a state split node and has an associated FrameState.

Array Store:

array index value | FrameState -

J T

Storelndexed

Storelndexed nodes are similar to StoreField nodes, except for the fact that they

also require the array index to be stored to.

3.2 Graal IR 33

Acquiring and Releasing a Lock:

object © FrameState ; object : FrameState

_:i """"" ':i """""
W/ WS
7 7

MonitorEnter nodes and MonitorExit nodes are used to acquire and release locks.
These operations have a side effect, so they cannot be re-executed after a deop-

timization. Therefore, they are state splits and have an associated FrameState.

3.2.5 Accessing Object Properties

The following graph snippets show how access to object properties is represented within
the Graal IR:

Field Load:

instance

v

2N

The LoadField node, which is used to load the value of an instance field, has no

side effect, so it does not need a FrameState.

Array Load:

array index

of

LoadIndexed

The LoadIndexed node is similar to the LoadField node, except for the fact that it

also requires the array index to be loaded from.

Array Length:

array

v
v\

The ArrayLength node produces the length of the given array.

34 Graal

Type Check:

object

InstanceOf

T

The InstanceOf node, which is used, e.g., as a condition for an if node, tests if the

given object is an instance of a specified type.

Type Cast:

object

CheckCast

v\

The CheckCast node will deoptimize if the given object is not either null or an

I<_

object of a specified type. After deoptimization, the execution in the interpreter
will continue at the closest previous point for which a FrameState is defined. It

will re-execute the cast and thus throw a ClassCastException.

Equality Comparison:

object object

ObjectEquals

The ObjectEquals node checks whether two given objects are either both null or the
same object, as determined by object identity. It can also be used as a condition,

e.g., for If nodes.

3.2.6 Additional Operations on Objects

The following graph snippets show how additional operations on objects, such as passing

them to method invocations, are represented within the Graal IR:

Static Field Store:

object | FrameState -

v

Objects can be stored into static fields by a StoreStatic node. In this case, no

instance is necessary.

3.2 Graal IR 35

Method Call:

receiver argument

v

Invoke

Invoke nodes, which represent method invocations, use a MethodCallTarget node
for representing the target of the invoke. This node references both the receiver
(for non-static calls) and the parameters of the method call. The MethodCallTar-
get node serves as an abstraction that encapsulates the common parts of different

platform-specific Invoke node types.

Return Value:

object

v

The Return node can return a value if the current method is not of type void.

Thrown Exception:

object

v

If an exception is thrown and caught within the same compilation scope, this
will be represented as ordinary control and data flow. Only if the exception is
not handled in the same compilation scope, an Unwind node is used to pass the

exception to the next outer frame at run time.

37

Chapter 4

Escape Analysis

This chapter introduces the basic concepts of Escape Analysis. It elaborates
on the optimizations enabled by Escape Analysis and why they are benefi-
cial, and explains characteristics of different algorithms for Escape Analysis

that put the new techniques introduced in later chapters into context.

Escape Analysis checks whether an allocated object escapes, i.e., can be used outside,
the allocating method or thread. This happens if it is assigned to a global variable or
to a heap object, if it is passed as a parameter to some other method, or if it is returned
from the current method. Compilers use Escape Analysis to determine the dynamic
scope and the lifetime of allocated objects. The result of this analysis allows the
compiler to perform numerous optimizations on operations such as object allocations,

synchronization primitives and field accesses.

Frameworks such as Java EE [30] and languages such as Scala [40] confront Java VMs
with additional levels of abstractions, which usually consist of small and short-lived
objects. Escape Analysis can help in removing these abstractions, thereby offsetting
the costs these new technologies incur in exchange for their advantages. Java itself also

introduces additional layers of abstraction, such as in the following examples:

ArraylList<Integer> list = ... StringBuffer buffer =
int s = 0; new StringBuffer();
for (int v : list) { buffer.append (...);

s 4= v; buffer.append(":");
} buffer.append (...);
return "sum:, " + s; return buffer.toString();

Each time the code in the left example is executed, it will allocate an instance of a
list iterator for the for-each loop. The compiler can transform the for-each loop into a
counting for loop here, avoiding the allocation of the iterator. The StringBuffer in the
example on the right-hand side is a synchronized data structure, so that every operation

needs to acquire the object’s lock. However, it is obvious that the buffer object does not

4.1

38 Escape Analysis

escape to another thread in this example. The lock can therefore never be contended,

so no synchronization is necessary.

Example

Listing 4.1 shows a small piece of code that will serve as an example to show the benefits
of Escape Analysis: The getValue method creates a new Key object and checks whether
it is in the cache. If so, the method returns the cached value. Otherwise, it creates and
returns a new value (the contents of the creatéValue method are of no consequence and

are therefore not discussed here).

public class Example {
private static class Key {

public int idx;

public Object ref;

public Key(int idx, Object ref) {
this.idx = idx;
this.ref = ref;

}

public synchronized boolean equals(Key other) {
return idx = other.idx && ref = other.ref;

}

}

private static Key cacheKey;
private static Object cacheValue;

public static Object getValue(int idx, Object ref) {
Key key = new Key(idx, ref);
if (key.equals(cacheKey)) {
return cacheValue;

1 else {

return createValue (...);

}
}
}

Listing 4.1: Simple example.

When getValue is compiled, the compiler will most likely perform some inlining, which
might cause the actually compiled code to look like Listing 4.2. The Key constructor
and the equals method have been inlined into the getValue method, and a synchronized

block was created to achieve synchronization on the inlined equals method.

When Escape Analysis examines the resulting method, it will come to the conclusion

that no reference to the allocated Key object escapes from the current compilation scope.

4.2

4.2 Optimizations 39

public static Object getValue(int idx, Object ref) {
Key key = alloc Key; // pseudocode
key.idx = idx;
key.ref = ref;
Key tempKey = cacheKey;
boolean temp;
synchronized (key) {

temp = key.idx = tempKey.idx && key.ref = tempKey. ref;
if (temp) {

return cacheValue;
} else {

return createValue (...);

}
}

Listing 4.2: getValue method from the example in Listing 4.1 after inlining.

This implies that no references to the object exist after the method has returned, and
that no other thread can ever see a reference to this object. The compiler can use these
observations to perform a number of optimizations, the result of which might look like
Listing 4.3. The allocation was replaced with the local variables idx1 and refl, and the

synchronized statement was removed entirely.

Both Listing 4.2 and Listing 4.3 use a temporary variable for the value read from
cacheKey. Re-reading the value would alter the behavior of the code, because different

values could be read each time.

public static Object getValue(int idx, Object ref) {
int idxl = idx;
Object refl = ref;
Key tempKey = cacheKey;
if (idxl = tempKey.idx && refl = tempKey.ref) {
return cacheValue;

} else {

return createValue (...);
¥

}
Listing 4.3: Example from Listing 4.2 after Scalar Replacement and Lock Elision.

Optimizations

The above example employs Scalar Replacement and Lock Elision to perform the actual
optimization. There are a number of optimizations commonly used in conjunction with

non-escaping objects:

Escape Analysis

Stack Allocation The allocation of an object on the garbage-collected heap can be

replaced with an allocation on the stack. This reduces the pressure on the garbage

collection subsystem, because less memory is allocated on the heap.

Zone Allocation Another way of reducing the pressure on garbage collection is alloca-

tion in non-garbage-collected areas such as zones. Zones are heap areas with a

known, limited lifetime, which can be freed in bulk when a certain scope is left.

Scalar Replacement Scalar Replacement [11] substitutes the fields of an object by

local variables, thus avoiding the allocation of the object on the heap. This also
leads to less work for the garbage collector. Additionally, the fact that values
will not flow through memory any more usually opens up opportunities for other

optimizations such as Constant Folding and Value Propagation.

The Escape Analysis algorithm needs to show more than just the fact that the
allocated object does not escape. When Scalar Replacement is performed, the
object’s identity gets lost and the object’s class is not stored in the object itself.
One implication of this is that Scalar Replacement is not possible for objects that

are merged at phi functions. Consider the following examples:

Base x, vy;

Base x; if (...) {
if (...) { x = new SubclassA ();
x = new SubclassA(); y = b;
x.f = valuel; } else {
} else { x = new SubclassB ();
x = new SubclassB(); y = null;
x.f = value2; }
} /o
/o it (x =) {
return x.f; /] ...
}

The example on the left would require the system to recognize that only the field
“f” of the base class is required and needs to be retained at the merge. The
example on the right uses object identity explicitly, which also prevents Scalar

Replacement. Solutions to deal with these problems are presented in Section 10.1.

In essence, Escape Analysis needs to collect enough information to prove for every
variable of the allocated object’s type that it either always references the allocated
object or never references it. If it succeeds, Scalar Replacement can be used to

perform the replacement and remove the allocation.

Lock Elision An object’s lock will never be contended if it cannot escape to other

threads. Therefore, Lock Elision can remove the synchronization, a potentially

4.3

4.3.1

4.3 Classification of Algorithms 41

very expensive operation. Java requires synchronization to also be a barrier for re-
ordering memory accesses (see Section 2.1.3.1). However, given that Java requires
this barrier only with respect to threads that can observe the synchronization

event, it can also safely be removed.

For some methods that frequently allocate short-lived objects, these optimizations
are key to achieving good performance. Compilers will perform aggressive inlining to
make the compilation scope larger, in order to pull as many operations as possible into
the current compilation scope and to expose as many operations as possible to Escape

Analysis and the associated optimizations.

Classification of Algorithms

There is a wide range of algorithms for performing escape analysis. They differ mainly

in the size of the scope they work on and how much context they take into account.

Object Scope

Basic Escape Analysis implementations, such as the one used in current versions of the
v8 JavaScript engine [21] and in LuaJIT [44], work on one object allocation at a time.
An object is considered to be non-escaping if it trivially stays within the allocating
method, i.e., there is no point at which the object escapes into a field of another object,
a global variable, a return value or a parameter to a method call. The effectiveness
of such basic algorithms depends heavily on the structure of the code: In some cases,
the application’s code exhibits certain traits that benefit Escape Analysis, which are
encouraged either by convention or by the programming language itself. In other cases,
the compiler optimizations preceding Escape Analysis transform the code into a form

better fit for Escape Analysis.

Working on one object allocation at a time cannot process complex cases, in which
multiple objects depend on each other, or cases in which allocated objects are inputs
to phi functions. More sophisticated Escape Analysis algorithms, such as Equi-FEscape
Sets introduced by Kotzmann and Mossenbock [32], therefore work on more than one
object at a time. These algorithms build sets of objects that have the same escape
state, with each object initially being in a separate set. By analyzing all operations in
the method, the system can merge sets (e.g., when an object in one set is assigned to
a field of an object in another set), or mark a set as escaping (e.g., when an object in

this set is assigned to a global variable).

42 Escape Analysis

4.3.2 Control Flow Sensitivity

Escape Analysis algorithms can also be divided into control-flow insensitive and control-
flow sensitive algorithms. Control-flow insensitive algorithms are usually faster, be-
cause they create a fixed data structure that describes all object allocations and object
accesses within the compilation scope, and derive all decisions from this structure.
Control-flow sensitive algorithms maintain such a data structure dynamically as they
iterate over the intermediate representation, with special handling for loop and merge

constructs.

it (...) f
b.x = c;

} else {
a.x = b.x;

}

Listing 4.4: Example which has different implications for object escapability for flow-
sensitive and flow-insensitive analysis.

The example in Listing 4.4 will have different effects on the escapability of the objects

a, b and ¢ depending on whether the analysis is flow-sensitive or not:

e Flow-insensitive analysis will connect a and c: if a escapes, so does c, because a.x

might have the value c.

e Flow-sensitive analysis will determine that a.x will never actually have the value

¢, and thus no such connection needs to be made.

4.3.3 Code Representation

Escape Analysis and the associated optimizations can be applied at different levels of

the compilation chain:

e Some algorithms, such as the ones proposed by Beers et al. [3] and Jin et al. [31],
parse the source code or bytecode, so that the input to the actual compiler already
includes modifications or annotations. This has the advantage of requiring less
or no modifications in the compiler, but will usually duplicate significant parts of
the infrastructure for parsing and analyzing code. It also means that inspecting
the original code is more complicated, since the modifications are visible during

debugging sessions.

4.3 Classification of Algorithms 43

e Escape Analysis can also be performed immediately before the parsing step within
the compiler, so that the optimizations facilitated by the analysis will be applied
during bytecode parsing. This will make the parsing step significantly more com-
plicated, but does not require information only necessary for Escape Analysis to

be maintained after parsing.

e Escape Analysis can be performed on the compiler’s intermediate representation,
as done by, e.g., Kotzmann and Mossenbock [32]. For this, the intermediate rep-
resentation needs to contain all information necessary for Escape Analysis. For
example, allocations cannot be immediately decomposed into lower-level opera-

tions in a way that would prevent Escape Analysis from recognizing them.

e Escape Analysis could also be performed multiple times at different stages of the
compiler. Escape Analysis has non-trivial interactions with other optimizations
such as loop unrolling, so it may be beneficial to apply it multiple times. This
requires all optimizations to maintain the intermediate representation in a state

suitable for Escape Analysis.

4.3.4 Intraprocedural vs. Interprocedural Escape Analysis

Figure 4.1: Examples for situations handled by Intra- and Interprocedural Analysis.

Intraprocedural Escape Analysis looks at all operations on a newly allocated object
within one compilation scope. Any operation that lets the object escape causes Escape
Analysis for the object to fail. Such a failure prevents optimizations on this object that
can only be performed on non-escaping objects, in the whole method. An example of a
situation handled by Intraprocedural Escape Analysis is shown on the left of Figure 4.1.
None of the operations performed on the object i lets it escape, so that the whole state

of the object is known at all times within compilation scope A.

44 Escape Analysis

Interprocedural Escape Analysis tries to statically determine if an object can escape
into global state via subsequently called methods. It does so by recursively determining
all methods that could possibly receive the object as an argument. If none of these
methods perform an operation that causes the object to escape into global state, then
the lifetime of the object is known to limited to the current compilation scope. On the
right of Figure 4.1, the object i has a limited lifetime even though it is passed as an

argument to compilation scope B and used by a read operation therein.

Interprocedural Escape Analysis can prove the non-escapability of objects in more
cases than Intraprocedural Escape Analysis. However, it still requires objects to not
escape in any branch of the application, so that it fails even if the object only escapes
in an unlikely path of the compiled code. Also, it requires the object to be allocated at

least on the stack, so that Scalar Replacement is not possible.

Generally, Interprocedural Escape Analysis is hard to implement in dynamic and
complex systems such as a Java Virtual Machine, because dynamic binding makes it

hard to efficiently determine a set of reachable methods without being too conservative.

5.1

45

Chapter 5

Partial Escape Analysis

This chapter introduces the new concept of Partial Escape Analysis in detail,
starting with an example that motivates the new algorithm. It explains the
state that is kept and updated during the iteration over the compiler graph
and how the operations in the graph influence this state. Before ending with
details about how Partial Escape Analysis is tied into the Graal system, the

handling of control-flow merges and loops is presented.

Example

In many cases, making a global decision about the escapability of objects does not
allow the compiler to perform optimizations, because most objects escape at least in
some branches. For example, the object allocated in Listing 5.1 escapes into the global

variable cacheKey, so that Escape Analysis would consider it to be escaping.

Object getValue(int idx, Object ref) {
Key key = new Key(idx, ref);
if (key.equals(cacheKey)) {
return cacheValue;
} else {
cacheKey = key;
cacheValue = createValue (...);
return cacheValue;

Listing 5.1: Motivating example for Partial Escape Analysis.

However, if we only consider the path through the true branch of the if statement, the

object does not escape. Analyzing the escapability of objects for individual branches

46

Partial Escape Analysis

is called Partial Escape Analysis. Partial Escape Analysis iterates over the code and

maintains the current escape state and the current contents of allocated objects during

this process. Initially, each allocated object is in the state virtual, which means that

there was no reason yet to actually allocate it. As the algorithm progresses along the

control flow, it updates this state when instructions operate on the allocated object.

1 Object getValue(int idx, Object ref) {
Key key = alloc Key; // pseudocode
key.idx = idx;

key.ref = ref;

Key tempKey = cacheKey;

boolean temp;

synchronized (key) {

© 0 N 3 s W N

e e e e
D ks W N = O

-
<Y
[

}

temp = key.idx = tempKey.idx && key.ref =— tempKey. ref;
if (temp) {

return cacheValue;

else {

cacheKey = key;

cacheValue = createValue (...);

return cacheValue;

Listing 5.2: Example from Listing 5.1 after inlining.

The transition from Listing 5.2 to Listing 5.3 shows how Partial Escape Analysis lets

the compiler optimize the code in the example:

e The allocation in line 2 is removed, and an entry for this object is created that

specifies that it is virtual and that all fields have their default values.

The assignments to the fields idx and ref of the virtual object in lines 3 and 4 are

removed, and their effects are remembered by updating the object’s field states.

When entering the synchronized region in line 7, the object is still virtual. The
monitor enter operation is removed, and the object’s state is augmented with a
locked flag that specifies that this object would have been locked if it actually

existed at this point.

The accesses to the idx and ref fields of the virtual object in line 8 can be replaced

using the object’s current field states.

When exiting the synchronized region in line 9, the object is still virtual. Thus,
the monitor exit operation is removed, and the locked flag is removed from the

object’s state.

5.2

5.2 Partial Escape Anlaysis in Graal 47

e At the if statement in line 10, a copy of the current state is created, because it

has to be propagated to both successors of this control split.

e When continuing at line 11, the object is still virtual, and the return statement

ends the processing of this branch.

e When continuing at line 13, the object is still virtual, but the assignment to the
static field cacheKey lets the object escape. In order for it to escape, it needs
to exist, and therefore the object needs to be created and initialized with the
current state of its fields at this point. This process is called materialization in

our system.

e The object is transitioned to the state escaped at this point, and the state of its
fields cannot be used from here on since there could be assignments to the fields

from outside the compilation scope.

e Lines 14 and 15 do not affect the state of the object anymore.

Object getValue(int idx, Object ref) {

Key tempKey = cacheKey;

if (idx = tempKey.idx && ref =— tempKey.ref) {
return cacheValue;

} else {
Key key = alloc Key; // pseudocode
key.idx = idx;
key.ref = ref;
cacheKey = key;
cacheValue = createValue (...);
return cacheValue;

Listing 5.3: Example from Listing 5.2 after Partial Escape Analysis.

In effect, the allocation was moved into one branch of the if statement. While this
did not lead to fewer allocation sites in the resulting code, it reduces the dynamic
number of allocations at runtime. The actual reduction depends on the likelihood
of the branch containing the allocation being reached, but there will never be more

dynamic allocations than in the original code.

Partial Escape Anlaysis in Graal

Partial Escape Analysis is particularly effective if it can interact with other parts of the

compiler, such as inlining, global value numbering, and constant folding. In order to do

5.2.1

48 Partial Escape Analysis

S0, it needs to work on the same internal program representation as other optimizations,
which, in case of Graal, is the high-level Graal IR [17] (see Section 3.2).

Figure 5.1 shows the Graal IR for the example in Listing 5.2 (after inlining). As the
Graal IR is in SSA form, there are no more variables, and the local variable temp is
expressed using a phi function. The result of the phi function is true if the conditions of
both if statements are true (and therefore, the left branches of the If nodes are taken),

and false otherwise.

Graal’s Partial Escape Analysis starts iterating the IR graph at the Start node, and
processes each node as soon as all its control flow predecessors have been processed.
This means that it will follow the control flow, branch at control splits, and process
Merge nodes as soon as all predecessors have been visited. Iteration stops at control

sinks such as Return and Throw nodes.

During this iteration the system maintains a state that keeps track of previously
encountered object allocations. For each node that is visited, the system takes the
predecessor state and updates it by any effects of the current node. Merge nodes and
loop entries are special in that there are multiple predecessor states (from merged
branches and loop back edges), which need to be merged into one consistent state

before processing the node.

If there was no reason yet to actually create (materialize) an allocated object, it is
considered to be virtual. In this case the state of all fields and the number of held locks
is known. When a previously virtual object needs to be created in the heap, an actual

allocation needs to be inserted, which is considered to be the materialized value.

Figure 5.2 shows the result of performing Partial Escape Analysis on the graph in
Figure 5.1. The allocation of the Key object was removed, along with the initializing
field stores and the subsequent loads from these fields. The monitor operations were
removed, and in the branch that actually needs the Key object to exist, a Materialize
node was added. Finally, control flow optimizations coalesce the if with the subsequent
merge, the result of which is shown in Figure 5.3. The compiler recognized that the
phi function and the If node that depends on it is not necessary, because it can connect

the predecessors of the phi’s Merge node with the correct successors of the If node.

Blocks, Scheduling and Reverse Postorder Iteration

Graal IR contains both nodes that are fixed in control flow and nodes that are “float-
ing”, i.e., only constrained by their data flow dependencies. The fixed nodes define a
basic control flow structure for the graph, into which all floating nodes can be inserted

(scheduled) at positions that fulfill their dataflow dependencies.

5.2 Partial Escape Anlaysis in Graal

49

| Param idxl | Param ref |
v

New Key |3

StoreField ref

LoadStatic cacheKey
/7

MonitorEnter

LoadField idx

:

LoadField idx

LoadField r

LoadField ref

true false false

Merge --=-- Phi true
MonitorExit ==

:

StoreStatic cacheValue

LoadStatic cacheValue

Figure 5.1: Graal IR of the example in Listing 5.2 (after inlining).

50 Partial Escape Analysis

| Param idxl | Param ref |

LoadStatic cacheKey

.

LoadField idx

/V

A

| LoadStatic cacheValue | Materialize Key |

v) v)

Return | StoreStatic cacheKeyl

Invoke createValue

StoreStatic cacheValue

LoadStatic cacheValue

Figure 5.2: Graal IR of the example in Listing 5.2 (after Partial Escape Analysis).

5.2 Partial Escape Anlaysis in Graal

o1

| Param idx| | Param ref |
LoadStatic cacheKey

LoadField idx

LoadField ref

v)

| Return | | Materialize Key |

StoreStatic cacheKey

Invoke createValue
StoreStatic cacheValue
LoadStatic cacheValue

Figure 5.3: Graal IR of the example in Listing 5.2 (after control flow optimizations).

52 Partial Escape Analysis

LoadStatic cacheKey
LoadField idx

B6 ;- Begin E B7 E Begin

LoadStatic cacheValue Materialize Key
StoreStatic cacheKey

Figure 5.4: Block structure of the Graal IR in Figure 5.2. The dashed boxes represent
begin and end nodes that were omitted in Figures 5.1 to 5.3.

In order to gain a higher-level view of a method’s control flow, Graal splits the control

flow into blocks, also called basic blocks. These blocks adhere to a predefined structure:

e Blocks only contain straight-line control flow, so the only entry into a block is
its first node, and the only exit from a block, apart from implicit exceptions and

guards, is its last node.

5.2 Partial Escape Anlaysis in Graal 53

e The first node within a block is either a Start node, a Merge node or a Begin node.
It is important to note that the LoopBegin node class derives from the Merge node

class and is therefore considered to be a merge node.
e The last node in a block is either a ControlSink®, a ControlSplit? or an End node.

Figure 5.4 visualizes the block structure of the previous example in Figure 5.3. It
also includes begin and end nodes that were omitted in the previous figure for the sake
of brevity; these nodes are drawn with a dashed outline. They will again be omitted
in the rest of this thesis because they exist mainly to ease recognition of basic blocks

and are of no consequence to the algorithms presented in this thesis.

Partial Escape Analysis traverses blocks in reverse postorder, i.e., every block is
visited as soon as all its predecessor blocks have been visited. For the sake of this
iteration, floating nodes are placed into blocks by the so-called Scheduler. The Scheduler

also creates an ordering of both floating and fixed nodes inside the blocks.

5.2.2 Allocation State

Nodes
alias VirtualObject VirtualState
New Key — state R
Key (1) voofol-|

/
|:| lockCount //

fields

E dStat
e
e ——— [
|:| materializedValue —

Figure 5.5: Visualization of the allocation state used in the rest of this thesis.

Figure 5.5 shows a visualization of the allocation state maintained during the control-
flow iteration. Each object allocation encountered in the original code is represented
by a VirtualObject node. For each of these VirtualObject nodes there is an ObjectState
describing the current knowledge about this allocation. If the allocation is still virtual,
the state is a VirtualState representing the field values and the lock count. If the allo-
cation escaped, the state is an EscapedState containing the materialized value. Finally,

aliases provide a mapping from Graal IR nodes to VirtualObject nodes. It will initially

'Return nodes, Deoptimize nodes and Unwind nodes are common control sinks.
2If nodes and Switch nodes are examples for control splits.

5.2.3

54 Partial Escape Analysis

map from the New node of the original program to the allocation’s VirtualObject node,

but during further analysis more aliases for the same allocation might be added.

class VirtualObjectNode extends Node {
Type type;

class ObjectState {

}

class VirtualState extends ObjectState {
int lockCount;
Node[] entries;

class EscapedState extends ObjectState {
Node materializedValue;

}

class State {
Map<VirtualObjectNode , ObjectState> state;
Map<Node, VirtualObjectNode> alias;

}
Listing 5.4: The state that is propagated through the IR.

Listing 5.4 contains a simplified version of the data structures used to store the state
described in the last paragraph. State contains the the information that will be updated

continuously with new aliases and states during iteration.

Effects of Nodes on the Allocation State

While iterating over the control flow, Partial Escape Analysis looks for operations that
have an effect on the allocation state. There are three categories of nodes that require

some action:

e Allocations create new virtual objects, therefore they always modify the state by

adding new elements.

e If any of the inputs of a node is a key in the aliases map, then the node needs to

be examined.

e Merge nodes and LoopBegin nodes (loop headers) merge multiple states.

5.2 Partial Escape Anlaysis in Graal 55

5.2.3.1 Object Creation and Modification

The following patterns introduce new virtual objects and change existing virtual objects.
If all effects of an operation can be encoded in the virtual state the operation will be

removed from the intermediate representation.

Instance Allocation:

ek Kty —— v i3]

For each instance allocation, a new VirtualObject node and a new VirtualState
object is created, and the VirtualState object is initialized with default values.
Also, new entries in the aliases and states maps are created that point from the
allocation to the VirtualObject node and from the VirtualObject node to the Vir-
tualState.

Array Allocation:

L /
T e

Only array allocations with a statically known size can be processed by Partial
Escape Analysis. Similar to instance allocations, new VirtualObject nodes and

new VirtualState objects are created and entered into the states and aliases maps.

The number of entries in the VirtualState corresponds to the array size. In order
to limit the overhead introduced by Partial Escape Analysis, only arrays up to a
configurable maximum size, which defaults to 32, are processed®. Arrays above
this limit are treated as if their size was non-constant, i.e., no VirtualObject node

will be introduced for them.

3In general, this limit should correspond to the maximum number of iterations with which a loop will
be unrolled. Loops working on arrays of a larger size will not be unrolled, so that the array indexes
are not constant, which will cause the array to be materialized anyway.

56 Partial Escape Analysis

Field Store (non-virtual value):
New Key

- -| StoreField idx

Storing the value generated by a node that is not aliased with any virtual object
into a field of a virtual object sets the field value in the corresponding VirtualState
object. While the example stores the value generated by the Constant node “57,

the value can also be a non-constant value generated by some other node.

Field Store (virtual value):

g |t ——

| Newkey |——> Key@ —>V ofo]]

- -| StoreField ref

T m——r
CIT

Storing the value generated by a node that is aliased with a virtual object into

a field of another virtual object puts a reference to the VirtualObject node of the

stored object into the field value in the target virtual object.

Array Store (non-virtual value):

3

New int[]

- Storelndexed

Array stores to virtual objects can only be processed by Partial Escape Analysis

if the index is constant and within the bounds of the array. Similar to storing a

5.2 Partial Escape Anlaysis in Graal 57

non-virtual value into an instance, the value is put into the array elements in the

array’s VirtualState.

Array Store (virtual value):

New Key

; i b _tert) —— v3[o[]
A 4
New Keyll | New Key[] > Key[] (2) —»véoEED

(v |2

Similar to storing a virtual value into an instance, a reference to the value’s Vir-

tualObject node is stored into the array elements in the array’s VirtualState.

Acquiring a Lock:

-| MonitorEnter

Entering a synchronized region (via a MonitorEnter node) with the locked object

being a virtual object increments the lockCount.

Releasing a Lock:

ek |ty ——v[i[o]]

-l MonitorExit Je-e-memmmm e aa e * ----------------------------

vk | ke —— v][]

Exiting the synchronized region decrements the lockCount. The lockCount cannot
drop below zero, because this would be an invalid pairing of monitor operations

that will be rejected during bytecode parsing.

5.2.3.2

58 Partial Escape Analysis

Accessing Object Properties

The following patterns query information about existing virtual objects. If an access
can be satisfied from the information in the VirtualState, the node that represents this
access will be removed from the intermediate representation and will be replaced with

this information.

Field Load (non-virtual value):

| NewKey [——> Key@ ——>vi1[r]-]

v

Bl >
Loading a (non-virtual) value from a field of a virtual object replaces the LoadField
node with the value from the corresponding field of the VirtualState at all its

usages. While the example replaces the LoadField node with the Constant node

“7”, the replacement can also be some other, non-constant, node.

Field Load (virtual value):

[New s | s ()
TN

- LoadField ref | =====nnmmmmmmce e

T S
Vi

- > Integer (1) ——» O

LoadField ref

Nerke |k

Loading a virtual object X from a field of some other virtual object makes the

LoadField node a new alias of X. In our example, the LoadField node can thus be

recognized as referring to the virtual Integer during further processing.

5.2 Partial Escape Anlaysis in Graal 59

Array Load (non-virtual value):

v g —— vIo[5[¢]

-| LoadIndexed |----

6
If the index is constant, an array load of a non-virtual value can be processed simi-

lar to a field load: the array load is replaced with the value from the corresponding

array element from the array’s VirtualState.

Array Load (virtual value):

New Key] | NewKey [——>

1 New Key[] |—>

T
LoadIndexed —

New Key[] [—

Similar to loading a virtual object from an instance, the Loadlndexed node becomes

--| LoadIndexed

a new alias of the virtual object.

Array Length:

| Newin] [——s(i@ ~——>vio]s|e]

v

The ArrayLength node can simply be replaced with the constant array length
taken from the VirtualState.

60 Partial Escape Analysis

Type Check:

ek k@ —— v]

v

- -|InstanceOf Key|- - - - * true
Since the exact type of a virtual object is known, the type check can be executed

at compile time, and the InstanceOf node is replaced with the result.

Type Cast:

- -| CheckCast Key

e
> K@ ——>Vviofo]]
CheckCast Key

For virtual objects, type casts can also be executed at compile time. If the virtual
object’s type is equal to or a subtype of the target type, the CheckCast node
will be added as an alias for the virtual object. Otherwise, the type cast will be
replaced with a deoptimization, since it will always fail and therefore deoptimize

at runtime.

Equality Comparison:

A B
___....- * true / false
/N /N

If either “A” or “B” is virtual, but the other is not, the comparison can be replaced
with false, since a virtual object cannot be aliased with a preexisting value. If
both “A” and “B” are virtual, the comparison can be replaced with true if both

are aliased with the same VirtualObject node, and false otherwise.

5.2 Partial Escape Anlaysis in Graal 61

5.2.3.3 Generic Case

New Key

- -| StoreStatic keyf======memmaaameaaeiieeeeeiiiaaccces oy eeeeeeeeeeeaseseeeeaeeeaaa

Materialize Key

Figure 5.6: Storing a virtual value into a static field.

Any operation that does not fulfill the conditions for virtualization, e.g., a Loadln-
dexed with a non-constant index, or that was not explicitly described here is assumed to
require an actual object reference. Therefore, any virtual object that is referenced from
such an operation will be materialized, and the input that maps to the VirtualObject

node of the now escaped object is replaced with the materialized value.

Figure 5.6 contains an example of this situation. Storing the virtual Key object to
the static field key causes it to be materialized. The Materialize node will be inserted
immediately before the StoreStatic node, and the store will reference this node instead
of the original New. Also, the object’s state changes to an EscapedState that references

the materialized value.

ek s — e[

'

"---- * --=--|StoreField idx |- - -~

Figure 5.7: Store operation performed on an escaped object.

Figure 5.7 shows an example of a Store operation where the input is an escaped
object. In general, inputs that refer to escaped objects are handled as if they were

normal values, but they are replaced with the materializedValue during processing.

62 Partial Escape Analysis

Key key = new Key();

if (...) {
key.idx = 5;
} else {
key.idx = 6;
}

cacheKey = key;

New Key '—> Key (1) —> V O

New Key |+ Key (1) —> Vv 0[o]-] | NewKey |+ Key(1) —> vio[o]-]

StoreField idx * . * StoreField idx

New Key '—>“Key(1)r—>V§-'b|5|_| | New Key |—>‘Key(1)’-—>V§0

New Key |[—> Key (1) —>» V 0
G .. Phi

StoreStatic cacheKey *

New Key |—> Key (1) —» E n

Materialize 1

Figure 5.8: Splitting and merging of the allocation state for a small example.

5.2.4

5.2 Partial Escape Anlaysis in Graal 63

Control Flow Splits and Merges

During control flow iteration, the allocation state is updated continuously with the
effects of the nodes that are encountered. At control flow splits, e.g., if and switch
statements, a copy of the state is created for each successor. At control flow merges

multiple states need to be merged into a single one.

Figure 5.8 shows this splitting and merging of states for a small example that creates
a Key object, assigns either 5 or 6 to it and lets it escape into the static cacheKey
field. The state, which contains the virtual object created by the allocation, is split into
two independent states at the if statement. These states will subsequently be modified
by assigning the values 5 and 6 to the idx field. When merging the two states, a phi
function is created for the value of the idx field. Finally, assigning the virtual object
to the static field cacheKey causes the object to be materialized, so that the state is

changed to an EscapedState.

Whenever multiple branches meet at a Merge or LoopBegin node, there are also multi-
ple states that need to be merged into one consistent state. A so-called MergeProcessor

is responsible for doing that, as shown in Figures 5.9 to 5.12.

5
[X 1 ke s
/ :
E —

[e | g 0

4

New Key .

il

Figure 5.9: Merging of aliases performed by the MergeProcessor.

The MergeProcessor first creates the intersection of the aliases maps of all merged
states, which implies that only VirtualObject nodes that exist in all predecessor states

and have at least one common alias will survive the merge (Figure 5.9).

64 Partial Escape Analysis

5.2.4.1 Merging of States

For each VirtualObject node, the MergeProcessor looks at the VirtualObject node’s Ob-

jectState in all predecessor states:

e If the VirtualObject node escaped in all predecessors states, the merged state of the
VirtualObject node is an EscapedState whose materializedValue points to a newly

created Phi function that merges the materializedValues of the predecessor states.

Figure 5.10 contains an example in which two escaped states for the Key object

are merged. The resulting state references a newly created Phi.

e If a VirtualObject node is in the virtual state in some predecessors and in the
escaped state in others, then all virtual states need to be materialized at the
corresponding predecessor in the control flow, and processing continues like in

the previous case.

e If a VirtualObject node is in the virtual state in all predecessors, then the new
state of the VirtualObject node will also be virtual, and all field values need to be
merged. For each field, the MergeProcessor looks at the value of this field in all
predecessor VirtualObjects:

— If all field values are identical, this value will be the value of the field in
the new VirtualState. Note that this applies to VirtualObject nodes that
represent allocations as well: if all predecessor VirtualStates reference the

same VirtualObject node, then so does the new one.

— If some field values differ, the MergeProcessor creates a new Phi node for
this field. If a field that should be merged references a virtual object (i.e., a
VirtualObject node with a VirtualState), this object needs to be materialized

before merging.

Figure 5.11 shows an example in which virtual states are merged: A new Phi is
created for the mismatching values 5 and 6, while the value 1 is the same in both
merged states. The reference from the state of the second virtual object to the

first one also remains the same in the resulting state.

5.2 Partial Escape Anlaysis in Graal

65

New Key '—> Key (1) —>E| I |
E Materialize 2

X

| Materialize 1 | | Materialize 1 |

Phi (<

Ky (1)

—> E

Figure 5.10: Merging of escaped objects performed by the MergeProcessor.

Figure 5.11: Merging of virtual objects performed by the MergeProcessor.

66 Partial Escape Analysis

5.2.4.2 Merging of Phis

Values of the same variable that flow together at a merge are combined by Phi nodes
attached to the Merge node. The MergeProcessor has to check whether the inputs of

these Phi nodes are aliased with VirtualObject nodes:

Figure 5.12: Merging of aliases for Phi nodes performed by the MergeProcessor.

e If all inputs are aliased to the same VirtualObject node , the Phi node will be added

as an alias of the VirtualObject node in the merged state, as shown in Figure 5.12.

e Otherwise, any input that is aliased with a virtual object needs to be materialized,

and the input in the Phi is replaced with the materialized value.

e If an input is aliased with an escaped object, the input in the Phi is replaced with

the materializedValue.

During this process of merging states some virtual objects might be turned into es-
caped objects, which can invalidate previous assumptions about which objects are vir-
tual. The merge process is therefore iterated until no more materializations happen

during merging, at which point a stable state has been reached.

5.2.5 Loops

Loops are special in that the iteration algorithm needs to start traversing the loop’s
contents before its back edges are processed. Graal’s Partial Escape Analysis solves this
by processing loops iteratively. During the first iteration, the loop body is processed

starting with a speculative state, which is taken from the loop’s predecessor. Iteration

5.2 Partial Escape Anlaysis in Graal 67

will stop at the loop’s back edges and at loop exits. As soon as the loop body has been
processed, and the states at all back edges are available, the MergeProcessor is used to

merge the states of the loop’s predecessor and the loop back edges.

The state produced by the MergeProcessor is only valid if the speculative start state
is correct. Therefore, the new state is compared to the speculative state. If they
differ, the new state is used as the speculative start state, and the loop is re-processed.
Once the state produced by the MergeProcessor equals the speculative state, processing

continues at the loop’s exits.

This loop processing also applies to nested loops: For each iteration of the outer

loop, the inner loop will be processed until it reaches a fixed point.

BO l
x|
State A
\ 4
Bl LoopBegin
l State B
If (1
W State C

B3 | LoopEnd (1) B4

LoopEnd (2)

State E

State D

Figure 5.13: Example loop.

Figure 5.13 shows an example of a loop with one exit and two back edges. When
the iteration encounters the loop, only state A is known. In order to be able to start
processing the loop, it is assumed that B equals A. As the iteration continues processing
all other nodes in the loop, it creates the states C, D and E. The MergeProcessor merges
A, D and E to create a new state B'. If B' equals B, then C is correct and the iteration
can continue at the LoopExit node. If B’ does not equal B, then B is replaced with B’

and the loop is reprocessed.

5.2.6

68 Partial Escape Analysis

Handling of Effects

When a loop is reprocessed, all states generated during the previous iteration are thrown
away. Additionally, all effects on the Graal IR, such as added or removed nodes and
changed inputs, need to be undone, so that the graph is in the state in which it was at

the loop entry.

An obvious solution would be to store the whole graph upon loop entry and restore
it if the loop is reprocessed. But this is a prohibitively expensive operation, because

graphs can consist of many thousands of nodes.

Graal’s Partial Escape Analysis therefore implements this backtracking in a different
way: effects on the nodes of the graph are not applied immediately, but they are
stored in a list of effects that can be committed at a later point in time. Such a list
is maintained for each basic block in the graph. Additionally, the system maintains a
map of replaced objects that allows subsequent operations to use this information, e.g.,
that a LoadField node which is subsequently used as an array index was replaced with

a constant value

Once a loop needs to be reprocessed, backtracking to the loop entry is a simple matter
of clearing the list of effects for all blocks within the loop. In Figure 5.13, reprocessing
the loop would clear the list of effects for the blocks B1, B2, B3 and B4.

The GraphEffectList provides the following types of graph changes:

addFloatingNode adds a given floating node to the graph. Nodes are not connected
to a specific graph during construction, and they need to be associated with a

graph explicitly.
addFixedNode adds a fixed node into the control flow, above a given position.
setPhilnput sets a specific input in a phi node.

deleteFixedNode removes a fixed node from the control flow. The fixed node cannot

have any data flow usages.
replaceAtUsages replaces a node with another node at all its data flow usages.

replaceFirstlnput replaces the first input of a given node that is equal to a certain

value with another value.

addState adds a VirtualState or EscapedState for a given VirtualObject node to a frame
state (see Section 5.2.7).

5.2.6.1

5.2.7

5.2 Partial Escape Anlaysis in Graal 69

addMaterialization inserts the materialization of a virtual object into the control flow
at a given position. This consists of an allocation, the initialization of all fields

and additional code needed to restore the object’s locking state.

Placement of Merge Effects

Since all effects are stored into lists of effects associated with a block, the MergeProcessor
needs to take special care about where to place the effects it generates for a loop merge.
It cannot simply place all effects into the loop entry block, because some of them, such as
materializations in predecessor states, should not be discarded if the loop is reprocessed.
The loop processing would not converge to a fixed state if the materializations were
discarded.

If a virtual object in state A in Figure 5.13 is materialized by the MergeProcessor
while merging the states A, D and E, e.g., because it is marked as escaped in the state
at one of the back edges, the addMaterialization effect needs to be added to block BO.

Several different situations occur during merging:

e If a virtual object is materialized in one of the predecessor states, then the ef-
fect that adds the materialization logic is added to the predecessor block that

corresponds to predecessor state.

e Newly created phi nodes are added in the loop entry block. They may be the
initial value of a virtual object’s field, and are therefore required to exist by the

time effects are applied in the loop’s body.

e The input values of Phi nodes are initialized in the loop exit block. The initial-
ization requires all values to exist, which is only guaranteed once the whole loop’s

effects has been processed.

Handling Frame States

The HotSpot interpreter cannot work with virtual objects. Therefore, all virtual objects
need to be materialized whenever a deoptimization occurs. The information required
to create the objects needs to be added to the FrameState nodes that describe the
mapping from machine state to Java Virtual Machine state whenever a virtual object

is referenced by the frame state.

Figures 5.14 and 5.15 show two Graal IR fragments with frame states, corresponding

to Listing 5.5. The FrameState nodes are expressed as dashed boxes; they contain

70 Partial Escape Analysis

static Object global;

void foo(int x) {
Integer i = new Integer(x);
global = null;

}
Listing 5.5: Example shown in Figures 5.14 and 5.15.

New Integer

A4

StoreField value [~ .5 U0 T 0

null pemmbannacbos

StoreStatic global

Figure 5.14: Example from Listing 5.5 with FrameStates, after inlining.

Start | | Param x

Integer (1)

v

StoreStatic global "~ :

Figure 5.15: Example from Listing 5.5 with FrameStates, after Partial Escape Analysis.

5.2.7.1

5.2 Partial Escape Anlaysis in Graal 71

the method name (with “<init>" being a constructor call) and the bytecode position.
Their inputs describe the local variables and the contents of the expression stack.
Uninitialized local variables, e.g., the variable i in foo:5, are omitted. It is important

to note that the expression stacks in this example are empty.

Figure 5.14 contains a field store which is associated with bytecode index 9 in the
constructor of Integer. At this point there are two local variables: the newly allocated
Integer object and the value x. The constructor was inlined into the method foo, so it
has a reference to the outer frame state at bytecode index 5 in foo. This outer frame

state has only one initialized local variable, namely the value x.

Figure 5.15 shows the same Graal IR fragment after applying Partial Escape Analysis.
The first field store was removed due to Scalar Replacement, which also removed the
associated FrameState nodes. The second field store, however, was not removed. Its
associated frame state contains a reference to the parameter x and to the virtual object
whose allocation was removed. To be able to restore the object during deoptimization,

a copy of the current VirtualObject to VirtualState mapping is added to the frame state.

Frame States for Inlined Methods

When methods are inlined, every method is represented by its own frame state. The
inner frame state of the callee references the outer frame state of the caller. The outer
frame states are not duplicated, so that one outer frame state can be referenced from
multiple inner frame states. Duplicating outer frame states would be prohibitively

expensive in situations with deeply nested inlining levels.

An outer frame state can contain VirtualObject nodes that are also used in the inlined
method. Since this outer frame state can referenced from multiple inner frame states
with a possibly different virtual /escaped state for the object, the state in the outer frame
state depends on the state this object has at the position of the inner frame state. It
is not possible to simply replace escaped object by their materialized value, since the
fact that the virtual object was materialized is required to correctly interpret the outer
frame state. In some situations an outer frame state will reference a VirtualObject node
that is not referenced by the inner frame state. The mappings for all VirtualObject
nodes referenced by the inner or any outer frame state need to be added to the inner
frame state. This is required to be able to correctly restore the objects referenced by

all frame states during deoptimization.

Listing 5.6 will be used to demonstrate the representation of nested frame states in
combination with virtual and escaped allocations: the method foo allocates an Integer
and a Key object, where the first is referenced by the latter. After that, it calls the

method bar, which is inlined into foo and which contains three assignments to the static

72 Partial Escape Analysis

static Object global;

void foo(int idx) {
Object ref = new Integer(idx);
Key key = new Key(5, ref);
bar(key);

void bar(Key key) {
global = null;
global = key.ref;
global = key;

}

Listing 5.6: Example used to show the representation of virtual and escaped objects in
nested frame states.

variable global. The first assignment sets the static variable to null, the second one to
the Integer object and the third one to the Key object. This also means that in the
(after) frame state of the first assignment, both allocations are virtual, in the second

one the Integer is escaped, and in the third one both allocations are escaped.

Start | | Param idx

Integer (1)

!
Materialize Key

!
StoreStatic global

A 4

Return

Figure 5.16: Example from Listing 5.6 after Partial Escape Analysis.

5.2 Partial Escape Anlaysis in Graal 73

Figure 5.16 shows the Graal IR for method foo from Listing 5.6 after inlining and
Partial Escape Analysis. The three leaf frame states for method bar reference a single

frame state for method foo, with different mappings for the state of the allocations.

6.1

6.1.1

75

Chapter 6

Extensible Escape Analysis

Extensibility: Node Types

The implementations of Escape Analysis can be quite complex. The HotSpot server
compiler, for example, contains 4,000 lines of code in escape.hpp and escape.cpp, and

there is a large amount of supporting code scattered over the rest of the compiler.

Much of the server compiler’s implementation of Escape Analysis consist of large
switch statements dealing with different types of nodes in the compiler’s intermediate
representation. There is no easy way to extend the list of nodes that are processed by
Escape Analysis, so that adding new node classes always incurs a change in escape.cpp.

The compiler does not expect to encounter unexpected nodes during Escape Analysis.

Since Graal was designed to be extensible, such a centralized implementation would
be very limiting, even if it has a default behavior for unknown node types. Graal
therefore delegates the task of describing the effect of a node to the node itself. All
node types, including basic types such as LoadField, are handled this way.

Virtualizable Interface

The default behavior of any node type is to cause all virtual inputs to be materialized.
In some cases, such as a Return node, no further handling is required, since this is

already the correct behavior.

If a node type wants to convey more information about its effects to Partial Escape
Analysis, it can implement the Virtualizable interface. Every node that has an input
to a node that is aliased with a virtual object will have its virtualize method called.
Querying only these nodes limits processing to nodes that can have an influence on the

allocation state.

6.1.2

76 Extensible Escape Analysis

public interface Virtualizable {

void virtualize(VirtualizerTool tool);

}

public interface VirtualizableAllocation extends Virtualizable {

}

Listing 6.1: The Virtualizable and VirtualizableAllocation interfaces that can be imple-
mented by node types.

However, nodes that introduce new virtual objects, i.e., allocations, need to be pro-
cessed even if they do not reference any existing virtual object. By implementing the
VirtualizableAllocation interface, which extends the Virtualizable interface, a node type

can signal that its virtualize method should be called unconditionally.

The Virtualizable and VirtualizableAllocation interfaces, which are shown in Listing 6.1,
contain only the method virtualize. The VirtualizerTool passed along as a parameter can

be used by the node to describe its effects.

VirtualizerTool

The VirtualizerTool, shown in Listing 6.2, is the main interface through which a node
can communicate with Graal’s Partial Escape Analysis. It contains methods to query
meta data and compiler configuration, methods to inspect and modify the state of
virtual and escaped objects and methods to convey what changes to the current node

are required:

e getMetaAccessProvider and getAssumptions provide access to facilities required to

deal with types.

o getMaximumEntryCount returns the maximum number of entries an array can

have in order to still be considered for Escape Analysis.

e createVirtualObject inserts a new VirtualObject into the allocation state and ini-

tializes its entries with the given values.

o getVirtualState queries the aliases map. If the given value maps to a VirtualObject

node with a virtual state it returns the VirtualState, and null otherwise.

e getReplacedValue also queries the aliases map. If the given value maps to a Vir-
tualObject node with an escaped state it returns the state’s materialized value.

If this is not the case it checks if the given node was replaced previously with a

6.1 Extensibility: Node Types 77

public interface VirtualizerTool {

}

// methods for querying compiler configuration
MetaAccessProvider getMetaAccessProvider ();
Assumptions getAssumptions();

int getMaximumEntryCount ();

// methods working on virtualized/materialized objects

void createVirtualObject(
VirtualObjectNode virtualObject, ValueNode[] entryState);

VirtualState getVirtualState(ValueNode input);
ValueNode getReplacedValue(ValueNode input);

void setVirtualEntry(
VirtualState state, int index, ValueNode value);

// operations on the current node

void replaceWithVirtual(VirtualObjectNode replacement);
void replaceWithValue(ValueNode replacement);

void replaceWith(ValueNode replacement);

void delete ();

void addNode(ValueNode node);

Listing 6.2: The VirtualizerTool interface that is used by nodes to describe their effects.

replaceWithValue call, in which case it returns the replacement. If neither of these
two checks succeeds, the passed node is returned'. Note that it is invalid to call

this method with a node that is aliased with a virtual object.

e setVirtualEntry is used to set an entry in the current state of a virtual object?.

The value can also be a VirtualObject node.

e replaceWithVirtual replaces the current node, i.e., the receiver of the virtualize call,
with the given VirtualObject node, effectively deleting it and inserting an entry

into the aliases map.
e replaceWithValue replaces the current node with a (non-virtual) value.

e replaceWith replaces the current node with the given value. If the value maps to

a VirtualObject node, replaceWithVirtual is called, otherwise replaceWithValue.

o delete simply deletes the current node.

1One might expected this method to return null in this case, but for most use cases returning the

original value is more useful.

2This method is part of the VirtualizerTool, and not VirtualState, for implementation reasons: It checks

whether the given ValueNode was replaced with some other value during a previous virtualize call.

78 Extensible Escape Analysis

e addNode adds a new node to the graph. If the given node is a fixed node, it
will be inserted into the control flow as the immediate predecessor of the current

node.

It is important to note that the implementation of virtualize must not perform any
modifications to nodes directly. Backtracking during loop processing may discard the

current set of changes and reprocess the loop, as explained in Section 5.2.5.

class ObjectState {
VirtualObjectNode getVirtualObject ();

}

class VirtualState extends ObjectState {
ValueNode getEntry(int index);
void addLock(MonitorldNode monitorld);
MonitorldNode removelock ();

}

class EscapedState extends ObjectState {
ValueNode getMaterializedValue();

Listing 6.3: The interface provided by ObjectState and its subclasses.

Listing 6.3 shows the actual interface for virtual and escaped states. Every object
state can be queried for its corresponding VirtualObject node. States for virtual objects
additionally provide access to the object’s entries and locks?. States for escaped objects

provide the object’s materialized value.

Listing 6.4 shows the actual interface for the nodes representing objects. These
classes provide metadata about the object, i.e., its type and the number and type of
its entries. There are two distinct subclasses for instances and arrays, Virtuallnstance
and VirtualArray. The instance variant provides additional methods to determine the
entry index of a specific field and the field stored at a specific entry index. There
are no additional methods in VirtualArray because getType and getEntryCount already
provide all necessary information. ResolvedJavaType is a metadata class that represents
instance types, array types and primitive types. ResolvedJavaField, which represents an

instance field, can be queried for the type and name of the field.

3Every lock in Graal is associated with a Monitorld node, therefore a node of this type has to be
provided if a lock is added. Also, the correct pairing of lock and unlock operations is checked
during bytecode parsing, so that it is never necessary for a virtualize method to query the VirtualState
whether a lock is held.

6.2

6.2.1

6.2 Examples 79

class VirtualObjectNode extends Node {
ResolvedJavaType getType();
int getEntryCount ();

}

class VirtuallnstanceNode extends VirtualObjectNode {
VirtuallnstanceNode (ResolvedJavaType type);
int getFieldlndex(ResolvedJavaField field);

ResolvedJavaField [] getFields ();
}

class VirtualArrayNode extends VirtualObjectNode {
VirtualArrayNode (ResolvedJavaType componentType, int length);

Listing 6.4: The interface provided by VirtualObject node and its subclasses.

Examples

LoadField Node

class LoadFieldNode extends FixedNode implements Virtualizable {

@lnput ValueNode object;
ResolvedJavaField field;

//

©@Override
void virtualize(VirtualizerTool tool) {
VirtualState state = tool.getVirtualState(object);
if (state != null) {
VirtuallnstanceNode virtual =
(VirtuallnstanceNode) state.getVirtualObject ();
int fieldlndex = virtual.getFieldlndex(field);
tool.replaceWith(state.getEntry(fieldlndex));
}
}
}

Listing 6.5: Implementation of virtualize for the LoadField node.

The implementation of the virtualize method that handles the loading of a value from
an object’s field is shown in Listing 6.5. If the receiver of the field load is a virtual object,
then the LoadField node can be replaced with the field’s current value. getFieldIndex is
used to query the entry index for the field, which in turn is used to query the entry’s
value. Finally, the LoadField node replaces itself using replaceWith.

80 Extensible Escape Analysis

6.2.2 Newlnstance Node

class NewlnstanceNode extends FixedNode
implements VirtualizableAllocation {

ResolvedJavaType type;

//

boolean isReference () {
// returns whether the type subclasses java.lang.ref.Reference

ConstantNode defaultFieldValue(ResolvedJavaField field) {

// returns the default value for the given field (0, null, ...)
}
@Override
void virtualize(VirtualizerTool tool) {
/%
* Reference objects can escape into their ReferenceQueue at any
x safepoint, therefore they’'re excluded from escape analysis.
*/
if (lisReference()) {
VirtuallnstanceNode virtual = new VirtuallnstanceNode(type);
ResolvedJavaField [] fields = virtual.getFields ();
ValueNode[] newEntries = new ValueNode[fields.length];
for (int i = 0; i < newEntries.length; i++) {
newEntries[i] = defaultFieldValue(fields[i]);
}
tool.createVirtualObject(virtual , newEntries);
tool.replaceWithVirtual(virtual);
}
}

Listing 6.6: Implementation of virtualize for the Newlnstance node.

The Newlnstance node, which creates a new object, implements the VirtualizableAllo-

cation interface, because it introduces a new VirtualObject node.

If the type of the allocated object is java.lang.ref.Reference or a subtype of it, no
VirtualObject node is created because objects of these types can escape at any safepoint.
In all other cases, a new Virtuallnstance node with default initial values (0, null, false)

for all fields is created and used as a replacement for the Newlnstance node.

3The garbage collection system will add the Reference objects to their corresponding ReferenceQueue.

6.2 Examples 81

6.2.3 ObjectGetClass Node

The ObjectGetClass node, which represents a call to Object.getClass, is shown in List-
ing 6.7. Since the exact type of a virtual object is known, the ObjectGetClass node can

replace itself with the constant java.lang.Class object for the type.

class ObjectGetClassNode extends FixedNode implements Virtualizable {
@lnput private ValueNode object;

//

void virtualize(VirtualizerTool tool) {
VirtualState state = tool.getVirtualState(object);

if (state != null) {
ResolvedJavaType type = state.getVirtualObject ().getType();
Constant clazz = type.getEncoding(Representation.JavaClass);

tool.replaceWithValue(ConstantNode.forConstant (
clazz, tool.getMetaAccessProvider(), graph()));

Listing 6.7: Implementation of virtualize for the ObjectGetClass node.

6.2.4 ObjectClone Node

The ObjectClone node, which represents a call to Object.clone, is one of the most com-
plex implementations of virtualize. As shown in Listing 6.8, if can handle both virtual

and non-virtual objects:

e If the object to be cloned is virtual and of a cloneable type, a new VirtualObject
node is created by cloning the existing one. The new VirtualObject node is added
with a copy of the state of the old one. Note that no locks are set on the new
object - Object.clone always creates unlocked objects, even if the original object

was locked.

e If the object to be cloned is a non-virtual instance of a known and cloneable type,
a new Virtuallnstance node is created. Its initial values are populated with newly
created LoadField nodes for all fields.

If only some of the fields of the new virtual object are used, unnecessary LoadField

nodes will be removed by subsequent optimizations.

The handling of constant-size and non-virtual arrays was omitted for the sake of brevity.

It is similar to the handling of non-virtual instances.

82 Extensible Escape Analysis

class ObjectCloneNode extends FixedNode
implements VirtualizableAllocation {

@lnput ValueNode object;

//

static boolean isCloneableType(
ResolvedJavaType type, VirtualizerTool tool) {
// determines whether type implements Cloneable

}

static ResolvedJavaType getConcreteType(
ValueNode value, VirtualizerTool tool) {
// returns a concrete cloneable type for value, or null

}

Q@Override
public void virtualize(VirtualizerTool tool) {
VirtualState state = tool.getVirtualState(object);
if (state != null) {
VirtualObjectNode virtual = state.getVirtualObject ();
if (isCloneableType(virtual.getType(), tool)) {
// virtual object
int entryCount = virtual.getEntryCount ();
ValueNode [] newEntries = new ValueNode[entryCount];
for (int i = 0; i < entryCount; i++) {
newEntries[i] = state.getEntry(i);

}
VirtualObjectNode newVirtual = virtual.duplicate();
tool.createVirtualObject(newVirtual , newEntries);

tool.replaceWithVirtual (newVirtual);

} else {

// non—virtual object

ValueNode obj = tool.getReplacedValue(object);

ResolvedJavaType type = getConcreteType(obj, tool);

if (type != null && !type.isArray()) {
VirtuallnstanceNode newVirtual =

new VirtuallnstanceNode (type);

ResolvedJavaField [] fields = newVirtual.getFields();

ValueNode [] newEntries = new ValueNode[fields.length];
for (int i = 0; i < fields.length; i++) {
LoadFieldNode load = new LoadFieldNode(obj, fields[i]);
tool.addNode(loads[i]);

newEntries[i] = load;
}
tool.createVirtualObject(newVirtual, newEntries);
tool.replaceWithVirtual (newVirtual);

Listing 6.8: Implementation of virtualize for the ObjectClone node.

7.1

83

Chapter 7

Case Studies

This chapter evaluates the behavior and the effects of Partial Escape Anal-
ysis. It shows the benefits of Escape Analysis in general, and how Partial
Escape Analysis improves upon it. The additional allocations introduced by
abstractions of the Java language and the Java Class Library are explored,

along with how Partial Escape Analysis helps to mitigate them.

Graal PhiNode

public ValueNode singleBackValue() {
assert merge() instanceof LoopBeginNode;
ValueNode differentValue = null;
int start = merge().forwardEndCount();
int end = values ().size();
for (ValueNode n : values().subList(start, end)) {
if (differentValue = null) {
differentValue = n;
} else if (differentValue != n) {
return null;
}

}

return differentValue;

Listing 7.1: The singleBackValue function of Graal’s PhiNode class.

The singleBackValue method shown in Listing 7.1 is an excellent example of why
Escape Analysis is such an important optimization. The compiler uses this method
during loop analysis in order to determine whether all loop ends have the same value

for a given Phi node.

7.2

84 Case Studies

While it is not obvious that any objects are allocated in this method, three objects

are allocated for each call:

e The call to subList will allocate an instance of java.util.SubList that represents the

selected portion of the list.

e Subsequently, the for-each loop calls iterator on the SubList, which allocates an

iterator.

e The constructor of this iterator calls iterator on the values collection, which allo-

cates an instance of AbstractList.Listlterator.

The values collection is an ArraylList, so that iterating over it amounts to simply
incrementing an index. However, the fact that the iteration is hidden behind three
objects makes it very hard for the compiler to reason about the loop. The overhead for
loading and storing the iteration index within the iterator is significant, and additional,

unnecessary checks for modification counts are inserted.

Partial Escape Analysis manages to remove all object allocations from this method,
so that the remaining code is similar to a simple for loop from start to end. It cuts the
size of this method in half, from 245 nodes to 123 nodes.

DaCapo Sunflow

Listing 7.2 shows a slightly simplified version of one of the most important methods in
the DaCapo Sunflow benchmark. It calculates the illumination caused by point light
sources on a specific point in the scene. It is called 100.000 times during each benchmark
iteration, and the scene contains 130 light sources on average. Graal aggressively inlines
all method calls except for one inside traceShadow whose target method is too large to

be inlined.

The Color class is a mutable data structure that contains three float values, and
Ray is a mutable data structure that contains eight float values. After inlining, the

getlrradiance method contains three allocations:
e Color.black() in line 3 allocates a new color value that is initialized to black.

e new Ray(...) in line 8 allocates a new ray from the current point to the light

source.

e Color.blend(...) in line 14 allocates a new color value for the result of the blend

operation.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

7.2 DaCapo Sunflow 85

public Color getlrradiance(ShadingState state, Color diffRefl) {
float b = (float) Math.Pl x ¢ / diffRefl.getMax();
Color irr = Color.black ();
Point3 p = state.getPoint();
Vector3 n = state.getNormal ();
int set = (int) (state.getRandom(0, 1, 1) % numSets);
for (PointLight pl : virtualLights[set]) {
Ray r = new Ray(p, pl.p);
float dotNID = —(r.dx * pl.n.x + r.dy * pl.n.y + r.dz % pl.n.z);
float dotND = r.dx * n.x + r.dy * n.y + r.dz % n.z;
if (dotNID > 0 && dotND > 0) {
float r2 = r.getMax() =* r.getMax();
Color opacity = state.traceShadow(r);
Color power = Color.blend(pl.power, Color.BLACK, opacity);
float g = (dotND * dotNID) / r2;
irr.madd(0.25f % Math.min(g, b), power);

}
}

return irr;

Listing 7.2: The InstantGl.getlrradiance function from DaCapo Sunflow.

Partial Escape Analysis has the following effects on this method:

e The allocation of irr in line 3 is moved to the end of the method. All field loads
and stores on this object are removed and replaced with local variables in SSA
form. The materialization at the end will immediately initialize the object with

the correct values.

e The allocation of r in line 8 is moved down to before the non-inlined call in line
13. All field loads and stores up to this point are removed, while loads and stores
after this point will remain the same. It is important to note that line 13 is only

reached if the if condition in line 11 is true, which happens in 56% of the cases.

e The allocation of power in line 14 can be removed altogether, since the object

does not escape at all. It will be completely replaced with local variables.

While only 33% of the allocations sites could be removed completely, 64% of all
dynamic allocations were avoided. For each benchmark iteration, this amounts to 494
MB of memory that does not need to be allocated and collected. Without Partial
Escape Analysis, only 46% of this (230 MB) could have been avoided. The size of
the method was also reduced considerably, from 303 nodes to 247 nodes. Most of the

removed nodes were loads and stores on the analyzed objects.

7.3

7.4

86 Case Studies

ArrayList Initialization

The example method shown in Listing 7.3 creates a new ArrayList instance that is
initialized with a list consisting of the three given objects. This seemingly simple piece

of Java code incurs numerous allocations:

e The call to the method asList, which has a variable number of arguments, leads

to the allocation and initialization of an Object array for the three argument.
e The asList method creates an instance of List and stores the array in the a field.
e The example method then allocates an instance of ArrayList.
e The constructor of ArraylList calls List.toArray, which clones the Object array.

The first two allocations, i.e., the varargs array and the List, are not reachable by the
time example returns. Therefore, they will be removed completely by Partial Escape

Analysis.

The other two allocations will escape at the return statement within example. How-
ever, all operations upon them up to this point, i.e., field and array loads and stores, can
be virtualized. This in turn will cause the checks on array and elementData.getClass()
to fold away. All that remains of the example method is the materialization of the two

objects which immediately initializes them with their final state.

Escaping and Non-Escaping Allocations

The example in Listing 7.4 demonstrates why the context sensitivity of Partial Escape
Analysis is important. It allocates two objects: an instance of TestClassObject (a) and

an instance of TestClassInt (b). Initially, a reference to b object is stored into a.

The TestClassObject referenced by a is returned, and therefore escapes, at the end
of the method. However, since the reference to b is overwritten with null beforehand,
the TestObjectInt object is recognized as non-escaping by Partial Escape Analysis. All
intermediate loads and stores on the objects can be removed, and the TestClassObject
object will be materialized with its final contents at the end of the method. Traditional
Escape Analysis needs to tread a as escaping throughout the method, so that b, which

is stored into a field of a, also escapes.

7.4 Escaping and Non-Escaping Allocations 87

public class Arrays {
private static class List {

private Object[] a;

public ArrayList(Object[] array) {
if (array = null) {

throw new NullPointerException ();

}
a

}

public Object[] toArray() {
return a.clone();

= array;

}
/!

}

public static List asList(Object... a) {
return new List(a);

}

//

}

public class Arraylist {
public ArrayList(Collection ¢) {
elementData = c.toArray();
size = elementData.length;
if (elementData.getClass() != Object[].class) {
elementData = Arrays.copyOf(elementData, size, Object[]. class);

}

//
}

Object example(Object a, Object b, Object c) {
return new Arraylist(Arrays.asList(a, b, c¢))

}

Listing 7.3: A small example method that creates and initializes an ArrayList.

void example(int x) {
TestClassObject a = new TestClassObject ();
TestClasslnt b = new TestClassint ();
b.intField = x;
a.objectField = b;

if (a.objectField.intField = 0) {
} /-

a.objectField = null;
return a;

Listing 7.4: Code example with an escaping and a non-escaping allocation.

89

Chapter 8

Evaluation

After discussing the different ways in which Partial Escape Analysis can
have a positive influence on compiled code, this chapter presents an evalu-
ation of the performance impact of the algorithm on various benchmarks.
Finally, this chapter looks at the impact of Partial Escape Analysis on com-

pile time.

8.1 Sources of Performance Increases

Escape Analysis can improve performance in a number of ways:

e Fewer dynamically allocated bytes lead to less frequent garbage collection and
fewer objects to be visited on the heap. The actual impact on performance

depends heavily on the garbage collection strategy.

e Fewer dynamic object allocations lead to fewer executions of the allocation logic.
Even though a fast-path allocation from the thread local allocation buffer usu-
ally takes only (8 + number of fields) CPU instructions, this is still a source of

significant performance gains.

e Fewer lock operations lead to fewer executions of the monitor enter and exit logic.
Even in the best case (biased locking [48] enabled and uncontended lock), entering

a locked region takes 12 CPU instructions and exiting it takes 4 CPU instructions.

e Scalar Replacement avoids dereferencing pointers to objects and makes fields and
array elements efficiently accessible as local variables. This leads to less CPU

cycles and fewer cache misses.

8.2

90 FEvaluation

e By Scalar Replacement, the compiler also gains more knowledge about the values
propagated through objects. The effect is similar to a perfect alias analysis for

these objects.

Partial Escape Analysis can realize these improvements in individual branches, even
if the objects escape in other, potentially unlikely, branches. The first four effects are
only significant if large numbers of allocations are removed, while the last one can also

provide benefits if only a few key allocations are optimized.

Performance Impact

We evaluated our implementation of Partial Escape Analysis by running and analyzing
a number of benchmarks. All benchmarks were executed on server-class Xeon E5-2690
CPUs, with the Java VM configured to use up to 2GB of heap.

Our benchmark process runs each of the 14 benchmarks of the DaCapo suite! and
each of the 12 benchmarks of the ScalaDaCapo suite?, warming them up for enough
iterations to arrive at a stable peak performance. In addition to that, it runs the

SPECjbb2005 benchmark, which also contains a warmup phase.

This process was executed 10 times for a configuration without Partial Escape Anal-
ysis and 10 times for a configuration with Partial Escape Analysis. The numbers we
report in this thesis are the averages of the benchmark results for the 10 runs. In
separate runs, we also collected statistics for the size and number of allocations and

the number of lock operations for each benchmark.

The results of our evaluation are shown in Tables 8.1 and 8.2. For each benchmark,
Table 8.1 contains the allocation size per iteration in MB as well as the millions of
allocations per iteration. Table 8.2 shows the iterations per minute. Both tables show
the measurements with and without Escape Analysis as well as their difference in
percent, which shows the speedup achieved by our optimization. The “average” row
shows the average percentage. Since SPECjbb2005’s iterations are much smaller than
the ones in DaCapo and ScalaDaCapo, we scaled these numbers by 105. This makes
the table more uniform, but does not influence the relative changes. There is no table

showing the number of lock operations, because few of these numbers are significant.

Allocated Bytes Most benchmarks show a high allocation rate. DaCapo lusearch, sun-
flow, tradesoap and xalan, ScalaDaCapo factorie and kiama, and SPECjbb2005

'DaCapo version 9.12-bach [4]
2ScalaDaCapo version 0.1.0 (2012-02-16) [51]

8.2 Performance Impact

91

MB / Iteration

MAllocs. / Iteration

without with A without with A
avrora 81 82 +2.0% 2 4+2.3%
batik 63 60 -3.8% 1 1 -7.9%
eclipse 6,041 6,021 -0.3% 67 67 -0.4%
fop 172 166 -3.5% 3 3 -5.6%
h2 1,336 1,267 -5.2% 31 30 -5.9%
jython 2242 2,057 -8.3% 28 23 -15.2%

% luindex 25 23 -7.3% - ~ -17.6%
S lusearch 5496 5,473 -0.4% 10 10 -3.9%
A pmd 426 414 -2.9% 8 7 -5.2%
sunflow 2,707 2,010 -25.7% 62 43 -30.6%
tomcat 691 685 -0.8% 7 7 -24%
tradebeans 3,640 3,354 -7.8% 64 57 -11.1%
tradesoap 5,907 5,753 -2.6% 63 59 -6.2%
xalan 1,289 1,270 -1.4% 10 10 -2.2%
average -4.9% -8.0%
actors 1,866 1,550 -17.0% 56 45 -18.5%
apparat 3,418 3,306 -3.3% 74 70 -5.5%
factorie 43,393 17,996 -58.5% 1,397 547 -60.9%
kiama 642 600 -6.6% 13 11 -11.2%
8 scalac 758 648 -14.5% 19 15 -22.6%
& scaladoc 1,189 1,046 -12.0% 24 18 -24.0%
S scalap 68 62 -8.8% 2 2 -12.5%
= gcalariform 337 292 -13.3% 10 8 -16.5%
@ scalatest 263 261 -1.0% 4 3 -24%
scalaxb 226 212 -5.9% 4 3 -13.8%
specs 588 362 -38.4% 12 3 -72.0%
tmt 2,798 2,698 -3.6% 38 34 -12.2%
average -15.2% -22.7%
SPECjbb2005T 11,608 9,741 -16.1% 180 111 -38.1%

Table 8.1: Evaluation of size and number of allocations on DaCapo, ScalaDaCapo and

SPECjbbh2005.

T Scaling factor for SPECjbb2005: 10° (numbers are per one million iterations).

allocated more than 1GB per second. Most of ScalaDaCapo, some of DaCapo,

and SPECjbb2005 see a large decrease in allocated bytes per benchmark iteration

due to Partial Escape Analysis. ScalaDaCapo factorie has the highest decrease
at 58.5% or 24.5GB per iteration.

The relative changes for benchmarks with very low allocation rates, such as luin-

dex, batik and avrora, are not significant.

Number of Allocations In general, benchmarks with a high number of allocated bytes

also show a high number of allocations. The relative decrease in the number of

allocations is usually higher than the decrease in the number of allocated bytes,

92 FEvaluation

Iterations / Minute
without with Speedup

avrora 25.71 25.33 -1.5%
batik 47.92 48.08 +0.3%
eclipse 3.28 3.27 -0.2%
fop 150.75 172.41 +14.4%
h2 11.64 11.98 +2.9%
jython 25.35 24.80 2.1%
2. luindex 118.81 118.58 -0.2%
c§ lusearch 11132 11215 +0.7%
A pmd 20.64 29.94 +1.0%
sunflow 54.55 55.40 +1.6%
tomcat 46.73 48.78 +4.4%
tradebeans 9.97 10.61 +6.4%
tradesoap 13.89 14.08 +1.4%
xalan 156.25 159.15 +1.9%
average +2.2%
actors 17.10 18.81 +10.0%
apparat 6.11 6.94 +13.7%
factorie 1.95 2.59 +33.0%
kiama 116.28 135.44 +16.5%
2, scalac 23.09 24.12 +4.4%
S scaladoc 20.39 2099 +3.0%
S scalap 472.44 555.56 +17.6%
= scalariform 127.66 137.61 +7.8%
@ scalatest 58.14 62.24 +7.1%
scalaxb 100.50 105.26 +4.7%
specs 35.03 36.43 +4.0%
tmt 13.06 1350 +3.3%
average +10.4%

SPECjbb2005 11.07 12.04 +8.7%

Table 8.2: Evaluation of performance on DaCapo, ScalaDaCapo and SPECjbb2005.
T Scaling factor for SPECjbb2005: 10° (numbers are per one million iterations).

since the allocations not removed by Partial Escape Analysis often contain large

arrays.

Number of Locks We did not observe a significant reduction in the number of lock op-
erations in most benchmarks. DaCapo tomcat shows a 4% or 155,000 operations
per second reduction, and SPECjbb2005 shows a 3.8% or 2,400,000 operations

per second reduction.

Iterations per Minute In order to be consistent we converted all timings into an it-

erations per minute metric. Most of the benchmarks show some improvement

8.3

8.4

8.3 Comparison 93

in performance, with many being above 10%. ScalaDaCapo factorie benefits the

most in terms of performance, with a 33% improvement in iterations per minute.

Notably, the DaCapo jython benchmark shows a 2.1% decrease in performance.
Partial Escape Analysis can in rare cases increase the size of compiled methods,

which has a negative influence on this benchmark.

While there will never be more dynamic allocations in code optimized by Partial Escape
Analysis than in the unoptimized code, the number of allocation sites can increase in
some cases, e.g., when the same virtual object is materialized in multiple independent
branches. Benchmarks that are sensitive to this may suffer from the increased code size

of multiple allocation sites.

Comparison

The HotSpot server compiler, which is arguably the most widely used jit compiler
performing Escape Analysis, benefits less from enabling Escape Analysis than Graal
does from enabling Partial Escape Analysis (0.9% vs. 2.2% on DaCapo, 7.4% vs.
10.4% on ScalaDaCapo, 5.4% vs. 8.7% on SPECjbb2005). However, it is hard to tell
the difference between better Escape Analysis and the rest of the compiler performing

better in the presence of Escape Analysis.

Compilation Performance

Partial Escape Analysis is a non-trivial optimization that performs iterations over the
whole compiler graph. Graal takes care not to invoke it on a graph that does not

contain allocations, but most methods above a certain size do contain allocations.

As Table 8.3 shows, Partial Escape Analysis takes a very consistent fraction of the
total compilation time over all benchmarks, which is in the order of 3.5% to 4.5%. This
includes the time for the scheduling operation that is necessary in preparation for the
analysis (see Section 5.2.1). The iteration over the compiler graph, the analysis and
the changes to the graph together take approximately half of the total time spent in
the Partial Escape Analysis phase, while the other half is required for the scheduling.

Since each node is only visited once under normal circumstances, the time for the
analysis depends mainly on the number of nodes in the graph and the number of allo-
cations. Because of the iterative loop processing the analysis time could, theoretically,

rise exponentially for nested loops. The number of iterations it takes for a loop to

94 FEvaluation

Time taken (milliseconds)
Total PEA Accumulated PEA Flat

avrora 19,033.6 679.1 3.6% 353.7 1.9%
batik 39,037.8 1,358.5 3.5% 730.1 1.9%
eclipse 193,950.5 6,168.1 3.2% 3,000.1 1.5%
fop 45,561.0 1,768.1 3.9% 920.1 2.0%
h2 44,423.1 1,704.5 3.8% 843.5 1.9%
jython 150,858.2 3,951.3 2.6% 1,860.1 1.2%
2 luindex 25,460.4 980.6 3.8% 479.2 1.9%
O lusearch 22,048.4 817.2 3.7% 4403 2.0%
A pmd 67,803.9 2,520.8 3. 7% 1,1245 1.7%
sunflow 22,627.0 1,032.7 4.6% 521.0 2.3%
tomcat 123,435.3 2,816.4 2.3% 1,405.0 1.1%
tradebeans 44,024.6 1,710.5 3.9% 877.2 2.0%
tradesoap 97,618.0 3,861.8 4.0% 2,000.8 2.0%
xalan 37,955.8 1,467.4 3.9% 758.0 2.0%
average 3.6% 1.8%
actors 29,601.2 1,096.5 3.7% 501.5 1.7
apparat 41,187.7 1,588.6 3.9% 699.1 1.7%
factorie 18,094.5 724.6 4.0% 3125 1.7%
kiama, 26,997.2 1,195.3 4.4% 527.9 2.0%
2 scalac 103,993.9 3,555.9 3.4% 1,666.3 1.6%
8 scaladoc 68,586.4 2,419.5 3.5% 1,152.7 1.7%
S scalap 23,667.2 888.5 3.8% 457.3 1.9%
= scalariform 28,330.8 1,025.8 3.6% 5232 1.8%
% scalatest 40,168.8 1,668.4 4.2% 793.0 2.0%
scalaxb 29,008.9 1,226.4 4.2% 561.4 1.9%
specs 26,047.7 997.5 3.8% 529.4 2.0%
tmt 27,116.7 1,115.2 4.1% 513.3 1.9%
average 3.9% 1.8%
SPECjbb2005 30,750.2 1,169.3 3.8% 506.1 1.6%

Table 8.3: Relative amount of compilation time taken by Partial Escape Analysis.
“PEA Accumulated” includes the time taken by the scheduling performed
before the analysis, while “PEA Flat” does not.

stabilize is bounded by the number of virtual objects in the loop’s predecessor state,
since each time the loop is processed at least one object needs to be materialized for
another iteration to happen. In practice, only 30% of all loops are processed twice, no

loop is processed more than two times, and even deeply nested loops converge quickly.

9.1

95

Chapter 9

Related Work

Escape Analysis

Escape Analysis initially emerged as an extension of sharing and aliasing
analyses, which were researched mainly in the context of functional lan-
guages at the time. The starting point was lifetime analysis, which tries to
determine the relation between the lifetimes of objects, i.e., if the reacha-

bility of one object is depending on the reachability of another object.

Ruggieri and Murtagh introduced a lifetime analysis for dynamically allocated ob-
jects [47]. Taking as an inspiration the lifetime information collected by generational
garbage collection, they argued that the lifetime of some objects can be tied to a specific
function by compile-time analysis. Their analysis is limited to a very simple language
with a restricted type system, and its result is used to put some objects into heap areas

that can be reclaimed as soon as a specific method is left.

Chase discusses allocation optimizations with a focus on the safety of these opti-
mizations [12]. While the algorithm presented in this work is very conservative, not
described in detail and lacking a practical implementation, it can also be considered

one of the first Escape Analysis algorithms.

Deutsch extended previous work on object lifetime analysis towards higher-order
languages with first-class continuations [16]. The program is translated into sequences
of abstract operations, on which the analysis, which is based on abstract interpretation,
is performed. While this work includes a prototype implementation written in ML, it
does not report any results. and the optimizations on object allocations that could be

performed based on the analysis are not explored.

The work of Goldberg and Park introduced the term “Escape Analysis” and defines

it as “a particular instance of lifetime analysis in which the lifetime of a function’s

9.1.1

96 Related Work

activation record is compared to the objects inside the function”. They first use this
analysis to determine whether the closure of a function call has a greater lifetime than
the function call itself [20], in which case it cannot be allocated on the stack. Later,
they apply the results of the analysis on reference counting schemes [45], so that useless
reference increments and decrements can be avoided. This is a very different use of
Escape Analysis, because it needs to prove that an object is always reachable within
a certain region, as opposed to proving that an object is not reachable after a certain
point. Finally, they apply the analysis to lists allocated by higher order functional
programs [46]. They describe certain strategies for optimizations based on the escape
information, like reuse of cons cells, stack allocation of cons cells, and bulk allocation

of cons cells.

Carr and Kennedy introduced a source-to-source transformation called Scalar Re-
placement [11]. Drawing from previous work on dependency analysis in the context
of automatic vectorization, they developed a data-flow analysis that replaces accesses
to array elements with variables, up to the point where the uniqueness of the array
element is no longer guaranteed. Their motivation was allowing the register allocator
to assign registers to array elements. The combination of Escape Analysis and Scalar

Replacement was introduced only later by Whaley [62].

Deutsch improves upon the complexity of previous Escape Analysis algorithms [15].
Drawing from his own previous work on lifetime analysis, he refines the work of Gold-
berg and Park to O(nlog?n) instead of an exponential complexity for first-order func-
tions, while keeping the exact same accuracy. This work also includes a formal proof
that Escape Analysis on second-order functions has an inherent exponential complex-
ity. He concludes with preliminary evidence showing that Escape Analysis “may [sic]

be useful in practice”.

Java

Blanchet extended previous work on Escape Analysis to allow for precise treatment of
assignments, and uses the results of this control-flow-sensitive analysis for Stack Allo-
cation [5]. The algorithm he presented extracts information from the source program
into a data structure that is later processed iteratively until a fixed point is reached.
He is the first to emphasize that indirect effects, e.g., improved data locality, play an
important role in the performance improvements facilitated by Escape Analysis. The
subsequent work in [6] was one of the first to completely support the Java language,

and he later contributed a formal proof of the correctness of his transformations [7].

Choi et al. presented both a control-flow-sensitive and a control-flow-insensitive Es-

cape Analysis for Java [13]. Even the control-flow-sensitive version, which has some

9.1.2

9.1 Escape Analysis 97

similarities to our Partial Escape Analysis, is only used to make global decisions about
escapability. In addition to the missing loop handling, it does not collect enough infor-
mation to perform on-the-fly Scalar Replacement. The control-flow-insensitive version
of this work is used to perform Scalar Replacement in the HotSpot server compiler [43]

starting with version Java SE 6u23.

Whaley and Rinard introduced a new program abstraction called points-to-escape
graph that combines pointer and Escape Analysis [63]. Their graph, which represents
objects as nodes and connections between objects as edges, contains information about
both objects created within a method and outside of a method. The information
extracted from this graph is used to apply lock elision and stack allocation. They place
a particular emphasis on the incremental nature of their analysis, i.e., on the ability
to combine the graphs for independently analyzed methods in order to achieve a more
precise result. Whaley later, in the context of partial method compilation, combined
of Escape Analysis with Scalar Replacement to completely eliminate the allocation of

objects instead of allocating them on the stack [62].

Beers et al. developed a mechanism to perform the Escape Analysis ahead of time and
verify the analysis results when the code is loaded [3]. While their analysis is less precise
than the work of Whaley and Rinard, it can support dynamic class loading. The results
of the analysis are incorporated into annotations within the class files themselves. In
their experiments, verifying the result of the analysis takes approximately one fourth

the analysis time.

Kotzmann and Méssenbdck introduced an implementation of Escape Analysis for the
HotSpot client compiler that works on the compiler’s high-level intermediate represen-
tation (HIR) [32, 33]. It uses the control-flow-insensitive equi-escape sets algorithm, and
was the first to apply Escape Analysis in the presence of deoptimization. The result of
the equi-escape sets algorithm is used to perform Scalar Replacement, stack allocation
and lock elision. A similar algorithm was used by Molnar et al. [37] to perform stack

allocation of objects in the Cacao VM.

Shankar et al. presented JOLT, a lightweight dynamic analysis which tries to reduce
object churn, the excessive creation of short-lived objects [52]. It does so by guiding
inlining so that Escape Analysis is more effective. Their approach significantly in-
creases the number of allocations amenable to Escape Analysis. Combining it with our

approach of Partial Escape Analysis would be an interesting future work.

Other Languages

Current development versions of the v8 JavaScript engine [21] contain an implementa-

tion of Escape Analysis which performs a very local analysis (looking only at the usages

9.2

9.2.1

98 Related Work

of an allocation) to determine whether an allocation escapes or not. The simulation of
the effects of operations for different allocations happens independently, which implies

that complex cases involving multiple objects cannot be handled.

Partial Escape Analysis

While there is no published work similar to Partial Escape Analysis, two
algorithms implemented in production-quality Virtual Machines for Lua and
Python show similarities to our technique. Both systems are tracing-based
just-in-time compilers for dynamic languages, implementing the techniques

pioneered by the Dynamo project [2].

LuaJIT

The LuaJIT compiler is a just-in-time compiler and runtime for the Lua language which
is available for many platforms and architectures. It performs a so-called Allocation
Sinking optimization [44], which is essentially an Escape Analysis tailored heavily to-
wards trace compilation. Lua applications show the same behavior as many dynamic
and object-oriented applications: they have many fallback paths in which objects es-

cape, so that the benefits of traditional Escape Analysis techniques are limited.

LualJIT is a trace compiler, i.e., it includes an interpreter that records sequences of
executed bytecodes and collects these traces for later compilation. Once traces have
been encountered often enough, they are combined, preprocessed, and scheduled for
compilation. Whenever a check within the trace does not evaluate to the expected
result, execution needs to exit the trace. Traces can have many exits, which are similar
to deoptimization points in that they contain a description of the interpreter state at
this point. In contrast to deoptimizations, however, some of these exits may be within
the hot paths of the code, so that it is important that they can be taken efficiently. It

is therefore possible for one compiled trace to directly jump to another compiled trace.

The basic principle of LuaJIT’s Escape Analysis is that allocations within a trace
will not escape at exits. If an allocation is only passed to the trace’s exits, and does
not escape within the rest of the trace, it can be “sunk” into the exits. The exits will
thus not receive a reference to the object, but a description of the object’s contents. It
is then the responsibility of the callee of the exit to reallocate (and possibly, re-sink)
the object.

LuaJIT relies on its advanced alias analysis to remove all loads from non-escaping

objects. The actual Escape Analysis works on a concise tuple IR and consists of a

9.2.2

9.2 Partial Escape Analysis 99

backwards marking phase with iterative processing of Phi references, and a forward
sweeping phase that tags non-marked instructions as removable, or “sunk”. While the
algorithm still takes a global decision, the trace-based nature improves its efficiency,
because unlikely branches will reside in separate traces. An escaping reference in one

of these side traces will not cause the object to escape in the main trace.

While the trace-based approach to Escape Analysis cannot be compared directly to
Partial Escape Analysis, the results are similar: object allocations will stay sunk, i.e.,

virtual, within some branches, while they escape in others.

Escape Analysis in PyPy

PyPy is a Python Virtual Machine that includes a meta-tracing just-in-time compiler
developed by Bolz et al. [10]. Its tracing runtime system is written in RPython, a
reduced version of Python which is amenable to ahead of time compilation. While
LuaJIT is a hand-crafted system tuned for tightness, size and efficiency, PyPy uses
techniques for automatically generating compiled code from interpreter snippets, i.e.,

partial evaluation of interpreters.

Bolz et al. also observed large numbers of object allocations for dynamic, object-
oriented applications. Their approach to Escape Analysis [8, 9] is the closest equivalent
to Partial Escape Analysis we are aware of. Object allocations within traces are replaced
at the allocation site with wvirtual objects, which maintain the shape of the object and
the current value of all fields. During a walk over the (linear) list of all instructions in
the trace, these virtual objects are updated for stores and queried for loads. Whenever

a virtual object escapes, it needs to be forced, i.e., allocated and initialized.

Only optimizing allocations within a trace is not sufficient for real-world applications,
therefore they extended the algorithm to allow virtual objects to pass through trace

exits. A subsequent trace can then start with virtual objects and continue the analysis.

An interesting property of PyPy’s virtual object technique is that whether an ar-
gument passed from one trace to another is virtual or not is a property of the trace’s
exit. If one trace exits with a virtual object and another one with an ordinary object
reference, two versions of the callee trace need to be compiled. This code duplication

during compilation has an effect similar to automatic loop peeling and tail duplication.

101

Chapter 10

Summary

This chapter outlines possible future work and concludes this thesis.

10.1 Future Work

Partial Escape Analysis has not been explored extensively in academic context. We

therefore propose future work in the following areas:

Unstructured Control Flow
The loop processing algorithm explained in Section 5.2.5 is tailored towards Graal
IR, which is limited to structured control flow and provides an explicit represen-

tation of loops [19].

The same principle of data-flow analysis can, however, also be applied to un-
structured control flow. Whenever there are no more nodes where all predecessor
states are available, the system needs to speculatively assume a state. As soon
as a new state is created as a replacement of the speculative state, the two states
need to be checked for equality. If they differ, iteration needs to backtrack to this

position.

Parallelized Iteration
The iteration that updates the allocation state could be run in parallel as soon
as a control split is encountered. Depending on the shape of the compiled code,
significant parts of the analysis could thus be executed in parallel. More fine-
grained multithreading within the compiler will become more important as more

cores are available for compilation.

Analysis on Unscheduled Graphs

Our algorithm currently relies on the scheduler to order the nodes, so that Partial

102

Summary

Escape Analysis can process them in a valid order. By adding simple invariants to
the Graal IR, such as limiting the maximum distance from nodes fixed in control
flow to nodes affected by Partial Escape Analysis, the analysis could be performed

without a schedule.

Although this will restrict the expressiveness of Graal IR, it will also speed up

the analysis and make it more suitable for faster baseline compilation.

Explicit Object Identity

Merging two distinct virtual objects into a Phi function requires the objects to be
materialized if the object identity of one of the individual objects is still accessible

after the merge, i.e., if one of the objects is not only referenced by the Phi function.

The problem is that the merged virtual object would not be always distinct from
or always equal to the original object. This could be solved by making the object
identity an explicit value: Each allocation site is assigned a unique id (which
needs to be calculated using a loop counter inside loops) that can later on be

used to determine equality of object identity.

As long as the object identity is not used, which is by far the most frequent case,
all code generated in order to maintain the identity will be removed by dead code

elimination later on.

Explicit Object Type

Similar to the object identity, an object’s class could also be made explicit. Merg-
ing two objects with different types only succeeds of they have the same number

and type of fields.

Making Virtual Objects part of the Calling Convention

Similar to the way trace exits are handled in PyPy (see Section 9.2.2), a method
call parameter could be passed to the callee as a virtual object, i.e., as the contents

of the virtual object. This would require solving several challenges:

e Different entry points or targets will be needed for each combination of
virtual and non-virtual parameters. This incurs significant changes to the

underlying Virtual Machine infrastructure.

e If the virtual object is materialized within the callee, the caller, which expects
the object to still be virtual after the call, needs to be deoptimized. Another

solution would be to have a separate return entry point for this case.

10.2

10.2 Conclusions 103

Conclusions

In this thesis, we presented a new approach to perform Escape Analysis, Scalar Replace-
ment and Lock Elision in a fine-grained and control-flow sensitive way. Our analysis
does not make a global decision about an object’s escapability, but propagates the state
of all allocations while iterating over the control flow. It can thus perform optimizations
such as Scalar Replacement in one branch while an actual object is created in another

branch.

Our implementation of Partial Escape Analysis is part of the open-source Graal
compiler. It is a mature component that is extensive exercised by the Graal project’s
test and benchmark suite. It also plays a crucial role in the context of the Truffle

framework, where it is used to virtualize execution frames.

We developed an interface to provide extensibility for new compiler components and
new node types. This allows the effect of new node types on allocated objects to
be specified without modifying the compiler itself. This interface is also used for all

predefined node types.

We evaluated our implementation on the DaCapo, ScalaDaCapo and SPECjbb2005
benchmarks. It incurs a modest performance overhead of 4% on compilation time.
Partial Escape Analysis can reduce memory allocated by up to 58.5% and shows an
improvement in performance of up to 33%. We did not observe a significant benefit

from Lock Elision in the benchmarks we evaluated.

Partial Escape Analysis is a novel technique that is well-suited for modern dynamic
compilers. It is easy to understand, easy to implement and shows a significant perfor-

mance improvement.

List of Figures 105
List of Figures
2.1 Overview of the artifacts generated by the Java system. 15
2.2 Java Virtual Machine overview. 16
2.3 Example showing the effect of code reordering on multi-threaded code. . 17
3.1 Overview of HotSpot and Graal components. 21
3.2 Graal compilation process. Lo 23
3.3 Hierarchy of Graal Node Classes 27
3.4 Small example along with the Graal IR that will be generated for it. . . 28
3.5 Example for frame states of inlined methods. 31
4.1 Examples for situations handled by Intra- and Interprocedural Analysis. 43
5.1 Graal IR of the example in Listing 5.2 (after inlining). 49
5.2 Graal IR of the example in Listing 5.2 (after Partial Escape Analysis). . 50
5.3 Graal IR of the example in Listing 5.2 (after control flow optimizations). 51
5.4 Block structure of the Graal IR in Figure 5.2. 52
5.5 Visualization of the allocation state used in the rest of this thesis. 53
5.6 Storing a virtual value into a static field. 61
5.7 Store operation performed on an escaped object. 61
5.8 Splitting and merging of the allocation state for a small example. 62
5.9 Merging of aliases performed by the MergeProcessor. 63
5.10 Merging of escaped objects performed by the MergeProcessor. 65
5.11 Merging of virtual objects performed by the MergeProcessor. 65
5.12 Merging of aliases for Phi nodes performed by the MergeProcessor. 66
5.13 Example loop.o 67
5.14 Example from Listing 5.5 with FrameStates, after inlining. 70
5.15 Example from Listing 5.5 with FrameStates, after Partial Escape Analysis. 70
5.16 Example from Listing 5.6 after Partial Escape Analysis. 72

List of Tables 107

List of Tables

8.1 Evaluation of allocations on DaCapo, ScalaDaCapo and SPECjbb2005.. 91
8.2 Evaluation of performance on DaCapo, ScalaDaCapo and SPECjbb2005. 92
8.3 Evaluation of overhead on DaCapo, ScalaDaCapo and SPECjbb2005.. . 94

Listings 109

Listings
1.1 Example for motivating Partial Escape Analysis. 4
1.2 Example from Listing 1.1 after inlining.
1.3 Example from Listing 1.2 after Partial Escape Analysis.
2.1 “Hello World!” in Java. 11
3.1 Example declaration of a node class. 25
4.1 Simple example. 38
4.2 getValue method from the example in Listing 4.1 after inlining. 39
4.3 FExample from Listing 4.2 after Scalar Replacement and Lock Elision. . . 39
4.4 Example for flow-sensitive and flow-insensitive analysis. 42
5.1 Motivating example for Partial Escape Analysis. 45
5.2 Example from Listing 5.1 after inlining. 46
5.3 Example from Listing 5.2 after Partial Escape Analysis. 47
5.4 The state that is propagated through the IR. 54
5.5 Example shown in Figures 5.14 and 5.15. 70
5.6 Example for virtual and escaped objects in nested frame states. 72
6.1 The Virtualizable and VirtualizableAllocation interfaces. 76
6.2 The VirtualizerTool interface that is used by nodes to describe their effects. 77
6.3 The interface provided by ObjectState and its subclasses. 78
6.4 The interface provided by VirtualObject node and its subclasses. 79
6.5 Implementation of virtualize for the LoadField node. 79
6.6 Implementation of virtualize for the Newlnstance node. 80
6.7 Implementation of virtualize for the ObjectGetClass node. 81
6.8 Implementation of virtualize for the ObjectClone node. 82
7.1 The singleBackValue function of Graal’s PhiNode class. 83
7.2 The InstantGl.getlrradiance function from DaCapo Sunflow. 85
7.3 A small example method that creates and initializes an ArraylList. 87
7.4 Code example with an escaping and a non-escaping allocation. 87

111

Bibliography

1]

2]

Ken Arnold, James Gosling, and David (David Colin) Holmes. The Java™ Pro-
gramming Language. Addison-Wesley, fourth edition, 2005. ISBN 0-321-34980-6.

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transparent
dynamic optimization system. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 1-12. ACM Press,
2000. doi: 10.1145/349299.349303.

Matthew Q. Beers, Christian H. Stork, and Michael Franz. Efficiently verifiable
escape analysis. In Proceedings of the European Conference on Object-Oriented
Programming. Springer, 2004. doi: 10.1007/978-3-540-24851-4_ 4.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. In Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications, pages 169—
190. ACM Press, October 2006. doi: 10.1145/1167473.1167488.

Bruno Blanchet. Escape analysis: Correctness proof, implementation and exper-
imental results. In Proceedings of the ACM SIGPLAN Symposium on Principles
of Programming Languages, pages 25-37. ACM Press, 1998. doi: 10.1145/268946.
268949.

Bruno Blanchet. Escape analysis for object-oriented languages: application to
Java. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, pages 20-34. ACM Press, 1999.
doi: 10.1145/320384.320387.

Bruno Blanchet. Escape analysis for Java™: Theory and practice. ACM
Transactions on Programming Languages and Systems, 25(6):713-775, 2003. doi:
10.1145/945885.945886.

Carl Friedrich Bolz. Escape analysis in PyPy’s jit,
2010. URL http://morepypy.blogspot.co.at/2010/09/

using-escape—-analysis—across—loop.html.

http://morepypy.blogspot.co.at/2010/09/using-escape- analysis-across-loop.html
http://morepypy.blogspot.co.at/2010/09/using-escape- analysis-across-loop.html

112

Bibliography

[9]

[10]

[13]

[14]

[15]

[17]

Carl Friedrich Bolz. Using escape analysis across loop boundaries for spe-
cialization, 2010. URL http://morepypy.blogspot.co.at/2010/09/
escape-analysis—-in-pypys—-Jjit.html.

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing
the meta-level: PyPy’s tracing jit compiler. In Proceedings of the Workshop on
the Implementation, Compilation, Optimization of Object-Oriented Languages and
Programming Systems, pages 18-25. ACM Press, 2009. doi: 10.1145/1565824.
1565827.

Steve Carr and Ken Kennedy. Scalar replacement in the presence of conditional

control flow. Software: Practice and Experience, 24(1):51-77, January 1994.

D. R. Chase. Safety consideration for storage allocation optimizations. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 1-10. ACM Press, 1988.

Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and
Sam Midkiff. Escape analysis for Java. In Proceedings of the ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages, and Applications,
pages 1-19. ACM Press, 1999. doi: 10.1145/320384.320386.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems,
13(4):451-490, 1991. doi: 10.1145/115372.115320.

Alain Deutsch. On the complexity of escape analysis. In Proceedings of the ACM
SIGPLAN Symposium on Principles of Programming Languages, pages 358-371.
ACM Press, 1997. doi: 10.1145/263699.263750.

Alan Deutsch. On determining lifetime and aliasing of dynamically allocated data
in higher-order functional specifications. In Proceedings of the ACM SIGPLAN
Symposium on Principles of Programming Languages, pages 157-168. ACM Press,
1990. doi: 10.1145/96709.96725.

Gilles Duboscq, Lukas Stadler, Thomas Wiirthinger, Doug Simon, Christian Wim-
mer, and Hanspeter Mossenbock. Graal IR: An extensible declarative intermediate
representation. In Proceedings of the Asia-Pacific Programming Languages and
Compilers Workshop, 2013.

Gilles Duboscq, Thomas Wiirthinger, Lukas Stadler, Christian Wimmer, Doug
Simon, and Hanspeter Méssenbock. An intermediate representation for speculative
optimizations in a dynamic compiler. In Proceedings of the ACM Workshop on
Virtual Machines and Intermediate Languages, pages 1-10. ACM Press, 2013. doi:
10.1145/2542142.2542143.

http://morepypy.blogspot.co.at/2010/09/escape-analysis-in-pypys-jit.html
http://morepypy.blogspot.co.at/2010/09/escape-analysis-in-pypys-jit.html

Bibliography 113

[19]

[23]

[26]

[27]

Zdenek Dvorak. [Ino| enable unrolling/peeling/unswitching of arbitrary loops,
March 2004. URL http://gcc.gnu.org/ml/gcc—patches/2004-03/
msg02212.html. GCC Patch Mailing List.

B. Goldberg and Y. G. Park. Higher order escape analysis: Optimizing stack
allocation in functional program implementations. In Proceedings of the European

Symposium on Programming, pages 152—-160. Springer-Verlag, 1990.

Google. The v8 JavaScript engine, 2013. URL https://developers.google.

com/v8/.

Matthias Grimmer, Manuel Rigger, Lukas Stadler, Roland Schatz, and Hanspeter
Mossenbock. An efficient native function interface for Java. In Proceedings of the
International Conference on the Principles and Practice of Programming in Java,
pages 35—44. ACM Press, 2013. doi: 10.1145/2500828.2500832.

Christian Haubl and Hanspeter Mossenbock. Trace-based compilation for the Java
HotSpot virtual machine. In Proceedings of the International Conference on the
Principles and Practice of Programming in Java, pages 129-138. ACM Press, 2011.
doi: 10.1145/2093157.2093176.

Christian H&ubl, Christian Wimmer, and Hanspeter Mossenbock. Optimized
strings for the Java HotSpot™ virtual machine. In Proceedings of the Interna-
tional Conference on the Principles and Practice of Programming in Java, pages
105-114. ACM Press, 2008. doi: 10.1145/1411732.1411747.

Christian Haubl, Christian Wimmer, and Hanspeter Mossenbock. Evaluation of
trace inlining heuristics for Java. In Proceedings of the ACM Symposium on Applied
Computing, pages 1871-1876. ACM Press, 2012. doi: 10.1145/2245276.2232084.

Christian H&ubl, Christian Wimmer, and Hanspeter Mo&ssenbock. Context-
sensitive trace inlining for Java. Comput. Lang. Syst. Struct., 39(4):123-141, 2013.
doi: 10.1016/j.c1.2013.04.002.

Christian H&aubl, Christian Wimmer, and Hanspeter Mossenbock. Deriving code
coverage information from profiling data recorded for a trace-based just-in-time
compiler. In Proceedings of the International Conference on the Principles and
Practice of Programming in Java, pages 1-12. ACM Press, 2013. doi: 10.1145/
2500828.2500829.

Urs Holzle, Craig Chambers, and David Ungar. Debugging optimized code with
dynamic deoptimization. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 32-43. ACM Press,
1992. doi: 10.1145/143095.143114.

JSR 133: Java™ Memory Model and Thread Specification Revision. JCP, 2004.
URL http://Jjcp.org/en/jsr/detail?id=133.

http://gcc.gnu.org/ml/gcc-patches/2004-03/msg02212.html
http://gcc.gnu.org/ml/gcc-patches/2004-03/msg02212.html
https://developers.google.com/v8/
https://developers.google.com/v8/
http://jcp.org/en/jsr/detail?id=133

114

Bibliography

[30]

[31]

[38]

[39]

[40]

[41]

JSR 342: Java™ Platform, Enterprise Edition 7 (Java EE 7) Specification. JCP,
2013. URL http://jcp.org/en/jsr/detail?id=342.

Yongxian Jin, Wei Hu, Fengzhen Chen, and Gaofeng Che. Thread escape analysis
for Java programs based on soot. In Proceedings of the International Conference
on Test and Measurement. IEEE Computer Society, 2009. doi: 10.1109/ICTM.
2009.5412985.

Thomas Kotzmann and Hanspeter Mossenbock. Escape analysis in the context
of dynamic compilation and deoptimization. In Proceedings of the International
Conference on Virtual Execution Environments, pages 111-120. ACM Press, 2005.
doi: 10.1145/1064979.1064996.

Thomas Kotzmann and Hanspeter Mdssenbéck. Run-time support for optimiza-
tions based on escape analysis. In Proceedings of the International Symposium on
Code Generation and Optimization, pages 49-60. IEEE Computer Society, 2007.
doi: 10.1109/CG0O.2007.34.

Thomas Kotzmann, Christian Wimmer, Hanspeter Mossenbock, Thomas Ro-

tTM

driguez, Kenneth Russell, and David Cox. Design of the Java HotSpo client

compiler for Java 6. ACM Transactions on Architecture and Code Optimization, 5
(1):Article 7, 2008. doi: 10.1145/1369396.1370017.

Tim Lindholm and Frank Yellin. The Java™ Virtual Machine Specification.
Addison-Wesley, 2nd edition, 1999.

Jeremy Manson. The Java Memory Model. PhD thesis, University of Maryland,
College Park, 2004.

Peter Molnar, Andreas Krall, and Florian Brandner. Stack allocation of objects in
the CACAO virtual machine. In Proceedings of the International Conference on
the Principles and Practice of Programming in Java, pages 153-161. ACM Press,
2009. doi: 10.1145/1596655.1596680.

Hanspeter Mossenbock and Michael Pfeiffer. Linear scan register allocation in the
context of SSA form and register constraints. In Proceedings of the International

Conference on Compiler Construction, pages 229-246. Springer-Verlag, 2002.

Hanspeter Mossenbock. Adding static single assignment form and a graph coloring
register allocator to the Java HotSpot™ client compiler. Technical Report 15,

Institute for Practical Computer Science, Johannes Kepler University, 2000.

Martin Odersky and al. An Overview of the Scala Programming Language. Tech-
nical Report 1C/2004/64, EPFL, Lausanne, Switzerland, 2004.

OpenJDK Community. Graal Project, 2013. URL http://openijdk. java.
net/projects/graal/.

http://jcp.org/en/jsr/detail?id=342
http://openjdk.java.net/projects/graal/
http://openjdk.java.net/projects/graal/

Bibliography 115

[42]

[43]

[47]

[49]

OpenJDK Community. Sumatra Project, 2013. URL http://openjdk. java.

net/projects/sumatra/.

Michael Paleczny, Christopher Vick, and Cliff Click. The Java HotSpot™ server
compiler. In Proceedings of the Symposium on Java Virtual Machine Research and
Technology, pages 1-12. USENIX, 2001.

Mike Pall. Allocation sinking optimization for the LuaJIT compiler, 2013. URL
http://wiki.luajit.org/Allocation-Sinking—Optimization.

Young Gil Park and Benjamin Goldberg. Reference escape analysis: Optimiz-
ing reference counting based on the lifetime of references. In Proceedings of the
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program
Manipulation, pages 178-189. ACM Press, 1991. doi: 10.1145/115865.115883.

Young Gil Park and Benjamin Goldberg. KEscape analysis on lists. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 116-127. ACM Press, 1992. doi: 10.1145/143095.143125.

C. Ruggieri and T. P. Murtagh. Lifetime analysis of dynamically allocated objects.
In Proceedings of the ACM SIGPLAN Symposium on Principles of Programming
Languages, pages 285-293. ACM Press, 1988. doi: 10.1145/960116.53991.

Kenneth Russell and David Detlefs. Eliminating synchronization-related atomic
operations with biased locking and bulk rebiasing. SIGPLAN Not., 41:263-272,
October 2006. doi: 10.1145/1167515.1167496.

Thomas Schatzl, Laurent Daynes, and Hanspeter Mdéssenbock. Optimized memory
management for class metadata in a JVM. In Proceedings of the International
Conference on the Principles and Practice of Programming in Java, pages 151—
160. ACM Press, 2011. doi: 10.1145/2093157.2093182.

Arnold Schwaighofer. Tail call optimizations for the Java HotSpot™ VM. Master’s
thesis, Johannes Kepler University, Linz, 2009.

Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. Da Capo
con Scala: design and analysis of a scala benchmark suite for the Java virtual
machine. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages, and Applications, pages 657-676. ACM Press,
2011. doi: 10.1145/2076021.2048118.

Ajeet Shankar, Matthew Arnold, and Rastislav Bodik. Jolt: lightweight dynamic
analysis and removal of object churn. In Proceedings of the ACM SIGPLAN Con-

ference on Object-Oriented Programming Systems, Languages, and Applications,
pages 127-142. ACM Press, 2008. doi: 10.1145/1449764.1449775.

http://openjdk.java.net/projects/sumatra/
http://openjdk.java.net/projects/sumatra/
http://wiki.luajit.org/Allocation-Sinking-Optimization

116

Bibliography

[53]

[54]

[56]

[61]

Lukas Stadler. Serializable coroutines for the HotSpot™ Java virtual machine.

Master’s thesis, Johannes Kepler University Linz, Austria, 2011.

Lukas Stadler, Christian Wimmer, Thomas Wiirthinger, Hanspeter Mossenbock,
and John Rose. Lazy continuations for Java virtual machines. In Proceedings of
the International Conference on the Principles and Practice of Programming in
Java, pages 143-152. ACM Press, 2009. doi: 10.1145/1596655.1596679.

Lukas Stadler, Thomas Wiirthinger, and Christian Wimmer. Efficient coroutines
for the Java platform. In Proceedings of the International Conference on the Prin-
ciples and Practice of Programming in Java, pages 20-28. ACM Press, 2010. doi:
10.1145/1852761.1852765.

Lukas Stadler, Gilles Duboscq, Hanspeter Mossenbock, and Thomas Wiirthinger.
Compilation queuing and graph caching for dynamic compilers. In Proceedings
of the ACM Workshop on Virtual Machines and Intermediate Languages, pages
49-58. ACM Press, 2012. doi: 10.1145/2414740.2414750.

Lukas Stadler, Gilles Duboscq, Hanspeter Mossenbock, Thomas Wiirthinger, and
Doug Simon. An experimental study of the influence of dynamic compiler opti-
mizations on scala performance. In Proceedings of the jth Workshop on Scala.
ACM Press, 2013.

Lukas Stadler, Thomas Wiirthinger, and Hanspeter Mossenbdck. Partial escape
analysis and scalar replacement for Java. In Proceedings of the International Sym-
posium on Code Generation and Optimization, pages 165:165-165:174. ACM Press,
2014. doi: 10.1145/2544137.2544157.

TIOBE Software BV. Tiobe programming community index, April 2010. http:

//www.tiobe.com/tpci.htm.

Ben L. Titzer, Thomas Wiirthinger, Doug Simon, and Marcelo Cintra. Improving
compiler-runtime separation with xir. In Proceedings of the International Con-
ference on Virtual Execution Environments, pages 39-50. ACM Press, 2010. doi:
10.1145/1735997.1736005.

Jaroslav Sevéik and David Aspinall. On validity of program transformations
in the Java memory model. In Proceedings of the FEuropean Conference on
Object-Oriented Programming, pages 27-51. Springer-Verlag, 2008. doi: 10.1007/
978-3-540-70592-5_ 3.

John Whaley. Partial method compilation using dynamic profile information. In
Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 166-179. ACM Press, 2001. doi:
10.1145/504311.504295.

http://www.tiobe.com/tpci.htm
http://www.tiobe.com/tpci.htm

Bibliography 117

[63]

[65]

[66]

[69]

[70]

[72]

John Whaley and Martin Rinard. Compositional pointer and escape analysis for
Java programs. In Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages 187-206.
ACM Press, 1999. doi: 10.1145/320384.320400.

Christian Wimmer and Hanspeter Mossenbock. Optimized interval splitting in a
linear scan register allocator. In Proceedings of the International Conference on
Virtual Ezecution Environments, pages 132-141. ACM Press, 2005. doi: 10.1145/
1064979.1064998.

Christian Wimmer and Hanspeter Mdssenbdck. Automatic object colocation based
on read barriers. In Proceedings of the Joint Conference on Modular Programming
Languages, pages 326-345. Springer-Verlag, 2006. doi: 10.1007/11860990_ 20.

Christian Wimmer and Hanspeter Mdssenbock. Automatic feedback-directed ob-
ject inlining in the Java Hotspot™ virtual machine. In Proceedings of the Interna-
tional Conference on Virtual Ezxecution Environments, pages 12—21. ACM Press,
2007. doi: 10.1145/1254810.1254813.

Christian Wimmer and Hanspeter Mossenbéck. Automatic array inlining in Java
virtual machines. In Proceedings of the International Symposium on Code Gen-
eration and Optimization, pages 14-23. ACM Press, 2008. doi: 10.1145/1356058.
1356061.

Christian Wimmer and Hanspeter Méssenbock. Automatic feedback-directed ob-
ject fusing. ACM Transactions on Architecture and Code Optimization, 7(2):7:1-
7:35, 2010. doi: 10.1145/1839667.1839669.

Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jordan, Lau-
rent Daynes, and Douglas Simon. Maxine: An approachable virtual machine for,
and in, Java. ACM Transactions on Architecture and Code Optimization, 9(4):
30:1-30:24, January 2013. doi: 10.1145/2400682.2400689.

Thomas Wiirthinger, Christian Wimmer, and Hanspeter Mdossenbock. Array
bounds check elimination for the Java HotSpot™ client compiler. In Proceedings
of the International Conference on the Principles and Practice of Programming in
Java, pages 125-133. ACM Press, 2007. doi: 10.1145/1294325.1294343.

Thomas Wiirthinger, Christian Wimmer, and Hanspeter M&ssenbock. Visualiza-
tion of program dependence graphs. In Proceedings of the International Conference

on Compiler Construction, pages 193-196. Springer-Verlag, 2008.

Thomas Wiirthinger, Christian Wimmer, and Hanspeter Mdssenbock. Array
bounds check elimination in the context of deoptimization. Science of Computer
Programming, 74(5-6):279-295, 2009. doi: 10.1016/j.scico.2009.01.002.

118

Bibliography

[73]

[74]

[77]

[78]

Thomas Wiirthinger, Walter Binder, Danilo Ansaloni, Philippe Moret, and
Hanspeter Md&ssenbock. Improving aspect-oriented programming with dynamic
code evolution in an enhanced Java virtual machine. In Proceedings of the 7th
Workshop on Reflection, AOP and Meta-Data for Software Evolution, pages 5:1—
5:5. ACM Press, 2010. doi: 10.1145/1890683.1890688.

Thomas Wiirthinger, Walter Binder, Danilo Ansaloni, Philippe Moret, and
Hanspeter Méssenbock. Applications of enhanced dynamic code evolution for Java
in GUI development and dynamic aspect-oriented programming. In Proceedings
of the International Conference on Generative Programming and Component En-
gineering, pages 123-126. ACM Press, 2010. doi: 10.1145/1868294.1868312.

Thomas Wiirthinger, Danilo Ansaloni, Walter Binder, Christian Wimmer, and
Hanspeter Mossenbock. Safe and atomic run-time code evolution for Java and its
application to dynamic AOP. In Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications, pages 825—
844. ACM Press, 2011. doi: 10.1145/2048066.2048129.

Thomas Wiirthinger, Christian Wimmer, Andreas W68, Lukas Stadler, Gilles Du-
boscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One
VM to rule them all. In Proceedings of the 2013 ACM International Symposium

on New Ideas, New Paradigms, and Reflections on Programming Software, pages
187-204. ACM Press, 2013. doi: 10.1145/2509578.2509581.

Thomas Wirthinger, Andreas W63, Lukas Stadler, Gilles Duboscq, Doug Simon,
and Christian Wimmer. Self-optimizing AST interpreters. In Proceedings of the
Dynamic Languages Symposium, pages 73-82. ACM Press, 2012. doi: 10.1145/
2384577.2384587.

Thomas Wiirthinger, Christian Wimmer, and Lukas Stadler. Unrestricted and
safe dynamic code evolution for Java. Science of Computer Programming, 78(5):
481-498, May 2013. doi: 10.1016/j.scico.2011.06.005.

Eidesstattliche Erklarung 119

Eidesstattliche Erklarung

Ich erklare an Eides statt, dass ich die vorliegende Dissertation selbststdndig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wortlich oder sinngeméfl entnommenen Stellen als solche kenntlich gemacht
habe. Die vorliegende Dissertation ist mit dem elektronisch iibermittelten Textdoku-

ment identisch.

Linz, Mai 2014

Dipl.-Ing. Lukas Stadler

“A wizard is never late, nor is he early, he arrives precisely when he means to.”

- Gandalf

	1 Motivation
	1.1 Problem Statement
	1.1.1 Existing Solutions
	1.1.2 Remaining Challenges
	1.1.3 Novel Solution
	1.1.4 Example
	1.1.5 Applicability

	1.2 Scientific Contributions
	1.3 Project Context
	1.4 Structure of this Thesis

	2 Introduction
	2.1 Java
	2.1.1 Java Objects
	2.1.2 Java Virtual Machines
	2.1.3 Java Memory Subsystem

	2.2 Java HotSpot™ Virtual Machine
	2.2.1 Deoptimization
	2.2.2 Thread-local Allocation Buffers

	3 Graal
	3.1 Compiler Characteristics
	3.1.1 Compilation Process

	3.2 Graal IR
	3.2.1 Declarative Node Types
	3.2.2 Hierarchy of Node Types
	3.2.3 Frame States
	3.2.4 Object Creation and Modification
	3.2.5 Accessing Object Properties
	3.2.6 Additional Operations on Objects

	4 Escape Analysis
	4.1 Example
	4.2 Optimizations
	4.3 Classification of Algorithms
	4.3.1 Object Scope
	4.3.2 Control Flow Sensitivity
	4.3.3 Code Representation
	4.3.4 Intraprocedural vs. Interprocedural Escape Analysis

	5 Partial Escape Analysis
	5.1 Example
	5.2 Partial Escape Anlaysis in Graal
	5.2.1 Blocks, Scheduling and Reverse Postorder Iteration
	5.2.2 Allocation State
	5.2.3 Effects of Nodes on the Allocation State
	5.2.4 Control Flow Splits and Merges
	5.2.5 Loops
	5.2.6 Handling of Effects
	5.2.7 Handling Frame States

	6 Extensible Escape Analysis
	6.1 Extensibility: Node Types
	6.1.1 Virtualizable Interface
	6.1.2 VirtualizerTool

	6.2 Examples
	6.2.1 LoadField Node
	6.2.2 NewInstance Node
	6.2.3 ObjectGetClass Node
	6.2.4 ObjectClone Node

	7 Case Studies
	7.1 Graal PhiNode
	7.2 DaCapo Sunflow
	7.3 ArrayList Initialization
	7.4 Escaping and Non-Escaping Allocations

	8 Evaluation
	8.1 Sources of Performance Increases
	8.2 Performance Impact
	8.3 Comparison
	8.4 Compilation Performance

	9 Related Work
	9.1 Escape Analysis
	9.1.1 Java
	9.1.2 Other Languages

	9.2 Partial Escape Analysis
	9.2.1 LuaJIT
	9.2.2 Escape Analysis in PyPy

	10 Summary
	10.1 Future Work
	10.2 Conclusions

	List of Figures
	List of Tables
	List of Listings
	Bibliography

